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Relation between spatial confinement of light and optical tunneling

Ole Keller
Institute of Physics, Aalborg University, Pontoppidanstræde 103, DK-9220 Aalborg O” st, Denmark

~Received 4 January 1999!

With the aim of obtaining a better insight in the optical tunneling process the near-field electrodynamics of
a current-density~equivalently polarization! sheet is investigated, taking as a starting point the near-field optics
of a single atom, and afterwards the tunneling field of a macroscopic medium is determined integrating over a
distribution of sheets. The total electric field hitherto used to study tunneling times and effective tunneling
velocities is divided into a nonretarded~matter attached! longitudinal part of standing-wave character, and a
retarded~detached! transverse part propagating away from the matter-vacuum interface with the vacuum speed
of light. For a current-density distribution phase shifted with a wave numberqi along the interface, the
transverse part is nonzero in the vacuum and decays exponentially with a decay constantqi

21 as a function of
the distance from the interface. Since the source domain of photons is precisely the domain of the transverse
current density, the optical tunneling process attains an important contribution associated with the lack of
spatial localizability of a photon in the evanescent regime. It is shown that in an observationally equivalent
electromagnetic propagator description of the space-time dynamics, where the source domain of the photons is
identified with the domain of the total electron current density, the retarded transverse dynamics necessarily
must include spacelike couplings in the evanescent regime. Since these are destroyed with the vacuum speed
of light as the light-cone coupling moves away from the matter-vacuum interface, the Einstein causality is
always obeyed. The link to previous studies of the optical tunneling process is established by investigating the
transverse and longitudinal dynamics in the frequency domain. Finally, it is shown that surface currents may
play an important role in the optical tunneling process, in particular in cases where the incident electromagnetic
field generates divergence-free currents in the bulk of the source medium.@S1050-2947~99!08408-5#

PACS number~s!: 42.50.Ct, 42.25.Bs, 42.90.1m, 73.40.Gk
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I. INTRODUCTION

A paradigm of optical tunneling appears in the case
frustrated total internal reflection~FTIR!; see, e.g., Refs
@1,2#. Thus, if a plane monochromatic electromagnetic wa
is incident on a planar glass-vacuum interface at an an
larger than the critical angle, an electric field decaying ex
nentially with the distance from the interface is generated
the vacuum. Alhough, traveling along the interface, the fi
in the vacuum has standing-wave-like character in the di
tion perpendicular to the interface. This standing-wave fo
at a first glance seems to indicate that no energy is tra
ported away from the boundary, and yet, if another pla
glass medium is placed in the evanescent tail a trave
electromagnetic wave appears in this medium. In the gla
vacuum-glass system, the field now consists of a superp
tion of incident and reflected traveling waves in the fi
glass region, a sum of two evanescent modes decayin
opposite directions in the vacuum gap, and a single w
traveling away from the interface in the second glass m
dium. The fact that this electric mode pattern along the
rection perpendicular to the interfaces mathematically is
actly the same as the wave-function mode pattern obta
when solving the stationary-state Schro¨dinger-equation prob-
lem for an electron incident upon a one-dimensional squ
potential barrier, a formal analogy between electron~massive
particle! and photon tunneling emerges@1#. If instead of a
vacuum gap, one has an air gap between the glass med
small traveling-wave component is introduced in the dir
tion perpendicular to the interface and the formal analo
with electron tunneling becomes less obvious. Optical ‘‘tu
PRA 601050-2947/99/60~2!/1652~20!/$15.00
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neling’’ in a dielectric-air-dielectric system~excited at an
angle of incidence larger than the critical angle! resembles
optical ‘‘tunneling’’ in a dielectric-metal-dielectric system
~or a system consisting of a thin metallic film suspended
vacuum! when the monochromatic optical field has a fr
quency below the~bulk! plasma frequency of the metal@3#.
Only if relaxation mechanisms for the electron system
neglected is the electromagnetic field in the metal pur
evanescent. An optical tunneling-barrier problem also ari
if one considers the ‘‘evanescent-wave propagation’’ of el
tromagnetic fields inside a one-dimensional~1D! photonic
band-gap material, since here a mathematical analogy to
evanescent propagation of electrons in a Kronig-Penney
riodic potential appears@4,5#. In microwave studies of the
electromagnetic tunneling process one often makes use
~rectangular! undersized waveguide@6,7# or a waveguide
filled with a dielectric material and interrupted by an air g
that serves as the barrier@8#. If the frequency of the mono-
chromatic wave progressing along the waveguide is cho
to be above the cutoff frequency in the dielectric-filled se
tions but below cutoff in the air gap, a mathematical analo
to the stationary-state electron tunneling through a o
dimensional rectangular barrier again emerges.

Although the two-dimensional optical tunneling in
dielectric-vacuum-dielectric system in the stationary-st
situation resembles that of one-dimensional electron tun
ing across a rectangular barrier~of the same width as the
optical gap!, in particular for s-polarized light where the
~textbook! matching conditions for the electric field are th
same as for the electron wave function~viz., continuity of
the field and its first-order spatial derivative in the directi
1652 ©1999 The American Physical Society
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PRA 60 1653RELATION BETWEEN SPATIAL CONFINEMENT OF . . .
perpendicular to the interfaces!, the state of things is more
complicated in the dynamical situation where the transi
behavior comes into play. To achieve a better understan
of the physics of the optical tunneling process and the r
tion of this process to tunneling of massive particles, it
necessary to deal with the process not only in the freque
domain but also, and primarily, in the time domain. To a
dressthe two important issues in (optical) tunneling, viz., t
tunneling-time question, and the ‘‘effective’’ tunnelin
velocity problem,it is necessary to pay full attention to th
dynamics in both space and time. To investigate the ques
of the tunneling velocity, one traditionally studies the refle
tion and transmission of~short! electromagnetic pulses inc
dent on the barrier, and in the theoretical treatment one m
distinguish carefully between different kinds of velocitie
such as the phase velocity, the group velocity, the ene
velocity, the signal velocity, and the front velocity@9#.
Though it has been claimed from time to time that Einst
causality can be violated in optical tunneling processes,
rigorous theoretical analyses exist that contradict the Eins
causality in relation to the velocity with which informatio
can be transferred; see, e.g.@10#, and references therein
From a perspective that is somewhat different from the o
hitherto adopted, the analysis of this paper also ends up
the conclusion that the speed of information transfer ne
exceeds the vacuum speed of light, even in a tunneling
cess. Studies of so-called superluminality in relation
propagation of laser pulses with group velocities greater t
the vacuum velocity of light is of interest in their own righ
and superluminality has for instance been investigated in
context of off-resonance pulse propagation through a
dium with inverted atomic populations@11–13#. Using a col-
lection of ~classical! Lorentz oscillators as a model for two
level atom population inversion seems to make it possible
obtain tachyonlike propagation@13#. On a tachyonlike
branch of a dispersion relation, the group velocity is alwa
larger than the vacuum velocity of light, and a tachyonli
excitation possesses aneffectivemass that is imaginary. A
tachyon dispersion-relation branch also is present for sur
electromagnetic waves~surface polaritons! propagating on a
BCS-paired superconductor surface if the frequencies
slightly above the superconducting gap frequency@14,15#.
Readers interested in a detailed overview of the entire fi
of optical tunneling and its relation to massive-particle tu
neling may consult the recent review articles by Chiao a
Steinberg@10# and Nimtz and Heitman@16#.

In the present paper I shall seek to demonstrate for
reader that there is an important link between our ability
confine electromagnetic fields in space and the optical
neling process, and that additional insight in the physics
derlying the tunneling phenomenon may appear from s
an understanding. In theoretical treatments of optical tun
ing, evanescent waves necessarily always appear, and
numerous investigations in near-field optics have emp
sized that a close formal relation exists between near fi
prevailing around mesoscopic particlelike objects and e
nescent fields@17–20#, I have found it intriguing to investi-
gate whether near-field electrodynamics already might c
tain the ingredients needed to obtain a better phys
understanding of the optical tunneling process.

To set the scene, in Sec. II, we briefly review a recen
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established electromagnetic propagator theory dealing w
the spatial confinement of light emitted from a single ato
@21#, paying particular attention to those aspects that app
to be of most relevance to the tunneling problem. Althou
the above-mentioned theory is formulated on the basis
rigorous ~nonrelativistic! quantum electrodynamics~QED!,
and thus gives a field-quantized description of the near-fi
electrodynamics of the atom, it is sufficient here to consi
the electromagnetic field as ac-number quantity, because
once the classical problem of optical tunneling is formula
correctly, the quantization in a gauge that is particularly a
equate for a propagator description is not so difficult. Mu
of the classical near-field electrodynamics of an atom,
not all of it, of course, may be understood starting from
rigorous description of the attached and radiated near fi
of an electric point dipole, as I have shown not long a
@22#. ‘‘Seen,’’ so to speak, with the eyes of the photon, t
source domain of light quanta is to be identified with t
region occupied by the transverse part of the current den
induced in the atom by the prevailing local field. Since t
transverse part of the induced atomic current density in g
eral spreads over a region of spatial extension much la
than that of the electron orbitals, in the quantum-statisti
sense photons emitted in an atomic decay process are g
ated ~born! in the entire domain of the transverse curre
density. In the domain of the longitudinal part of the atom
current density~which has the same extension as the tra
verse part! an attached longitudinal electric self-fiel
evolves, which in the QED description can be eliminated
favor of the particle-position variables. If one wants to co
sider, with what one may call an electron eye, the region
space where the total atomic current density is different fr
zero, i.e., roughly speaking the region occupied by the e
trons of the atom, as the source region for the emitted fi
the price one has to pay is the acceptance of the occurr
of a transverse self-field in the transverse current-density
main, and a retarded transverse field containing a space
part in the near-field zone of the atom. In the far field on
couplings on the light cone remain. In passing I stress t
the photon- and electron-eye views though picturally diff
ent, lead in every respect to the same physicalobservations.
This is so because a change in the standard Lagrangian o
Coulomb gauge~or a unitary transformation! to a physically
equivalent new Lagrangian that is adequate for a transfor
tion from the photon- to the electron-eye picture can
found @21#. In the propagator QED description only the r
tarded part of the transverse field is quantized and hence
this part leads to photons. Furthermore, the related pho
propagator explicitly demonstrates that this massless par
necessarily moves with the vacuum speed of light. In
description of photon propagation and localization in re
space-time, the retarded part of the transverse field m
plied by the square root of the vacuum permittivity is pr
cisely the Riemann-Silberstein wave function@23,24#, which
describes the so-called energy wave function of the pho
@24,25# and which gives rise to the ‘‘clicks of a detector
when single photons are registered@26,27#.

