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Quantum local-field corrections and spontaneous decay
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A recently developed scheme@S. Scheel, L. Kno¨ll, and D.-G. Welsch, Phys. Rev. A58, 700 ~1998!# for
quantizing the macroscopic electromagnetic field in linear dispersive and absorbing dielectrics satisfying the
Kramers-Kronig relations is used to derive the quantum local-field correction for the standard virtual-sphere-
cavity model. The electric and magnetic local-field operators are shown to become approximately consistent
with QED only if the polarization noise is fully taken into account. It is shown that the polarization fluctuations
in the local field can dramatically change the spontaneous decay rate, compared with the familiar result
obtained from the classical local-field correction. In particular, the spontaneous emission rate strongly depends
on the radius of the local-field virtual cavity.@S1050-2947~99!04008-1#

PACS number~s!: 42.50.Ct, 42.50.Lc
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I. INTRODUCTION

Spontaneous emission by an excited atom is one of
most studied examples of a quantum process and ma
attributed, at least in part, to fluctuations in the electrom
netic vacuum@1#. The vacuum field is modified by the loca
environment and this, in turn, leads to a modification of
spontaneous emission rate. In this way the spontaneous e
sion rate can be changed by embedding the radiating a
inside a dielectric host@2–12# or by changing the boundar
conditions either by a cavity@13–17# or a suitable surface
@18,19#. Recent experiments have examined the emission
atoms embedded in dielectric hosts@20–22# and have en-
couraged us to reexamine the problem of local-field corr
tions to the bulk modification of the spontaneous decay r

The total decay rateG might be split into two parts,

G5G'1G i, ~1!

in which we associate the transverse decay rateG' and the
longitudinal decay rateG i with the contributions of the trans
verse and longitudinal fields, respectively. The dielectr
induced modification of the spontaneous emission rate
free space can be ascribed to two effects associated with
bulk ~macroscopic! field in the medium and the other arisin
from the local~microscopic! field. The bulk-field correction
multiplies the rate by the refractive index at the transiti
frequency@2–5#. Local-field corrections present more of
problem and have a form that is strongly model depend
For the Clausius-Mossotti model, which introduces a virt
cavity surrounding the atom, a classical treatment of
local-field corrections leads, on generalizing@3,6,9#, to the
form @8,10#

Gcl
'5h~vA!Ue~vA!12

3 U2

G0 ~2!

for the transverse decay rate of an atom in a bulk dielectri
refractive indexn(v)5Ae(v)5h(v)1 ik(v). In Eq. ~2!,
G05vA

3m2/(3pc3\e0) is the free-space spontaneous em
PRA 601050-2947/99/60~2!/1590~8!/$15.00
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sion rate, wherevA andm are, respectively, the atomic tran
sition frequency and the dipole transition matrix eleme
The local-field correction in Eq.~2! arises from writing the
local electric field in terms of the macroscopic electric fie
and the commonly used induced polarization field. It do
not, however, take account of the fluctuating componen
polarization associated with absorption losses. In this pa
we investigate the changes that arise within the Claus
Mossotti model when this fluctuating component is include

Recently, a scheme for quantizing the electromagn
field in an arbitrary linear dielectric medium has been prov
to be consistent with QED@23#. It relies on the introduction
of an appropriately chosen infinite set of basic-field operat
@24–26# and their connection to electromagnetic-field ope
tors via the classical Green function. This scheme is a g
eralization of the approach introduced by Huttner and B
nett @27# based on a Hopfield model@28# of a homogeneous
dielectric using Fano diagonalization@29# to obtain collec-
tive ~polariton! excitations of the electromagnetic field, th
polarization, and the reservoir. In what follows we use t
scheme to derive, within the virtual-cavity model, a loc
field that contains the full polarization noise in an absorb
medium. In particular, we show that the resulting sponta
ous decay rate contains, as expected, transverse-field-as
nonradiative contributions, such as dipole-dipole ene
transfer between the atom and the medium via virtual~trans-
verse! photon exchange, which are fully omitted in Eq.~2!.

