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Optimization approach to entanglement distillation
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We put forward a method for optimized distillation of partly entangled pairs of quantum bits into a smaller
number of more entangled pairs by recurrent local unitary operations and projections. Optimized distillation is
achieved by minimization of a cost function with up to 30 real parameters, which is chosen to be sensitive to
the fidelity and the projection probability at each step. We show that in many cases this approach can signifi-
cantly improve the distillation efficiency in comparison to the present meti8d€50-29479)03507-6

PACS numbsefs): 03.67—a, 32.80.Qk, 42.50.Vk, 89.78c¢

[. INTRODUCTION do not work at all. This is demonstrated in Fig. 2, which
gives the statistics of applicability of the QPA method for

Entanglement distillation or purificatidii—5] denotes the randomly chosen two-qubit states. The random two-qubit
extraction of strongly entangled pairs of qubits from a largerdensity matrices were generated as in R&f.and the statis-
number of weakly entangled pairs. The objective is to shargics was obtained from a sample of®1ials [9]. For each of
strongly correlated qubits between distant parties in order tthe generated density matrices it was checked whether it cor-
allow reliable quantum teleportatid6] or quantum cryptog- responds to an entangléde., inseparablestate, and, if so,
raphy[7]. All methods of entanglement purification require whether it can be purified by the QPA. The results show that
that the two parties perform only local operations on theirabout 37% of all the possible states are entangled and in
systems and that only classical information be exchangegrinciple can be used for entanglement distillation. About
between them, without transferring any additional qubits.74% of the entangled states have fidelisge Sec. Il B[2]
The possible local operations includ€ig. 1) (i) unitary F>1 and in principle can, after appropriate manipulations,
transformations whereby each party entangles the particles be used for the QPA. Only a 12% fraction of the inseparable
their disposal;(ii) nonunitary projections, whereby each states, which is about 4% of the sample, have a diagonal
party measures a portion of their particles, thus projectingiensity-matrix element larger thanin the Bell basis, and
the rest of the system onto a new state. These projections atan therefore be used directly as the input of the QPA algo-
usually followed by classical communication of the measurerithm. This suggests that there is a vast domain in the space
ment results between the parties. Another nonunitary operaf two-qubit states where new approaches to the distillation
tion is filtering[5], whereby a pair is with a certain probabil- problem can be useful.
ity either discarded or kept after each projection, the Here we deal with entanglement distillation as a problem
probability being dependent on the state. of optimization, aimed at improving the efficiency of the

The principles of the known distillation schemes haverecurrence methods and extending the class for which they
been surveyed ifi2]. Here we focus on recurrence distilla- work. In contrast to the previously discussed recurrence
tion methods which use two pairs of quantum Bgebits as  methods, we assume that the transformation parameters can
input and produce a single output pda) The quantum pri- be chosen at will to our advantage. Furthermore, as opposed
vacy amplification(QPA) method[3] requires that the pro- to the ingenious choice of parameters in these methods, we
jection of the input pairs on any of the four states of the Belldo not have to guess their values: the optimal choice of pa-
basis [|4*)=2"%2 (0,1,21,0)" and |¢*)=2"2 (1,0,0,
+1)"] be larger thari. The QPA method uses a sequence of
/2 rotations, XOR operations, and measuremehjsn the
method of Ref[1] the two-qubit input state is supposed to @
have a projection larger thanon the singlet statgy ™). This @®------- o
method uses a sequence of unilateratotations of the qu- U, Us
bits and a bilateral XOR operation followed by a measure- | @bL-----
ment. The output is a pair whose projection on the singlet I
state is larger than that of the input pair. When used recur-
rently, the QPA methof3] often converges faster towards a p
Bell state than the method ¢1] (for the proof of conver-
gence of the QPA, sg@)). (11 S X

Both of the aforementioned recurrence methodsfixssl
parameters for the state transformations. It is not clear FiG. 1. Stages of the basic entanglement purification schéine.
whether these methods are optimal for the states which arghe two partie andB share two partly entangled paies ande,
usable as their input, and, if not, how their performance canil) they apply local unitary transforms, andU,,, and(lll) project
be improved. There are other states for which these methodsit one of the pairs, thus obtaining the remaining pair in the gtate
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QPA bl success of the distillation, an@i) have a suitable method
E possible for the optimization of this function.