Equipped with the understanding of the atomic near-fi
electrodynamics, in Sec. IV and the remaining part of
paper, we turn our attention towards the optical tunnel
problem, and we begin with an analysis of the near-fi
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1654 PRA 60OLE KELLER
electrodynamics of a current-density sheet.Although the
electric field outside the sheet is divergence free it canno
identified entirely with the photon field, because it also co
tains a part that is rotational free.Theoretically, a vector
field can be classified as transverse~longitudinal! only if it is
divergence free~rotational-free! in its entire domain of defi-
nition. To classify the electromagnetic field correctly in t
vacuum outside the sheet, the proper split must also be d
in the plane of the sheet, and though the field diverges h
~for an infinitesimally thin sheet!, a rigorous division of the
field into its transverse and longitudinal components can
made. The same kind of problem arises in models whe
particle current-density distribution is confined to a point, t
rest of space being vacuum@22#. Though the electric field
certainly is divergence free in the entire vacuum domain
this case it is not a transverse vector field because one p
namely the point where the particle is located and where
charge density thus is not zero, is missing. A rotational-f
component also is present in the near-field zone of the p
particle, and only if a proper split of the total current dens
into its transverse and longitudinal parts is made can
retarded part of the vacuum field~photon field! be deter-
mined. If the sheet current density is phase shifted alon
given direction, as characterized by a wave numberqi , the
attached part of the electric field, which is different fro
zero also outside the sheet, decays exponentially with
distance from the sheet and the decay length isqi

21 . The
transverse part of the field has a spacelike part with the s
exponential decay length. Altogether this means that pho
emitted from the sheet are only exponentially localiza
~with a localization lengthqi

21). After a propagator analysi
of the retarded field in the space-time domain, we brie
study the field obtained in the case where the sheet cur
density is monochromatic.

In Sec. V, the optical tunneling from macroscopic curre
density distributions is investigated by composing them fr
sheets, and we are led to the conclusion that for a gl
vacuum-glass system a substantial part of the tunneling
nomenon must be related to the lack of photon localizabi
as long as the vacuum gap has a width not substant
larger thanqi

21 . In the phenomenological approach whe
no distinction is made between transverse and longitud
fields an exponential decay length equal to@qi

2

2(v/c0)2#21/2 enters for monochromatic waves~of fre-
quencyv) and only for them. In the expression above,c0
denotes the vacuum speed of light. Though the total fieldin
the monochromatic situationis of standing-wave character,
retarded fieldpropagatingalways withc0 is present and on
top of this a significant photon delocalizability effect pla
an important role.

The lack of photon localizability in an interesting fashio
allows one to introduce a ‘‘tunneling time’’ with no need fo
a related tunneling velocity. From a quantum-statistical po
of view this photon tunneling time with no associated velo
ity is related to the spacelike part of the transverse elec
magnetic field, since this part basically gives the probabi
that a given photon is created at a certain distance from
sheet. The tunneling time in an essential~inevitable! manner
thus is linked to the sensitivity of the detector. As in t
atomic case, the transfer of information is linked to the d
continuous trailing edge of the spacelike coupling, and t
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edge always propagates with the speed of light.
In Sec. VI, we investigate the particular role of surfa

currents within the framework of a macroscopic sha
boundary refractive-index model for the medium und
study, and in Sec. VII tasks lying immediately a head of
following the present line of reasoning are outlined.

II. NEAR-FIELD ELECTRODYNAMICS OF A SINGLE
ATOM: LIGHT-CONE AND SPACELIKE COUPLINGS

We begin our study of the relation between optical tu
neling and spatial localization of light by reviewing certa
aspects of the near-field electrodynamics of a single at
This is done because electromagnetic couplings overfinite
distances in the near-field zone of the atom can be pictu
as consisting of two parts, viz., a partpropagatingthrough
space with the vacuum speed of light, and a partevolving in
time in a standing-wave-like fashion. When an immen
number of atoms are joined together so as to form
condensed-matter medium, the first part, related to the p
ton concept, tells us that Einstein causality is not broken
optical tunneling processes, though the photon field ha
spacelike electric-field component, and the second part
lows us to relate to a time scale for tunneling that does
involve time-space propagation effects, but appears bec
of fundamental quantum electrodynamic limitations on t
possible degree of spatial confinement of matter-attac
electromagnetic fields. From the above-mentioned poin
view ‘‘superluminality’’ always stems from the interferenc
of these two parts. Outside the near-field zone only coupli
on the light cone remain. In macroscopic descriptions of
tical tunneling evanescent fields play a prominent role, a
since near-field and evanescent-mode electrodynamics
closely related, even in microscopic approaches, only by
amining the near-field zone of the atom may physical ing
dients needed for a better understanding of the tunne
process be found.

Let us now assume that the electrodynamics of the atom

driven by a prescribed external~ext! electric fieldEW T
ext(rW,t),

which is transverse~strictly speaking, divergence free!, as
indicated by the subscriptT. The impressed field induces

current-density distributionJW (rW8,t8) in the atom, which in
turn is the source for a transverse and retarded~R! electro-

magnetic fieldEW T
R(rW,t) that is emitted from the atom. To

describe the propagation characteristics of the electrom
netic coupling between a space-time source point locate
(rW8,t8) and a field observation point (rW,t), it is eo ipsonec-
essary to use an electromagnetic propagator formalism~pic-
ture!. Explicitly stated, the retarded electric field is linked
the time derivative of the atomic current density via an in
gral relation of the form

EW T
R~rW,t !5m0E

2`

`

DJ 0
R~rW2rW8,t2t8! •

]JW~rW8,t8!

]t8
d3r 8dt8,

~1!

where, withrW2rW85RW and t2t85t,
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PRA 60 1655RELATION BETWEEN SPATIAL CONFINEMENT OF . . .
DJ 0
R~RW ,t!52

1

4pR
dS R

c0
2t D ~UJ2eWRW eWRW !

1
c0

2t

4pR3Q~t!QS R

c0
2t D ~UJ23eWRW eWRW ! ~2!

is the transverse and retarded~photon! propagator. Before
commenting on Eqs.~1! and ~2!, let me emphasize that
relation of the form appearing in Eq.~1! can be derived using
rigorous quantum electrodynamics~QED! @21# or starting
within the framework of semiclassical electrodynam
~SCED! @22#. In the QED description, Eq.~1! is a relation
between the retarded part of the transverse field operator
the atomic current-density operator~in second quantization!.
Within the framework of the propagator picture the phot
concept may be established from a Hamiltonian descrip

where precisely~only! EW T
R is subjected to a canonical qua

tization @21#. In a nonrelativistic SCED theory, where th

electromagnetic field is ac-number quantity,JW (rW8,t8) is cal-
culated via the Schro¨dinger equation. Before proceeding l
me stress that the induced atomic current density in gen
need to be calculated self-consistently@29#. Apart from a few
remarks given below, I shall only return to this proble
when discussing the optical tunneling in condensed ma
media; see Secs. V and VI.

The photon propagator given in Eq.~2! consists of a far-
field part ~proportional to R21) and a near-field part
(;R23). The far-field part is different from zero~and sin-
gular! only on the retarded light coneurW2rW8u5c0(t
2t8), c0 being the speed of light in vacuum, as it is evide
from the appearance of the Dirac delta functiond(R/c0
2t), and polarized perpendicular to the local direction
propagation, as one readily realizes from the tensorUJ

2eWRW eWRW (UJ : unit tensor,eWRW 5RW /R). The Heaviside unit step
functionsQ(t) andQ(R/c02t) appearing in the near-field

part of DJ 0
R(RW ,t) show that the near-field coupling is caus

(t.t8) and different from zero only for spacelike even
i.e., those for whichurW2rW8u.c0(t2t8). The spacelike form
of the near-field coupling ensures that the unpleas
R23-singularity, which in this case would make the spa
integral in Eq.~1! conditionally convergent, does not appe
a physically satisfactory feature. Although the time delay (t)
and source-observation distance~R! do not appear in the
form R/c02t in the factor in front of the step functions, th
near-field coupling is destroyed with the vacuum speed
light as the far-field light-cone coupling sweeps the ne
field region. As we shall realize when discussing optical tu
neling, the electromagnetic energy flows with the vacu
speed of light. I shall demonstrate below that the photon fi
that appears in the observation point prior to the arrival
the light-cone pulse can be considered as stemming fro
fundamental inability to localize photons precisely in spa
but before doing so, we shall briefly consider the matt
attached part of the electromagnetic~near! field.

From the vector fieldJW (rW,t), giving the induced atomic
current density, we now project out the longitudinal~prop-

erly speaking, rotational-free! part JWL(rW,t) by means of the
tensorial longitudinal delta functiondJL(rW2rW8), i.e.,
nd
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JWL~rW,t !5E
2`

`

dJL~rW2rW8!•JW~rW8,t !d3r 8. ~3!

The relation betweenJW andJWL is nonlocal in spacebut local
in time, since the projection operator (dJL) works on the spa-
tial current-density distribution at a fixed time. Upon a sp
of the ~operator! Maxwell equations into sets describing th
longitudinal and transverse electrodynamics, respectiv
one finds from the longitudinal set that the induced ato

attached longitudinal electric fieldEW L(rW,t) is given by

EW L~rW,t !52
1

e0
E

2`

t

JWL~rW,t8!dt8, ~4!

provided that the induced longitudinal field vanishes in t
remote past. As we shall realize in Sec. IV B, the last con
tion is ~weakly! linked to the principle of causality. Since th
longitudinal delta function is different from zero in~and only
in! the near-field zone of the atom thenonpropagatingat-
tached field extends over the entire near-field region. I
QED description formulated in the Coulomb gauge, the lo
gitudinal part of the electric-field operator is not a dynamic
variable, since it can be eliminated in favor of the dynami
particle-position variables of the atom~redundancy!.

In the propagator picture of the near-field electrodynam
of the atom a transversely polarized attached field com

nent is also present@21#. This field, EW T
SF(rW,t), named the

transverse atomic self-field~SF! is linked to the transverse
part

JWT~rW,t !5E
2`

`

dJT~rW2rW8!•JW~rW8,t !d3r 8 ~5!

of the atomic current density by means of the relation

EW T
SF~rW,t !52

1

3e0
E

2`

t

JWT~rW,t8!dt8. ~6!

Since the transverse delta functiondJT(rW2rW8) added to the
longitudinal delta function equals the usual Dirac delta fun
tion d(rW2rW8) times the unit tensorUJ , i.e., dJT(rW2rW8)
1dJL(rW2rW8)5UJ d(rW2rW8), the transverse self-field extend
over the same spatial domain as the longitudinal self-fi
~attached field!. The transverse self-field dynamics is nonl
cal in space but local in time, and the factor 321 appearing in
Eq. ~6! shows that the transverse and longitudinal self-fie
do not cancel outside the spatial region where the ato
current density itself is different from zero. In the QED d
scription @21# a change of the Coulomb Lagrangian into
new one closely related~but not identical! to the Power-
Zinau-Woolley Lagrangian@30,31# allows one to transfer the
transverse self-field to the particle Hamiltonian. The retard
part of the transverse-field operator can now be subjecte
the canonical quantization procedure leading to the~spheri-
cal! photon concept. The length scale for the abov
mentioned self-field phenomena is readily obtained from
spherical representation of the transverse and longitudind
functions, viz.,
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1656 PRA 60OLE KELLER
dJT~RW !5UJ d~RW !2dJL~RW !5
2

3
d~RW !UJ2

1

4pR3~UJ23eWRW eWRW !.

~7!

Now it is seen that the self-field effects are present precis
in the near-field zone of the atom, and in the same zone~and
only here! also the spacelike retarded coupling is present;
Eq. ~2!.

