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Relation between spatial confinement of light and optical tunneling
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With the aim of obtaining a better insight in the optical tunneling process the near-field electrodynamics of
a current-densityequivalently polarizationsheet is investigated, taking as a starting point the near-field optics
of a single atom, and afterwards the tunneling field of a macroscopic medium is determined integrating over a
distribution of sheets. The total electric field hitherto used to study tunneling times and effective tunneling
velocities is divided into a nonretardéohatter attachediongitudinal part of standing-wave character, and a
retardeddetachegitransverse part propagating away from the matter-vacuum interface with the vacuum speed
of light. For a current-density distribution phase shifted with a wave nungbealong the interface, the
transverse part is nonzero in the vacuum and decays exponentially with a decay aqqﬁ%tasna function of
the distance from the interface. Since the source domain of photons is precisely the domain of the transverse
current density, the optical tunneling process attains an important contribution associated with the lack of
spatial localizability of a photon in the evanescent regime. It is shown that in an observationally equivalent
electromagnetic propagator description of the space-time dynamics, where the source domain of the photons is
identified with the domain of the total electron current density, the retarded transverse dynamics necessarily
must include spacelike couplings in the evanescent regime. Since these are destroyed with the vacuum speed
of light as the light-cone coupling moves away from the matter-vacuum interface, the Einstein causality is
always obeyed. The link to previous studies of the optical tunneling process is established by investigating the
transverse and longitudinal dynamics in the frequency domain. Finally, it is shown that surface currents may
play an important role in the optical tunneling process, in particular in cases where the incident electromagnetic
field generates divergence-free currents in the bulk of the source me@w®60-29479)08408-5

PACS numbgs): 42.50.Ct, 42.25.Bs, 42.96m, 73.40.Gk

[. INTRODUCTION neling” in a dielectric-air-dielectric systenfexcited at an
angle of incidence larger than the critical angtesembles
A paradigm of optical tunneling appears in the case ofoptical “tunneling” in a dielectric-metal-dielectric system
frustrated total internal reflectiofFTIR); see, e.g., Refs. (or a system consisting of a thin metallic film suspended in
[1,2]. Thus, if a plane monochromatic electromagnetic wavevacuum when the monochromatic optical field has a fre-
is incident on a planar glass-vacuum interface at an anglguency below the€bulk) plasma frequency of the met].
larger than the critical angle, an electric field decaying expoOnly if relaxation mechanisms for the electron system are
nentially with the distance from the interface is generated imeglected is the electromagnetic field in the metal purely
the vacuum. Alhough, traveling along the interface, the fieldevanescent. An optical tunneling-barrier problem also arises
in the vacuum has standing-wave-like character in the direcif one considers the “evanescent-wave propagation” of elec-
tion perpendicular to the interface. This standing-wave formtromagnetic fields inside a one-dimensioriaD) photonic
at a first glance seems to indicate that no energy is trandand-gap material, since here a mathematical analogy to the
ported away from the boundary, and yet, if another planaevanescent propagation of electrons in a Kronig-Penney pe-
glass medium is placed in the evanescent tail a travelingiodic potential appearf4,5]. In microwave studies of the
electromagnetic wave appears in this medium. In the glasselectromagnetic tunneling process one often makes use of a
vacuum-glass system, the field now consists of a superposirectangular undersized waveguidgs,7] or a waveguide
tion of incident and reflected traveling waves in the firstfilled with a dielectric material and interrupted by an air gap
glass region, a sum of two evanescent modes decaying ifmat serves as the barrig8]. If the frequency of the mono-
opposite directions in the vacuum gap, and a single wavehromatic wave progressing along the waveguide is chosen
traveling away from the interface in the second glass meto be above the cutoff frequency in the dielectric-filled sec-
dium. The fact that this electric mode pattern along the ditions but below cutoff in the air gap, a mathematical analogy
rection perpendicular to the interfaces mathematically is exto the stationary-state electron tunneling through a one-
actly the same as the wave-function mode pattern obtainedimensional rectangular barrier again emerges.
when solving the stationary-state Soflimger-equation prob- Although the two-dimensional optical tunneling in a
lem for an electron incident upon a one-dimensional squaréielectric-vacuum-dielectric system in the stationary-state
potential barrier, a formal analogy between eleciimassive situation resembles that of one-dimensional electron tunnel-
particle and photon tunneling emergé$]. If instead of a ing across a rectangular barriesf the same width as the
vacuum gap, one has an air gap between the glass mediapptical gap, in particular for s-polarized light where the
small traveling-wave component is introduced in the direc<{textbook matching conditions for the electric field are the
tion perpendicular to the interface and the formal analogysame as for the electron wave functi6rnz., continuity of
with electron tunneling becomes less obvious. Optical “tun-the field and its first-order spatial derivative in the direction
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perpendicular to the interfaceghe state of things is more established electromagnetic propagator theory dealing with
complicated in the dynamical situation where the transienthe spatial confinement of light emitted from a single atom
behavior comes into play. To achieve a better understandin@®1], paying particular attention to those aspects that appear
of the physics of the optical tunneling process and the relato be of most relevance to the tunneling problem. Although
tion of this process to tunneling of massive particles, it isthe above-mentioned theory is formulated on the basis of
necessary to deal with the process not only in the frequenciigorous (nonrelativisti¢ quantum electrodynamic&QED),
domain but also, and primarily, in the time domain. To ad-and thus gives a field-quantized description of the near-field
dressthe two important issues in (optical) tunneling, viz., the electrodynamics of the atom, it is sufficient here to consider
tunneling-time question, and the “effective” tunneling- the electromagnetic field as @anumber quantity, because,
velocity problemijt is necessary to pay full attention to the once the classical problem of optical tunneling is formulated
dynamics in both space and time. To investigate the questiocorrectly, the quantization in a gauge that is particularly ad-
of the tunneling velocity, one traditionally studies the reflec-equate for a propagator description is not so difficult. Much
tion and transmission dkshor) electromagnetic pulses inci- of the classical near-field electrodynamics of an atom, but
dent on the barrier, and in the theoretical treatment one mustot all of it, of course, may be understood starting from a
distinguish carefully between different kinds of velocities, rigorous description of the attached and radiated near fields
such as the phase velocity, the group velocity, the energgf an electric point dipole, as | have shown not long ago
velocity, the signal velocity, and the front velocif@]. [22]. “Seen,” so to speak, with the eyes of the photon, the
Though it has been claimed from time to time that Einsteinsource domain of light quanta is to be identified with the
causality can be violated in optical tunneling processes, noegion occupied by the transverse part of the current density
rigorous theoretical analyses exist that contradict the Einsteimduced in the atom by the prevailing local field. Since the
causality in relation to the velocity with which information transverse part of the induced atomic current density in gen-
can be transferred; see, e[d.0], and references therein. eral spreads over a region of spatial extension much larger
From a perspective that is somewhat different from the onethan that of the electron orbitals, in the quantum-statistical
hitherto adopted, the analysis of this paper also ends up witeense photons emitted in an atomic decay process are gener-
the conclusion that the speed of information transfer neveated (born) in the entire domain of the transverse current
exceeds the vacuum speed of light, even in a tunneling pradensity. In the domain of the longitudinal part of the atomic
cess. Studies of so-called superluminality in relation tocurrent densitywhich has the same extension as the trans-
propagation of laser pulses with group velocities greater thamerse pant an attached longitudinal electric self-field
the vacuum velocity of light is of interest in their own right, evolves, which in the QED description can be eliminated in
and superluminality has for instance been investigated in th&avor of the particle-position variables. If one wants to con-
context of off-resonance pulse propagation through a mesider, with what one may call an electron eye, the region in
dium with inverted atomic populatiorid1-13. Using a col-  space where the total atomic current density is different from
lection of (classical Lorentz oscillators as a model for two- zero, i.e., roughly speaking the region occupied by the elec-
level atom population inversion seems to make it possible torons of the atom, as the source region for the emitted field,
obtain tachyonlike propagatiofl3]. On a tachyonlike the price one has to pay is the acceptance of the occurrence
branch of a dispersion relation, the group velocity is alwaysf a transverse self-field in the transverse current-density do-
larger than the vacuum velocity of light, and a tachyonlikemain, and a retarded transverse field containing a spacelike
excitation possesses affectivemass that is imaginary. A part in the near-field zone of the atom. In the far field only
tachyon dispersion-relation branch also is present for surfaceouplings on the light cone remain. In passing | stress that
electromagnetic wavesurface polaritonspropagating on a the photon- and electron-eye views though picturally differ-
BCS-paired superconductor surface if the frequencies lient, lead in every respect to the same physitelervations
slightly above the superconducting gap frequent#,15.  This is so because a change in the standard Lagrangian of the
Readers interested in a detailed overview of the entire fiel@Coulomb gaugéor a unitary transformatiorto a physically
of optical tunneling and its relation to massive-particle tun-equivalent new Lagrangian that is adequate for a transforma-
neling may consult the recent review articles by Chiao andion from the photon- to the electron-eye picture can be
Steinberg 10] and Nimtz and Heitmafl6]. found [21]. In the propagator QED description only the re-
In the present paper | shall seek to demonstrate for théarded part of the transverse field is quantized and hence only
reader that there is an important link between our ability tothis part leads to photons. Furthermore, the related photon
confine electromagnetic fields in space and the optical tunpropagator explicitly demonstrates that this massless particle
neling process, and that additional insight in the physics unnecessarily moves with the vacuum speed of light. In the
derlying the tunneling phenomenon may appear from sucldescription of photon propagation and localization in real
an understanding. In theoretical treatments of optical tunnelspace-time, the retarded part of the transverse field multi-
ing, evanescent waves necessarily always appear, and singked by the square root of the vacuum permittivity is pre-
numerous investigations in near-field optics have emphaeisely the Riemann-Silberstein wave functi@8,24], which
sized that a close formal relation exists between near fielddescribes the so-called energy wave function of the photon
prevailing around mesoscopic particlelike objects and evaf24,25 and which gives rise to the “clicks of a detector”
nescent field§17-20, | have found it intriguing to investi- when single photons are registeré®,27].
gate whether near-field electrodynamics already might con- Equipped with the understanding of the atomic near-field
tain the ingredients needed to obtain a better physicatlectrodynamics, in Sec. IV and the remaining part of the
understanding of the optical tunneling process. paper, we turn our attention towards the optical tunneling
To set the scene, in Sec. Il, we briefly review a recentlyproblem, and we begin with an analysis of the near-field
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electrodynamics of a current-density sheétthough the edge always propagates with the speed of light.