=1 A. Parametrization of the local unitary transformations
Entangled To parametrize the SU) local unitary transformations,
o we use a modified version of the scheme in Rél], in the
siales form of a product of six S(P) transformations:
0 02 0.4 06 08
P i U=U® 15,12, X129 UP¥N $23.0,x29)
FIG. 2. Statistics of the entanglement properties of an ensemble XU®( b3, 13, x19 U BN h34.0,x30)

of randomly chosen two-qubit states. The areas of the rectangles
(from bottom to top are proportional to the following probabilities:
the entire ensembl@ll stateg, the probability that a randomly cho- o
sen state is entangled, the probability that it fulfills the conditionWhere theJ (g y;; ,x;;) transforms represent the £2)

F>1/2, and the probability that it is directly usable as an input offotations between thath and jth states of the four-

X U(2'4)( ¢24,0,X24)U(1’4)(¢141 '7//141)(14)' (3)

the QPA scheméQPA possibl dimensional basis, their elements being

rameters for the unitary operations and the projections is ob- U(ka,‘('”)= 1, k#mn, (4)
tained by minimization of an approximate cost function,

which represents a tradeoff between maximized probability Ufn”",';‘)zcos¢e‘¢’, Ufnrf‘h”)zsin¢eiX,

of the conditional measurement and the best achievable en-

tanglement. These principles are similar to the ones previ-

ously used for optimized state engineeririg]. However,

the present task is still nontrivial, since the number of control . .

parameters is larg@ip to 30, and the choice of a cost func- We consider the basis states to|ge,g:), [91.€2), [€1,02),

tion is far from obvious. and|e;,e,), where|g,) and|e,) denote the ground and the
These issues are analyzed in Sec. II, where the optimizg2Xcited state of th&th systemk=1,2. _

tion procedure is obtained. This procedure is then applied in _The local unitary transformations are thus described by a

Sec. Il to cases where the QPA is inefficient, to input statessO-dimensional vectoX,

with fidelity F<%, and to trapped ion qubits. The results are

discussed in Sec. IV. X= (012, %12 X12: $23:X23, P13 ¥i3: X s>

UMM =—singe X, UMM =cosgpe ¥

.4b b Db
Il. OPTIMIZATION PROCEDURE ¢§41Xg4a¢g4an4:¢?47¢?4:X61141¢12:¢121X12!

b b b b b b b b b b b b
Let us assume that we want to prepare, starting from two ~ $23:X23:13:¥13:X13, $34: X34 $24: X24: $14: ¥14:X14)

pairs of qubits with density matrices;, andg,, a single pair 5)
with a density matrixo whose entanglement is larger than

that of bothg,; and g,, using local unitary transformations where the indicea andb refer to the two partiegAlice and
followed by projectiongFig. 1). Let us denote the local uni- Bob, respectively The distillation protocol of Ref{1] cor-
tary transforms of each party by, andU,, respectively. If  responds to the vector

the measurements are performed on the particles of the sec-

ond pair, with the detected state bei\j),, then the first T
(purified) pair is transformed into the state X1:§(1,0,O,0,0,— 1,0,0,0,0,0,0,1,0,0;
1
0=5 AVUUpe1@0 Uil W)z, (D) 0.0000:1.0000000.00 ©
(after the randomization yielding the Werner sjatghereas

P being the probability of success, the QPA protoco[3] is equivalent to the vector

P=Tr J(W|UaUp018 U UL Y),. ) _ 5

) o X2=<—,O,O,arcsin\ﬁ,—,0,
Provided that each particle is a two-level system, the two- 4 2

particle unitary transformation of each party belongs to the
SU(4) group[considering S(#) instead of W4) means that _Tor T arcsin\ﬁ T 00 00 arcsin\ﬁ
we omit the unimportant overall phgs&uch a group has 15 2’762 244 3’
real parameters. The local transformations on both sides are
thus parametrized with 30 real parameters. Finding the opti- A S arcsirr\/z T 7 0) @
mum values for these 30 parameters would enable us to per- 2'7°2'76° 27 3 2°47)

