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Optimization approach to entanglement distillation

T. Opatrný1,2 and G. Kurizki1
1Department of Chemical Physics, Weizmann Institute of Science, 761 00 Rehovot, Israel

2Department of Theoretical Physics, Palacky´ University, Svobody 26, 771 46 Olomouc, Czech Republic
~Received 30 November 1998; revised manuscript received 8 February 1999!

We put forward a method for optimized distillation of partly entangled pairs of quantum bits into a smaller
number of more entangled pairs by recurrent local unitary operations and projections. Optimized distillation is
achieved by minimization of a cost function with up to 30 real parameters, which is chosen to be sensitive to
the fidelity and the projection probability at each step. We show that in many cases this approach can signifi-
cantly improve the distillation efficiency in comparison to the present methods.@S1050-2947~99!03507-6#

PACS number~s!: 03.67.2a, 32.80.Qk, 42.50.Vk, 89.70.1c
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I. INTRODUCTION

Entanglement distillation or purification@1–5# denotes the
extraction of strongly entangled pairs of qubits from a larg
number of weakly entangled pairs. The objective is to sh
strongly correlated qubits between distant parties in orde
allow reliable quantum teleportation@6# or quantum cryptog-
raphy @7#. All methods of entanglement purification requi
that the two parties perform only local operations on th
systems and that only classical information be exchan
between them, without transferring any additional qub
The possible local operations include~Fig. 1! ~i! unitary
transformations whereby each party entangles the particle
their disposal; ~ii ! nonunitary projections, whereby eac
party measures a portion of their particles, thus project
the rest of the system onto a new state. These projection
usually followed by classical communication of the measu
ment results between the parties. Another nonunitary op
tion is filtering @5#, whereby a pair is with a certain probabi
ity either discarded or kept after each projection, t
probability being dependent on the state.

The principles of the known distillation schemes ha
been surveyed in@2#. Here we focus on recurrence distilla
tion methods which use two pairs of quantum bits~qubits! as
input and produce a single output pair.~a! The quantum pri-
vacy amplification~QPA! method@3# requires that the pro
jection of the input pairs on any of the four states of the B
basis @ uc6&5221/2 (0,1,61,0)† and uf6&5221/2 (1,0,0,
61)†] be larger than1

2 . The QPA method uses a sequence
p/2 rotations, XOR operations, and measurements.~b! In the
method of Ref.@1# the two-qubit input state is supposed
have a projection larger than12 on the singlet stateuc2&. This
method uses a sequence of unilateralp rotations of the qu-
bits and a bilateral XOR operation followed by a measu
ment. The output is a pair whose projection on the sing
state is larger than that of the input pair. When used rec
rently, the QPA method@3# often converges faster towards
Bell state than the method of@1# ~for the proof of conver-
gence of the QPA, see@4#!.

Both of the aforementioned recurrence methods usefixed
parameters for the state transformations. It is not cl
whether these methods are optimal for the states which
usable as their input, and, if not, how their performance
be improved. There are other states for which these meth
PRA 601050-2947/99/60~1!/167~6!/$15.00
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do not work at all. This is demonstrated in Fig. 2, whic
gives the statistics of applicability of the QPA method f
randomly chosen two-qubit states. The random two-qu
density matrices were generated as in Ref.@8# and the statis-
tics was obtained from a sample of 106 trials @9#. For each of
the generated density matrices it was checked whether it
responds to an entangled~i.e., inseparable! state, and, if so,
whether it can be purified by the QPA. The results show t
about 37% of all the possible states are entangled an
principle can be used for entanglement distillation. Abo
74% of the entangled states have fidelity~see Sec. II B! @2#
F. 1

2 and in principle can, after appropriate manipulation
be used for the QPA. Only a 12% fraction of the insepara
states, which is about 4% of the sample, have a diago
density-matrix element larger than12 in the Bell basis, and
can therefore be used directly as the input of the QPA al
rithm. This suggests that there is a vast domain in the sp
of two-qubit states where new approaches to the distillat
problem can be useful.