electric field outside the sheet is divergence free it cannot be In Sec. VI, we investigate the particular role of surface
identified entirely with the photon field, because it also con-currents within the framework of a macroscopic sharp-
tains a part that is rotational freeTheoretically, a vector boundary refractive-index model for the medium under
field can be classified as transvetkmgitudina) only if it is study, and in Sec. VIl tasks lying immediately a head of us
divergence fredrotational-fre¢ in its entire domain of defi- following the present line of reasoning are outlined.

nition. To classify the electromagnetic field correctly in the

vacuum outside the sheet, the proper split must also be done

in the plane of the sheet, and though the field diverges herell. NEAR-FIELD ELECTRODYNAMICS OF A SINGLE

(for an infinitesimally thin shegta rigorous division of the ATOM: LIGHT-CONE AND SPACELIKE COUPLINGS

field into its transverse and longitudinal components can be . . .

made. The same kind of problem arises in models where a We begin our study of the relation between optical tun-

particle current-density distribution is confined to a point, the'€!iN9 and spatial localization of light by reviewing certain
rest of space being vacuuf@2]. Though the electric field aspects of the near-field elecirodynamics of a single atom.
This is done because electromagnetic couplings dnie

certainly is divergence free in the entire vacuum domain, in_. : . .
istances in the near-field zone of the atom can be pictured

this case it is not a transverse vector field because one poirt, > : . inath h
namely the point where the particle is located and where th&> consisting of two parts, viz., & paopagatingthroug

charge density thus is not zero, is missing. A rotational-free P3¢ with the vacuum spged of “ght’ and a panlv!ng In
component also is present in the near-field zone of the poi me in a standmg-wave_-ll_ke fashion. When an immense
particle, and only if a proper split of the total current densityn”mb(':'r of atoms are. Joined tpgether so as fo farm a
into its transverse and longitudinal parts is made can thgondensed—matter medlum,. the .f'rSt part, rel_ated to the pho—
retarded part of the vacuum fielgphoton field be deter- ton concept, tglls us that Einstein causality is not .broken in
mined. If the sheet current density is phase shifted along thlcal_ tunnellng processes, though the photon field has a
given direction, as characterized by a wave nuntperthe spacelike electric-field component, and the second part al-

attached part of the electric field, which is different from !OWS us to relate to a time scale for tunneling that does not

zero also outside the sheet, decays exponentially with th@VOIVe time-space propagation effects,_bu.t appears because
distance from the sheet and the decay Iengthﬁé The of fundamental quantum electrodynamic limitations on the
| .

transverse part of the field has a spacelike part with the sanft ossible degree of spatial confinement of matter-attached

exponential decay length. Altogether this means that photonegectr‘(‘)magnenc_ f'e.ldﬁ' From the above-mentu_)ned point of
. . . view “superluminality” always stems from the interference
emitted from the sheet are only exponentially localizable

(with a localization lengti 1), After a propagator analysis of these two parts. Outside the near-field zone only couplings

: ) . . >~ _on the light cone remain. In macroscopic descriptions of op-
of the retarded field in the space-time domain, we briefly,: : . ;

. ) . ' tical tunneling evanescent fields play a prominent role, and
study the field obtained in the case where the sheet curre 9 play ap

density is monochromatic Ynce near-field and evanescent-mode electrodynamics are
Y . ' . . closely related, even in microscopic approaches, only by ex-
In Sec. V, the optical tunneling from macroscopic current

e 7 ) i amining the near-field zone of the atom may physical ingre-
density distributions is investigated by composing them fromdients needed for a better understanding of the tunneling
sheets, and we are led to the conclusion that for a glas Srocess be found

vacuum-glass system a substantial part of the tunneling phe- Let us now assume that the electrodynamics of the atom is
nomenon must be related to the lack of photon localizability i et >

as long as the vacuum gap has a width not substantiall§ffiven by a prescribed externexy electric fieldEs"™(r,t),
larger thang; *. In the phenomenological approach whereWhich is transverséstrictly speaking, divergence freeas

no distinction is made between transverse and longitudindndicated by the subscript. The impressed field induces a
fields an exponential decay length equal tgqﬁ current-density distributiod(r’,t") in the atom, which in
—(wlce)?]™ Y2 enters for monochromatic wave®f fre-  turn is the source for a transverse and retar®delectro-

quencyw) and only for them. In the expression aboeg, magnetic fieldER(r t) that is emitted from the atom. To
denotes the vacuum speed of light. Though the total field describe the propagation characteristics of the electromag-
the monochromatic situatiois of standing-wave character, a netic coupling between a space-time source point located at
retarded fieldoropagatingalways withc, is present and on (F’,t’) and a field observation poinﬂ(t), it is eo ipsonec-
top.of this a significant photon delocalizability effect plays essary to use an electromagnetic propagator formajgsea

an important role. ture). Explicitly stated, the retarded electric field is linked to

The lack of photon localizability in an interesting fashion e time derivative of the atomic current density via an inte-
allows one to introduce a “tunneling time” with no need for tgral relation of the form

a related tunneling velocity. From a quantum-statistical poin
of view this photon tunneling time with no associated veloc-

ity is related to the spacelike part of the transverse electro- ) . J j( ot
magnetic field, since this part basically gives the probability E?(Fut):MoJ DS(F— r't—t')  ————=d3'dt’,
that a given photon is created at a certain distance from the — at’

sheet. The tunneling time in an essen(iakvitable manner 1)
thus is linked to the sensitivity of the detector. As in the

atomic case, the transfer of information is linked to the dis- o

continuous trailing edge of the spacelike coupling, and thisvhere, withr —r’'=R andt—t' =1,



PRA 60 RELATION BETWEEN SPATIAL CONFINEMENT @ . .. 1655

D§(R,¢)=—#5(C—i—r)(u—é§é§) JL(F,t)=J xéL(F—F’)-J(F’,t)d3r’. (3)
2 R ~ _ _
+ —Og®(T)®<— - 7) (U—3epep) (2)  The relation betweed andJ, is nonlocal in spacéut local
4’7TR CQ . . . . . <
in time, since the projection operatos,() works on the spa-
tial current-density distribution at a fixed time. Upon a split
is the transverse and retardeghoton) propagator. Before of the (operatoy Maxwell equations into sets describing the
commenting on Eqs(1) and (2), let me emphasize that a |ongjtudinal and transverse electrodynamics, respectively,
relation of the form appearing in E€L) can be derived using one finds from the longitudinal set that the induced atom-

figorous quantum electrodynamlltﬁQEl;)) [21] or starting attached longitudinal electric fieIéL(F,t) is given by
within the framework of semiclassical electrodynamics

(SCED [22]. In the QED description, Eq1) is a relation 1t

between .the retarded part of the transverse field operator and EL(F,t): - _f 5L(F,t’)dt’, (4

the atomic current-density operat@n second quantization €0J -2

Within the framework of the propagator picture the photon _ _ o _ . _
concept may be established from a Hamiltonian descriptioprovided that the induced Ior_1g|tl_Jd|naI field vanishes in thg
where preciselyonly) EX is subjected to a canonical quan- remote past. As we shall realize in Sec. IV B, the last condi-

tization [21]. In a nonrelativistic SCED theory, where the tion IS ("Yea"'W linked t(.) th_e pr_lnC|pIe of causality. Since the
longitudinal delta function is different from zero {and only

electromagnetic field is e-number quantity)(r',t') is cal- in) the near-field zone of the atom tm®npropagatingat-
culated via the Schrbinger equation. Before proceeding let tached field extends over the entire near-field region. In a
me stress that the induced atomic current density in gener@jED description formulated in the Coulomb gauge, the lon-
need to be calculated self-consisteri@@]. Apart from afew  giwydinal part of the electric-field operator is not a dynamical
remarks given below, | shall only return to this problem yarigple, since it can be eliminated in favor of the dynamical
when discussing the optical tunneling in condensed matt&harticle-position variables of the atofredundancy.
media; see Secs. Vand VI. _ In the propagator picture of the near-field electrodynamics
The photon propagator given in E) consists of a far- - f the atom a transversely polarized attached field compo-

. . 71 _ . N N
field part (proportional toR™) and a near-field part nent is also preser[21]. This field, E%F(r,t), named the

~R°3 i is di in-
(=R ). The far-field part is dlffgrent from Eergnd sin transverse atomic self-fiel(BP is linked to the transverse
gulan only on the retarded light congr—r’|=cg(t part

—1'), ¢, being the speed of light in vacuum, as it is evident
from the appearance of the Dirac delta functié(iR/c . w .
—), and polarized perpendicular to the local direction of JT(F,t)=f Sr(r—r")-3(r" ,t)d3r’ (5
propagation, as one readily realizes from the tensor o

—egeg (U: unit tensor,eg=R/R). The Heaviside unit step ot the atomic current density by means of the relation
functions® (7) and® (R/cy— 7) appearing in the near-field

part ofD(Ff(R,T) show that the near-field coupling is causal S, - R

(t>t") and different from zero only for spacelike events, Es (f,t)=—3—60waT(r,t ydt’. (6)
i.e., those for whicHF— F’|>c0(t—t’). The spacelike form

of the near-field coupling ensures that the unpleasanéinCe the transverse delta functiéa(F—F’) added to the

R™*-singularity, which in this case would make the SPaCE5ngitudinal delta function equals the usual Dirac delta func-
integral in Eq.(1) conditionally convergent, does not appear, . - - . < < - o,

a physically satisfactory feature. Although the time delay ( tion ‘i(rfr )Ht'mf’s che unit tensoJ, i.e., or(r—r’)
and source-observation distant® do not appear in the +oL(r—r")=Uds(r—r’), the transverse self-field extends
form R/cy— 7 in the factor in front of the step functions, the Over the same spatial domain as the longitudinal self-field
near-field coupling is destroyed with the vacuum speed ofattached fieldl The transverse self-field dynamics is nonlo-
light as the far-field light-cone coupling sweeps the nearcal in space but local in time, and the factor'3appearing in
field region. As we shall realize when discussing optical tunEd. (6) shows that the transverse and longitudinal self-fields
neling, the electromagnetic energy flows with the vacuunflo not cancel outside the spatial region where the atomic
speed of light. | shall demonstrate below that the photon fiel@urrent density itself is different from zero. In the QED de-
that appears in the observation point prior to the arrival ofcription[21] a change of the Coulomb Lagrangian into a
the light-cone pulse can be considered as stemming from B€W one closely relate¢but not identical to the Power-

fundamental inability to localize photons precisely in spaceZinau-Woolley Lagrangiafi30,31] allows one to transfer the
but before doing SO, we shall bneﬂy consider the matterlransverse self-field to the pal’tlcle Hamiltonian. The retarded