The paper is organized as follows. After a short review
the quantization scheme in Sec. II we introduce the quan
local-field correction in Sec. III. We then apply the schem
to the calculation of the spontaneous decay rate in Sec
followed by some concluding remarks in Sec. V. Details
the calculation will be given in the Appendix.

II. QUANTIZATION SCHEME

We begin with a brief review of the quantization schem
used throughout the paper. Further details can be foun
@23–25#. The spectral decomposition of the electric- a
magnetic-field operators is given by
1590 ©1999 The American Physical Society
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Ê~r !5E
0

`

dvÊ~r ,v!1H.c., ~3!

B̂~r !5E
0

`

dvB̂~r ,v!1H.c., ~4!

whereÊ(r ,v) and B̂(r ,v) satisfy Maxwell’s equations

“•B̂~r ,v!50, ~5!

“•@e0e~r ,v!Ê~r ,v!#5 r̂~r ,v!, ~6!

“3Ê~r ,v!5 ivB̂~r ,v!, ~7!

“3B̂~r ,v!52 i
v

c2
e~r ,v!Ê~r ,v!1m0ĵ ~r ,v! ~8!

@e(r ,v)5eR(r ,v)1 i e I(r ,v) is the permittivity#. The opera-
tor noise current densityĵ (r ,v) and the operator nois
charge densityr̂(r ,v), which had to be introduced in orde
to be consistent with the dissipation-fluctuation theorem,
related to the noise polarizationP̂N(r ,v) as

ĵ ~r ,v!52 ivP̂N~r ,v!, ~9!

r̂~r ,v!52“•P̂N~r ,v! ~10!

and satisfy the equation of continuity

“• ĵ ~r ,v!5 ivr̂~r ,v!. ~11!

The operator noise current densityĵ (r ,v) is obtained from a
bosonic vector fieldf̂(r ,v),

ĵ ~r ,v!5vA\e0

p
e I~r ,v! f̂~r ,v!, ~12!

@ f̂ i~r ,v!, f̂ j
†~r 8,v8!#5d i j d~r2r 8!d~v2v8!, ~13!

@ f̂ i~r ,v!, f̂ j~r 8,v8!#5@ f̂ i
†~r ,v!, f̂ j

†~r 8,v8!#50. ~14!

The quantization scheme implies that all electromagne
field operators can be expressed in terms of the basic fi
f̂(r ,v), which may be regarded as being the collective ex
tations of the electromagnetic field, the medium polarizati
and the reservoir. For example, the electric-field opera
Ê(r ,v) satisfies the partial differential equation

“3“3Ê~r ,v!2
v2

c2
e~r ,v!Ê~r ,v!5 im0v ĵ ~r ,v!,

~15!

such that

Êi~r ,v!5 im0E d3svGi j ~r ,s,v! ĵ j~s,v!, ~16!
re

-
ds
i-
,
r

whereGi j (r ,s,v) is the tensor-valued Green function of th
classical problem. It can then be proved@23# that this quan-
tization scheme is fully consistent with QED for arbitra
linear dielectrics.

III. QUANTUM LOCAL-FIELD CORRECTION

If we think of an atom located at some space pointrA
inside the dielectric, then the macroscopic field of Sec
will not, in fact, be the field felt by the atom. From classic
electrodynamics we know that we should introduce wha
called the local field at the location of the atom. There a
essentially two ways of introducing the local field. First, o
could cut out areal cavity @7# ~most commonly a sphere!
around the atom and calculate, in our scheme, the elec
field inside the cavity according to Eq.~16!. This would lead
us to introduce the electric-field operatorÊloc(r ,v) by the
relation

Êi
loc~r ,v!5 im0E d3svGi j

inh~r ,s,v! ĵ j~s,v!, ~17!

where Gi j
inh(r ,s,v) is the Green function of the classica

problem of an inhomogeneous medium that consists of
real cavity surrounded by the dielectric in which the atom
embedded.

