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Quantum local-field corrections and spontaneous decay
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A recently developed scheni&. Scheel, L. Knlh, and D.-G. Welsch, Phys. Rev. B8, 700 (1998] for
quantizing the macroscopic electromagnetic field in linear dispersive and absorbing dielectrics satisfying the
Kramers-Kronig relations is used to derive the quantum local-field correction for the standard virtual-sphere-
cavity model. The electric and magnetic local-field operators are shown to become approximately consistent
with QED only if the polarization noise is fully taken into account. It is shown that the polarization fluctuations
in the local field can dramatically change the spontaneous decay rate, compared with the familiar result
obtained from the classical local-field correction. In particular, the spontaneous emission rate strongly depends
on the radius of the local-field virtual cavit}S1050-29479)04008-1

PACS numbse(s): 42.50.Ct, 42.50.Lc

[. INTRODUCTION sion rate, wherew, and u are, respectively, the atomic tran-

sition frequency and the dipole transition matrix element.

Spontaneous emission by an excited atom is one of th'ln'he local-field correction in Eq2) arises from writing the
most studied examples of a quantum process and may t?e

attributed. at least in part, to fluctuations in the electromag—ocal electric field in terms of the macroscopic electric field

netic vacuunil]. The vacuum field is modified by the local and the commonly used induced polanzapon field. It does
not, however, take account of the fluctuating component of

gngg?;nngﬁgg ae?r?isﬂs]ilc?h Tatt(lajrrl]r,l Itﬁ?sdjvéo ;};ngdg:](;?lﬂggu(;f g;ﬁgglarization associated with absorption losses. In this paper
P | Y P o we investigate the changes that arise within the Clausius-
sion rate can be changed by embedding the radiating ato

inside a dielectric hog2—1] or by changing the boundary Mossotti model when this fluctuating component is included.

conditions either by a cavity13—-17 or a suitable surface Recently, a scheme for quantizing the electromagnetic

. . o field in an arbitrary linear dielectric medium has been proved
[18,19. Recent experiments have examined the emission bYo be consistent with QEI23]. It relies on the introduction
atoms embedded in dielectric hog&0—-22 and have en- :

) ) of an appropriately chosen infinite set of basic-field operators
c_ouraged us to reexamine the problem of local-field CorreC'24—26 and their connection to electromagnetic-field opera-
tions to the bulk mod|f|cat|pn of the s_pqntaneous decay rat ors via the classical Green function. This scheme is a gen-
The total decay raté might be split into two parts, eralization of the approach introduced by Huttner and Bar-
nett[27] based on a Hopfield modE28] of a homogeneous
dielectric using Fano diagonalizatid@9] to obtain collec-
_ . . Pt tive (polariton excitations of the electromagnetic field, the
in which we associate chg transverse decay Fateand the  o\arization, and the reservoir. In what follows we use the
longitudinal decay rat€" with the contributions of the trans-  g.heme to derive. within the virtual-cavity model, a local
verse and longitudinal fields, respectively. The dielectric-ig|q that contains the full polarization noise in an absorbing
induced modification of the spontaneous emission raté ifnedium. In particular, we show that the resulting spontane-
free space can be ascribed to two effects associated with thg,s gecay rate contains, as expected, transverse-field-assisted
bulk (macroscopifield in the medium and the other arising nonradiative contributions, such as dipole-dipole energy
from the local(microscopig field. The bulk-field correction transfer between the atom and the medium via virftrahs-
multiplies the rate by the refractive index at the transitionverse photon exchange, which are fully omitted in E@).
frequency[2—5]. Local-field corrections present more of &  The paper is organized as follows. After a short review of
problem and have a form that is strongly model dependente quantization scheme in Sec. Il we introduce the quantum
For the Clausius-Mossotti model, which introduces a virtualgg\-field correction in Sec. IIl. We then apply the scheme
cavity surrounding the atom, a classical treatment of thgy the calculation of the spontaneous decay rate in Sec. IV
local-field corrections leads, on generalizif®6,9, to the  ¢5j1owed by some concluding remarks in Sec. V. Details of
form [8,10] the calculation will be given in the Appendix.