Altogether, we have thus realized that around a sin
~spinless! atom, excited by an externally impressed and p

scribed transverse fieldEW T
ext(rW,t), a total field

EW ~rW,t !5EW T
ext~rW,t !1EW L~rW,t !1EW T

SF~rW,t !1EW T
R~rW,t ! ~8!

emerges with space and time properties given by Eqs.~1!,
~2!, ~4!, and~6!.

At this stage it is instructive to look at the total transver
field from a different point of view, named the photon-e
view @21#. In Eqs.~6! @combined with Eq.~5!# and ~1!, the
transverse field is looked upon as being driven by the t
induced current-density distribution of the atom, a view o
may call the electron-eye view@21#. If one eliminates the

current density itself,JW (rW8,t8), and its first-order time deriva

tive ]JW (rW8,t8)/]t8 in favor of the ~time-derivative of! the
transverse current density, one obtains the integral rela
@21#

EW T
SF~rW,t !1EW T

R~rW,t !5m0E
2`

`

dJR~rW2rW8,t2t8!

•

]JWT~rW8,t8!

]t8
d3r 8dt8, ~9!

where now only an~the! isotropic electromagnetic propaga

tor dJR(RW ,t) with a far-field-like distance dependence a
pears, i.e.,

dJR~RW ,t!52
1

4pR
dS R

c0
2t DUJ . ~10!

The propagation characteristics of the transverse field in
photon-eye view indeed is simple; only retarded couplin
on the light coneR5c0t are present, the spreading of th
field is isotropic, and the coupling exhibits a
R21-dependence only. The price we have paid to achi
such a simple picture is that it has become necessary to

sider theJWT domain as the source domain, instead of

~much better! localizedJW domain. I have named the afore
mentioned view, the photon-eye view, because photons~in-
troduced via the transverse field operator dynamics! appar-
ently in the statistical sense can be no better localized

space than given by the extension of theJWT domain in the
initial stage of emission ‘‘from’’ the atom. In terminatin
this section I emphasize that the photon-eye view and
electron-eye view lead to equivalent~in every respect! ob-
servable effects in all situations, but the manner in which
in a propagator descriptionpicture the near-field electrody
namics is different.
ly
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III. DEFINITION OF THE CONCEPT OPTICAL
„PHOTON… TUNNELING

Based on the considerations put forth in the preced
section I nowdefineoptical ~photon! tunneling phenomena
as those phenomena that occur only in the presence of
gitudinal and transverse self-field effects and spacelike
tarded couplings. Seen with the ‘‘eyes of the photon,’’ op
cal tunneling thus is equivalent to the presence of t
fundamental aspects of QED, namely,~i! spatial localization
of transverse photons in the quantum-statistical sense,
~ii ! longitudinal self-field interactions mediated in a relati
istically invariant~Lorenz gauge! description by longitudinal
and scalar photons. The definition above relates at first s
to single-atom electrodynamics, because it appeared fro
single-atom analysis, but, and this may be the important
pect for traditional studies of optical tunneling, the definitio
when carried over~applied! to many-particle systems~con-
densed matter,par excellence! seems to allow one to obtai
better insight in the physics of tunneling in these system
This is what I shall try to argue in the main body of th
paper. To my understanding, photon tunneling thus is
‘‘naturally’’ occurring process already in the near-field ele
trodynamics of a single atom. By extrapolation from th
view it is tempting for me to claim that optical tunneling als
is an indispensible phenomenon in near-field diffraction fro
small holes, slits, etc.

IV. NEAR-FIELD ELECTRODYNAMICS
OF A CURRENT-DENSITY SHEET

The principles governing the near-field electrodynam
of single atoms we now extend to a study of the spa
localization and radiation of light from a current-densi
sheet. In the course of the analysis, information is obtai
on aspects of the electrodynamic tunneling process, wh
later on~in Secs. V and VI! allow us to describe the physic
underlying the optical tunneling across a vacuum gap se
rating macroscopic media.

A. Retarded and nonretarded electromagnetic propagators

Let us consider a current-density distribution of the for

JW~rW8,t8!5JW0~ t8!eiq ix8d~z82z0!, ~11!

in a Cartesianxyz-coordinate system. The current density
Eq. ~11! is translationally invariant in they direction, and, as
indicated by the Dirac delta functiond(z82z0), concentrated
on a sheet located at the planez85z0. Along thex direction
the current density exhibits a simple phase shift given by
wave numberqi . The ansatz in Eq.~11! implies that the total
electric field in the surroundings of the sheet takes the
neric form

EW ~rW,t !5EW ~z,t;qieW x!e
iq ix, ~12!

emphasizing that the amplitudeEW (z,t;qieW x) depends in a
parametric fashion on the wave vectorqieW x ,eW x being a unit
vector along the direction of thex axis. Unit vectors along
the two other Cartesian axes appear below and will be
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noted byeW y andeW z . In the frequency (v) domain the ampli-

tudesEW (z;qieW x ,v) andJW0(v) are related via

EW ~z;qieW x ,v!52 im0vDJ 0~z2z0 ;qieW x ,v!•JW0~v! ~13!

in a propagator description. In explicit form, the vacuu
Green functionDJ 0(z2z0 ;qieW x ,v) is given by the dyadic
formula

DJ 0~z2z0 ;qieW x ,v!5
eik'

0 uz2z0u

2ik'
0 q0

2 @~k'
0 !2eW xeW x1qi

2eW zeW z

1q0
2eW yeW y2k'

0 qi sgn~z2z0!

3~eW xeW z1eW zeW x!#, ~14!

where k'
0 5(q0

22qi
2)1/2, q05v/c0 being the vacuum wave

number of light, and sgn(z2z0)511 for z.z0 and21 for
z,z0. The singular nature of the current-density ansatz
Eq. ~11! implies that a contact term giving the electric fie
in the source plane (z5z0) has to be omitted from the Gree
function. In Sec. V, where nonsingular current-density dis
butions are considered, the role of the contact term will
discussed. In the single-particle case described in Sec. I
contact term would also have to be omitted if one from
outset had assumed that the electron confinement were
plete~pointlike atom!. For the atom electrodynamics the co

tact interaction enters via the singular contributions2
3 d(RW )UJ

and 1
3 d(RW )UJ to the transverse and longitudinald functions;

see Eq.~7!.
The Green function in Eq.~14! contains a nonradiative

(NR) part, denoted byDJ 0
NR(z2z0 ;qieW x ,v). The explicit ex-

pression for this part is readily obtained by lettingc0 ap-
proach infinity, and remembering thatm0c0

25e0
21. Since

k'
0
˜1 iq i , necessarily, forc0˜` one finds

DJ 0
NR~z2z0 ;qieW x ,v!5c0

2 lim
c0˜`

$c0
22DJ 0~z2z0 ;qieW x ,v!%

5
qi

2q0
2 e2qiuz2z0u@eW xeW x2eW zeW z

1 i ~eW xeW z1eW zeW x!sgn~z2z0!#. ~15!

The difference between the two Green functions appearin
Eqs.~14! and ~15!, denoted byDJ 0

T(z2z0 ;qieW x ,v), i.e.,

DJ 0
T~z2z0 ;qieW x ,v!5DJ 0~z2z0 ;qieW x ,v!

2DJ 0
NR~z2z0 ;qieW x ,v!, ~16!

is the transverse~T! propagator responsible for retarded~R!
~with speedc0) interactions between the source plane atz0
and a plane of observation located atz.

In the frequency domain, the transverse part of the fi
amplitude in Eq.~13! thus is given by

EW T
R~z;qieW x ,v!52 im0vDJ 0

T~z2z0 ;qieW x ,v!•JW0~v!.
~17!
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The amplitude of the nonradiative electric field attached

the sheet, which is denoted byEW L
NR(z;qieW x ,v), may be ob-

tained from

EW L
NR~z;qieW x ,v!52 im0vDJ 0

NR~z2z0 ;qieW x ,v!•JW0~v!.
~18!

If the current-density distribution is spread over a finite
terval in thez8 direction so that it is no longer singular,
contact contribution is added to the field. This contributi

plusEW L
NR gives the total longitudinal~nonradiative! field, the

curl of which is identically zero in the entire space. The

subscriptL on EW L
NR in Eq. ~18! is meant to indicate that this

field plus the contact field is longitudinal forall z, including
z5z0. The contact field does not change the transverse

namics~see Sec. V! and thereforeEW T
R correctly describes the

transverse dynamics even if the current-density distribut
in Eq. ~11! is smeared in thez8 direction. The propagatorDJ 0

T

hence is the correct photon propagator for excitations that
invariant on they axis and contain only one wave-numb
component (qi) in the x direction. In the subsequent tw
subsections we shall investigate the two parts of the en
field

EW ~z,t;qieW x!5EW T
R~z,t;qieW x!1EW L

NR~z,t;qieW x! ~19!

in the space-time (z,t) domain.

B. Attached field and its spatial confinement

Starting from the microscopic Maxwell-Lorentz equatio
in the space-frequency domain it readily appears that
longitudinal parts of the electric field and current density a
related via@28#

EW L~rW;v!5
1

i e0v
JWL~rW;v!. ~20!

Making use of the result

1

2pE2`

`

e2 ivt
dv

v
5

1

2i
sgnt, ~21!

Eq. ~20! takes the form

EW L~rW,t !52
1

2e0
E

2`

`

sgn~ t2t8!JWL~rW,t8!dt8 ~22!

in the space-time domain, or equivalently

EW L~rW,t !52
1

2e0
E

2`

t

JWL~rW,t8!dt81
1

2e0
E

t

`

JWL~rW,t8!dt8.

~23!

If one assumes that the induced longitudinal field vanishe
every space point in the remote past, i.e., fort˜2`, one
has

EW L~rW,2`!5
1

2e0
E

2`

`

JWL~rW,t8!dt850W . ~24!
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By means of Eq.~24!, the last term on the right-hand side
Eq. ~23! may now be eliminated, giving the result cited

Eq. ~4!. Under the assumption thatJWL(rW,t8) is a prescribed

source field, thenoncausalterm (2e0)21* t
`JWL(rW,t8)dt8 in

Eq. ~23! must vanish, and this is ensured by the condit

EW L(rW,2`)50W .
To determine the electric field attached to the curre

density sheet, one transforms the quantity2 im0vDJ 0
NR(z

2z0 ;qieW x ,v) to the time domain. A glance at Eq.~15!
shows that this essentially amounts to a calculation of
integral in Eq.~21!. Hence, we obtain

EW L
NR~z,t;qieW x!52

qi

2e0
e2qiuz2z0u

3S 1 0 i sgn~z2z0!

0 0 0

i sgn~z2z0! 0 21
D

•E
2`

t

JW0~ t8!dt8. ~25!

It appears from Eq.~25! that the attached field has standin
wave character, as it must have, and that it decays expo
tially with the distance from the plane of the sheet~placed at
z0) with a decay constantqi . The nonradiative field disap
pears forqi50 and also in the limitqi˜`. If the current
density is linearly polarized in they direction the attached
field is zero.

The result in Eq.~25! can be understood from a~slightly!
different point of view, realizing that the longitudinal del
function dJL(z2z8;qieW x) of relevance for the present vecto
field problem is given by@28#

dJL~z2z8;qieW x!5eW zeW zd~z2z8!1
qi

2
e2qiuz2z8u@eW xeW x2eW zeW z

1 i ~eW xeW z1eW zeW x!sgn~z2z8!#. ~26!