To avoid the solution of the inhomogeneous proble
commonly a simplervirtual-cavity model of Clausius-
Mosotti-type is used. In this model the local field is related
the macroscopic field as@30#

Eloc~r ,v!5E~r ,v!1
1

3e0
P~r ,v!, ~18!

whereE(r ,v) can be obtained according Eq.~16!, with the
Green function for the bulk-medium problem. In classic
optics, the polarization in the zero-temperature limit can
given by

P~r ,v!5e0@e~r ,v!21#E~r ,v!, ~19!

from which it follows that

Eloc~r ,v!5 1
3 @e~r ,v!12#E~r ,v!. ~20!

This local field is just the field used for the derivation of th
rate formula~2!. Obviously, Eq.~19! cannot be valid as an
operator equation in quantum optics, because of the non
nishing quantum noise even in the zero-temperature limit
order to obtain a canonical operator equation, we have to
the full polarization operator

P̂~r ,v!5e0@e~r ,v!21#Ê~r ,v!1P̂N~r ,v!, ~21!

where

P̂N~r ,v!5 iA\e0

p
e I~r ,v! f̂~r ,v! ~22!

is the fluctuating part of the polarization which, according
the dissipation-fluctuation theorem, is unavoidably co
nected with the losses in the medium. Whereas in class
optics the noise polarization typically represents therm
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1592 PRA 60SCHEEL, KNÖLL, WELSCH, AND BARNETT
noise, in quantum optics it has necessarily a vacuum n
component. Equation~22! directly follows, e.g., from Eqs.
~8! and~9! ~for a microscopic consideration, see@27#!. Com-
bining Eqs.~18! and ~21!, we derive

Êloc~r ,v!5
1

3
@e~r ,v!12#Ê~r ,v!1

1

3e0
P̂N~r ,v!. ~23!

In order to prove the consistency of the field given in E
~23! with QED, we compute the~equal-time! commutation
relation between the fundamental local fieldsÊloc(r ) and
B̂loc(r ). For this purpose we note that electric and magne
fields must be necessarily related to each other by Maxwe
equation~7!, and hence

B̂loc~r ,v!5“3P 1

iv
Êloc~r ,v!, ~24!

where the symbolP stands for the principal part. Recallin
Eqs.~3! and ~4!, the local-field operators in real space are

Êloc~r !5E
0

`

dvÊloc~r ,v!1H.c. ~25!

and

B̂loc~r !5E
0

`

dvB̂loc~r ,v!1H.c.. ~26!

Expressing the local electric and magnetic fields in terms
the basic fieldsf̂(r ,v), from the calculation given in the
Appendix it is found that

@Êi
loc~r !,B̂k

loc~r 8!#

52
i\

e0
e ikl] l

rd~r2r 8!$11 1
9 @e~r ,0!21#%,

~27!

and it is easily seen that

@Êi
loc~r !,Êk

loc~r 8!#5@B̂i
loc~r !,B̂k

loc~r 8!#50. ~28!

The result reveals that the~overall! local-electric-field opera-
tor ~23! and the associated magnetic-field operator~24! can
be regarded as being consistent with quantum theory,
vided that the~real! static permittivityeS(r )5e(r ,0) satisfies
the condition

eS~r !

10
!1. ~29!

Equivalently, the static refractive indexnS(r )5AeS(r ) must
be small compared withA10'3.16.

It should be noted that a term proportional to thed func-
tion d(v) can be added to the right-hand side of Eq.~24! in
order to recover Ampe`re’s law when the equation is multi
plied by v. Obviously, this ambiguity reflects the fact th
the static magnetic field cannot be inferred from the sta
electric field. From a simple calculation it can be shown t
such a term does not change the commutation relation~27!.
se
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Since it is only relevant at zero frequency, it does not p
any role in the calculation of the decay at transition fr
quencyvA .