form the entanglement distillation in the most efficient way.
For this purpose, we mus find a proper parametrization of Thus, both protocols represent specific choices of the avail-
the transformationgji) choose a function that quantifies the able transformation parameters. The transformations with 15
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parameters on each side are the most general possible, and the total average number of distilled pairs is

even transformations with fewer degrees of freedom can be

suitable for the extremization of the distillation efficiency. N, =E IV (10)
The number of available parameters depends on the particu- tot™ 4 ¥k

lar realization of the qubits and the way we manipulate them

(see Sec. Il ¢ where the summation runs over all the sequericagich
lead to a pair with the required entanglement. The denomi-
B. Quantifying the result of the distillation nator 2« in Eq. (9) reflects the fact that in each step two

airs are consumed to produce one resulting pair. From Egs.
) and (10) it follows that the total number of pairs needed
0 create one resulting pair is, on average,

The resulting state should be as strongly entangled as po
sible and obtainable with a reasonably high probability. Thet
calculation of the probability of success in EQ) is easy,

but quantifying the entanglement is a nontrivial task for N p, | L
which many different measures have been suggested. Since N= _:( _k) (11)
finding the extremum of a function is time consuming, we Nt k 2"

prefer a measure of entanglement that can be calculated as
fast as possible. This has led us to choose as our measure the
entanglement of formatiok [2], defined as the least mean _
entanglement of ensembles of pure states realizing the mixed We have searched for the extrema of the cost functions
statep (entanglement of the pure state being the von Neunumerically, using the Matlab procedurins. This proce-

mann entropy of the reduced one-party density mafi®]. d_ure starts from a given point and uses t_he NeIder-Megde
Another convenient measure of the entanglement is ﬁde|it§|mplex search algorithm. Since the extremlzed cost function
(or fully entangled fraction F, defined as the maximum IS generally not convex, the procedure finds a local extre-

max(e|o|e) taken over all completely entangled states ~ MUM which need not be the global one. Therefore, getting a
[2,13. result does not mean that we actually found the optimal

Along with the entanglement, our “cost” function should method for distillation. In our computations, we usually be-

optimize the probability of success. We have experimente@in With several randomly generated starting points and

with the maximization o andF, and minimization of vari- choose the best result. In general, we can call it a success if
ously constructed cost functions dependingForE, and the the distillation efficiency exceeds that of the methods sug-

success probabilitieB. The best results have been achieveddested so faf1,3].

by means of the cost function

C. Extremization procedure

Ill. RESULTS AND APPLICATIONS

= Eap E
fe=11(FIP+e)(E+e)l, ®) In order to compare our approach to the present methods

~ . I : [1,3], we first applied the optimization procedure to the class
whereF is the largest fidelity of the four possible outcomesOf states on which they mostly focus, i.e., the Werner states

of the measuremenk, andE are the correspondlngipérobabll- [14], which are mixtures of the totally entangled and totally
ity and entanglements is a small parameter~<10~°) for  pixed states. In this case the numerical optimization brought
regularization of the function arourf=0 andE~0, andq  no improvement and the QPA method seems to be as effi-
is a parameter quantifying the preference for larger fidelity oicient as ours for the Werner states. By contrast, substantial
larger probability(typically, g=12). The choice of this func- improvement was found for states such that the QPA method
tion ensures that a large entanglement is achieved with either converges relatively slowly or cannot be used at all
reasonable probability. By manipulating the shape of the cog3]. This refers to the states that do not have any diagonal
function (e.g., varyingg) we can get the resulting state with matrix element that is larger thanin the Bell representa-
large entanglement but small probability or vice versa withtion. If one of the diagonal elements in the Bell basis is only
various intermediate possibilities. slightly larger than zero, the QPA convergence may be too
For a comparison of the results of different methods, it isslow for efficient applications. Let us study these cases in
useful to estimate the average number of pairs which is conmore detail by considering characteristic examples.
sumed in order to get one pair with the required entangle-
ment. Assume first that we have reached the goal after A. Cases when the QPA is inefficient
steps. The joint probability of success in all stepsPis,
which is the product of their individual success probabilities.
The indexk refers to the particular sequence of results in the _ . _20 5 —\/ —|4, 81
individual steps(different sequences of intermediate states Q1= 2= 5| Y| +alv W |+ 31l (12)
can lead to the same required entanglemeXfter each step where|y)=2"Y%0,1j,0)" and! is the 4x 4 identity opera-
(except the last onethe resulting state is taken as the input;o. the overlap of this state with the Bell stdig") is 1
state for the next step. If we have initially pairs, then the ~0.5152, which is marginally sufficient for using the QPA
average number of resulting pairs distilled following the Se'algorithm, and the fidelity defined aboveFs=0.7518. Let
quencek would be us assume that the aim is to exceee 0.9, which may be
P sufficient for application of other distillation schemes, e.g.,
=—k/\/, (9) the hashing method2]. A direct apphcapon of the QPA'
2"k method would reach this value after nine steps, the joint