For the sheet problem the singular termeW zeW zd(z2z8) is of
no relevance, but it plays a role for spatially extend
current-density distributions, as we shall see in Sec. V
combination of Eqs.~25! and ~26! allows us to write

EW L
NR~z,t;qieW x!52

1

e0
dJL~z2z0!•E

2`

t

JW0~ t8!dt8, zÞz0

~27!

and this tells us that theuz2z0u range of the attached field i
identical to the range of the integral of the longitudinal cu

rent density JWL(z2z0)5dJL(z2z0)•JW0. In a quantum-
electrodynamic approach the attached field is eliminated
dynamical variable in favor of the particle-position variabl
to remove redundancy. Since the total current density of
sheetper definition is different from zero only forz5z0, the
transverse part of the current density, characterizing the
tial localization range for the photon field, extends in thez
direction in a manner given by exp(2qiuz2z0u); see Fig. 1.
n
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The tunneling regime for phenomena generated by a curr
density sheet source thus is characterized by the lengthqi

21 .

C. Detached field: Space- and timelike couplings

It appears from Eq.~17! that the retarded and transver
electromagnetic field emitted from the current-density sh
is given by

EW T
R~z,t;qieW x!5m0E

2`

`

DJ 0
T~z2z0 ,t2t8;qieW x!•

]JW0~ t8!

]t8
dt8

~28!

in the space-time representation. The propagation chara
istics of the detached field are hidden in the photon propa
tor DJ 0

T(Z,t;qieW x), with Z5z2z0 andt5t2t8, and to estab-
lish the explicit expression for this, it is convenient to sta
from the form the plane-wave expansion of th

DJ 0
R(RW ,t)-propagator in Eq.~2! takes in the space-frequenc

domain, viz.~see, e.g.,@22,32#!

DJ 0
R~RW ;v!5~2p!23E

2`

` UJ2eWqWeWqW

q0
22q2

eiqW •RW d3q, ~29!

where eWqW5qW /q is a unit vector in theq direction, andq0
5v/c0 is the vacuum wave number for light of angular fr
quencyv. From Eq. ~29! one readily obtains the integra
expression

FIG. 1. Schematic illustration of the optical tunneling respon
of a current-density sheet~black strip!. The response consists of a
attached longitudinal part~top figure!, different from zero only in
the evanescent~shaded! region characterized by the decay leng
qi

21 , plus a detached retarded and transverse part~bottom figure!
nonvanishing only for spacelike events belonging to the evanes
zone, as indicated by the shading. In the wake of the two light co
~shown with small arrows attached! moving away from the source
plane with the vacuum speed of light, a Bessel-function-like c
pling persists.
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DJ 0
T~Z;qieW x ,v!5

1

2pE2`

` UJ2eWqWeWqW

q0
22q2

eiq'Zdq' , ~30!

where now

eWqW5
1

q
~qieW x1q'eW z!, ~31!

with q5(qi
21q'

2 )1/2. In the (Z,t) domain, the photon propa
gator thus may be represented by the integral form

DJ 0
T~Z,t;qieW x!5~2p!22E

2`

` UJ2eWqWeWqW

q0
22q2

ei (q'Z2vt)dv dq' .

~32!

To obey the principle of causality in its most general fo
one must havet5t2t8.0. Thev integration in Eq.~32! is
readily carried out, giving

1

2pE2`

` e2 ivtdv

S v

c0
D 2

2q2

52
c0

2q
sin~qc0t!, t.0. ~33!

By combining Eqs.~32! and ~33! we therefore get

DJ 0
T~Z,t;qieW x!52

c0

4pE2`

`

~UJ2eWqWeWqW !
sin~qc0t!

q
eiq'Zdq' .

~34!

It is to some extent possible to carry out the integration
Eq. ~34! @for details of particular interest the reader is r
ferred to Appendix A#, and the final result is as follows:

DJ 0
T~Z,t;qieW x!5

1

4
c0

2tqie
2qiuZuS 1 0 i sgnZ

0 0 0

i sgnZ 0 21
D

3u~t!u~ uZu2c0t!

1F S p1 0 ip2 sgnZ

0 0 0

ip2 sgnZ 0 2p1

D
2

1

4
c0J0@qiA~c0t!22Z2#

3S 1 0 2 iq iZ

0 1 0

2 iq iZ 0 0
D G u~c0t2uZu!,

~35!

where

p15
c0qi

2

2p E
0

` 1

~qi
21q'

2 !3/2
sin~c0tAqi

21q'
2 !cosq'Zdq' ,

~36!

and
n

p25
c0

2tqi

2p E
0

` q'

qi
21q'

2 cos~c0tAqi
21q'

2 !sinq'Z dq' .

~37!

It was mentioned in Sec. II that the retarded field emitt
from a single atom in the near-field zone contains a space
contribution, the propagation characteristics of which a
given by the second part of the propagator in Eq.~2!. It
appears from Eq.~35! that the propagation characteristics
the retarded field emerging from a current-density sheet
contain a spacelike part@the term with the Heaviside uni
step functionu(uZu2c0t)]. The spacelike coupling decay
exponentially with the distance (uZu) from the sheet plane
with a decay constantqi , and, as expected, the nonretard
coupling and the retarded spacelike coupling hence have
same spatial range, as illustrated schematically in Fig. 1.
long asuZu.c0t, the coupling increases linearly in time (t)
at a fixed distance from the sheet~see Fig. 2!, but although
the trailing edge of the spacelike interaction moves outwa
from the sheet with the vacuum speed of light, theZ andt
dependences enter in product form, viz., ast exp(2qiuZu).
The linear rise of the coupling in time together with a giv
detector sensitivity allow us to introduce a velocit
independent tunneling time in a concrete experiment. If
time-derivative of the sheet current density points in they
direction, i.e., perpendicular to the plane of field propagati
the spacelike coupling vanishes. The coupling also depe
on qi , is zero for qi50 and qi˜`, and for fixed uZu is
largest forqi5uZu21; cf. Fig. 2. The particular tensor form
of the spacelike term in Eq.~35!, which is the same as th
one appearing in the relation between the nonretarded

EW L
NR and the source current-density amplitudeJW0 in Eq. ~25!,

has an important physical meaning, as I shall show in Sec
The timelike part of the transverse propagator, given

the factor in front of the step functionu(c0t2uZu) in Eq.
~35!, I have divided into two pieces. In the case where
time derivative of the current density is perpendicular to
plane of field propagation, i.e., in they direction, only the
last piece, proportional to the zeroth-order Bessel funct

FIG. 2. The amplitude strength of the spacelike coupling~SLC!,
as given by the associated transverse propagator part~divided by
c0/4), as a function of the delay time (t). At a given distance (uZu)
from the sheet plane, the coupling strength grows linearly in ti
until the light-cone coupling and its Bessel-function-like wake s
nal take over~full-line graph!. At maximum the coupling strength is
equal tob exp(2b) whereb5qiuZu. At a given distance from the
sheet source, the largest coupling is obtained for a wave num
qi5uZu21, and equalse21 ~broken line!.
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J0@qiA(c0t)22Z2#, contributes. In passing we note the Lo
entz invariance of the quantity (c0t)22Z2, when the field
emerging from the sheet is observed in inertial systems m
ing relative to each other with~uniform! velocity vW 5veW z in
the direction perpendicular to the plane of the sheet. Fo
time-varying current-density source distribution pointing
they direction this kind of relativistic invariance might hav
been anticipated. In the single-atom case far-field coupli
are present only on the retarded light cone, i.e., forurW2rW8u
5c0(t2t8); cf. the presence of the Dirac delta functio
d(R/c02t) in Eq. ~2!. In the sheet case the couplings ex
also whenc0(t2t8).uz2z8u, and for a givenZ5z2z8,
these timelike couplings die out in the slow fashion dicta
by the t dependence of the zeroth-order Bessel funct
J0@qiA(c0t)22Z2#. For time-varying source current dens
ties confined to the plane of field propagation~thexz plane!,
off-diagonal elements (xz andzx) appear in the timelike par
of the retarded propagator. Apart from a term proportiona
iq iZ times the zeroth-order Bessel function, these~identical!
elements contain a contributionp2 @Eq. ~37!# given only in
the integral form. Also azz component2p1 and an addi-
tional xx componentp1 now appear, the explicit integra
expression forp1 being given in Eq.~36!. If qi50, the re-
tarded propagator takes the particularly simple form

DJ 0
T~Z,t;0W !5

c0

4
~eW zeW z2UJ !u~c0t2uZu!, ~38!

and no tunneling phenomena exist.

D. Monochromatic sheet current density

In Secs. IV B and IV C, the attached and detached fie
were studied in the space-time domain, and the results
tained were valid for sheet current densities with arbitr
time dependence. Optical tunneling is, however, often d
cussed assuming the source dynamics to be monochrom
and many types of experiments are carried out w
~quasi-!monochromatic excitation. Also, on a more form
basis, the analogy between electron and~so-called! photon
tunneling is investigated starting from the form the wa
equation for the electromagnetic field takes for monoch
matic waves, i.e., the Helmholtz equation@10,16#. Though a
direct fingerprint of the physics hidden in the optical tunn
ing process is obtained only in the space-time domain, an
the framework of a propagator description, reminiscence
the optical tunneling phenomenon do appear also in
monochromatic case, as we shall realize below.

Let us now assume that the time dependence of the s
current density is given by

JW0~ t8!5JW0~v!e2 ivt8eet8, ~39!

wheree501 is an infinitesimal but positive number need
to ensure that the excitation disappears in the remote pa

By inserting Eq.~39! into Eq. ~25! it follows that the
attached field oscillates monochromatically~angular fre-

quencyv) with an amplitudeEW L
NR(z;qieW x ,v) given by
v-
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EW L
NR~z;qieW x ,v!5

qi

2i e0v
e2qiuz2z0u

3S 1 0 i sgn~z2z0!

0 0 0

i sgn~z2z0! 0 21
D

•JW0~v!. ~40!

Expressed in terms of the nonretarded propagatorDJ 0
NR(z

2z0 ;qieW x ,v) given in Eq. ~15!, Eq. ~40! takes the form
displayed in Eq.~18!.

For a harmonically oscillating sheet current density t

amplitude of the retarded electric field,EW T
R(z;qieW x ,v), is

given by Eq.~17!, and to obtain the explicit expression fo
the propagatorDJ 0

T(z2z0 ;qieW x ,v) we just need the Fourie
transform of Eq.~35!, namely,

DJ 0
T~Z;qieW x ,v!5DJ space

T ~Z;qieW x ,v!1DJ t ime
T ~Z;qieW x ,v!.

~41!

The spacelike part of the propagator,DJ space
T (Z;qieW x ,v), is

readily found using the result

E
2`

`

tu~t!u~ uZu2c0t!eivtdt5
1

v2@~12 iq0uZu!eiq0uZu21#,

~42!

whereq05v/c0 is the vacuum wave number of light. Henc

DJ space
T ~Z;qieW x ,v!5

qi

4q0
2 @~12 iq0uZu!eiq0uZu21#e2qiuZu

3S 1 0 i sgnZ

0 0 0

i sgnZ 0 21
D . ~43!