Here we deal with entanglement distillation as a probl
of optimization, aimed at improving the efficiency of th
recurrence methods and extending the class for which t
work. In contrast to the previously discussed recurren
methods, we assume that the transformation parameters
be chosen at will to our advantage. Furthermore, as oppo
to the ingenious choice of parameters in these methods
do not have to guess their values: the optimal choice of

FIG. 1. Stages of the basic entanglement purification scheme~I!
The two partiesA andB share two partly entangled pairs%1 and%2,
~II ! they apply local unitary transformsUa andUb , and~III ! project
out one of the pairs, thus obtaining the remaining pair in the stat%.
167 ©1999 The American Physical Society
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168 PRA 60T. OPATRNÝ AND G. KURIZKI
rameters for the unitary operations and the projections is
tained by minimization of an approximate cost functio
which represents a tradeoff between maximized probab
of the conditional measurement and the best achievable
tanglement. These principles are similar to the ones pr
ously used for optimized state engineering@10#. However,
the present task is still nontrivial, since the number of con
parameters is large~up to 30!, and the choice of a cost func
tion is far from obvious.

These issues are analyzed in Sec. II, where the optim
tion procedure is obtained. This procedure is then applie
Sec. III to cases where the QPA is inefficient, to input sta
with fidelity F, 1

2 , and to trapped ion qubits. The results a
discussed in Sec. IV.

II. OPTIMIZATION PROCEDURE

Let us assume that we want to prepare, starting from
pairs of qubits with density matrices%1 and%2, a single pair
with a density matrix% whose entanglement is larger tha
that of both%1 and %2, using local unitary transformation
followed by projections~Fig. 1!. Let us denote the local uni
tary transforms of each party byUa andUb , respectively. If
the measurements are performed on the particles of the
ond pair, with the detected state beinguC&2, then the first
~purified! pair is transformed into the state

%5
1

P 2^CuUaUb%1^ %2Ub
†Ua

†uC&2 , ~1!

P being the probability of success,

P5Tr 2^CuUaUb%1^ %2Ub
†Ua

†uC&2 . ~2!

Provided that each particle is a two-level system, the tw
particle unitary transformation of each party belongs to
SU~4! group @considering SU~4! instead of U~4! means that
we omit the unimportant overall phase#. Such a group has 15
real parameters. The local transformations on both sides
thus parametrized with 30 real parameters. Finding the o
mum values for these 30 parameters would enable us to
form the entanglement distillation in the most efficient wa
For this purpose, we must~i! find a proper parametrization o
the transformations,~ii ! choose a function that quantifies th

FIG. 2. Statistics of the entanglement properties of an ensem
of randomly chosen two-qubit states. The areas of the rectan
~from bottom to top! are proportional to the following probabilities
the entire ensemble~all states!, the probability that a randomly cho
sen state is entangled, the probability that it fulfills the condit
F.1/2, and the probability that it is directly usable as an input
the QPA scheme~QPA possible!.
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success of the distillation, and~iii ! have a suitable method
for the optimization of this function.

A. Parametrization of the local unitary transformations

To parametrize the SU~4! local unitary transformations
we use a modified version of the scheme in Ref.@11#, in the
form of a product of six SU~2! transformations:

U5U (1,2)~f12,c12,x12!U
(2,3)~f23,0,x23!

3U (1,3)~f13,c13,x13!U
(3,4)~f34,0,x34!

3U (2,4)~f24,0,x24!U
(1,4)~f14,c14,x14!, ~3!

where theU ( i , j )(f i j ,c i j ,x i j ) transforms represent the SU~2!
rotations between thei th and j th states of the four-
dimensional basis, their elements being

Uk,k
(m,n)51, kÞm,n, ~4!

Um,m
(m,n)5cosfeic, Um,n

(m,n)5sinfeix,

Un,m
(m,n)52sinfe2 ix, Un,n

(m,n)5cosfe2 ic.

We consider the basis states to beug1 ,g1&, ug1 ,e2&, ue1 ,g2&,
and ue1 ,e2&, whereugk& and uek& denote the ground and th
excited state of thekth system,k51,2.

The local unitary transformations are thus described b
30-dimensional vectorX,

X5~f12
a ,c12

a ,x12
a ,f23

a ,x23
a ,f13

a ,c13
a ,x13

a ,

f34
a ,x34

a ,f24
a ,x24

a ,f14
a ,c14

a ,x14
a ;f12

b ,c12
b ,x12

b ,

f23
b ,x23

b ,f13
b ,c13

b ,x13
b ,f34

b ,x34
b ,f24

b ,x24
b ,f14

b ,c14
b ,x14

b !,

~5!

where the indicesa andb refer to the two parties~Alice and
Bob, respectively!. The distillation protocol of Ref.@1# cor-
responds to the vector

X15
p

2
~1,0,0,0,0,21,0,0,0,0,0,0,1,0,0;

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0! ~6!