attached part of the electromagneti®aj field. part of the transverse-field operator can now be subjected to
N L : . the canonical quantization procedure leading to ($gheri-
From the vector field)(r,t), giving the induced atomic h he | h le f h b
current density, we now project out the longitudifiptop- cal P oton COT‘CEF"- The engt scale or_t € above-
R - . mentioned self-field phenomena is readily obtained from the
erly speaking, rotational-freepart J, (r,t) by means of the  gpherical representation of the transverse and longitudinal
tensorial longitudinal delta functiod (r _r’), i.e., functions, viz.,
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IIl. DEFINITION OF THE CONCEPT OPTICAL

o s e s e s 2 s 1 e L
51(R)=US8R)— 8. (R)= 3 S(R)U— W(U —3egeR). (PHOTON) TUNNELING
(7) Based on the considerations put forth in the preceding
" , . section | nowdefineoptical (photor tunneling phenomena
Now itis seen that the self-field effects_ are present preciselys those phenomena that occur only in the presence of lon-
in the near-field zone of the atom, and in the same Zand gitudinal and transverse self-field effects and spacelike re-
only here also the spacelike retarded coupling is present; cfi5,qded couplings. Seen with the “eyes of the photon,” opti-
Eq. (2). ) . cal tunneling thus is equivalent to the presence of two
Altogether, we have thus realized that around a singlg,ndamental aspects of QED, nameliy, spatial localization
(spinless atom, excited by an externally impressed and preyf transverse photons in the quantum-statistical sense, and
scribed transverse fielE?Xt(r,t), a total field (i) longitudinal self-field interactions mediated in a relativ-
istically invariant(Lorenz gauggdescription by longitudinal
E(r,t)=ES(r 0 +E (r,)+ESF(r,t)+ER(t) (8  and scalar photons. The definition above relates at first sight
to single-atom electrodynamics, because it appeared from a
emerges with space and time properties given by Efs.  Single-atom analysis, but, and this may be the important as-
(2), (4), and(6). pect for traditional studies of optical tunneling, the definition
At this stage it is instructive to look at the total transversewhen carried ovetapplied to many-particle systemgon--
field from a different point of view, named the photon-eye densed matteipar excellenceseems to allow one to obtain
view [21]. In Egs. (6) [combined with Eq(5)] and (1), the bet.ter insight in the physics of tu_nnellng in these systems.
transverse field is looked upon as being driven by the totaf his is what | shall try to argue in the main body of this
induced current-density distribution of the atom, a view onePaper. To my understanding, photon tunneling thus is a
may call the electron-eye vief21]. If one eliminates the “naturally” occurring process already in the near-field elec-

I >, . . . trodynamics of a single atom. By extrapolation from this
current density itselfj(r’,t"), and its first-order time deriva view it is tempting for me to claim that optical tunneling also

tive 9J(r',t")/at" in favor of the (time-derivative of the s an indispensible phenomenon in near-field diffraction from
transverse current density, one obtains the integral relatiogmall holes, slits, etc.

[21]

L L .o IV. NEAR-FIELD ELECTRODYNAMICS
E?F(r,t)+E$(r,t)=,uof dR(r—r’t—t") OF A CURRENT-DENSITY SHEET

The principles governing the near-field electrodynamics
N of single atoms we now extend to a study of the spatial
d>r’dt’, 9 localization and radiation of light from a current-density
sheet. In the course of the analysis, information is obtained
on aspects of the electrodynamic tunneling process, which
- _ o . later on(in Secs. V and Vl allow us to describe the physics
tor dX(R,7) with a far-field-like distance dependence ap-yunderlying the optical tunneling across a vacuum gap sepa-
pears, 1.€., rating macroscopic media.

ad-(r',t")
at’

where now only ar(the) isotropic electromagnetic propaga-

- - 1 R -
di(R,7)=— —= 5<_ — T) u. (10) A. Retarded and nonretarded electromagnetic propagators
Let us consider a current-density distribution of the form

The propagation characteristics of the transverse field in the . > o

photon-eye view indeed is simple; only retarded couplings I(r', 1) =Jo(t") e 5(2" = 20), 11

on the light coneR=cy7r are present, the spreading of the

field is isotropic, and the coupling exhibits an in a Cartesiarxyzcoordinate system. The current density in
R~ '-dependence only. The price we have paid to achiev&d. (11) is translationally invariant in thg direction, and, as
such a simple picture is that it has become necessary to coiftdicated by the Dirac delta functiaf(z’ —z), concentrated

sider thejT domain as the source domain, instead of thed @ sheet Iocatgd at thg p'aﬂ"?: Zo. Along thex O"feC“O”
the current density exhibits a simple phase shift given by the

(much better localizedJ domain. | have named the afore- \y4ye number; . The ansatz in Eq11) implies that the total

mentioned view, the photon-eye view, because photoRs  glectric field in the surroundings of the sheet takes the ge-
troduced via the transverse field operator dynamé®ar-  neric form

ently in the statistical sense can be no better localized in

space than given by 'the Szxtenfuon of thedomain in th.e E(F,t):E(z,t;q”é’x)eiq”x, (12)
initial stage of emission “from” the atom. In terminating

this section | emphasize that the photon-eye view and the - R

electron-eye view lead to equivalefih every respegtob- ~ €mphasizing that the amplitudg(z,t;qe,) depends in a
servable effects in all situations, but the manner in which weparametric fashion on the wave vectpe, ,e, being a unit

in a propagator descriptiopicture the near-field electrody- vector along the direction of the axis. Unit vectors along
namics is different. the two other Cartesian axes appear below and will be de-
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noted byéy ande,. In the frequency ) domain the ampli- The amplitude of the nonradiative electric field attached to

tudesé(z;q“éx,w) andJy(w) are related via the sheet, which is denoted I&]'"(z;qe,, ), may be ob-
tained from
IE(Z;Oluéx,w)=—i,uowSo(Z—Zoquéx,w)'jo(w) (13 - - . - - o
ELR(zZi0jex, @)= —i mowDg (2= 296, ) - Jo( ).
in a propagator description. In explicit form, the vacuum (18
Green functionDo(z—zo;quéx,w) is given by the dyadic

If the current-density distribution is spread over a finite in-
terval in thez' direction so that it is no longer singular, a
contact contribution is added to the field. This contribution

formula

. 0
- _ e|;<i|z—zo| .. . R i ; i o ]
Do(z—2p;q)€y,0) = ﬁ[(,{)zexeﬂ- qﬁezez plusENR gives _the_ tota_l Iongltudlng(lnonradlat_lve field, the
2i K[y curl of which is identically zero in the entire spac&he

. “NR : . . . .

+a2e.6 — kOar sanz—z sybscnptL onE " in E_q. (1_8) is meant to mdlca_te thaF this
Go8y@y~ x.q) Sgn o) field plus the contact field is longitudinal fail z, including

X (6,6,+6,6,)], (14)  Z=Zo. The contact field does not change the transverse dy-

namics(see Sec. Yand thereforé$ correctly describes the
where KE=(qc2,—qﬁ , 0o= w/Cy being the vacuum wave transverse dynamics even if the current-density distribution
number of light, and sg(-zp) = +1 forz>z; and—1 for  in Eq.(11) is smeared in the’ direction. The propagatdd}
z<z,. The singular nature of the current-density ansatz imence is the correct photon propagator for excitations that are
Eq. (11) implies that a contact term giving the electric field jnvariant on they axis and contain only one wave-number
in the source planez(=2y) has to be omitted from the Green component ¢) in the x direction. In the subsequent two

function. In Sec. V, where nonsingular current-density distri-subsections we shall investigate the two parts of the entire
butions are considered, the role of the contact term will b&je|d

discussed. In the single-particle case described in Sec. Il the

contact term would also have to be omitted if one from the é(Z,tiQ\\éx)Z E'll?(z:t;QHéx)"" E’C'R(z,t;q”éx) (19
outset had assumed that the electron confinement were com-

plete(pointlike atom). For the atom electrodynamics the con- jn the space-timezt) domain.

tact interaction enters via the singular contributigra Ii)U
and 3 5(R)U to the transverse and longitudindlifunctions; B. Attached field and its spatial confinement

see Eq(7). o ) o Starting from the microscopic Maxwell-Lorentz equations
The Green function in Eq(14) contains a nonradiative in the space-frequency domain it readily appears that the

(NR) part, denoted bjDQR(z— Zy;q)€x, ). The explicit ex-  longitudinal parts of the electric field and current density are

pression for this part is readily obtained by letting ap-  related via[28]

proach infinity, and remembering thatoci=e,*. Since

)1/2

Kf—>+qu, necessarily, focy—o one finds E (1 w)= 1 j ) (20)
L i
SNR/\,, o L 2 _ A2 2N (o o e
Do (2= 20508y, ) COCIOITOC{CO Do(2=20:q)8x, @)} Making use of the result
q“ —q|lz=zlra a o 1 - —iw'rdw_ 1
Taq® 1 lee e T I TR (1

0

+i(ee,+6,6,)s0Mz—20)]. (15  Eq.(20) takes the form

The difference between the two Green functions appearing in - - 1 fm T

< - E(r,t)=—— t—t")J (r,t")dt’ 22
Egs.(14) and(15), denoted byD{(z—zo;q &, w), i.€., L(r.t) 2eo __sgrit=t)J (r.t) (22
DHE(Z—Zoiq”éx )= SO(Z_ZO;QHéx:w) in the space-time domain, or equivalently

_PBNR(5_ 5 o & > o 1t - . 1 (= .
Do"(z= 205018, @), (16) EL(r,t):——f JL(r,t')dt'+—f JL(F )t
260 — 260'[

is the transversé€T) propagator responsible for retardé®) (23
(with speedc,) interactions between the source planeat
and a plane of observation locatedzat If one assumes that the induced longitudinal field vanishes in
In the frequency domain, the transverse part of the fieldzvery space point in the remote past, i.e., fef —0, one
amplitude in Eq(13) thus is given by has
EX(zqjex, )= —iuowD(z2—20;q€x @) - Jo( ). E (7, — )= if 3,(F.t)dt' =0, (24)
(17) 260 —
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By means of Eq(24), the last term on the right-hand side of
Eqg. (23) may now be eliminated, giving the result cited in

Eqg. (4). Under the assumption thé[(?,t’) is aprescribed
source field, thenoncausalterm (260)*1f§°JL(F,t’)dt’ in
Eqg. (23) must vanish, and this is ensured by the condition
E(r,—»)=0.