Though necessarily an oscillating factor with a spatial per
2p/q0 is also present in Eq.~43!, the spatial part of the
retarded response vanishes exponentially with the dista
from the sheet plane, the decay constant beingqi .

To determine the timelike part of the propagato
DJ t ime

T (Z;qieW x ,v), one just needs to combine Eqs.~16! and
~41!. This gives

DJ t ime
T ~Z;qieW x ,v!5DJ 0~Z;qieW x ,v!2DJ 0

NR~Z;qieW x ,v!

2DJ space
T ~Z;qieW x ,v!, ~44!

and since the three terms on the right-hand side of this eq
tion have already been found, see Eqs.~14!, ~15!, and~43!,
DJ t ime

T (Z;qieW x ,v) is obtained. The structures ofDJ 0
NR and

DJ space
T are closely related, and the sum of these propaga

is
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DJ 0
NR~Z;qieW x ,v!1DJ space

T ~Z;qieW x ,v!

5
qi

4q0
2@~11 iq0uZu!eiq0uZu11#e2qiuZu

3S 1 0 i sgnZ

0 0 0

i sgnZ 0 21
D . ~45!

Before finishing this section on the near-field electrod
namics of a sheet carrying a monochromatic current den
let us briefly reflect on the distance dependence of the e
tromagnetic field and its various parts. Thus, ifqi,q0, it
appears from Eq.~14! that the total electric field oscillates a
a function of uz2z0u with a period 2p/(q0

22qi
2)1/2. Since

both DJ 0
NR and DJ space

T vanish exponentially~with a decay

constantqi), it follows that DJ t ime
T (Z˜`;qieW x ,v)5DJ 0(Z

˜`;qieW x ,v). Far from the sheet the field is therefore pure
transverse and only timelike events are coupled. In the s
cial case where the current density isy polarized, the relation
(DJ t ime

T )yy5(DJ 0)yy holds for all uz2z0u. If qi.q0, the situa-
tion becomes particularly interesting. The total field now d
cays exponentially as a function ofuz2z0u with a ~real! de-
cay constanta'

0 5(qi
22q0

2)1/2. Despite the fact that the tota
field is proportional to exp(2a'

0 uz2z0u)exp(2ivt) and hence
at a first glance seems to have ‘‘standing-wave charact
we know that it contains a retarded transverse compon
carrying information away from the sheet with the vacuu
speed of light. SinceDJ 0

T5DJ 02DJ 0
NR @see Eq.~16!#, the re-

tarded response in general is described via a Green func
containing a combination of two exponential decay lengt
namely, 2p/(qi

22q0
2)1/2 and 2p/qi . For qi values only

slightly larger thanq0, the propagating transverse field, a
though exponentially decaying, effectively reaches much
ther away from the sheet plane than does the attached lo
tudinal field. Beyond the decay length 2p/qi the timelike
part of the retarded response dominates; cf. Eq.~45!. For
y-polarized current densities only the retarded response
its decay length 2p/(qi

22q0
2)1/2 is present.

In a field-quantized description not yet developed, the
tarded response is the one to be linked to the photon conc
and,providedone has a detector sensitiveonly to the photon
part of the sheet field@26,27#, the detected field should ex
hibit a distance dependence that is a linear combination
the two exponential forms exp@2(qi

22q0
2)1/2uz2z0u# and

exp(2qiuz2z0u).

E. Photon- and electron-eye views

We have seen in Sec. IV C that the transverse electrom
netic field emerging from a sheet current-density distrib
tion, though retarded, contains both space- and timelike c
tributions. Based on the description of the near-fie
electrodynamics of a single atom~Sec. II! we know that the
spacelike part of the detached field is present only if o
identifies the source region with the spatial domain occup
by the induced current-density distribution of the atom. T
so-called electron-eye view follows in a rigorous mann
from a quantum electrodynamical description and is no
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conflict with the principle of causality. Another view of th
transverse electrodynamics called the photon-eye view
pears if one identifies the source region with that of the tra
verse part of the induced current density. Though
electron- and photon-eye views lead to exactly the same
dictions for all measurable quantities, the intuitive pictur
they offer look quite different, and, if compared, it appears
me that a better insight into the near-field electrodynamic
achieved. The electron-eye view is convenient because it
be related in a direct and simple manner to the energy w
function @23–25# describing single-photon dynamics i
space and time via the relativistically invariant photon prop
gator@21#. The photon-eye view on the other hand is partic
larly useful for discussing the spatial localizability of a ph
ton emitted from a given current-density source.

Holding the point of view that the photon localizabilit
plays an important role for our understanding of the opti
tunneling process, it is fruitful to study the photon-eye vie
for the sheet electrodynamics. In this view only events on
light cone are coupled, and in the space-frequency dom

the transverse electric fieldEW T(rW;v) is given by@cf. Eq. ~9!#

EW T~rW;v!52 im0vE
2`

`

dJR~rW2rW8;v!•JWT~rW8;v!d3r 8,

~46!

where

dJR~RW ;v!52
eiq0R

4pR
UJ . ~47!

To apply Eq.~46! in the sheet case we make use of the W
expansion for a spherical scalar wave@27#

eiq0R

R
5

i

2pE2`

` 1

k'
0 eik'

0 uZueiqW i•RW id2qi , ~48!

where R5uRW u5uRW i1ZeW zu; and upon a comparison to th
general Weyl expansion

dJR~RW ;v!5~2p!22E
2`

`

dJ~Z;qW i ,v!eiqW i•RW id2qi ~49!

for the isotropic propagator, one obtains

dJR~Z;qi ,v!5
1

2ik'
0 eik'

0 uZuUJ , ~50!

with again k'
0 5(q0

22qi
2)1/2. By replacingqW i by qi in the

argument of the propagator we have stressed that this
pends only on the magnitude ofqW i . For the sheet electrody
namics ‘‘seen with the eyes of the photon,’’ the releva

integral relation between the retarded fieldEW T(z;qW i ,v)

5EW T
R(z;qW i ,v) and the transverse current dens

JWT(z8;qW i ,v) therefore is
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EW T~z;qW i ,v!

52 im0vE
2`

`

dJR~z2z8;qi ,v!•JWT~z8;qW i ,v!dz8, ~51!

with dJR(z2z8;qi ,v) given by Eq.~50!.
In the electron-eye view the relation equivalent to E

~50! is Eq. ~17!, and a comparison of the two shows that t
one gives an algebraic relation between field and cur
density, and the other an integral relation. The reason for
stems from the fact that the transverse~or longitudinal! part

of a vector fieldVW (rW8)5VW 0d(z82z0)exp(iqWi•rW8), which is
different from zero only in the planez85z0, is nonzero out-
side this plane also. To quantify this statement we consid

current density of the formJW (rW8,t)5JW (z8,t;qieW x)exp(iqix8).
The associated transverse current density necessarily ha

generic formJWT(rW,t)5JWT(z,t;qieW x)exp(iq ix), and the rela-
tion between the two amplitudes is given by the nonlo
equation

JWT~z,t;qieW x!5E
2`

`

dJT~z2z8;qieW x!•JW~z8,t;qieW x!dz8,

~52!

where@28#

dJT~z2z8;qieW x!5~UJ2eW zeW z!d~z2z8!

2
qi

2
e2qiuz2z8u@eW xeW x2eW zeW z

1 i ~eW xeW z1eW zeW x!sgn~z2z8!# ~53!

is the relevant transversed function. The corresponding lon
gitudinal d function,dJL(z2z8;qieW x), was given in Eq.~26!,
and the sum of the two is equal to the Diracd function of
z2z8 times the unit tensor, i.e.,dJT(z2z8;qieW x)1dJL(z
2z8;qieW x)5UJ d(z2z8). If the current density itself is con

fined to the planez85z0, so thatJW (z8,t;qieW x)5JW0(t)d(z8
2z0), the transverse current density, given by

JWT~z,t;qieW x!5H d~z2z0!~UJ2eW zeW z!2
qi

2
e2 iq iuz2z0u

3@eW xeW x2eW zeW z1 i ~eW xeW z1eW zeW x!

3sgn~z2z0!#J •JW0~ t !, ~54!

extends over auz2z0u strip characterized by the exponenti

decay lengthqi
21 , and is singular atz5z0 @asJW (z8,t;qieW x)

of course#. In the special case where the current density

polarized in they direction, JW0(t)5J0(t)eW y , the transverse
current density is confined to the sheet plane, and in

equal to the total current density, i.e.,JWT(z,t;qieW x)

5JW (z,t;qieW x)5JW0(t)d(z2z0)eW y . As expected, the deca
.

nt
is

a

the

l

s

ct

length (qi
21) for the transverse current density coincid

with that of the spacelike part of the coupling in the electro
eye view.

By inserting the frequency transform of Eq.~54! into Eq.
~51!, a subsequent comparison with Eq.~17! reveals that the
transverse propagator can be represented by the signifi
integral formula

DJ 0
T~z2z0 ;qieW x ,v!

5E
2`

`

dJR~z2z8;qi ,v!•dJT~z82z0 ;qieW x!dz8. ~55!

A direct proof that Eq.~55! is correct can be established b
carrying out thez8 integration; see Appendix B.

V. OPTICAL TUNNELING AND MACROSCOPIC
CURRENT-DENSITY DISTRIBUTIONS

In the preceding sections we have studied the spatial c
finement of light emerging from an atom~or a pointlike par-
ticle! and from a sheet, and I have argued that a relat
exists between the near-field electrodynamics of charg
particle distributions and optical tunneling. Hitherto, optic
tunneling effects have always seemed to have been inv
gated in the context of macroscopic media in the literatu
cf., e.g., tunneling across a vacuum gap between dielec
prisms, tunneling in thin metal films suspended in vacuum
placed between dielectric media, tunneling in photonic ba
gap materials, tunneling across air gaps in waveguides,
Recently, it has also been discussed among scientists in
optical near-field community whether optical tunneling m
be observed in their field. To demonstrate that the mic
scopic considerations put forth in the first parts of this pa
are closely related to the conventional macroscopic appro
to tunneling, we shall now embark on an extension to m
roscopic media.

A. General considerations

Though we shall aim at a rather general description of
optical tunneling process, we nevertheless assume tha
medium under study exhibits translational invariance aga
arbitrary displacements parallel to thexy plane of our Car-
tesian coordinate system. This assumption is not crucial
the analysis nor for a basic understanding of the underly
physics, and may easily be lifted. For simplicity we al
assume that the induced current density is independent o
y coordinate. Despite invoking the two aforementioned
sumptions, we are still able to make contact with the k
experiment: optical tunneling across a vacuum gap betw
dielectric prisms.

Beginning thus with a current-density distribution

JW~rW8,t8!5JW~z8,t8;qieW x!e
iq ix8, ~56!

the total electric field necessarily takes the form

EW ~rW,t !5EW ~z,t;qieW x!e
iq ix. ~57!