As the first example, consider the state

k
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FIG. 3. Fidelity as a function of the number of iterations for the ~ FIG. 4. Purification of inseparable states wik<1/2. The ver-
optimized schemésolid line) and for the QPA(dashed ling with tical coordinate of the circle of each arrow denotes the fidelity of
the initial state given by Eq12). Joint probabilities of obtaining the initial state, whereas that of its tip corresponds to the fidelity of
the required states are indicated. the resulting state after one step of optimized distillation. The hori-

zontal coordinate of each arrow indicates the probability of success
probability of success in all steps being 0.818¢e Fig. 3. of the distillation procedure. The figure shows 25 examples of the
This would require an average number of6R3 pairs to optimized distillation procedure for randomly generated initial
get a single output pair. On the other hand, our optimizatiorftates.
scheme would reach the required fidelity in two steps with a
joint probability of 50.87%, so that fewer than eight pairs oncoherent laser pulses whose amplitudes, phases, and dura-
average are consumed to get one output pair, which clearfijons can be controlled. An arbitrary unitary transformation
means a substantial improvement of distillation efficiencyof a single qubit can be achieved by two resonant laser
[15]. pulses focused on the corresponding &6]. The durations
(or strengths of the two pulses and the phase (shy the
second pulse represent three parameters of the transforma-
) o ~tion. The interaction between two ions is achieved by a se-

If the entangled pairs have fidelify<3, one cannot di- quence of three pulses, whose effect is to flip the sign of the
rectly use the existing methods,3] to distill the entangle- state (0,0,0,1) (i.e., |e; ,e,)) without changing the other ba-
ment. So far, the only suggested scheme to handle such paig states. The parameters of these three pulses are fixed at
would be to transform them first by nonunitary operationsproperly chosen values so as to ensure that at the end of the
such as filtering5], in order to reach fidelity abové. procedure no auxiliary state remains excitesge[16] for

Our approach allows for entanglement distillation of pairsgetailg.
with F<3 in the same way as for any other entangled states. |et us call this transformatiot ., and assume that during
To demonstrate this, we have randomly generated severghe step of distillation each party performs only one trans-
density matrices wittE>0 andF<3, and optimized the formationU,, preceded and followed by single-qubit rota-
local unitary transformations so as to reach a state With tjons, Rotation of all four qubits before th, transforma-
>3 (see Fig. 4 We have observed that, whereas the succesgon represents %3=12 parameters. After theU,
of the optimization depends on the valuetin the initial  transformation, it is sufficient to rotate only the two qubits
state, it still works for all randomly generated states withyhich are to be measured, as the local transformations of the
entanglement above >510™“, allowing inseparable states remaining pair do not change the entanglement. Thus, we are
with F<3 to be purified using only unitary transformations |eft with 12+2x3=18 parameters to be optimized, their
and conditional measurements, without filters. Notice thabhysicaj meaning being the areas and phases of the laser
starting from a fixed value of, the distillation can exhibit py|ses.
either a large increase &f with a small probability or vice As an example of entanglement decoherence, let us take
versa[15]. the ionic excitation to be decaying according to tzero-

temperaturemaster equation

B. Application to states with fidelity <3

C. Application to trapped ion qubits

Significant improvement in distillation efficiency is o=— I—[H,Q]— Z(g+079+ eo.o_ )+ vyo_po., .
achieved by our method not just for rather special cases, but h 2
also for generic, physically important cases. For instance, let (13
us consider qubits that are realized by two internal states of
trapped iong16]. If two or more ions are trapped in a single Here the (single-particl¢ Hamiltonian is H=7%wg|e)(e],
trap, then the logical functions between two qubits arewith o, =|e)(g| ando_=|g)(e|, where|g) and|e) denote
achieved by using an auxiliary internal state of each ion andhe ground and the excited states, respectively. The upper
a vibrational mode of the collective oscillations. It is as-“tree” in Fig. 5 has as its starting point the state obtained by
sumed that the evolution of the ionic states is driven bythe decay of the singldty~) according to Eq(13), after a
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13% IV. DISCUSSION