To determine the electric field attached to the current-
density sheet, one transforms the quantityuowD} (z

—zo;quéx,w) to the time domain. A glance at Edl5)
shows that this essentially amounts to a calculation of the

integral in Eq.(21). Hence, we obtain
- - * [ ——
NR/ +. -
E. (z,t,q”ex)——z—eoe qjlz—zo|
1 0 isgnz—zp)
X 0 0 0
isgnz—zg) O -1

t oL FIG. 1. Schematic illustration of the optical tunneling response
. f Jo(t")dt’. (25) of a current-density sheéblack strip. The response consists of an
* attached longitudinal paftop figure, different from zero only in

the evanescentshaded region characterized by the decay length
It appears from Eq(25) that the attached field has standing- qu_l, plus a detached retarded and transverse (battom figure
wave character, as it must have, and that it decays exponenenvanishing only for spacelike events belonging to the evanescent
tially with the distance from the plane of the shéalaced at  zone, as indicated by the shading. In the wake of the two light cones
Zp) with a decay constard . The nonradiative field disap- (shown with small arrows attachethoving away from the source
pears forgqy=0 and also in the limigy—. If the current plane with the vacuum speed of light, a Bessel-function-like cou-
density is linearly polarized in thg direction the attached Pling persists.
field is zero.

The result in Eq(25) can be understood from(alightly) ~ The tunneling regime for phenomena generated by a current-
different point of view, realizing that the longitudinal delta density sheet source thus is characterized by the Ienm‘g’th

function 3,_(2—2’ ;qHéx) of relevance for the present vector-

field problem is given by28] C. Detached field: Space- and timelike couplings
. o q o It appears from Eq(17) that the retarded and transverse
S.(z—2';q80 =€,6,8(z—2')+ E”e’ql\‘z’f'[exex—ezez electromagnetic field emitted from the current-density sheet
is given by
+i(ee,+e,0,)sgr(z—2')]. (26) >,
~R CNoa T I o (9\]0(': ) ’
. > > ) ET(ZatqueX):MO DO(Z_ ZOvt_t 1q||eX) f dt
For the sheet problem the singular teeye,5(z—z2") is of - t
no relevance, but it plays a role for spatially extended (28)
current-density distributions, as we shall see in Sec. V. A _ _ _
combination of Eqs(25) and(26) allows us to write in the space-time representation. The propagation character-

isticg of the detached field are hidden in the photon propaga-
SR s = 1o t.o tor Dg(Z, 7;q€y), with Z=z—z, and7=t—t’, and to estab-
EC(ztqe)=- 6_05L(Z_ Zo)- Jf@‘]o(t )t z#2z9 lish the explicit expression for this, it is convenient to start
(27) f(rﬁomﬁ the form the plane-wave expansion of the
D(Ff(R,q-)-propagator in Eq(2) takes in the space-frequency
and this tells us that the— z,| range of the attached field is domain, viz.(see, e.9.[22,32)
identical to the range of the integral of the longitudinal cur-
rent density J, (z—2zp)=6.(z—2y)-Jo. In a quantum- on = 4 —€4€4 ic a3
electrodynamic approach the attached field is eliminated as a Do(Riw)=(2m) f —— 5 e%7d%, (29
dynamical variable in favor of the particle-position variables ~* G0~ d
to remove redundancy. Since the total current density of the L
sheetper definition is different from zero only foz=z,, the ~ wheree;=q/q is a unit vector in theq direction, andqg
transverse part of the current density, characterizing the spa w/c is the vacuum wave number for light of angular fre-
tial localization range for the photon field, extends in the quencyw. From Eqg.(29) one readily obtains the integral
direction in a manner given by ex13(:|H|z—zo|); see Fig. 1. expression

- >
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SLC strength

. - 1 ® G_éﬂéa . 4
Do(Zigjes,0)=5— | —5—>e%Zdq,, (30 }
2m] = g5—q el ————— -
71
where now // I
exp(~F) 4+ — — —p-
1 ) gexp(—p) y
ea=a(qnex+qiez), (31 g
Z
with = (qf+q7)"2 In the ,7) domain, the photon propa- 5 T

gator thus may be represented by the integral form .

> -
o

- R U—eze; -
DE(Z,T;C]”ex):(ZW)_zj qz—qqzqe'(qiz_m)dw dq, .
T

FIG. 2. The amplitude strength of the spacelike coup{iBgC),

as given by the associated transverse propagator(giaitied by

(32) Co/4), as a function of the delay timer). At a given distance|Z|)
from the sheet plane, the coupling strength grows linearly in time

To obey the principle of causality in its most general form until the Iight-cong coupling and its. Bessel-functiop—like wake gig-
one must have=t—t’'>0. Thew integration in Eq(32) is nal take oveffull-line graph. At maximum t_he com_Jpllng strength is
readily carried out, giving equal top exp(—B) where=q|Z|. At a given distance from the
' sheet source, the largest coupling is obtained for a wave number
1 (= e 19dg c q,=1Z|~*, and equale™* (broken ling.
f = 2 sinqcer), 7>0. (33

2 —”(2> e X _Comy [+ q. |
Co '772—? OqHZ_i_—quOS{COT\/q”-FqL)SInqu dq, .
By combining Egs(32) and(33) we therefore get (37
c Sin(qco7) It was mentioned in Sec. |l that the retarded field emitted
- N oo - N T ) . . . . .
DI(Z,7:06,) = — _Of U—e-e- 07 eiaiZqq, . from a 5|_ngle atom in the ne_ar-fleld zone contains a spacehke
o(Z,7:8) A 700( a-a ©L contribution, the propagation characteristics of which are

(39 given by the second part of the propagator in E2). It
appears from Eq(35) that the propagation characteristics of
It is to some extent possible to carry out the integration inthe retarded field emerging from a current-density sheet also
Eq. (34) [for details of particular interest the reader is re-contain a spacelike pafthe term with the Heaviside unit

ferred to Appendix A, and the final result is as follows: step functiond(|Z| —cy7)]. The spacelike coupling decays
) exponentially with the distancgZ]|) from the sheet plane
1 1 0 isgnZz with a decay constarg, and, as expected, the nonretarded
53(277;(1”5)(): ZrCgTqu—qulzl 0 0 0 coupling and the retarded spacelike coupling hence have the

same spatial range, as illustrated schematically in Fig. 1. As

isgnZ 0 -1 long as|Z|>cy7, the coupling increases linearly in time)(

X 6(7)6(|Z| —co7) at a fi)ggd distance from the ghe(e;Ee Fig.' 2, but although
. the trailing edge of the spacelike interaction moves outwards
T 0 imy;sgnZ from the sheet with the vacuum speed of light, thand =
T 0 0 0 dependences enter in product form, viz.,7aexp(— q|Z]).

The linear rise of the coupling in time together with a given

imysgnz 0 —m detector sensitivity allow us to introduce a velocity-
1 independent tunneling time in a concrete experiment. If the
- ZcoJo[qH\/(cor)Z—Zz] time-derivative of the sheet current density points in yhe
direction, i.e., perpendicular to the plane of field propagation,
1 0 —iqZ the spacelike coupling vanishes. The coupling also depends
: 1 0 on qy, is zero forq)=0 andqy—, and for fixed|Z| is
x 6(cor—2), largest forqH=|Z|‘1; cf. Fig. 2. The particular tensor form
—igiz 0 0 of the spacelike term in Eq35), which is the same as the

(35) one appearing in the relation between the nonretarded field

ENR and the source current-density amplituljgn Eq. (25),
has an important physical meaning, as | shall show in Sec. V.
c q2 1 The timelike part of the transverse propagator, given by

_ ol - [ 7 the factor in front of the step functiod(cy7—|Z|) in Eq.
M=o JO (af + qf)yzsm(COT aj+aijcosq, Zda, , (35), | have divided into two pieces. In the case where the
(36) time derivative of the current density is perpendicular to the

plane of field propagation, i.e., in thedirection, only the
and last piece, proportional to the zeroth-order Bessel function

where
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Jo[q”\/(COT)z—Zz], contributes. In passing we note the Lor- - R R eff
entz invariance of the quantityc§r)2—Z2, when the field EL(Z a8 0)= 5
emerging from the sheet is observed in inertial systems mov-

ing relative to each other wittuniform) velocity v=ve, in 1 0 isgnz—2zo)
the direction perpendicular to the plane of the sheet. For a % 0 0 0
time-varying current-density source distribution pointing in .

they direction this kind of relativistic invariance might have i sgriz—2z,) 0 -1
been anticipated. In the single-atom case far-field couplings

are present only on the retarded light cone, i.e.,|f0f F’|
=co(t—t"); cf. the presence of the Dirac delta function -
S(RIce—7) in Eq. (2). In the sheet case the couplings existExpressed in terms of the nonretarded propag&t§i(z
also whency(t—t')>|z—2'|, and for a givenZ=z-2', —zo;quéx,w) given in Eg.(15), Eq. (40) takes the form
these timelike couplings die out in the slow fashion dictateddisplayed in Eq(18).

by the r dependence of the zeroth-order Bessel function For a harmonically oscillating sheet current density the

JolayV(Co7)°—Z7]. For time-varying source current densi- amplitude of the retarded electric fieIé,?(z;q||§x,w), is
ties confined to the plane of field propagatitine xz plan®,  given by Eq.(17), and to obtain the explicit expression for

off-diagonal elementsxz andzx) appear in the timelike part Tig v & ; :
of the retarded propagator. Apart from a term proportional tc{?aensfrgrpn? goitgg‘()éé) ﬁ(grﬂ‘g;w) we just need the Fourier

iqZ times the zeroth-order Bessel function, thésentica)
elements contain a contributiom, [Eq. (37)] given only in . R . R . )
the integral form. Also &z component— 7, and an addi- Dg(Z;q”eX,cu)=Dlpace(z;quex,w)ntnge(z;q”ex,w).
tional xx componentw; now appear, the explicit integral (41
expression forr, being given in Eq(36). If q;=0, the re-
tarded propagator takes the particularly simple form

67Q|H2720‘

€Eqw

Jo(w). (40)

The spacelike part of the propagatdfrlpacgz;q||éx,w), is
readily found using the result

g > Co - - -
D4(z,10)= 7 (66, U)o(cor—[Z), (@8 | . |
J 70(7)0(|Z| —cor)e' Td 7= ;z[(l—iqc,IZl)e'qO‘Z‘—l],

and no tunneling phenomena exist. (42)

) ) whereqqy= w/cy is the vacuum wave number of light. Hence,
D. Monochromatic sheet current density
In Secs. IVB and IV C, the attached and detached fields _ q ‘
were studied in the space-time domain, and the results ob- Dlpac,;z;q“ex,w)= 4—2[(1—qu|Z|)e'q0‘Z|—1]e‘q\|‘z‘
tained were valid for sheet current densities with arbitrary o

time dependence. Optical tunneling is, however, often dis- 1 0 isgnz

cussed assuming the source dynamics to be monochromatic,

and many types of experiments are carried out with X 0 0 0 . (43
(quasiymonochromatic excitation. Also, on a more formal isgnZ 0 -1

basis, the analogy between electron dsd-called photon

tunneling is investigated starting from the form the wave . _ : . .
equation for the electromagnetic field takes for monochro-ThOth necessarily an oscillating factor with a spatial period

matic waves, i.e., the Helmholtz equatid0,16. Though a 2mldq s also present n Eq43), the .spatlall part of _the
. . . ; ) : . retarded response vanishes exponentially with the distance
direct fingerprint of the physics hidden in the optical tunnel-