Although the current density we start with~and thus the
field! has plane-wave character along thex axis, a Fourier
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superposition of the obtained results for differentqi values
readily allows one to generalize the considerations to a

trary x distributions ofJW . Such a generalization is needed
one wants to examine the possible link between near-fi
diffraction from slits and line sources and optical tunnelin

In integral form the field@EW (z,t;qieW x)# and current-density

@JW (z8,t8;qieW x)# amplitudes are related via the expression

EW ~z,t;qieW x!5m0E
2`

`

GJ 0~z2z8,t2t8;qieW x!

•

]JW~z8,t8;qieW x!

]t8
dz8dt8 ~58!

or, equivalently, in the space-frequency representation

EW ~z;qieW x ,v!

52 im0vE
2`

`

GJ 0~z2z8;qieW x ,v!•JW~z8;qieW x ,v!dz8.

~59!

Apart from a contact term, the Green functionGJ 0(z
2z8;qieW x ,v) is identical toDJ 0(z2z8;qieW x ,v) given in Eq.
~14!, i.e., @28,32#,

GJ 0~z2z8;qieW x ,v!5DJ 0~z2z8;qieW x ,v!

1q0
22d~z2z8!eW zeW z . ~60!

If the contact term is added to the nonretarded part ofDJ 0,
one obtains the longitudinald function dJL(z2z8;qieW x) di-
vided byq0

2, i.e.,

q0
22dJL~z2z8;qieW x!5DJ 0

NR~z2z8;qieW x ,v!

1q0
22d~z2z8!eW zeW z , ~61!

as one may readily verify looking at Eqs.~15! and ~26!. By
dividing GJ 0(z2z8;qieW x ,v) into two pieces as follows:
b
e

i-

ld
.

GJ 0~z2z8;qieW x ,v!5DJ 0
T~z2z8;qieW x ,v!

1q0
22dJL~z2z8;qieW x!,

~62!

it is realized that the retarded and transverse electric fiel
given by

EW T
R~z;qieW x ,v!

52 im0vE
2`

`

DJ 0
T~z2z8;qieW x ,v!•JW~z8;qieW x ,v!dz8

~63!

and the longitudinal~attached! and nonretarded field by

EW L
NR~z;qieW x ,v!5

1

i e0vE2`

`

dJL~z2z8;qieW x!

•JW~z8;qieW x ,v!dz8

5
1

i e0v
JWL~z;qieW x ,v!. ~64!

Since the transverse propagator appearing in Eq.~63! is iden-
tical to the one used in the sheet case, the transverse dy
ics of macroscopic media both in the frequency domain a
in the time domain, where Eq.~63! reads

EW T
R~z,t;qieW x!5m0E

2`

`

DJ 0
T~z2z8,t2t8;qieW x!

•

]JW~z8,t8;qieW x!

]t8
dz8dt8, ~65!

can be discussed along the same lines as for the sheet so
Furthermore, because Eq.~64! in the space-time domain
takes the form
EW L
NR~z,t;qieW x!52e0

21eW zeW z•E
2`

t

JW~z,t8;qieW x!dt8

2
qi

2e0
E

2`

` F e2qiuz2z8uS 1 0 i sgn~z2z8!

0 0 0

i sgn~z2z8! 0 21
D •E

2`

t

JW~z8,t8;qieW x!dt8G dz8, ~66!
rse,
rded
the qualitative analysis of the attached-field dynamics can
carried out in a fashion similar to the one used in the sh
case; one just has to remember the contact term@first term on
the right-hand side of Eq.~66!# and to add the effects from

the current densitiesJW (z8,t8;qieW x)dz8 of the various infini-
e
et
tesimally thin strips (z8,z81dz8). For observation planes in
the vacuum, the contact term does not contribute, of cou
but it is nevertheless needed to ensure that the nonreta
~attached! field is rotational free~longitudinal! for all z val-
ues@28#.
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B. Many-body linear response theory

So far, we have only investigated the propagator relat
between the local electric field and the prevailing curr
density, but this current density itself is in fact determined
the sum of the prescribed external field impressed on
medium and the yet unknown induced electric field. To clo
the loop problem an extra relation is needed between
field and the current density. This relation is provided by
Schrödinger equation in the nonrelativistic regime, and as
most often done we shall assume that the relation is lin
but in contrast to conventional~macroscopic! studies of op-
tical tunneling, we shall allow the relation to be spatia
nonlocal.

In linearized many-body~MB! response theory the con
stitutive equation in our case takes the general form@32#

JW~z;qieW x ,v!5E
2`

`

sJMB~z,z8;qieW x ,v!

• @EW T~z8;qieW x ,v!1EW L
ext~z8;qieW x ,v!#dz8,

~67!

whereEW L
ext(z8;qieW x ,v) is the longitudinal part of the exter

nal ~ext! field, and sJMB(z,z8;qieW x ,v) is the microscopic
many-body conductivity tensor, a nonlocal object in gene
Usually the external light source~laser, etc.! is placed so far

from the medium under study thatEW L
ext50W inside the me-

dium, and we also know that the transverse field does
contain a self-field part for current densities of the fo

given in Eq.~56!, so thatEW T5EW T
R in Eq. ~67!.

Taking into account the transverse external fie

EW T
ext(z;qieW x ,v) acting on the medium, we are thus led to

loop equation

EW T
R~z;qieW x ,v!

5EW T
ext~z;qieW x ,v!2 im0vE

2`

` F E
2`

`

DJ 0
T~z2z9;qieW x ,v!

•sJMB ~z9,z8;qieW x ,v!dz9G•EW T
R~z8;qieW x ,v!dz8 ~68!

for the retarded transverse field. Loop equations of the fo
given in Eq.~68! can be solved~approximately! using differ-

ent schemes@32#. OnceEW T
R(z;qieW x ,v) has been obtained, th

current density can be determined from Eq.~67! ~leaving out

EW L
ext), and a knowledge ofJW (z;qieW x ,v) allows one to calcu-

late the attached field from Eq.~64!.
In the present context of optical tunneling we need

have any explicit solution for the local field; it is sufficien

just to realize how the induced current densityJW (z8;qieW x ,v)
@and its transverse~longitudinal! part# emerges microscopi
cally. Hence, if one denotes the various many-body ene
eigenstates by the quantum labelsM ,N, . . . , themany-body
conductivity tensor has a structure@32#

sJMB~z,z8!5 (
M ,N
AM ,NJW M˜N~z!JW N˜M~z8!, ~69!
n
t
y
e
e
e

e
s
r,

l.

ot

m

t

y

leaving out for simplicity the reference toqieW x and v. The
quantity JW M˜N(JW N˜M) denotes the many-body transitio
current density involved in an electronic excitation fro
stateM to stateN ~or opposite!. From a knowledge of the
stationary-state wave functions of these@many-body# states,
JW M˜N(z) @JW N˜M(z8)# can be obtained. The transverse@lon-
gitudinal# part of this current density
JW M˜N

T (z) @JW M˜N
L (z)#, and in particular its spill-out in

vacuumis the crucial one for the tunneling process, as o
readily realizes by combining Eqs.~67! and ~69!. The final
spill-out is determined by superimposing the weighted sp
outs belonging to the participating transitions. The weig
factor of a givenM˜N transition isAM ,N*2`

` JW N˜M(z8)

•EW T(z8)dz8, and its explicit value may be determined on

the loop equation forEW T(z) has been solved.

VI. PHENOMENOLOGICAL DESCRIPTION OF OPTICAL
TUNNELING; IN PARTICULAR, THE ROLE

OF SURFACE CURRENTS

In theoretical studies of optical tunneling across a vacu
gap separating two~nonmagnetic! macroscopic media, it is
usually assumed that the tangential components of the e
tric and magnetic fields are continuous across the sh
medium/vacuum boundaries. For plane electromagn
waves propagating perpendicular to the boundaries, i.e
the z direction, or fors-polarized waves as such, this choic
implies that the electric field and its first derivative wi
respect toz are continuous at the medium/vacuum surfac
conditions which make the stationary-state problems
electron and optical tunneling mathematically equivalent@1#.
As long as one can justify the assumption that no surf
currents are induced at the boundaries, other match
choices for the electromagnetic field can be chosen with
altering the physical result. If induced surface currents c
not be neglected one must be more careful. Hence, if
relies on the standard~textbook! jump ~boundary! conditions
for the field, inconsistencies are likely to appear, because
possible presence of induced surface currents perpendic
to the medium/vacuum boundary is neglected. This omiss
usually leads to results for the amplitude and reflection a
transmission coefficients that depend on the choice of the
of jump conditions@33#, an unacceptable situation, not lea
for optical tunneling studies, as we shall realize below. F
electromagnetic transients and finite-frequency respon
nothing prevents surface current oscillations from being
duced with a component perpendicular to the me
ium/vacuum surface. In linear and nonlinear surface optic
is often crucial to keep thez component in the induced sur
face ~or interface! current-density distribution. Although i
has been claimed occasionally that the optical tunne
~time! is independent of the boundary conditions@34#, the
analysis below do not support such a point of view.

A. Heuristic sharp-boundary model

Let us now consider a model consisting of a semi-infin
medium occupying the half-spacez,0 and separated from
vacuum half-space (z.0) by a sharp boundary~at z50).
The sharp-boundary assumption is of course an abstrac
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realized as early as 1860 by Lorenz@35# when analyzing the
results of the reflection experiments carried out by Jamin
years earlier, but not understood in the intervening ye
@36#. The spill-out of the electron distribution will in genera
be somewhat less for dielectric than for metallic and se
conducting media. For the following qualitative discussi
the sharp-boundary model is sufficient. In our treatment
shall consider monochromatic waves with a single wa
vector component parallel to the surface, and to simplify
notation we therefore omit the reference toqieW x andv from

the notation, i.e.,JW (z;qieW x ,v)5JW (z), etc. The induced cur
rent density hence is given by

JW~x,z!5JWB~z!eiq ixu~2z!, ~70!

where one may considerJWB(z) @multiplied by exp(iqix)# as
the bulk ~B! contribution to the total current density. Th
presence of the Heaviside unit step functionu(2z) allows us
to estimate the role of an induced surface current, albeit
heuristic manner. To elaborate on this let us look at the
vergence of the current density, i.e.,

¹W •JW~x,z!5u~2z!¹W •JWB~x,z!2d~z!eW z•JWB~x,0!. ~71!

If the induced bulk current-density distribution is divergen

free, ¹W •JWB(x,z)50, so thatJWB(x,z)5JWB
T(x,z), the part of

the optical tunneling process that is associated with the
tached longitudinal field originates solely in the induced s
face current density and is present only if this has a com
nent perpendicular to the medium/vacuum boundary; cf.
form of the second term on the right-hand side of Eq.~71!.
To underscore the importance of surface currents let
therefore analyze the case where the current-density dist
tion of the bulk is transverse. If the induced current densit
s polarized in the bulk and surface regions the attached fi
and the spacelike part of the retarded field will vanish, as
have realized in Sec. IV, and it is therefore sufficient to
strict ourselves to studies ofp-polarized distributions. In turn
this means that they component of all vector fields is zero
Two-component vectors and related 232-component tensor
may hence to be used to simplify the notation.