In order to take into account a possible deviation of t
symmetry of the material from cubic symmetry, a structu
constants can be included in Eq.~18! such that@31#

Eloc~r ,v!5E~r ,v!1
1

e0
F1

3
1sGP~r ,v!. ~30!

Regarding this equation as an operator equation withP̂(r ,v)
from Eq. ~21! and following the line in the Appendix, it can
be seen that Eq.~27! changes to

@Êi
loc~r !,B̂k

loc~r 8!#52
i\

e0
e ikl] l

rd~r2r 8!

3H 11
a2

9
@e~r ,0!21#J , ~31!

where the parametera is related tos by

a5113s. ~32!

Thus, consistency with quantum theory is achieved, if
condition

eS~r !!9a2211 ~33!

is fulfilled.

IV. SPONTANEOUS DECAY RATE

The spontaneous decay rate of a~two-level! atom with
transition frequencyvA placed at pointrA is given by

G5
2p

\2 E dvm i^0uÊi
loc~r ,v!Êj

loc†~rA ,vA!u0&m j ~34!

(r˜rA). In what follows we consider a homogeneous bu
material, i.e.,e(r ,v)[e(v), and assume that the inequali
~29! is fulfilled. Using Eq. ~23!, the vacuum expectation
value of the local electric-field operators in the limitr˜rA
can be written as

^0uÊi
loc~r ,v!Êj

loc†~rA ,v8!u0&

5
e~v!12

3

e* ~v8!12

3
^0uÊi~r ,v!Êj

†~rA ,v8!u0&

1
1

9e0
2 ^0uP̂i

N~r ,v!P̂j
N†~rA ,v8!u0&

1
e~v!12

9e0
^0uÊi~r ,v!P̂j

N†~rA ,v8!u0&

1
e* ~v8!12

9e0
^0uP̂i

N~r ,v!Êj
†~rA ,v8!u0&, ~35!

whereÊ(r ,v) andP̂N(r ,v) are given by Eqs.~16! and~22!,
respectively. The Green functionGi j (r ,rA ,vA) for the bulk
material in the limitr˜rA has the form@10#



W
t

pr
tw

sm
-
e

te

e

th

of
rm
e of
ow
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Gi j ~r,vA!5Gi j
'~r,vA!1Gi j

i ~r,vA! ~36!

(r5r2rA), where

Gi j
'~r,vA!5

1

4p H r ir j

2r3
1

d i j

2r
1

2ivA

3c

3@h~vA!1 ik~vA!#d i j J 1O~r! ~37!

and

Gi j
i ~r,vA!52

c2

4pvA
2e~vA!

F4p

3
d i j d~r!

1S d i j 2
3r ir j

r2 D 1

r3G ~38!

are the transverse and longitudinal parts, respectively.
see that the real part of the transverse Green function and
longitudinal part itself diverge asr˜0, reflecting the fact
that a macroscopic approach is valid only to some appro
ately fixed scale which exceeds the average distance of
atoms in the dielectric. Following@10#, the position-
dependent terms in the decay rate are averaged over a
sphere of radiusR, which defines the virtual cavity. For sim
plicity we will take the average with respect to the distancr
with uru<R.

The first term on the right-hand side in Eq.~35! gives the
contribution to the decay rate with the classically correc
local field @8,10#,

Gcl5Gcl
'1Gcl

i 5G0Ue~vA!12

3 U2

3Fh~vA!1
3e I~vA!

2ue~vA!u2
S c

vARD 3G , ~39!

with the transverse rateGcl
' being given in Eq.~2!. The sec-

ond term in Eq.~35! is purely a contribution of the nois
polarization field and is given by

1

9e0
2 ^0uP̂i

N~r ,v!P̂j
N†~rA ,v8!u0&

5
\e I~v!

9pe0
d i j d~r!d~v2v8!. ~40!