~after the randomization yielding the Werner state!, whereas
the QPA protocol@3# is equivalent to the vector

X25S p

4
,0,0,arcsinA2

3
,
p

2
,0,

2
p

2
,0,

p

6
,
p

2
,arcsinA1

3
,
p

2
,
p

4
,0,0;

p

4
,0,0,arcsinA2

3
,

2
p

2
,0,

p

2
,0,

p

6
,2

p

2
,arcsinA1

3
,2

p

2
,
p

4
,0,0D . ~7!

Thus, both protocols represent specific choices of the av
able transformation parameters. The transformations with
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PRA 60 169OPTIMIZATION APPROACH TO ENTANGLEMENT . . .
parameters on each side are the most general possible
even transformations with fewer degrees of freedom can
suitable for the extremization of the distillation efficienc
The number of available parameters depends on the par
lar realization of the qubits and the way we manipulate th
~see Sec. III C!.

B. Quantifying the result of the distillation

The resulting state should be as strongly entangled as
sible and obtainable with a reasonably high probability. T
calculation of the probability of success in Eq.~2! is easy,
but quantifying the entanglement is a nontrivial task
which many different measures have been suggested. S
finding the extremum of a function is time consuming, w
prefer a measure of entanglement that can be calculate
fast as possible. This has led us to choose as our measur
entanglement of formationE @2#, defined as the least mea
entanglement of ensembles of pure states realizing the m
state% ~entanglement of the pure state being the von N
mann entropy of the reduced one-party density matrix! @12#.
Another convenient measure of the entanglement is fide
~or fully entangled fraction! F, defined as the maximum
max̂ eu%ue& taken over all completely entangled statesue&
@2,13#.

Along with the entanglement, our ‘‘cost’’ function shoul
optimize the probability of success. We have experimen
with the maximization ofE andF, and minimization of vari-
ously constructed cost functions depending onF, E, and the
success probabilitiesP. The best results have been achiev
by means of the cost function

f c51/@~ F̃qP̃1e!~Ẽ1e!#, ~8!

whereF̃ is the largest fidelity of the four possible outcom
of the measurement,P̃ andẼ are the corresponding probabi
ity and entanglement,e is a small parameter ('1026) for
regularization of the function aroundP̃'0 andẼ'0, andq
is a parameter quantifying the preference for larger fidelity
larger probability~typically, q512). The choice of this func-
tion ensures that a large entanglement is achieved wi
reasonable probability. By manipulating the shape of the c
function ~e.g., varyingq) we can get the resulting state wit
large entanglement but small probability or vice versa w
various intermediate possibilities.

For a comparison of the results of different methods, i
useful to estimate the average number of pairs which is c
sumed in order to get one pair with the required entang
ment. Assume first that we have reached the goal aftenk
steps. The joint probability of success in all steps isPk ,
which is the product of their individual success probabilitie
The indexk refers to the particular sequence of results in
individual steps~different sequences of intermediate sta
can lead to the same required entanglement!. After each step
~except the last one!, the resulting state is taken as the inp
state for the next step. If we have initiallyN pairs, then the
average number of resulting pairs distilled following the s
quencek would be

Nk5
Pk

2nk
N, ~9!
but
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and the total average number of distilled pairs is

Ntot5(
k
Nk , ~10!

where the summation runs over all the sequencesk which
lead to a pair with the required entanglement. The deno
nator 2nk in Eq. ~9! reflects the fact that in each step tw
pairs are consumed to produce one resulting pair. From E
~9! and ~10! it follows that the total number of pairs neede
to create one resulting pair is, on average,

N5
N
Ntot

5S (
k

Pk

2nk
D 21

. ~11!

C. Extremization procedure

We have searched for the extrema of the cost functi
numerically, using the Matlab procedureFMINS. This proce-
dure starts from a given point and uses the Nelder-Me
simplex search algorithm. Since the extremized cost func
is generally not convex, the procedure finds a local ex
mum which need not be the global one. Therefore, gettin
result does not mean that we actually found the optim
method for distillation. In our computations, we usually b
gin with several randomly generated starting points a
choose the best result. In general, we can call it a succe
the distillation efficiency exceeds that of the methods s
gested so far@1,3#.