r=r++rl, (1)

e(wp)+2 2

3 0 2 Il. QUANTIZATION SCHEME

Fé: n(wp)

We begin with a brief review of the quantization scheme
for the transverse decay rate of an atom in a bulk dielectric ofised throughout the paper. Further details can be found in
refractive indexn(w)=+e(w)=7n(w)+ik(w). In Eq. (2), [23-25. The spectral decomposition of the electric- and
T'o=wiu?/(37c3hey) is the free-space spontaneous emis-magnetic-field operators is given by
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E(r)=J:dwE(r,w)+H.c., 3)

B(r)=f:dw§(r,w)+H.c., 4

whereE(r,w) andE(r,w) satisfy Maxwell's equations

V-B(r,0)=0, (5)
V- [€oe(r,w)E(r,0)]=p(r,), (6)
VXE(r,0)=i0B(r,0), 7)

VXB(r,0)= i = e(r,0)E(r,0) +u(r,0) (8
B - E ]

[e(r,w)=er(r,w)+ig(r,w) is the permittivity]. The opera-

tor noise current density:(r,w) and the operator noise
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whereG;;(r,s, ) is the tensor-valued Green function of the
classical problem. It can then be provig8] that this quan-
tization scheme is fully consistent with QED for arbitrary
linear dielectrics.

. QUANTUM LOCAL-FIELD CORRECTION

If we think of an atom located at some space paint
inside the dielectric, then the macroscopic field of Sec. Il
will not, in fact, be the field felt by the atom. From classical
electrodynamics we know that we should introduce what is
called the local field at the location of the atom. There are
essentially two ways of introducing the local field. First, one
could cut out areal cavity [7] (most commonly a sphere
around the atom and calculate, in our scheme, the electric-
field inside the cavity according to E(L6). This would lead

us to introduce the electric-field opera@“(r,w) by the
relation

B 0)=ino | PG5 (s0), ()

charge density;(r,w), which had to be introduced in order where Gi?h(r,s,w) is the Green function of the classical
to be consistent with the dissipation-fluctuation theorem, arg@roblem of an inhomogeneous medium that consists of the

related to the noise polarizatidi’i“(r,w) as

J(r0)=—i0P(r,0), 9

p(r,w)==V-PV(r o) (10
and satisfy the equation of continuity

V- j(r,w)=iwp(r,o). (11)

The operator noise current densjj(y,w) is obtained from a
bosonic vector field(r, ),

~ heo ~
j_(l‘,w)=a)\/?q(r,w)f(r,w),

[fi(r.w),f(r" o) ]=68;8r—1")8(w-w),

12

13

[fi(r,w),f(r o) ]=[f(r,0),f(re)]=0. (19

real cavity surrounded by the dielectric in which the atom is
embedded.

To avoid the solution of the inhomogeneous problem,
commonly a simplervirtual-cavity model of Clausius-
Mosotti-type is used. In this model the local field is related to
the macroscopic field 480]

1
E'°°(r,w)=§(r,w)+3—EOE(r,w), (18

whereE(r,w) can be obtained according E{.6), with the
Green function for the bulk-medium problem. In classical

optics, the polarization in the zero-temperature limit can be
given by

P(r,w)= €[ €(r,w) — 1]E(r, ), (19
from which it follows that
E"%(r,0) =3[ (r,w)+2]E(r,w). (20)

This local field is just the field used for the derivation of the
rate formula(2). Obviously, Eqg.(19) cannot be valid as an