. ) . . L . from the sheet plane, the decay constant bejng
ing process is obtained only in the space-time domain, and in To determine the timelike part of the propagator,

the framework of a propagator description, reminiscences of-. s . .
the optical tunneling phenomenon do appear also in th&time(Z;d|€,®), one just needs to combine Eq46) and

monochromatic case, as we shall realize below. 41). This gives
Let us now assume that the time dependence of the sheet
current density is given by DtTime(Zquéx )= Do(Z;q”5X ) — DISIR(Z;q”é’X )
7 AN —iwt’ qet’ <> -
Jo(t')=Jp(w)e " eV'e’, (39 —Depacd Zid€, ), (44

wheree=0" is an infinitesimal but positive number needed and since the three terms on the right-hand side of this equa-
to ensure that the excitation disappears in the remote pasttion have already been found, see E@s}, (15), and(43),

By inserting Eq.(39) into Eq. (25) it follows that the D{  (Z;qe,,») is obtained. The structures @y~ and
attached field oscillates monochromaticalfgngular fre- D-srpaceare closely related, and the sum of these propagators

quencyw) with an amplitudeENR(z;q€,,w) given by is



PRA 60 RELATION BETWEEN SPATIAL CONFINEMENT @ . .. 1661

DQR(Z;CIuéx,w)+DlpacéZiQ|\éx ) conflict with the pr|nC|pIe_of causality. Another view o_f the
transverse electrodynamics called the photon-eye view ap-

_q ] a0/ —q2 pears if one identifies_ the source region with_ that of the trans-
- 4_qg[(1+'qO|Z|)e t1]e verse part of the induced current density. Though the
electron- and photon-eye views lead to exactly the same pre-
1 0 isgnz dictions for all measurable quantities, the intuitive pictures
% 0 0 0 (45) they offer look quite different, and, if compared, it appears to

_ me that a better insight into the near-field electrodynamics is
isgnZ 0 -1 achieved. The electron-eye view is convenient because it can
be related in a direct and simple manner to the energy wave
Before finishing this section on the near-field electrody-function [23—25 describing single-photon dynamics in
namics of a sheet carrying a monochromatic current densitygpace and time via the relativistically invariant photon propa-
let us briefly reflect on the distance dependence of the ele@ator[21]. The photon-eye view on the other hand is particu-
tromagnetic field and its various parts. Thusgj<qo, it  larly useful for discussing the spatial localizability of a pho-
appears from Eq14) that the total electric field oscillates as ton emitted from a given current-density source.
a function of |z—z,| with a period z—r/(qg—quz)lfz‘, Since Holding the point of view that the photon localizability

both SQR and D-srpace vanish exponentiall(with a decay Plays an important role for our understanding of the optical
tunneling process, it is fruitful to study the photon-eye view

; ST e -D
constarltq”), it follows that D“me(z_foo’q”ex @) =Do(Z for the sheet electrodynamics. In this view only events on the
—%;qjex,w). Far from the sheet the field is therefore purely jight cone are coupled, and in the space-frequency domain

transverse and only timelike events are coupled. In the spe: L2
cial case where the current densityipolarized, the relation %he transverse electric field(r; ) is given by[cf. Eq.(9)]

(D{ime)yy= (Do)yy holds for all|z—z|. If g;>qp, the situa- .. _ © oo L ..
tion becomes particularly interesting. The total field now de-  Et(r;w)= —I,uowf dR(r—r";w)-Ir(r";0)d%’,
cays exponentially as a function - z,| with a (rea) de- o (46)
cay constant! =(qf —q5) 2. Despite the fact that the total
field is proportional to expf a®|z—zy|)exp(—iwt) and hence
at a first glance seems to have ‘“standing-wave character,
we know that it contains a retarded transverse component
carrying information away from the sheet with the vacuum
speed of light. Sinc®,=D,— D" [see Eq.(16)], the re-
tarded response in general is described via a Green function
containing a combination of two exponential decay lengthsq apply Eq.(46) in the sheet case we make use of the Weyl
namely, 2r/(qf—qg)"? and 2m/qy. For q; values only expansion for a spherical scalar was]

slightly larger thanq,, the propagating transverse field, al-

though exponentially decaying, effectively reaches much far- QidoR 1 o .-
ther away from the sheet plane than does the attached longi- =—| ¢ KL\Z\equ-RHdqu , (48
tudinal field. Beyond the decay lengthm2g; the timelike R 27)-wk]
part of the retarded response dominates; cf. @§). For

-polarized current densities only the retarded response with = > > .
?;spdecay length 2/(qf —qg)"? isypresent. P where R=|R| =|R +Ze,|; and upon a comparison to the

: : - eneral Weyl expansion
In a field-quantized description not yet developed, the re—g yl expanst

tarded response is the one to be linked to the photon concept,

and, providedone has a detector sensitigaly to the photon TRB. ) — —sz Tz iq)-R|42

part of the sheet fiel{26,27], the detected field should ex- (Riw)=(2m) _wd(Z,qH w)e da 49
hibit a distance dependence that is a linear combination of

the two exponential forms ekp (of—0f)"4z—20|] and

exp(—qjlz—z)).

where

TRIB-, N
d"(R;w)= IRY

(47)

for the isotropic propagator, one obtains

- 1 o
E. Photon- and electron-eye views dR(Z;q” )= Zi—oe' "S‘Z|U, (50
Ky

We have seen in Sec. IV C that the transverse electromag-
netic field emerging from a sheet current-density distribu- .
tion, though retarded, contains both space- and timelike corwith again « = (q5—af)"2 By replacingqy by g in the
tributions. Based on the description of the near-fieldargument of the propagator we have stressed that this de-
electrodynamics of a single atofBec. 1) we know that the  pends only on the magnitude qf . For the sheet electrody-
spacelike part of the detached field is present only if ongamics “seen with the eyes of the photon,” the relevant

identifies the source region with the spatial domain occupie : B
by the induced current-density distribution of the atom. This%t?gral relation between the retarded fiefth(zq), )

so-called electron-eye view follows in a rigorous manner— ET(Zdj,«) and the transverse current density
from a quantum electrodynamical description and is not inj(z’;q,®) therefore is
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E (Z'ﬁ ) length (q”‘l) for the transverse current density coincides
nedl with that of the spacelike part of the coupling in the electron-
. eye view.
= _iMowf di(z—2';q),0)-J1(2';q),0)dZ, (51) By inserting the frequency transform of E&4) into Eq.
—o (51), a subsequent comparison with Eg7) reveals that the

~ transverse propagator can be represented by the significant
with d?(z—z';q,w) given by Eq.(50). integral formula
In the electron-eye view the relation equivalent to Eq. or R
(50) is Eq.(17), and a comparison of the two shows that the Do(Z—Zo:qj&x, @)
one gives an algebraic relation between field and current
density, and the other an integral relation. The reason for this
stems from the fact that the transvefse longitudina) part
of a vector fieldV(r')=Vy8(z' —zp)exp(q;-r’), which is i i i
different from zero(on)ly inoth(e pIan(g’ Z‘Z)(f,q‘ils n)onzero out- A direct proof that Eq(55) is correct can be established by

side this plane also. To quantify this statement we consider §27TYIng out thez’ integration; see Appendix B.

current density of the fornd(r’,t)=J(z’,t; qj€,) explgX’).
The associated transverse current density necessarily has the

generic formJ(r,t)=Jr(zt;q€,)exp(qx), and the rela- _ _ _ _
tion between the two amplitudes is given by the nonlocal In the preceding sections we have studied the spatial con-
equation finement of light emerging from an atofor a pointlike par-
ticle) and from a sheet, and | have argued that a relation
R . w o R exists between the near-field electrodynamics of charged-
JT(z,t;q”ex):j or(z—2';q180)-3(2',t;q/e0d 7, particle distributions and optical tunneling. Hitherto, optical
- tunneling effects have always seemed to have been investi-
(52) gated in the context of macroscopic media in the literature;
cf., e.g., tunneling across a vacuum gap between dielectric
prisms, tunneling in thin metal films suspended in vacuum or
_ R - placed between dielectric media, tunneling in photonic band-
or(z—2";q80)=(U—ee,)8(z—2") gap materials, tunneling across air gaps in waveguides, etc.
Recently, it has also been discussed among scientists in the
_ ﬂe—qwz—z'\[é 6 —6.6 optical near-field community whether optical tunneling may
2 e e be observed in their field. To demonstrate that the micro-
. L scopic considerations put forth in the first parts of this paper
ti(ese,te)sgnz=2z")] (53)  are closely related to the conventional macroscopic approach
to tunneling, we shall now embark on an extension to mac-
is the relevant transxers%function. The corresponding lon- roscopic media.
gitudinal 6 function, 5L(z—z’;q‘|éx), was given in Eq(26),
and the sum of the two is equal to the Dirddunction of A. General considerations

z—7' times_the unit tensor, i.e.fr(z—2';q/€)+d.(z Though we shall aim at a rather general description of the
—2';q/60)=Ud(z—2"). If the current density itself is con- optical tunneling process, we nevertheless assume that the
fined to the plane’ =z,, so thatj(z’,t;qnéx)=jo(t) 8(z2  medium under study exhibits translational invariance against
—2,), the transverse current density, given by arb_ltrary dlsplacements paral!el to thg p_Iane_ of our Ca_r-
tesian coordinate system. This assumption is not crucial for
the analysis nor for a basic understanding of the underlying
5(2_20)(6_5252)_ %efiqn\Z*Zo\ physics, and may easily be lifted. For simplicity we also
assume that the induced current density is independent of the
y coordinate. Despite invoking the two aforementioned as-
sumptions, we are still able to make contact with the key

=f_ ER(z—z’;q“,w)~§T(z’—zo;qHéx)dz’. (55

V. OPTICAL TUNNELING AND MACROSCOPIC
CURRENT-DENSITY DISTRIBUTIONS

where[28]

Jr(zt;q80 =

X [6y8— €,6,+1(6,6,+€,6,)

. experiment: optical tunneling across a vacuum gap between
Xsgn(z—2zo) ]t - Jo(t), (54  dielectric prisms.
Beginning thus with a current-density distribution
extends over $z—z,| strip characterized by the exponential j( by ,t,):j(zf t ;Q\\éx)eiq”x', (56)

decay Iengt}‘qn’l, and is singular ar=z, [asj(z’,t;qHéX) o .

of coursd. In the special case where the current density ighe total electric field necessarily takes the form
polarized in they direction,JO(t)zJo(t)éy, the transverse s . =i

current density is confined to the sheet plane, and in fact E(r.t)=E(zt;qe)e"” (57

equal to the total current density, ieJi(zt;d|€&)  Although the current density we start witiland thus the
=J(z,t;q)e) =Jo(t) 5(z—z9)e,. As expected, the decay field) has plane-wave character along thexis, a Fourier
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superposition of the obtained results for differeptvalues

readily allows one to generalize the considerations to arbi-

trary x distributions ofJ. Such a generalization is needed if
one wants to examine the possible link between near-field
diffraction from slits and line sources and optical tunneling.