III. RESULTS AND APPLICATIONS

In order to compare our approach to the present meth
@1,3#, we first applied the optimization procedure to the cla
of states on which they mostly focus, i.e., the Werner sta
@14#, which are mixtures of the totally entangled and tota
mixed states. In this case the numerical optimization brou
no improvement and the QPA method seems to be as
cient as ours for the Werner states. By contrast, substa
improvement was found for states such that the QPA met
either converges relatively slowly or cannot be used at
@3#. This refers to the states that do not have any diago
matrix element that is larger than12 in the Bell representa-
tion. If one of the diagonal elements in the Bell basis is on
slightly larger than zero, the QPA convergence may be
slow for efficient applications. Let us study these cases
more detail by considering characteristic examples.

A. Cases when the QPA is inefficient

As the first example, consider the state

%15%25 20
33 ug&^gu1 5

33 uc2&^c2u1 8
33

1
4 I , ~12!

whereug&5221/2(0,1,i ,0)† and I is the 434 identity opera-
tor. The overlap of this state with the Bell stateuc2& is 17

33

'0.5152, which is marginally sufficient for using the QP
algorithm, and the fidelity defined above isF50.7518. Let
us assume that the aim is to exceedF50.9, which may be
sufficient for application of other distillation schemes, e.
the hashing method@2#. A direct application of the QPA
method would reach this value after nine steps, the jo
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170 PRA 60T. OPATRNÝ AND G. KURIZKI
probability of success in all steps being 0.81%~see Fig. 3!.
This would require an average number of 633103 pairs to
get a single output pair. On the other hand, our optimizat
scheme would reach the required fidelity in two steps wit
joint probability of 50.87%, so that fewer than eight pairs
average are consumed to get one output pair, which cle
means a substantial improvement of distillation efficien
@15#.

B. Application to states with fidelity < 1
2

If the entangled pairs have fidelityF, 1
2 , one cannot di-

rectly use the existing methods@1,3# to distill the entangle-
ment. So far, the only suggested scheme to handle such
would be to transform them first by nonunitary operatio
such as filtering@5#, in order to reach fidelity above12 .

Our approach allows for entanglement distillation of pa
with F, 1

2 in the same way as for any other entangled sta
To demonstrate this, we have randomly generated sev
density matrices withE.0 and F, 1

2 , and optimized the
local unitary transformations so as to reach a state withF
. 1

2 ~see Fig. 4!. We have observed that, whereas the succ
of the optimization depends on the value ofE in the initial
state, it still works for all randomly generated states w
entanglement above 531024, allowing inseparable state
with F, 1

2 to be purified using only unitary transformation
and conditional measurements, without filters. Notice t
starting from a fixed value ofF, the distillation can exhibit
either a large increase ofF with a small probability or vice
versa@15#.

C. Application to trapped ion qubits

Significant improvement in distillation efficiency i
achieved by our method not just for rather special cases,
also for generic, physically important cases. For instance
us consider qubits that are realized by two internal state
trapped ions@16#. If two or more ions are trapped in a sing
trap, then the logical functions between two qubits a
achieved by using an auxiliary internal state of each ion
a vibrational mode of the collective oscillations. It is a
sumed that the evolution of the ionic states is driven

FIG. 3. Fidelity as a function of the number of iterations for t
optimized scheme~solid line! and for the QPA~dashed line! with
the initial state given by Eq.~12!. Joint probabilities of obtaining
the required states are indicated.
n
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coherent laser pulses whose amplitudes, phases, and
tions can be controlled. An arbitrary unitary transformati
of a single qubit can be achieved by two resonant la
pulses focused on the corresponding ion@16#. The durations
~or strengths! of the two pulses and the phase of~say! the
second pulse represent three parameters of the transfo
tion. The interaction between two ions is achieved by a
quence of three pulses, whose effect is to flip the sign of
state (0,0,0,1)† ~i.e., ue1 ,e2&) without changing the other ba
sis states. The parameters of these three pulses are fix
properly chosen values so as to ensure that at the end o
procedure no auxiliary state remains excited~see @16# for
details!.

Let us call this transformationUc , and assume that durin
one step of distillation each party performs only one tra
formation Uc , preceded and followed by single-qubit rot
tions. Rotation of all four qubits before theUc transforma-
tion represents 433512 parameters. After theUc
transformation, it is sufficient to rotate only the two qub
which are to be measured, as the local transformations of
remaining pair do not change the entanglement. Thus, we
left with 121233518 parameters to be optimized, the
physical meaning being the areas and phases of the
pulses.