The cross terms mixing the macroscopic electric field and
noise polarization field give rise to the contribution
e
he

i-
o

all

d

e

e~v!12

9e0
^0uÊi~r ,v!P̂j

N†~rA ,v8!u0&

1
e* ~v8!12

9e0
^0uP̂i

N~r ,v!Êj
†~rA ,v8!u0&

5
2v2\

3pc2e0

e I~v!ReFe~v!12

3
Gi j ~r,v!Gd~v2v8!.

~41!

Hence, the total decay rate reads

G5Gcl1
2m im j

9\e0
e I~vA!d i j d~r!̄

1
4vA

2m im j

3\e0c2
e I~vA!ReFe~vA!12

3
Gi j ~r,vA!̄G . ~42!

Equation~42! is remarkable in the sense that inclusion
the polarization noise in the local field gives rise to a te
that only results from that noise and leads to a dependenc
the decay rate on the real part of the Green function. We n
average thed tensor

d i j d~r!5d i j
'~r!1d i j

i ~r! ~43!

and the Green tensor~36! over a small sphere
@ uRAe(vA)vA /cu!1# and obtain

d i j
'~r!
¯

52d i j
i ~r!
¯

5
1

2pR3
d i j , ~44!

ReGi j
'~r,vA!
¯

5F 1

4pR
2

vAk~vA!

6pc Gd i j , ~45!

ReGi j
i ~r,vA!
¯

52
c2eR~vA!

4pvA
2 ue~vA!u2R3

d i j , ~46!

ImGi j
'~r,vA!
¯

5
vAh~vA!

6pc
d i j , ~47!

ImGi j
i ~r,vA!
¯

5
c2e I~vA!

4pvA
2 ue~vA!u2R3

d i j , ~48!

and Eq.~42! can be given in the form of Eq.~1!, whereG'

andG i read as

G'5G0H h~vA!FUe~vA!12

3 U2

2
2e I

2~vA!

9 G
2e I~vA!@eR~vA!12#F2k~vA!

9
2

1

3 S c

vARD G
1

e I~vA!

3 S c

vARD 3J ~49!

and

G i5G0

2e I~vA!

3ue~vA!u2 S c

vARD 3

. ~50!
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The modifications near a medium resonance are cl
Note that owing to the quantum local-field correction, t
unspecified parameterR also enters into the transverse dec
rate. In order to compare our canonical result with that
tained using the classically corrected local field, we use,
comparison, the same Lorentz model for the permittivity o
single-resonance medium as in@8,10#,

e~v!511
~0.46vT!2

vT
22v22 igv

, ~51!

wherevT is the resonance frequency of the medium. Figu
1–3 show the transverse decay rateG' with and without
quantum local-field corrections as a function of the atom
transition frequencyvA for different values of the damping
parameter of the medium,g, and the parameter

r 5
lT

R
. ~52!

FIG. 1. The~normalized! transverse decay rateG'/G0 is shown
as a function of the transition frequencyvA for g/vT50.01 andr
510 ~dashed curve!, r 520 ~dot-dashed curve!, and r 530 ~dotted
curve!. For comparison, the rate without quantum local-field corr
tion @8# is shown ~solid curve!. Since for r 510 ~dashed curve!
G'/G0 becomes negative, this case must be excluded from con
eration~cf. Fig. 4!.

FIG. 2. The~normalized! transverse decay rateG'/G0 is shown
as a function of the transition frequencyvA for g/vT50.05 andr
510 ~dashed curve!, r 520 ~dot-dashed curve!, and r 530 ~dotted
curve!. For comparison, the rate without quantum local-field corr
tion @8# is shown~solid curve!.
r.

-
r

a

s

c

First of all, for smallr, i.e., large virtual-cavity radiusR, one
observes little reduction of spontaneous decay for frequ
ciesvA just above the resonance frequencyvT . Its possible
applications in semiconductor physics and solid-state phy
has already been discussed@32#.