In integral form the fielqé(z,t;quéx)] and current-density
[J(z’,t’;q”éx)] amplitudes are related via the expression

©

E(z,t;08) = 1o f Go(z—2',t—t';q)8)

&J(z’,t’;quéx)
at’

dz'dt’ (58

or, equivalently, in the space-frequency representation

E(z; 0j€x  ®)

= —i,uowﬁ 60(2—2’;q\\éx,w)-3(2’;q||5x ,)dz'.
(59

Apart from a contact term, the Green functiéo(z
—2';q8, ) is identical toDy(z—2";q€,w) given in Eq.
(14), i.e.,[28,32,

Go(2—2';0)8y, @) =Do(2~ 2 ;0|6 ,®)

+0,28(z—2")ee,. (60

If the contact term is added to the nonretarded parﬁ@,f
one obtains the longitudinad function 5L(z—z’;q”éx) di-

vided byq3, i.e.,
0o *8L(z—2;q)8) =D R(z— 2 ;)8 )
+0y28(z—2")ee,,  (61)

as one may readily verify looking at Eq&l5) and(26). By
dividing Go(z—z’;quéx,w) into two pieces as follows:

= -~ -1 2 t 2 ’ - '
ELRztq/e0=— € €€, f_ J(z,t';qje ) dt
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Go(z—2';q)8¢,w)=D{(z—2";q)€, )

+0p26.(z— 2 016,
(62)

it is realized that the retarded and transverse electric field is
given by

é?(zquéx,w)
= —i,uowL ‘Sg(z—z’;q”éx,w)~5(z’;qHéx,w)dz’
(63

and the longitudinalattached and nonretarded field by

T I e a Y

iEow
'j(z’ quéx ,w)dZ'

1. -
= ieow‘]L(Z!quwi)'

(64)

Since the transverse propagator appearing in(&3).is iden-

tical to the one used in the sheet case, the transverse dynam-
ics of macroscopic media both in the frequency domain and
in the time domain, where E63) reads

EX(zt;qi6) = Moﬁ Dg(z—2',t—t';q)€,)

. d(z'1';018) g

Z'dt’,
at’

(65

can be discussed along the same lines as for the sheet source.
Furthermore, because E@64) in the space-time domain
takes the form

1 0 isgnz—2")
© , t -
- 2q—6”f e alz=2'| 0 0 0 f J(Z',t';qe)dt’ |dZ', (66)
0 isgriz—z') 0 -1 -

the qualitative analysis of the attached-field dynamics can b&esimally thin strips ',z +dz’). For observation planes in
carried out in a fashion similar to the one used in the sheehe vacuum, the contact term does not contribute, of course,

case; one just has to remember the contact férst term on

but it is nevertheless needed to ensure that the nonretarded

the right-hand side of Eq66)] and to add the effects from (attachedl field is rotational freglongitudina) for all z val-

the current densitie§(z’,t’;qHéX)dz’ of the various infini-

ues[28].
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B. Many-body linear response theory leaving out for simplicity the reference e, and w. The

So far, we have only investigated the propagator relatiomuantity Jy,_.n(Jn_y) denotes the many-body transition
between the local electric field and the prevailing currentcurrent density involved in an electronic excitation from
density, but this current density itself is in fact determined bystateM to stateN (or opposit¢. From a knowledge of the
the sum of the prescribed external field impressed on thetationary-state wave functions of thgseany-body states,
medium and the yet unknown induced electric field. To close7  (2) [ 7., u(z')] can be obtained. The transvefen-
the loop problem an extra relation is needed between thgit,dinal] part of this current density,
field and the current density. This relation is provided by thezr 2 . : - o :
Schralinger equation in the nonrelativistic regime, and as ist—’N(Z) [Fy-n(?)]. and in particular its spill-out in

o vacuumis the crucial one for the tunneling process, as one
most often done we shall assume that the relation is linear 9p

but in contrast to conventionéinacroscopig studies of op- readily realizes by combining Eqé7) and (69). The final

. . . - spill-out is determined by superimposing the weighted spill-
tical tunneling, we shall allow the relation to be spatially outs belonging to the participating transitions. The weight

nonlocal. ) e oo }
In linearized many-bodyMB) response theory the con- factor of a givenM—N transition is Ay nJ " In-m(Z')
stitutive equation in our case takes the general f32] -E(z')dZ', and its explicit value may be determined once

R " the loop equation foéT(z) has been solved.
J(z;quex,w)=f a"8(z,2';q/8¢, )

— o0

VI. PHENOMENOLOGICAL DESCRIPTION OF OPTICAL
. [ET(Z';QHéXaW)"’ E‘EXt(Z';qHé)X,w)]dZ', TUNNELING; IN PARTICULAR, THE ROLE

OF SURFACE CURRENTS
(67) . . . :
In theoretical studies of optical tunneling across a vacuum
WhereEEXt(z’;q”éX,w) is the longitudinal part of the exter- 9ap Separating twénonmagnetie macroscopic media, it is
usually assumed that the tangential components of the elec-

manv-body conductivity tensor. a nonlocal obiect in eneralmc and magnetic fields are continuous across the sharp
y y y ’ J 9 medium/vacuum boundaries. For plane electromagnetic

Usually the external light sourdgaser, etg.is placed so far waves propagating perpendicular to the boundaries, i.e., in

from the medium under study th&:*'=0 inside the me- the z direction, or fors-polarized waves as such, this choice
dium, and we also know that the transverse field does ndimplies that the electric field and its first derivative with
contain a self-field part for current densities of the formrespect taz are continuous at the medium/vacuum surfaces,
given in Eq.(56), so thatéTz |§$ in Eq. (67). conditions which make the stationary-state problems for
Taking into account the transverse external fieldelectron and optical tunneling mathematically equivalént

é_(le_xt(z;quéx,w) acting on the medium, we are thus led to aAS long as one can justify the assumption that no surfa_ce
loop equation currents are induced at the boundaries, other matching

choices for the electromagnetic field can be chosen without
altering the physical result. If induced surface currents can-
not be neglected one must be more careful. Hence, if one
ol re relies on the standar@extbook jump (boundary conditions
f 63(2—2”:(1“@,0)) for th_e field, inconsiste_ncies are likely to appear, becaus_e the
% % possible presence of induced surface currents perpendicular
to the medium/vacuum boundary is neglected. This omission
~E$(z’;qH§X,w)dz’ (68) usuaIIy_ Iegds to rgsplts for the amplitude and rgflectlon and
transmission coefficients that depend on the choice of the set
) . of jump conditiong 33], an unacceptable situation, not least
for the retarded transverse field. Loop equations of the formq " o htical tunneling studies, as we shall realize below. For
given in Eq.(68) can be solvedapproximately using differ-  gjectromagnetic transients and finite-frequency responses
ent schemeg32]. OnceE?(z;quX,w) has been obtained, the nothing prevents surface current oscillations from being in-
current density can be determined from E&j7) (leaving out  duced with a component perpendicular to the med-
E®Y), and a knowledge oJ(z;q”éx ) allows one to calcu- ium/vacuum surface. In linear and nonlinear surface optics it
late the attached field from E¢64). is often crucial to keep the component in the induced sur-
In the present context of optical tunneling we need notiace (or interface current-density distribution. Although it

have any explicit solution for the local field: it is sufficient h@s been claimed occasionally that the optical tunneling
(time) is independent of the boundary conditiof®t], the

analysis below do not support such a point of view.

nal (ext) field, and &B(z,z'; i€, ) is the microscopic

EXz g6, 0)

=E$Xt(Z;Q||éx,w)—iMowf

. gMB (2',2';0)8¢, w)dZ"

just to realize how the induced current densi()z’;qHéX , @)

[and its transversdongitudina) parf] emerges microscopi-

cally. Hence, if one denotes the various many-body energy

eigenstates by the quantum labklsN, . . ., themany-body A. Heuristic sharp-boundary model

conductivity tensor has a structu&2] Let us now consider a model consisting of a semi-infinite
medium occupying the half-spazeZ0 and separated from a

FMB(2,7') = Avt nTvton(2) T (2, 69 vacuum half-spacezf>0) by a sharp boundariat z=0).
o Hz2) MEN MNTw-n(2) In-m(Z) ©9 The sharp-boundary assumption is of course an abstraction,



PRA 60 RELATION BETWEEN SPATIAL CONFINEMENT @ . .. 1665

realized as early as 1860 by Lore85] when analyzing the the surface current density induced perpendicular to the

results of the reflection experiments carried out by Jamin 13oundary[Jg z(O)éz], and, as we know, the attached field
years earlier, but not understood in the intervening yeargecays exponentially to both sides of the surface plane with
[36]. The spill-out of the .electrc_)n distribution W|II_ in general _a characteristic decay constayt In the vacuum £>0) the

be somewhat less for dielectric than for metallic and semifie|d is right-hand circularly polarized and inside the medium
conducting media. For the following qualitative dlscu33|on(z<o) it is left-hand circularly polarized, in both domains,

the sharp-t_)oundary model is_sufﬁcient. In our treatment W&yith the polarization unit vectors (idsgnz)/\2 lying in the
shall consider monochromatic waves with a single waves,, plane, of course. The particular form

vector component parallel to the surface, and to simplify the
notation we therefore omit the referenceqqpix andw from

the notation, i.e.j(z;qHéx,w)=J(z), etc. The induced cur-
rent density hence is given by

Jg,2(0)

ENR(X,Z) = meiql\xe’q\lm

e
i sgnz 749

shows thathe nonretarded longitudinal field is not only ro-
J(x,2)=Jg(2)€9%0( —2), (70)  tational free [9E}X(x,2)/9z—iqERg(x,2)=0] as it by
} definition must be but also divergence frgiejEL (x,2)
where one may considelg(z) [multiplied by exp{gx)] as +&EE’§(X,Z)/82=O]. In the vacuum, where there is no
the bulk (B) contribution to the total current density. The charge density, the nonretarded field must of course also be

presence of the Heaviside unit step functifn-z) allows us  djvergence free, as the Maxwell equati(ﬁﬁ.(E?Jr E[‘R)

to estimate the role of an induced surface current, albeit in a5 or ivalentlve - ENR— 0 immediatelv show
heuristic manner. To elaborate on this let us look at the di- - Of Sauivalentlyy -t = cdiately Snows.

vergence of the current density, i.e., The spacelike part of the retarded field is determined from

the integral relation
V-J(x,2)=0(—2)V-Jg(X,2) — 8(2)€,- Jg(x,0). (71) - . i
E e(z)=—i,u0wf D {z—2")-3(z")dZ" (75
If the induced bulk current-density distribution is divergence *pee - PR

free, V-Jg(x,2)=0, so thatJg(x,2)=Jg(x,2), the part of upon insertion of the expressions given in E@S8) and(70)

the optical tunneling process that is associated with the at,, e propagator and current density. By assuming as be-
tached longitudinal field originates solely in the induced sUr<qre that the bulk current density is transverse, a tedious but
face current density and is present only if this has a COMPOstraightforward calculatiorisee Appendix € leads to the

nent perpendicular to the medium/vacuum boundary; cf. they|iowing result for the spacelike part of the retarded field:
form of the second term on the right-hand side of EA).