The attached field can be calculated everywhere in sp
inserting Eq.~70! into Eq. ~64! and utilizing the explicit
expression given in Eq.~26! for the longitudinald function.
By making use of the assumption that the bulk current d
sity is transverse, i.e.,

iq iJB,x~z!1
dJB,z~z!

dz
50, ~72!

one obtains, as shown in Appendix C, the following expr
sion for the nonretarded longitudinal field:

EW L
NR~z!5

e2qiuzu

2e0v
JB,z~0!S 1

i sgnzD . ~73!

The simple result in Eq.~73! illustrates main principles o
the optical tunneling process in a fine manner. Hence, w
the induced current density is divergence free in the bulk,
nonretarded longitudinal field generated originates solely
2
rs
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the surface current density induced perpendicular to
boundary@JB,z(0)eW z#, and, as we know, the attached fie
decays exponentially to both sides of the surface plane w
a characteristic decay constantqi . In the vacuum (z.0) the
field is right-hand circularly polarized and inside the mediu
(z,0) it is left-hand circularly polarized, in both domain
with the polarization unit vectors (1,i sgnz)/A2 lying in the
xz plane, of course. The particular form

EW L
NR~x,z!5

JB,z~0!

2e0v
eiq ixe2qiuzuS 1

i sgnzD ~74!

shows thatthe nonretarded longitudinal field is not only ro
tational free @]EL,x

NR(x,z)/]z2 iq iENR,z
L (x,z)50# as it by

definition must be but also divergence free@ iq iEL,x
NR(x,z)

1]EL,z
NR(x,z)/]z50#. In the vacuum, where there is n

charge density, the nonretarded field must of course also

divergence free, as the Maxwell equation,W •(EW T
R1EW L

NR)

50W or equivalently,W •EW L
NR50 immediately shows.

The spacelike part of the retarded field is determined fr
the integral relation

EW space
T ~z!52 im0vE

2`

`

DJ space
T ~z2z8!•JW~z8!dz8 ~75!

upon insertion of the expressions given in Eqs.~43! and~70!
for the propagator and current density. By assuming as
fore that the bulk current density is transverse, a tedious
straightforward calculation~see Appendix C! leads to the
following result for the spacelike part of the retarded field

EW space
T ~z!5

1

4e0vH q0
2E

2`

0 S 1

i sgn~z2z8!
D ~z2z8!

3e( iq02qi)uz2z8uJB,z~z8!dz81S 1

i sgnzD
3@~12 iq0uzu!eiq0uzu21#e2qiuzuJB,z~0!J .

~76!

The term proportional toJB,z(0) in Eq. ~76! gives the con-
tribution to the spacelike field from thez component of the
surface current density. This contribution is right- and le
hand circularly polarized in the vacuum and medium regio
respectively. It also vanishes when the observation plane
proaches the surface, i.e., forz˜0, as one would expect fo
a retarded spacelike contribution; cf. Eqs.~2! and ~35!. The
integral term in Eq.~76! represents the contribution to th
spacelike field from the induced bulk current-density dis
bution. The infinitesimal contribution from thez component
of the current density in the strip located betweenz8 and
z81dz8@JB,z(z8)dz8# is right- or left-hand circularly polar-
ized, depending on whether the plane of observation is
cated to the right (z.z8) or left (z,z8) of this plane, and
again this contribution vanishes as the plane of observa
approaches the source plane (z˜z8).

Up to this point we have only considered the electric fie
generated by agiveninduced current-density distribution. A
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discussed in Sec. V B, a self-consistent theory is obtained
relating the induced current density in the medium un
study to the prevailing field. In the present context it is s
ficient to limit the considerations to the linear regime a
assume that the response is isotropic, linear, and loca
space. The relevant single-body conductivity tensor he
takes the form

sJ~z,z8;qieW x ,v!5s~v!d~z2z8!UJ ~77!

in the frequency domain. Within the framework of th
random-phase-approximation approach the bulk current d
sity appearing in Eq.~70! is therefore given by

JW0~z!5s~v!EW ~z!, ~78!

and contact with previous studies of tunneling across
vacuum gap@1# is established, assuming the local elect
field to consist of a spatially single-mode incident~inc! field

(EW inc) plus the associated reflected~refl! field (EW re f l). In
most cases the source of the incident field is located so
from the medium under investigation that the transve
current-density domains of the source and medium do
overlap. In such situations the incident field is transve

(EW inc5EW T
inc), and since the medium is assumed to be iso

pic, the reflected field must also be transverse, i.e.,EW re f l

5EW T
re f l . Altogether, the bulk current density thus become

JWB~z!5s~v!~UJeiq'z1rJe2 iq'z!•EW T
inc~0!, ~79!

whereEW T
inc(0)5EW T

inc(qieW x ,v) is the amplitude of the inci-
dent field, and

rJ5r p~eW zeW z2eW xeW x!1r seW yeW y ~80!

the reflection matrix. Fresnel’s amplitude reflection coe
cientsr p andr s for p- ands-polarized fields, respectively ,ar
those belonging to reflection from the medium side of
boundary. In terms of the complex relative dielectric co
stant e(v)511 is(v)/(e0v), the wave-vector componen
of the incident field perpendicular to the surface is given

q'5@q0
2e~v!2qi

2#1/2. ~81!

In the manner we have introduceds(v) here, the associate
e(v) is able to describe the optical response of dielectric
well as semiconducting and metallic media. For the stand
situation where the incident field is divergence free, it a
pears from Eq.~79! that the bulk current density is trans
verse, and therefore Eqs.~74! and~76! can be used to calcu
late the attached and spacelike field parts. SinceJB,z(0)
5(11r p)s(v)ET,z

inc(0), thefield contributions from the sur
face current density are readily expressed in terms of

amplitude of the incident electric field. The entireEW space
T (z)

field by is obtained inserting Eq.~79! into Eq. ~76!. The
explicit result is not needed here. A schematic illustration
the optical tunneling across a vacuum gap separating
dielectric prisms is presented in Fig. 3, in a manner tha
meant to underscore the physical picture established in
work.
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B. Enhanced surface-generated tunneling

When the current density induced in the bulk of a mac
scopic medium is divergence free the part of the optical t
neling process one may associate with the attached
originates solely in the currents generated in the surface
gion. In Sec. VI A, where a naive sharp-boundary model w
adopted, the amplitude strength of the nonretarded field
proportional to the normal component of the bulk curre
density at the edge. To go beyond the heuristic approach
necessary to take into account the fact that the electron
sity changes from its bulk value to zero over a finite distan
in the z direction. Once a~self-consistent! surface potential
has been determined, the bound energy eigenstates o
electrons may be found, and from a knowledge of these
light-induced surface current density can be calculated.
metallic and semiconducting media where highly delocaliz
Bloch states play a particular role, the field-induced longi
dinal currents terminating at the surface can extend m
Fermi wavelengths into the solid, and the overall contrib
tion from surface states localized to within a few atom
monolayers may be rather weak.

To investigate the role of surface currents in the opti
tunneling process it may therefore be fruitful to seek to e
hance the currents induced in the surface region relativ
those generated in the bulk. One possibility for doing t
might be to deposit an ultrathin metallic or semiconducti
film on top of a homogeneous dielectric substrate. If the fi
is sufficiently thin, the electron motion would be subjected
an essential spatial quantization perpendicular to the plan
the film, and resonance excitation between selected pair
these so-called quantum-well states may lead to strong o

FIG. 3. Schematic illustration of the optical tunneling across
vacuum gap between two dielectric prisms as it is pictured in
work. The superposition of incident and reflected electromagn
fields ~indicated by the two big arrows! gives rise to a current den
sity in and at the surface~black strip! of the prism to the left. If the
other prism is placed within the evanescent zone~characterized by
the exponential decay lengthqi

21) of the first prism, optical tunnel-
ing occurs. In the picture suggested in this paper the tunneling fi
has two components, namely, a spacelike retarded~and necessarily
transverse! component and a standing-wave-like longitudinal co
ponent. The back edge of the spacelike component~indicated by
small arrows attached! moves away from the source prism with th
vacuum speed of light, and is thus only nonvanishing in the sha
part of the evanescent region. From a quantum electrodyna
point of view the photons emitted by the surface current den
induced in the source prism cannot be better localized spatially
what is dictated by the exponential decay length (qi

21) of the trans-
verse part of the surface current density.
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lating surface currents perpendicular to the well plane@32#.
A few-monolayers thick metallic film may thus behave like
two-level system and strong currents can be induced in tz
direction withp-polarized light incident at an oblique angl
If the electromagnetic field exciting the quantum well~from
the medium side! is transverse, the attached tunneling fie
stems from the quantum well, and with a dielectric substr
even the spacelike part of the transverse tunneling field m
be dominated by the quantum-well current source. A se
conducting GaAs/Ga12xAl xAs film/substrate combination
seems to be adequate for optical tunneling studies in
~near!-infrared regime, and a film thickness of the order
;100 Å can serve as a two-level system@37#.

Surface currents may also be enhanced by nonlinear o
cal methods. Hence, in centrosymmetric media, the opt
second-harmonic generation primarily is a surface effect,
even though the first harmonic~fundamental! field is trans-
verse strong longitudinal field components can be induce
the surface region@38#.

In certain wavelength regions so-called electromagn
surface waves can be excited on an interface between
macroscopic media, or at a medium/vacuum surface. S
waves, which constitute part of the electromagnetic eig
mode spectrum of these systems, in certain frequency
gions, contain a substantial fraction of nonretarded long
dinal fields so important for optical tunneling@39#. At a
metal/vacuum surface the electromagnetic surface waves
even dominated by the longitudinal field contribution for fr
quencies close to the surface plasmon frequency. At this
quency the waves are circularly polarized in the plane
propagation both inside the metal and in the vacuum dom
and, in fact, thetotal field takes precisely the form given i
Eq. ~74! @40#.

VII. OUTLOOK

Taking as a starting point for optical tunneling studies
framework suggested in this paper, a number of import
issues should be addressed. Thus, instead of forming w
packets of the total electromagnetic field, it would be int
esting to build these from the transverse part of the elec
magnetic field, and again investigate the role of the vari
velocities introduced in the literature, the pulse reshap
etc. In the transverse photon propagator description use
this work the inherent role of the spatial photon deloca
ability for the wave packet analysis might show up clear
Since the retarded field studied here essentially is identica
the Riemann-Silberstein energy wave function for photon
real space, a rigorous single-photon tunneling theory can
constructed by adjusting the prevailing current density
such a manner that the eigenvalue of the number oper
equals unity. The approach presented in this paper for
proving our understanding of optical tunneling should be
relevance also for a proper interpretation of the two-pho
coincidence experiments of Chiao and co-workers@4,10#, but
a detailed account can only be given after an extension of
present theory along the lines indicated above has b
worked out. Work on a quantum electrodynamic theory
the spatial localization~and birth! of polychromatic single-
photon wave packets and, once generated, their Eins
causal propagation is in progress. To make quantitative c
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tact with the experimental microwave studies of optic
tunneling of many-photon pulses@10,16# and thus with the
issue of superluminality, the semiclassical theory presen
here should be sufficient, but it is necessary to insert a s
cific current-density pulse form in Eqs.~65! and ~66!, and
carry out a calculation of the transverse and longitudi
fields numerically. The choice of the pulse form should be
accordance with the form given by the incident microwa
pulse; cf. Eq.~79!. By decomposing the energy wave fun
tion in a basis set where the photon eigenstates have de
energy, momentum, and helicity, the role of the photon s
in optical tunneling possibly may be addressed. Building
by numerical methods the tunneling field originating in su
face and bulk currents from the individual near fields of tw
and three-dimensional regular distributions of atoms, resp
tively, it would be interesting to see how well the continuu
theory developed here describes the time and space beh
of the tunneling field in media with strongly localized atom
~molecular! orbitals. Since there seems to exist a relati
between optical tunneling and near-field diffraction, it wou
be interesting to investigate, for instance, the near-field
fraction from small holes in a scheme where a clear disti
tion between the transverse~or longitudinal! field and the
total field is made. A proper identification of the attach
field in the vicinity of the hole might provide us with a bette
insight into the selfconsistently induced transverse curr
density in the wall surrounding the hole, a quantity that a
pears to be of utmost importance in the vector theory
near-field diffraction. A correct identification of the retarde
transverse field may also allow us to study the near-fi
diffraction of individual photons in space and time.