As an example of entanglement decoherence, let us
the ionic excitation to be decaying according to the~zero-
temperature! master equation

%̇52
i

\
@H,%#2

g

2
~s1s2%1%s1s2!1gs2%s1 .

~13!

Here the ~single-particle! Hamiltonian is H5\v0ue&^eu,
with s15ue&^gu ands25ug&^eu, whereug& and ue& denote
the ground and the excited states, respectively. The up
‘‘tree’’ in Fig. 5 has as its starting point the state obtained
the decay of the singletuc2& according to Eq.~13!, after a

FIG. 4. Purification of inseparable states withF,1/2. The ver-
tical coordinate of the circle of each arrow denotes the fidelity
the initial state, whereas that of its tip corresponds to the fidelity
the resulting state after one step of optimized distillation. The h
zontal coordinate of each arrow indicates the probability of succ
of the distillation procedure. The figure shows 25 examples of
optimized distillation procedure for randomly generated init
states.
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PRA 60 171OPTIMIZATION APPROACH TO ENTANGLEMENT . . .
decay timegt50.25. This state has fidelityF50.779. Again,
we can assume that the aim is to purify the state so a
reach fidelity of at least 0.9. The QPA procedure wou
achieve this goal in two steps, consuming on average
pairs and ending up with a state whose fidelity isF50.918.
Using the optimization scheme with 18 parameters, the p
have a relatively large probability to be fully entangled (F
51.0) after the first or second step. We are able to reach
entanglement in this case because the decayed single
zero probability for both qubits to be in the excited state,
opposed to a Werner state. Following the different trajec
ries of our procedure, we find that the mean number of p
consumed before reachingF50.9 is only 4.6.

The lower tree in Fig. 5 starts from a state obtained
mixing the decayed singlet aftergt50.25 with a fully mixed
state in a 83% to 17% proportion, as a result of additio
sources of errors. In this case, even the optimization sch
yields only partially entangled states. However, whereas
QPA procedure would need 25.8 pairs on average to ge
required fidelity, the optimization scheme would consu
only 15.8 pairs on average for this task@15#.

FIG. 5. Fidelity as a function of the number of iterations for t
optimized scheme~solid lines! and for the QPA scheme~dashed
lines!. Entanglement distillation for two different initial states
repeated until the fidelityF50.9 is reached. The upper tree~starting
with F50.779) corresponds to a decayed singlet~after a decay time
gt50.25) as the initial state. The lower tree~starting with F
50.691) corresponds to the same decayed singlet mixed wi
completely mixed state as the initial state. Joint probabilities
obtaining the required states are indicated for the optimized sche
J.
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IV. DISCUSSION

Our main achievements can be characterized as findin
straightforward method for efficient distillation of entangl
ment, which is particularly valuable in cases where pre
ously suggested methods either do not work or conve
relatively slowly. There is no special requirement on t
form of the initial states~such as the Werner states!, except
that the states must be entangled. It is not even required
the fidelity should be larger than12 . We have seen that thi
approach allows essential saving of the ‘‘raw material’’
initial partly entangled states.

Several points must be noted.~i! The optimization proce-
dure may end in a local extremum of the cost functio
which usually requires several trials before the final cho
of the transformation parameters.~ii ! By contrast to the pre-
vious schemes@1,3#, our method is state-dependent: befo
starting the distillation, we have to know the initial densi
matrix. This knowledge is consistent with the objective
protecting particular correlated two-qubit states, e.g., s
glets, from being spoiled. The knowledge of the initial
spoiled state can be achieved either by familiarity with t
dissipation or error dynamics~e.g., zero-temperature deca
— Sec. III C!, or by state reconstruction methods~the prob-
lem of density matrix reconstruction by local measureme
of a pair of two-level systems has been studied in detai
Ref. @17#!. Of course, in the latter case a portion of the pa
will be consumed for the reconstruction measurements,
once the density matrix is determined with sufficient pre
sion, the distillation scheme can run indefinitely. Note th
the knowledge of the density matrix would be necessary a
in the case of the QPA method whenF. 1

2 but no diagonal
density matrix element in the Bell representation is larg
than 1

2 : the state must be properly rotated before the Q
method itself is used, and the parameters of the rota
would depend on the initial state.
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@17# V. Bužek, G. Drobny´, G. Adam, R. Derka, and P.L. Knight, J

Mod. Opt.44, 2607 ~1997!; V. Bužek, G. Drobny´, R. Derka,
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