To underscore the importance of surface currents let us _ 1 0 1

therefore analyze the case where the current-density distribu- Elpaca(z): 4—[ q%J ( . L )(z—zr)
tion of the bulk is transverse. If the induced current density is €o® —=\1sgn(z=2")

s polarized in the bulk and surface regions the attached field

and the spacelike part of the retarded field will vanish, as we Xe(iQO*QHNZ*Z"\]B J(z)dzZ +| . )
have realized in Sec. IV, and it is therefore sufficient to re- ’ I'sgnz

strict ourselves to studies pfpolarized distributions. In turn

this means that thg component of all vector fields is zero. ><[(1—iq0|z|)equ|Z‘—1]e‘qH|Z‘JB z(O)] )

Two-component vectors and relatesk 2-component tensors '

may hence to be used to simplify the notation. (76)

The attached field can be calculated everywhere in space

inserting Eq.(70) into Eq. (64) and utilizing the explicit  The term proportional tdg ,(0) in Eq.(76) gives the con-

expression given in Eq26) for the longitudinals function.  tribution to the spacelike field from thecomponent of the

By making use of the assumption that the bulk current densurface current density. This contribution is right- and left-

Sity Is transverse, I.e., hand circularly polarized in the vacuum and medium regions,

respectively. It also vanishes when the observation plane ap-
iq,Jg (2)+ dJg(2) -0 (72) proaches the surfgce, i.e.,_fDFfo, as one would expect for

IMB.x dz ' a retarded spacelike contribution; cf. E¢8) and (35). The

integral term in Eq.(76) represents the contribution to the

one obtains, as shown in Appendix C, the following expresspacelike field from the induced bulk current-density distri-

sion for the nonretarded longitudinal field: bution. The infinitesimal contribution from thecomponent

of the current density in the strip located betwegnand

z'+dz'[Jg ,(z')dZ'] is right- or left-hand circularly polar-

ized, depending on whether the plane of observation is lo-

cated to the right£>2') or left (z<z') of this plane, and

The simple result in Eq(73) illustrates main principles of again this contribution vanishes as the plane of observation

the optical tunneling process in a fine manner. Hence, wheapproaches the source plare<z’).

the induced current density is divergence free in the bulk, the Up to this point we have only considered the electric field

nonretarded longitudinal field generated originates solely irgenerated by giveninduced current-density distribution. As

1
i sgnz

e_qulz‘

EN(2)= 5 JedO) . (73
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discussed in Sec. V B, a self-consistent theory is obtained by
relating the induced current density in the medium under
study to the prevailing field. In the present context it is suf-

ficient to limit the considerations to the linear regime and

assume that the response is isotropic, linear, and local in
space. The relevant single-body conductivity tensor hence
takes the form

E(Z,z’;quéx,w)=o(w)5(z—z’)lj (77)

L

in the frequency domain. Within the framework of the
random-phase-approximation approach the bulk current den-

=q ”—1

sity appearing in Eq(70) is therefore given by FIG. 3. Schematic iIIustrgtion qf thg optical .tu.nnelling across a
vacuum gap between two dielectric prisms as it is pictured in this
3 - work. The superposition of incident and reflected electromagnetic

Jo(2)=0(w)E(2), (78) PP J

fields (indicated by the two big arrowsives rise to a current den-

and contact with previous studies of tunneling across & in and at the surfackblack strip of the prism to the left. If the
vacuum gap1] is established, assuming the local eIectricOther prism is placed within the evanescent z¢etearacterized by

field to consist of a spatially single-mode incideimtc) field the exponential decay Iengtm‘l) of the first prism, optical tunnel-
ing occurs. In the picture suggested in this paper the tunneling field

(E"™) plus the associated reflectécefl) field (E™™. In" has two components, namely, a spacelike retafdad necessarily
most cases the source of the incident field is located so fafansverspcomponent and a standing-wave-like longitudinal com-
from the medium under investigation that the transversgonent. The back edge of the spacelike compoftiemiicated by
current-density domains of the source and medium do nodmall arrows attachédnoves away from the source prism with the
overlap. In such situations the incident field is transverseacuum speed of light, and is thus only nonvanishing in the shaded
(éinc: éiTnc)’ and since the medium is assumed to be isotropart of th.e evanescent regiop. From a quantum electrodynamic

. ) > of] point of view the photons emitted by the surface current density
pic, the reflected field must also be transverse, EeS, induced in the source prism cannot be better localized spatially than
=EF". Altogether, the bulk current density thus becomes what is dictated by the exponential decay lengifi{) of the trans-

verse part of the surface current density.
Jg(2)=0(w)(Ue'9r?+ F'e_'qiz)-E'-Fw(O), (79
B. Enhanced surface-generated tunneling

where ET°(0)=ET°(qje,,w) is the amplitude of the inci- When the current density induced in the bulk of a macro-

dent field, and scopic medium is divergence free the part of the optical tun-
= L .. neling process one may associate with the attached field
r=rop(eLe,—ee,)tree (80) originates solely in the currents generated in the surface re-

gion. In Sec. VI A, where a naive sharp-boundary model was
the reflection matrix. Fresnel's amplitude reflection coeffi-adopted, the amplitude strength of the nonretarded field was
cientsr, andr for p- ands-polarized fields, respectively ,are proportional to the normal component of the bulk current
those belonging to reflection from the medium side of thegensity at the edge. To go beyond the heuristic approach it is
boundary. In terms of the complex relative dielectric con-necessary to take into account the fact that the electron den-
stant e(w)=1+io(w)/(€w), the wave-vector component sjty changes from its bulk value to zero over a finite distance
of the incident field perpendicular to the surface is given byin the z direction. Once dself-consistentsurface potential
5 2712 has been determined, the bound energy eigenstates of the
9, =[doe(w)—aj]™ (8D electrons may be found, and from a knowledge of these the
light-induced surface current density can be calculated. For
metallic and semiconducting media where highly delocalized
loch states play a particular role, the field-induced longitu-
inal currents terminating at the surface can extend many
ermi wavelengths into the solid, and the overall contribu-
on from surface states localized to within a few atomic
monolayers may be rather weak.

In the manner we have introduceqw) here, the associated

e(w) is able to describe the optical response of dielectric a
well as semiconducting and metallic media. For the standar
situation where the incident field is divergence free, it ap-¢
pears from Eq(79) that the bulk current density is trans- ti
verse, and therefore Eq&4) and(76) can be used to calcu-

late the attached and spacelike field parts. Sidgg(0) To investigate the role of surface currents in the optical

=(1+rp)a(w)ET3(0), thefield contributions from the sur- nneling process it may therefore be fruitful to seek to en-
face current density are readily expressed in terms of thgance the currents induced in the surface region relative to
amplitude of the incident electric field. The entEépace(z) those generated in the bulk. One possibility for doing this
field by is obtained inserting Eq79) into Eq. (76). The  might be to deposit an ultrathin metallic or semiconducting
explicit result is not needed here. A schematic illustration offilm on top of a homogeneous dielectric substrate. If the film
the optical tunneling across a vacuum gap separating twis sufficiently thin, the electron motion would be subjected to
dielectric prisms is presented in Fig. 3, in a manner that isin essential spatial quantization perpendicular to the plane of
meant to underscore the physical picture established in thithe film, and resonance excitation between selected pairs of
work. these so-called quantum-well states may lead to strong oscil-
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lating surface currents perpendicular to the well plgB®. tact with the experimental microwave studies of optical
A few-monolayers thick metallic film may thus behave like a tunneling of many-photon puls¢40,16 and thus with the
two-level system and strong currents can be induced irz theissue of superluminality, the semiclassical theory presented
direction withp-polarized light incident at an oblique angle. here should be sufficient, but it is necessary to insert a spe-
If the electromagnetic field exciting the quantum w@bm  cific current-density pulse form in Eq$65) and (66), and
the medium sideis transverse, the attached tunneling fieldcarry out a calculation of the transverse and longitudinal
stems from the quantum well, and with a dielectric substratdi€lds numerically. The choice of the pulse form should be in
even the spacelike part of the transverse tunneling field magccordance with the form given by the incident microwave
be dominated by the quantum-well current source. A semiPU!Se€; cf. Eq.(79). By decomposing the energy wave func-
conducting GaAs/Ga Al As film/substrate combination tion in a basis set where the.p.hoton eigenstates have deflnlte
seems to be adequate for optical tunneling studies in thgheray, momentum, and_ helicity, the role of the pho_to_n spin
: . . . In optical tunneling possibly may be addressed. Building up
(neap-infrared regime, and a film thickness of the order of . . . S T
~100 A can serve as a two-level systéav]. by numerical methods the tunnglln.g.fleld ongmgtmg in sur-
_ face and bulk currents from the individual near fields of two-
Surface currents may also be enhanced by nonlinear optly 4 three_dimensional regular distributions of atoms, respec-
cal methods. Hence, in centrosymmetric media, the Opticgj ey jt would be interesting to see how well the continuum
second-harmonic generation primarily is a sqrfac.e effect, anfheory developed here describes the time and space behavior
even though the first harmoniéundamental field is trans- ¢ the tunneling field in media with strongly localized atomic
verse strong longitudinal field components can be induced ifmoleculaj orbitals. Since there seems to exist a relation
the surface regiofi3g]. between optical tunneling and near-field diffraction, it would