The quantization scheme implies that all electromagneticoperator equation in quantum optics, because of the nonva-
field operators can be expressed in terms of the basic fieldsishing quantum noise even in the zero-temperature limit. In

f(r,w), which may be regarded as being the collective exci-order to obtain a canonical operator equation, we have to use
tations of the electromagnetic field, the medium polarizationthe full polarization operator

and the reservoir. For example, the electric-field operator

E(r,w) satisfies the partial differential equation P(r,w) =€l e(r,w) ~1]E(r,0)+ PN(r,0),  (21)
2 where
A~ w A~ ~
VXVXE(I’,a))——Ze(l’,w)E(r,a))Zi,LLowj(r,w), P EE—
- C - N SN s héo i

such that is the fluctuating part of the polarization which, according to
the dissipation-fluctuation theorem, is unavoidably con-
nected with the losses in the medium. Whereas in classical

= s 3 *
Ei(r’w)_'“OJ d*swGij(r,sw)]j(sw), (16 optics the noise polarization typically represents thermal
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noise, in quantum optics it has necessarily a vacuum nois8ince it is only relevant at zero frequency, it does not play

component. Equatio22) directly follows, e.g., from Egs. any role in the calculation of the decay at transition fre-

(8) and(9) (for a microscopic consideration, sg&/]). Com-  quencyw, .

bining Egs.(18) and (21), we derive In order to take into account a possible deviation of the
symmetry of the material from cubic symmetry, a structure

N 1 . 1. i ;
E'°°(r,w)=§[e(r,w)+2]E(r,w)+ gPN(r,w). 23 constants can be included in Eq.18) such thaf31]
= E o

E'°°(r,w)=E(r,w)+i E—{-s P(r,w). (30)
= — €p 3 -

In order to prove the consistency of the field given in Eq.
(23) with QED, we compute théequal-tim¢ commutation
relation between the fundamental local fiel#&%(r) and Regarding this equation as an operator equation Rithw)
B'%(r). For this purpose we note that electric and magnetidrom Eq.(21) and following the line in the Appendix, it can
fields must be necessarily related to each other by Maxwell’'®€ seen that Eq27) changes to
equation(7), and hence

. R in
1 [Ei°%(r),B(r")]=— —e€wdi o(r—r’)
BY%(r, @) =V X P—EX(r,w) (24) 0
—_ 1 |w— 1 1 a2
X{1+—[e(r,00—1];, (31
where the symboP stands for the principal part. Recalling 9 [e(r.O)—1] (31)

Egs.(3) and(4), the local-field operators in real space are .
where the parameter is related tos by

E'%(r)= f dwE"(r,w)+H.c. (25) a=1+3s. (32
0 DO=
q Thus, consistency with quantum theory is achieved, if the
an condition
Bo(r) = dewé'oc(r,w)—FH.c.. (26) es(r)<9a?+1 (33
0 02
is fulfilled.
Expressing the local electric and magnetic fields in terms of
the basic fieldsf(r,), from the calculation given in the IV. SPONTANEOUS DECAY RATE

Appendix it is found that The spontaneous decay rate ofteo-level) atom with

[E.°(r),B,°(r")] transition frequencyv, placed at point 4 is given by

h r ’ 1 27 F loc £ loct
== g =1 {1+ L e(r, 0~ 11}, F=ﬁf doui(0[E*(r,0)E; " (ry,a)|0)u; (34)

27 (r—ry4). In what follows we consider a homogeneous bulk
and it is easily seen that material, i.e.,e(r,w)=¢€(w), and assume that the inequality
(29 is fulfilled. Using Eg.(23), the vacuum expectation
[E°%(r),E,lo(r")]=[B;"°%(r),B/°%r")]=0. (28) Vvalue of the local electric-field operators in the limi-r
can be written as
The result reveals that tHeverall) local-electric-field opera- R .
tor (23) and the associated magnetic-field operd®# can (O|E{"*(r,®)E{"**"(rp,0")|0)
be regarded as being consistent with quantum theory, pro-

vided that therea) static permittivityes(r) = e(r,0) satisfies _ )42 € (0)+2

<0|Ei(rvw)EjT(rA1w,)|0>

the condition 3 3
€s(r) 1 6N SN )
< + —(O|P; (r,w)P; (rp, 0
o <L (29) 96§< |Pi(r )P (ra,@")[0)
Equivalently, the static refractive indew(r) =/ eg(r) must N é(w) <0|E (r, w)PNT(r ©")[0)
Ay

be small compared with/10~3.16.