APPENDIX A: PHOTON PROPAGATOR
FOR SHEET RADIATION

To verify that the expression for the retarded transve
propagator given in Eq.~35! follows from Eq. ~34!, let us
first consider theyy component, i.e.,

D0,yy
T ~Z,t!52

c0

4pE2`

` sin~qc0t!

q
eiq'Zdq'

52
c0

2pE0

`sin~c0tAqi
21q'

2 !

Aqi
21q'

2
cosq'uZudq' ,

~A1!

since cosq'Z5 cosq'uZu. The last integral is different from
zero only forc0t.uZu, and one finds@41#

D0,yy
T ~Z,t!52

c0

4
u~c0t2uZu!J0@qiA~c0t!22Z2#.

~A2!

The zz component of the photon propagator, given in in
gral form by
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D0,zz
T ~Z,t!52

c0qi
2

4p E
2`

` sin~qc0t!

q3 eiq'Zdq'

52
c0qi

2

2p E
0

`sin~c0tAqi
21q'

2 !

~qi
21q'

2 !3/2
cosq'uZudq' ,

~A3!

can be calculated explicitly foruZu.c0t.0 ~causality im-
plies thatt.0 always!, and we have@41#

D0,zz
T ~Z,t!52p1u~c0t2uZu!

2
1

4
c0

2tqie
2qiuZuu~t!u~ uZu2c0t!, ~A4!

wherep1 is given by Eq.~36!. SinceD0,xx
T 5D0,yy

T 2D0,zz
T ,

one readily obtains

D0,xx
T ~Z,t!5S p12

c0

4
J0@qiA~c0t!22Z2# D u~c0t2uZu!

1
1

4
c0

2tqie
2qiuZuu~t!u~ uZu2c0t!. ~A5!

By now only the calculation of the identical off-diagon
elements remains,
D0,xz
T ~Z,t!5D0,zx

T ~Z,t!5
c0qi

4p E
2`

` q'

q3 sin~qc0t!eiq'Zdq'

5
ic0qi

2p E
0

`q'

q3 sin~qc0t!sinq'Zdq'

52
ic0qi

2p E
0

`F d

dq'

~qi
21q'

2 !21/2G
3sin~qc0t!sinq'Zdq' . ~A6!

Since (q'
2 1qi

2)21/2sin(qc0t)sinq'Z50 for q'50 and`, an
integration by parts now gives

D0,xz
T ~Z,t!5

ic0qi

2p FZE
0

`sin~qc0t!

q
cosq'Zdq'

1c0tE
0

`q'

q2 cos~qc0t!sinq'Zdq'G .
~A7!

The first integral in Eq.~A7! has already been determine
@see Eqs.~A1! and ~A2!#, and the second one can be calc
lated in explicit form for 0,c0t,uZu ~see Ref.@41#!. Hence
E
0

`q'

q2 cos~qc0t!sinq'Zdq'5sgnZE
0

` q'

qi
21q2

'

cos~c0tAqi
21q'

2 !sinq'uZudq'

5Fp

2
e2qiuZuu~t!u~ uZu2c0t!1

2p

c0
2tqi

p2u~c0t2uZu!GsgnZ. ~A8!
is
Altogether we therefore obtain

D0,xz
T ~Z,t!5D0,zx

T ~Z,t!

5
i

4
c0

2tqisgnZe2qiuZuu~t!u~ uZu2c0t!

1u~c0t2uZu!H ip2 sgnZ

1
i

4
c0qiZJ0 @qiA~c0t!22Z2#J . ~A9!

Gathered in matrix form, the results in Eqs.~A2!, ~A4!, ~A5!,
and ~A9! give DJ 0

T(Z,t) of Eq. ~35!.

APPENDIX B: INTEGRAL RELATION BETWEEN THE
TRANSVERSE AND ISOTROPIC PROPAGATORS

To prove the integral relation in Eq.~55! one inserts the
explicit expressions fordJR(z2z8) @Eq. ~50!# and dJT(z8
2z0) @Eq. ~53!# on the right-hand side of the equation. Th
gives

E
2`

`

dJR~z2z8!•dJT~z82z0!dz8

5
1

2ik'
0F eik'

0 uz2z0uS 1 0 0

0 1 0

0 0 0
D

2
qi

2 S I 1~z2z0! 0 i I 2~z2z0!

0 0 0

i I 2~z2z0! 0 2I 1~z2z0!
D G , ~B1!

where

I 1~z2z0!5E
2`

`

eik'
0 uz2z8ue2qiuz82z0udz8 ~B2!

and
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I 2~z2z0!5E
2`

`

eik'
0 uz2z8ue2qiuz82z0u sgn~z82z0!dz8.

~B3!

Since the integrals in Eqs.~B2! and ~B3! are given by

I 1~z2z0!5
2

q0
2 ~ ik'

0 e2qiuz2z0u1qie
ik'

0 uz2z0u!, ~B4!

and

I 2~z2z0!5
2ik'

0

q0
2 ~e2qiuz2z0u2eik'

0 uz2z0u!sgn~z2z0!,

~B5!

it appears that the integral relation in Eq.~B1! consists of
terms proportional to exp(2qiuz2z0u) and exp(ik'

0 uz2z0u), re-
spectively. By gathering the two sets of terms in each of th
tensors one obtains

E
2`

`

dJR~z2z8!•dJT~z82z0!dz85DJ 0~z2z0!2DJ 0
NR~z2z0!,

~B6!

where DJ 0(z2z0) and DJ 0
NR(z2z0) are given by Eqs.~14!

and ~15!. Since the difference betweenDJ 0(z2z0) and
DJ 0

NR(z2z0) is just the transverse propagatorDJ 0
T(z2z0) @see

Eq. ~16!#, the claim in Eq.~55! has been proven.

APPENDIX C: TUNNELING FIELDS IN THE CASE
OF TRANSVERSE BULK CURRENTS

1. Attached field

To determine within the framework of the sharp-bounda
model the nonretarded longitudinal field in the vacuum ha
space (z.0), we start from the expression

EW L
NR~z!5

qi

2i e0v
e2qiz

3E
2`

0

eqiz8@JB,x~z8!1 iJB,z~z8!#dz8S 1

i D ,

~C1!

readily obtained by combining Eqs.~26!, ~64!, and~70!; and
for simplicity all the p-polarized fields are written in two
component notation. An integration by parts of the term c
taining JB,z(z8) in Eq. ~C1! now gives

EW L
NR~z!5

1

2e0v
e2qiz

3FJB,z~0!2E
2`

0

eqiz8

3S iq iJB,x~z8!1
dJB,z~z8!

dz8
D dz8G S 1

i D , ~C2!
ir

y
-

-

since exp(qiz8)JB,z(z8)˜0 for z8˜2`. Under the assump
tion that the bulk current density is divergence free@see Eq.
~72!# one immediately obtains the result in Eq.~73! for z
.0.

For z,0, the contact term in the longitudinald functions
must be included, and the integral overz8 has to be divided
into two parts over2`,z8<z andz,z8<0, respectively.
Hence

EW L
NR~z!5

1

i e0vFJB,z~z!S 0

1D 1
qi

2
e2qiz

3E
2`

z

eqiz8@JB,x~z8!1 iJB,z~z8!#dz8S 1

i D 1
qi

2
eqiz

3E
z

0

e2qiz8@JB,x~z8!2 iJB,z~z8!#dz8S 1

2 i D G .

~C3!

A partial integration of the terms containingJB,z(z8), fol-
lowed by a use of the transversality condition in Eq.~72!,
leads to

EW L
NR~z!5

1

i e0v H JB,z~z!S 0

1D 1
i

2
JB,z~z!F S 1

i D 2S 1

2 i D G
1

i

2
eqizJB,z~0!S 1

2 i D J , ~C4!

a result one readily verifies as being identical to the one c
in Eq. ~73! for z,0. We have thus shown that the attach
field is given by Eq.~73! for all z.

2. Spacelike part of the detached field

To determine the above-mentioned part of the elec
field, Eqs.~43!, ~70!, and ~75! have to be combined. Doing
this, and using afterwards the transversality condition in
~72! to eliminateJB,x(z8) in favor of (i /qi)dJB,z(z8)/dz8,
one obtains forz,0

EW space
T ~z!5

qi

4e0vH e2qizE
2`

z

F1~z,z8!F 1

qi

dJB,z~z8!

dz8

1JB,z~z8!Gdz8S 1

i D 1eqizE
z

0

F2~z,z8!

3F 1

qi

dJB,z~z8!

dz8
2JB,z~z8!Gdz8S 1

2 i D J ,

~C5!

where

F6~z,z8!5$@16 iq0~z82z!#e6 iq0(z2z8)21%e6qiz8.
~C6!

Utilizing the fact that

F1~z,z8!uz8˜2`5F6~z,z8!uz85z50 ~C7!

and
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F2~z,z8!uz8505~11 iq0z!e2 iq0z21, ~C8!

upon partial integrations of the terms withdJB,z(z8)/dz8, we
next get

EW space
T ~z!5

1

4e0v H @~11 iq0z!e2 iq0z21#eqizJB,z~0!S 1

2 i D
2e2qizE

2`

z S dF1~z,z8!

dz8
2qiF1~z,z8! D

3JB,z~z8!dz8S 1

i D 2eqizE
z

0S dF2~z,z8!

dz8

1qiF2~z,z8! D JB,z~z8!dz8S 1

2 i D J . ~C9!

By inserting the formulas
s

tt

.

pl

o

tt.

i-
.

ho
.

p
om
dF6~z,z8!

dz8
7qiF6~z,z8!5q0

2~z82z!e6 iq0ze6(qi2 iq0)z8

~C10!

into Eq. ~C9!, it is a straightforward matter to show that th
resulting Eq.~C9! equals Eq.~76! for z,0.

For z.0, one begins from

EW space
T ~z!5

1

4e0v
e2qizE

2`

0

F1~z,z8!

3S qiJB,z~z8!1
dJB,z~z8!

dz8
D dz8S 1

i D ,

~C11!

cf. Eq. ~C5!; and a partial integration of the
dJB,z(z8)/dz8-term, followed by a use of Eq.~C10! for the
plus sign, gives the result in Eq.~76! for z.0.
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