In certain wavelength regions so-called electromagneti,e interesting to investigate, for instance, the near-field dif-
surface waves can be excited on an interface between tWeaction from small holes in a scheme where a clear distinc-

macroscopic media, or at a medium/vacuum surface. Sucfiyn petween the transverger longitudina) field and the
waves, which constitute part of the electromagnetic eigeny,g| field is made. A proper identification of the attached
mode spectrum of these systems, in certain frequency repe|q in the vicinity of the hole might provide us with a better
gions, contain a substantial fraction of nonretarded longitujnsight into the selfconsistently induced transverse current

dinal fields so important for optical tunnelin@9]. At a  yensity in the wall surrounding the hole, a quantity that ap-
metal/vacuum surface the electromagnetic surface waves ars to be of utmost importance in the vector theory for

even dominated by the longitudinal field contribution for fre- hoar field diffraction. A correct identification of the retarded
quencies close to the surface plasmon frequency. At this frezansyerse field may also allow us to study the near-field

quency the waves are circularly polarized in the plane ofjitfraction of individual photons in space and time.
propagation both inside the metal and in the vacuum domain,

and, in fact, thdotal field takes precisely the form given in
Eq. (74) [40]. APPENDIX A: PHOTON PROPAGATOR

FOR SHEET RADIATION

VIl. OUTLOOK To verify that the expression for the retarded transverse

Taking as a starting point for optical tunneling studies thePropagator given in Eq@35) follows from Eq. (34), let us

framework suggested in this paper, a number of important"St consider theyy component, i.e.,
issues should be addressed. Thus, instead of forming wave
packets of the total electromagnetic field, it would be inter-

esting to build these from the transverse part of the electro- Co (= siN(qCy7)

magnetic field, and again investigate the role of the various Doyy(Z.7) =~ . _mTeququi

velocities introduced in the literature, the pulse reshaping,

etc. In the transverse photon propagator description used in Co ocSin(COT‘/qﬁﬁ— qf)

this work the inherent role of the spatial photon delocaliz- =5 — cosq, |Z|dq, ,
ability for the wave packet analysis might show up clearly. mlo  Vaf+a

Since the retarded field studied here essentially is identical to (A1)

the Riemann-Silberstein energy wave function for photons in

real space, a rigorous single-photon tunneling theory can be

constructed by adjusting the prevailing current density ingjnce cos|, Z= cosq, |Z|. The last integral is different from
such a manner that the eigenvalue of the number operatgl, only forco7>|Z|, and one find$41]

equals unity. The approach presented in this paper for im- '
proving our understanding of optical tunneling should be of
relevance also for a proper interpretation of the two-photon

comuqlence experiments of Chla_o and co worl{dr,SO],_ but Dg,yy(Z, 7)== —60(Cor—|Z|)Jol \/m]-
a detailed account can only be given after an extension of the 4
present theory along the lines indicated above has been (A2)

worked out. Work on a quantum electrodynamic theory for

the spatial localizatiorfand birth of polychromatic single-

photon wave packets and, once generated, their Einsteifi-he zz component of the photon propagator, given in inte-
causal propagation is in progress. To make quantitative corgral form by



1668 OLE KELLER PRA 60

2
q sin(qcyT) d q.
D§,AZ,7)=— :JJ 3 0 ela.Zdq, DoxAZ,7)=D{,(Z ‘o "J’ =5 sin(qcyr) € Zdq,
2 regj Jaf+q? 'C q (~a.
_ COqHJ' sin(Co7V/q] ql)cosqLIZqul, 0 ”f 3sm(qcor)sququl
2m Jo  (gf+q?)¥?
A3 ic q d
(A3) _ 0 I\f { %(q||+qi) 1/2}
can be calculated explicitly fojZ|>cqy7>0 (causality im-

Dy, AZ,7)=—m0(Cor—|2Z|)

1, Since @7 +4af) " *?sin(@cn)sing, Z=0 for g, =0 andwx, an
—zCoraie o(n) 0(1Z|—cor), (A4)  integration by parts now gives

where 7, is given by Eq.(36). SinceDJ,,= Dgyy Dgzz, T oq” jwsin(qcoT)
one readily obtains DoxAZ,7)= R cosq, Zdq,

<L .
c +COTJ — cogqcyT)sing, Zdq, |.
Do Z,1)=| 71— Z el ap(con?=22 | 6(cor—12]) 04
(A7)

1, B
+Zcome AZle(7) 62| - cor). (A5)
The first integral in Eq(A7) has already been determined

By now only the calculation of the identical off-diagonal [see Eqs(Al) and(A2)], and the second one can be calcu-
elements remains, lated in explicit form for 0<cy7<|Z| (see Ref[41]). Hence

o0

qa. a.
P — cog(qcy7)sing, Zdq, = sgnZJ qH+q2 cos{coq-\/qfJrqf)smqi|z|dqL

27
> T ealzig(p) 6(z| - Com)+ 2 7 m,0(Com—|Z|) |sgnZ. (A8)
I
|
Altogether we therefore obtain —2y) [Eq. (53)] on the right-hand side of the equation. This
gives
DoxA Z,7)=Dg,(Z,7)

f dR(z—2')- 61(2' — 20)dZ
= chrqusgnZe‘que(r) 0(1Z| —cor) —o

1 1 0 O
Jré?(co7-—|Z|)[i7-r2 sgnZ =570 gtlzzl| 0 1 0
K
. all 00 0
i
+ZCOqZJO[q\/(COT)2_ZZ]]- (A9) l(z—29) 0 ily(z—2zp)
-2 0 oo . (6D
Gathered in matrix form, the results in E¢2), (A4), (A5), il,(z—25) 0 —ly(z—20)
and (A9) give D(Z,7) of Eq. (35).
where
APPENDIX B: INTEGRAL RELATION BETWEEN THE "
TRANSVERSE AND ISOTROPIC PROPAGATORS |1(Z_Zo):f ek |z=7'[g=a)l2' ~ 20l g 7 (B2)

To prove the integral relation in E455) one inserts the
explicit expressions fordR(z—z') [Eq. (50)] and &(z’' and
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IZ(Z—Zo):J el <172 lg=a2' ~2l sgr(z’ — 75)d7'.
(B3)

Since the integrals in Eq$B2) and(B3) are given by

2 .
I(z— ZO) = ?(l Kfe’qH'Z*ZO‘ + qul KE|2720|), (B4)

0

and

i 0
.0
2L (equ|z—zo|_elxﬂzfzo\)sgr(z_zo),

0
(BS)

l2(z—24)=

it appears that the integral relation in E@®1) consists of

spectively. By gathering the two sets of terms in each of their

tensors one obtains

f a’R(Z_Z')'ET(Z'_Zo)dz/:50(2_20)_SBIR(Z_ZO),
(B6)
where Do(z—2,) and DYR(z—zy) are given by Eqgs(14)

and (15). Since the difference betweelo(z Zy) and

(z Zp) is just the transverse propagatog(z Zy) [see
Eq (16)], the claim in Eq.(55) has been proven.

APPENDIX C: TUNNELING FIELDS IN THE CASE
OF TRANSVERSE BULK CURRENTS

1. Attached field

To determine within the framework of the sharp-boundary
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since expgz')Jz (z')—0 for z'— —o. Under the assump-
tion that the bulk current density is divergence ffeee Eq.
(72)] one immediately obtains the result in E.3) for z
>0.

For z<0, the contact term in the longitudinalfunctions
must be included, and the integral ow@rhas to be divided
into two parts over-»<z'<z andz<z'<0, respectively.
Hence

ENR(2)= - {JBZ(Z) q” e
><J;eQ\\Z’[JB,X(z'HiJB_z(z')]dz' 2‘ €92
O ’
xf e 2 [JB,X(Z’)—iJB'Z(z’)]dz’(_i }
(€3

A partial integration of the terms containints ,(z'), fol-
lowed by a use of the transversality condition in Eg2),

-]

(C4

i
+ EJB,Z(Z)

- 1 0
EER<z>:@fJB,Z(z> L

[ 0z 1
+§e [ ‘]B,Z(O)< —I) y

a result one readily verifies as being identical to the one cited
in Eq. (73) for z<0. We have thus shown that the attached
field is given by EqJ(73) for all z

2. Spacelike part of the detached field
To determine the above-mentioned part of the electric

model the nonretarded longitudinal field in the vacuum half-field, Egs.(43), (70), and(75) have to be combined. Doing

space £>0), we start from the expression
q
NR — qjz
L (Z) 2i60we
0 , 1
X f e[ Jg (') +idp(2)1dZ | |,

(CD

readily obtained by combining Eq&6), (64), and(70); and

for simplicity all the p-polarized fields are written in two-
component notation. An integration by parts of the term con-

taining Jg ,(z') in Eq. (C1) now gives

> 1
EVf(z)=5_—e 9"

€

O !
x| Jg.2(0)— f e

iqdex(2)+ ZZ( )) 1() (e%)

this, and using afterwards the transversality condition in Eq.
(72) to eliminateJg ,(z") in favor of (i/q))dJg ,(2')/dZ’,
one obtains foz<0

-1 L 1 dJB z(Z)
EspaCéZ)—m e qHZ _ F (Z
0
+Jg ,(2')|dZ —I—eqHZJ F_(z,2)
1 dJg,(Z") ( 1 )
— —————Jg(2")|dZ| .|,
- ) oz
(CH
where
F.(z,2)={[1%ido(z' —2)]e* %= #) —1}e™ a7,
(Co
Utilizing the fact that
F+(sz’)|z/—)7:>c:Fi(Z!Z,)|Z':Z:0 (C7)

and
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F_(z,2')|y—o=(1+iqgz)e '907—1, (C8)

upon partial integrations of the terms witldg ,(z')/dz’, we
next get

- 1 _ 1
Espacd2)= m’ [(1+igez)e 90"~ 1]quJB,z(O)( i )

z
— e_ql\zj
—

1
><JB,Z(Z’)dz’( i ) —eq\lzf

dF.(z,Z2") )
—qy  ~UF(zz ))

dz'

z

O(dF(z,z’)
(C9

1
+an—(2,2’>)JB,Z(Z’)dZ’< _i)] :

By inserting the formulas

OLE KELLER

PRA 60
dF.(z,z") i i N
Q(Tiqul:i(z,z%q%(f—Z)ef'%ze*(q\\*'%”

(C10
into Eq.(C9), it is a straightforward matter to show that the

resulting Eq.(C9) equals Eq(76) for z<0.
For z>0, one begins from

- 1 0
Egpacd2)= me‘qzj_mﬂ(z,z’)

d ' 1
- ( ae,A(2")+ sz )) dz,( [ )
dz I

(C1D)

cf. Eg. (C5; and a partial integration of the
dJg ,(z')/dZ'-term, followed by a use of EqC10) for the
plus sign, gives the result in E¢r6) for z>0.
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