It should be noted that a term proportional to Héunc- 6*(w,)+2
tion 6(w) can be add\edl to the right-hand S|de_0f 5214) in + <0|EiN(r,w)EjT(fA'w')|0>- (35)
order to recover Amge’s law when the equation is multi- 9¢g
plied by w. Obviously, this ambiguity reflects the fact that
the static magnetic field cannot be inferred from the statm/vhereE(r ) and PN(r w) are given by Eqs(16) and(22),
electric field. From a simple calculation it can be shown thatrespectively. The Green functid®;(r,ra,wa) for the bulk
such a term does not change the commutation reldfi@n  material in the limitr—r 4 has the forn{10]
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Gy (p.wa) =Gij(p.wp) + Gj(p, o) 36  ew)F2, ,
! ! ! g, (lE(r0P(ra,01)[0)
(p=r—ra), where e(w)+2 . . )
g (OPNr.0)E(ra,0")[0)
i 2
Lo o) | PP O 2o _ 2eh w2 .
GIJ(p!wA) 477_| 2p3 + 2p + 3C - 3770260 €lw 3 Glj(p!w) 6(('0 w )
(41
X +i o
[n(@a)Fir(wa)ldj+0(p) (37 Hence, the total decay rate reads
2 i —
and =g+ %—‘Eoél(wA) 3ij 8(p)
Awppifi e(wp) £2 |
2 lan +———— a(0)Re——2—Gy(pon)|. (42
Gl = —— | 2T 5 5(p) 3fiepC
Ij(p!wA 4 2 ( ) 3 ij (p
TOAELOA Equation(42) is remarkable in the sense that inclusion of
3pip; | 1 the polarization noise in the local field gives rise to a term
+| &ij— %) - (38)  that only results from that noise and leads to a dependence of
p= /P the decay rate on the real part of the Green function. We now
average thej tensor
are the transverse and longitudinal parts, respectively. We 5ij5(p)=5ﬁj(p)+5‘i‘j(p) (43

see that the real part of the transverse Green function and the

longitudinal part itself diverge ap—0, reflecting the fact and the Green tensor(36) over a small sphere
that a macroscopic approach is valid only to some approprit| RVe(wa) wa/c|<1] and obtain

ately fixed scale which exceeds the average distance of two

atoms in the dielectric. Following[10], the position- YN g
dependent terms in the decay rate are averaged over a small %j(P)=25i(p) 2R3 O (44
sphere of radiuf, which defines the virtual cavity. For sim-
plicity we will take the average with respect to the distapce —1 wpak(wp)
with |p|<R. ReGjj(p,wa) = IR 6mc |G (45)
The first term on the right-hand side in E5) gives the
contribution to the decay rate with the classically corrected Cen(wp)
local field[8,10], ReGl;(p,wp) = — A " (46)
47TwA|e(wA)|2R3
e(wp)+2|? N —oan(wp)
TC|=Fé|+Fl|:|=FOT IMGij(p,wa) = —¢—— 3, (47)
3e(wp) c \® c’e(wp)
X|plop)+ ————(——=] |, (39 IMGJ;(p,wa) = T (48)
2 e(wp)|?| @aR e T

and Eq.(42) can be given in the form of Ed1), wherel'*
with the transverse raté, being given in Eq(2). The sec- andT'l read as
ond term in Eq.(35) is purely a contribution of the noise