14%

Our main achievements can be characterized as finding a
""""""""" : straightforward method for efficient distillation of entangle-
ment, which is particularly valuable in cases where previ-
ously suggested methods either do not work or converge
relatively slowly. There is no special requirement on the
form of the initial stategsuch as the Werner stajegxcept
that the states must be entangled. It is not even required that
the fidelity should be larger thah. We have seen that this
approach allows essential saving of the “raw material” of
initial partly entangled states.
0-60 1 2 3 Several points must be note@) The optimization proce-
Number of iterations dure may end in a local extremum of the cost function,
which usually requires several trials before the final choice

optimized schemésolid lineg and for the QPA schemé&ashed O_f the transformation paramete(ﬁ_.) By contrast to the pre-
lines). Entanglement distillation for two different initial states is V|ou§ scheme_f.l_,S],_ our method is state-depe_m_j_ent: befqre
repeated until the fidelitf = 0.9 is reached. The upper tréstarting starting the distillation, we have to know the initial density
with F=0.779) corresponds to a decayed singter a decay time ~ Matrix. This knowledge is consistent with the objective of
¥t=0.25) as the initial state. The lower tréstarting with F protecting particular correlated two-qubit states, e.g., sin-
=0.691) corresponds to the same decayed singlet mixed with glets, from being spoiled. The knowledge of the initially
completely mixed state as the initial state. Joint probabilities ofspoiled state can be achieved either by familiarity with the
obtaining the required states are indicated for the optimized schemgissipation or error dynamic.g., zero-temperature decay
— Sec. Il O, or by state reconstruction methodke prob-
decay timeyt=0.25. This state has fidelify=0.779. Again, lem of density matrix reconstruction by local measurements
we can assume that the aim is to purify the state so as tof a pair of two-level systems has been studied in detail in
reach fidelity of at least 0.9. The QPA procedure wouldRef.[17]). Of course, in the latter case a portion of the pairs
achieve this goal in two steps, consuming on average 7.{ill be consumed for the reconstruction measurements, but
pairs and ending up with a state whose fidelitfFis 0.918.  once the density matrix is determined with sufficient preci-
Using the optimization scheme with 18 parameters, the pairgjon, the distillation scheme can run indefinitely. Note that
have a relatively large probability to be fully entangle®l (  the knowledge of the density matrix would be necessary also
=1.0) after the_ f|rst_0r second step. We are able to r_each fully the case of the QPA method wh&n> 2 but no diagonal
entanglement in this case because the decayed singlet Ngsnsity matrix element in the Bell representation is larger

zero probability for both qubits to be in the excited state, aShan L' the state must be properly rotated before the QPA
opposed to a Werner state. Following the different trajecto-

ries of our procedure, we find that the mean number of pairgnetfrg% itselfd Is us;]ed', 5a_nt|j the parameters of the rotation
consumed before reachirg=0.9 is only 4.6. would depend on the Initial state.

The lower tree in Fig. 5 starts from a state obtained by
mixing the decayed singlet aftet =0.25 with a fully mixed
state in a 83% to 17% proportion, as a result of additional
sources of errors. In this case, even the optimization scheme
yields only partially entangled states. However, whereas the The authors are grateful to J. I. Cirac, H, J. Kimble, T.
QPA procedure would need 25.8 pairs on average to get thidor, M. Plenio, S. Popescu, P. Zoller, and Kyczkowski
required fidelity, the optimization scheme would consumefor discussions. This work was supported by the EMR),
only 15.8 pairs on average for this taslo]. ISF, and Minerva grants.
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FIG. 5. Fidelity as a function of the number of iterations for the
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