ization fi is g (o) +2|7 2€f(wp)
polarization field and is given by FL:I‘O{ n(@a) 3 S
1 (wn)lexlwn) +2] 222! 1( - )
—ES<0|E!“(r,w)E,-NT(rA.w’)|0> l@ALERLOA 9 3\l waR
e(wp)[ ¢ |3
he(w) , + (—) (49)
=m5ij5(p)5(w—w ) (40) 3 wAR
and
. _ o 26/(wp) [ € |3
The cross terms mixing the macroscopic electric field and the rl=r,— A | — (50)
noise polarization field give rise to the contribution 3le(wp)|? | @aR
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FIG. 1. The(normalized transverse decay rafe"/T, is shown FIG. 3. The(normalized transverse decay raie"/T'y is shown

as a function of the transition frequeney for y/w;=0.01 andr as a function of the transition frequenay, for y/w;=0.1 andr
=10 (dashed curve r=20 (dot-dashed curyeandr=30 (dotted  _ 10 (dashed curve r =20 (dot-dashed curjeandr =30 (dotted
curve. For comparison, the rate without quantum local-field correc-¢rya . For comparison, the rate without quantum local-field correc-
tion [8] is shown (solid curvg. Since forr=10 (dashed cure g [8] is shown(solid curve.
I't/T, becomes negative, this case must be excluded from consid-
eration(cf. Fig. 4. First of all, for smallr, i.e., large virtual-cavity radiuB, one
observes little reduction of spontaneous decay for frequen-
The modifications near a medium resonance are cleagiesw, just above the resonance frequenay. Its possible
Note that owing to the quantum local-field correction, theapplications in semiconductor physics and solid-state physics
unspecified paramet& also enters into the transverse decayhas already been discuss@&®].
rate. In order to compare our canonical result with that ob- The greatest difference between the guantum mechani-
tained using the classically corrected local field, we use, fogally and classically corrected transverse decay fteand
comparison, the same'Lorentz model for the permittivity of ar’ | respectively, arises near the medium resonance when
single-resonance medium as[#10], is small. Both the imaginary part of the permittivity and the
s real part can take very large values 9~ w1 and in con-
M (51) sequencd™ can drastically change compared wiify . Ob-
w%— w’—iyw ' viously, in the resonance regime the noise polarization essen-
tially contributes to the local field and therefore strongly
wherew+ is the resonance frequency of the medium. FiguresnfluencesI'™*. For small values ofy both qualitative and
1-3 show the transverse decay rate with and without quantitative differences between the rafés and I'y are
quantum local-field corrections as a function of the atomicobserved(Fig. 1). With increasing value ofy the two rates
transition frequencyw, for different values of the damping become less different from each other, the changes being
parameter of the mediumy, and the parameter quantitative rather than qualitativeompare Fig. 1 with Fig.
3).
r= T (52 In contrast tol'y, the ratel'" sensitively depends oR,
R’ because it does not only contain a radius-independent term
but also terms proportional t& * and R™%. The radius-
175 independent term may be interpreted as a far-field contribu-
F tion and accordingly the terms proportionalRo ! andR 3
150f R . o .
p as near-field contributions. Obviously, both spontaneous
emission and nonradiative decay via virtual photon exchange

e(w)=1+

125 4
= i between atom and medium contribute to the decay FFate
7, 100 ! In particular the term proportional ® 2 can be regarded as
75t ! ' being the rate of dipole-dipole energy transfer from the atom

) : to the medium via photon emission and reabsorption. The
result corresponds, in a sense, to that derivdd i from the
microscopic approach to the problem of resonant dipole-
dipole energy transfer in a molecule crystas].
To fix the value ofR that is undetermined in the Clausius-
0.85 0.9 0.95 ; /;‘05 11113 Mosotti model, experimental data could be used in principle
AI%T (for recent experiments on spontaneous emission, see, e.g.,

FIG. 2. The(normalized transverse decay rafe' /Ty is shown ~ [20—22). It should be pointed out that the rate formi)
as a function of the transition frequenay, for y/w;=0.05 andr gives an upper bounBy,y, i.e., a lower bound ., for the
=10 (dashed curve r =20 (dot-dashed curyeandr=30 (dotted ~ parameter, because of the fact th&t- cannot be negative.
curve). For comparison, the rate without quantum local-field correc-As already mentioned, the limit—r , in Eq. (34) cannot be
tion [8] is shown(solid curve. performed and averaging with respectter, over a sphere




PRA 60 QUANTUM LOCAL-FIELD CORRECTIONS AND ... 1595

0.14 radius of the virtual cavity. It is worth noting that inclusion
o in the local field of the noise polarization leads to a radius-
12 ; o
dependent transverse decay rate that describes both radiative
0.1 and nonradiative decay. In particular, from the dependence
g 0 08 on the radius of the transverse rate a second condition of
= validity can be imposed on the underlying model. In order to
0.06 obtain for any transition frequency a positive transverse de-
cay rate, the cavity radius must not exceed some upper
0.04 bound.
0.02 The Clausius-Mossotti virtual-cavity model is commonly
based on the assumptions that the near field that arises from
° the atoms inside the cavity averages to zero and the field
0 2 4 6 8 10 12 14

outside the cavity is not modified by the presence of the
cavity. In quantum optics these assumptions may fail, be-

FIG. 4. The lower bound ;, of the parameter, Eq. (52), is  cause of the modification of the vacuum noise associated
shown as a function of the damping paramegéw. The region  with these effects, which may be an explanation for the re-
below the curve is the part where tfreormalized transverse decay  strictions found. Further, from the Power-Zienau-Woolley
rateI'* /T, may take negative values and is therefore forbidden. transformation, it is suggested tHat dipole approximation

only the transverse electromagnetic field contributes to the

of radius R can give negative values, R is not small  decay rate via spontaneous emission and nonradiative energy
enough, because theea) vacuum expectation value of the transfer associated with virtual photon exchange. Hence it
operatorE°%(r,w)E°T (r 5, w,) is not necessarily positive. might be expected that there is no longitudinal decay rate
Figure 4 presents,,, as a function of the damping param- and the nonradiative decay can fully be obtained from the
etery. The curve was obtained numerically by requiring thatinteraction of the atom with the transverse field. In order to
I'* must not be negative over the whole frequency spectrunglarify these points and extend the range of validity of the

Figure 1 shows that for chosefsmal) y and r<r,,, theory, a more refined concept seems to be necessary.
negative values df* may appear when the atomic transition
frequencyw, approaches the medium resonance frequency
w7 and is in an interval that corresponds to the polariton

band gap betweew; and w_ =[w%+(0.46wr)?]* in the We are grateful to M. Fleischhauer for helpful comments.

HOpreld model of a dielectric in the absence of absorption'rhis work was Supported by the Deutsche Forschungsge-
[28]. Obviously, in this regime of spontaneous decay a remeinschaft.

fined model has to be used, at least in quantum theory.

From the standard derivation of thielassical Clausius-
Mossotti local field(see, e.g.[30]) the radiusR of the virtual APPENDIX: COMMUTATION RELATIONS
cavity should be larger than the average distance of two OF THE LOCAL-FIELD OPERATORS
neighboring atoms but sufficiently smaller than the optical
wavelength\ , of the atomic transition. In terms of the pa-
rameterr, the latter requirement means thia \1/\ 5. Pro-
vided that the damping parametgris not too small, this is

in agreement with the condition that the parametshould e(r ) +2 i e
not be smaller tham,,, in Fig. 4. E'Oc(r,w)=’TIAE(r,w)+ 32 /7Oe|(r,w)f(r,w).
- - 0

(A1)

Tmin

ACKNOWLEDGMENTS

From Eq.(23) together with Eq.(22), the local electric
field operator reads, in Fourier space

V. CONCLUSIONS

Within the frame of the Clausius-Mossotti model we havecombining Eqgs(24) and(A1), we obtain, for the local mag-
studied the influence of the quantum local-field correctiometic field in Fourier space,

arising from the noise polarization on the spontaneous decay
rate of an excited atom embedded in an absorbing medium.

We have shown that inclusion in the local field of the noise ooy 1. ., e(r',w')+2
polarization ensures that the local field fulfills the fundamen- ~ B°%(r’,0")=V x| P—E(r",» )T
tal equal-time commutation relations of QED, provided that '@
the static refractive index of the medium does not exceed
. . 1 1 fL€0 ~
unity substantially. The calculated rates demonstrate that the +— P\ —e(r o) o).
sub . ed r that PN (1) 0"
contribution of the noise polarization to the local field is €0 o ™
extremely important and cannot be ignored. In particular, at (A2)

the resonance frequencies of the medium the transverse de-

cay rate can drastically change compared with the classically

corrected rate where the fluctuating component of the polaRecalling Egs.(25) and (26), from Egs.(Al) and (A2) to-

ization is omitted. gether with Eq(16) the local electric and magnetic fields are
The decay rate crucially depends on the choice of thejiven by
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. heg [ e(r,w)+2 iw?
E= N7 oo | d?’{‘ 30 &

X \/fl(S,w)Gij(r,S,w)fj(Syw)"‘H-C- + é‘\/?J’wdw[i Ve (r,m)fi(r,w)+H.cl, (A3)
0 0

+2
BO%(r ) = emd! {\/ f do’ fd3 '{E(r w)r2 e V(S @) G180 Tols ) e,

\/ﬁeo f—[\/q(r o ) E(r w’)+Hc]} (Ad)
360

Thus, the(equal-tim¢ commutator between the local electric and magnetic fields can be given by

loc loc _ Ia) e(r w)+2 e (r',w)+2
[E{*(r),BRYr")]= —6k|m(9| P dw 3 3 €(50)Gij(r,50)Ghi(r',s,w)—c.c.

J’ q eE(r'w+2iw G
350P w_3—€oc_€'(r ,w)Gri(r',r,m)—c.c

2i *dw )
+9—63P Oj[fl(f,w)5im5(f—f )t

+ 1wad 5(" w)t+t2iw : /
3e0 Jo | 3en 2 e, w)Gin(r,r',w)—c.c.

(A5)

The remaining spatial integral in EGA5) can be calculated © o
using the symmetry relation Ii(,}q)(r,r’)zpf do— Gim(r,1",®)
— 00 C

1+ 3[e(r,w)—1]

Gij(r,r',0)=Gji(r',r,o), (AB) 1
+3le(r,0) = 1]+ s[e(r,0)~1]
the crossing relation

Gij(r.,r',0)=G:(r,I',~ w), (A7) X[e(r ,w)—l]], (A10)
and the integral relatiof25] 1@(r )= Pf do S )5|m5(r—r N (ALY
Bl QT Closing the integration contour in the upper complex fre-
f d Se,(S,w)G“(S,I‘,w)G (Sr'sw) qguency half-plane and following the line [23], we derive
that
1 ! * ! 1 i
:E[G“(r ,r,w)—Gij(r,r ,)]. (A8) Ii(m)(rir,):|775im5(r_rl)- (A12)

. _ . Recalling the Kramers-Kronig relations, theintegration in
Straightforward calculation yields Eqg. (Al1l) is easily performed to obtain
h : R (rr) =7l er(r,00— 118 8(r—r")
[EP(r).BR(r)]= ——ewmdi L1z (r.r)+1Rr )],
0 (A9) =l e(r,0)—1]8,,6(r—r"). (A13)

Combining Eqs(A9), (A12), and(A13) then yields the com-
where mutation relation(27).
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