The greatest difference between the quantum mech
cally and classically corrected transverse decay ratesG' and
Gcl

' , respectively, arises near the medium resonance wheg
is small. Both the imaginary part of the permittivity and th
real part can take very large values forvA'vT and in con-
sequenceG' can drastically change compared withGcl

' . Ob-
viously, in the resonance regime the noise polarization es
tially contributes to the local field and therefore strong
influencesG'. For small values ofg both qualitative and
quantitative differences between the ratesG' and Gcl

' are
observed~Fig. 1!. With increasing value ofg the two rates
become less different from each other, the changes b
quantitative rather than qualitative~compare Fig. 1 with Fig.
3!.

In contrast toGcl
' , the rateG' sensitively depends onR,

because it does not only contain a radius-independent t
but also terms proportional toR21 and R23. The radius-
independent term may be interpreted as a far-field contr
tion and accordingly the terms proportional toR21 andR23

as near-field contributions. Obviously, both spontane
emission and nonradiative decay via virtual photon excha
between atom and medium contribute to the decay rateG'.
In particular the term proportional toR23 can be regarded a
being the rate of dipole-dipole energy transfer from the at
to the medium via photon emission and reabsorption. T
result corresponds, in a sense, to that derived in@11# from the
microscopic approach to the problem of resonant dipo
dipole energy transfer in a molecule crystal@33#.

To fix the value ofR that is undetermined in the Clausiu
Mosotti model, experimental data could be used in princi
~for recent experiments on spontaneous emission, see,
@20–22#!. It should be pointed out that the rate formula~49!
gives an upper boundRmax, i.e., a lower boundr min for the
parameterr, because of the fact thatG' cannot be negative
As already mentioned, the limitr˜rA in Eq. ~34! cannot be
performed and averaging with respect tor2rA over a sphere

-

id-

-

FIG. 3. The~normalized! transverse decay rateG'/G0 is shown
as a function of the transition frequencyvA for g/vT50.1 andr
510 ~dashed curve!, r 520 ~dot-dashed curve!, and r 530 ~dotted
curve!. For comparison, the rate without quantum local-field corr
tion @8# is shown~solid curve!.
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PRA 60 1595QUANTUM LOCAL-FIELD CORRECTIONS AND . . .
of radius R can give negative values, ifR is not small
enough, because the~real! vacuum expectation value of th
operatorÊloc(r ,v)Êloc†(rA ,vA) is not necessarily positive
Figure 4 presentsr min as a function of the damping param
eterg. The curve was obtained numerically by requiring th
G' must not be negative over the whole frequency spectr

Figure 1 shows that for chosen~small! g and r ,r min
negative values ofG' may appear when the atomic transitio
frequencyvA approaches the medium resonance freque
vT and is in an interval that corresponds to the polari
band gap betweenvT and vL5@vT

21(0.46vT)2#1/2 in the
Hopfield model of a dielectric in the absence of absorpt
@28#. Obviously, in this regime of spontaneous decay a
fined model has to be used, at least in quantum theory.

From the standard derivation of the~classical! Clausius-
Mossotti local field~see, e.g.,@30#! the radiusR of the virtual
cavity should be larger than the average distance of
neighboring atoms but sufficiently smaller than the opti
wavelengthlA of the atomic transition. In terms of the pa
rameterr, the latter requirement means thatr @lT /lA . Pro-
vided that the damping parameterg is not too small, this is
in agreement with the condition that the parameterr should
not be smaller thanr min in Fig. 4.

V. CONCLUSIONS

Within the frame of the Clausius-Mossotti model we ha
studied the influence of the quantum local-field correct
arising from the noise polarization on the spontaneous de
rate of an excited atom embedded in an absorbing med
We have shown that inclusion in the local field of the no
polarization ensures that the local field fulfills the fundame
tal equal-time commutation relations of QED, provided th
the static refractive index of the medium does not exc
unity substantially. The calculated rates demonstrate tha
contribution of the noise polarization to the local field
extremely important and cannot be ignored. In particular
the resonance frequencies of the medium the transverse
cay rate can drastically change compared with the classic
corrected rate where the fluctuating component of the po
ization is omitted.

The decay rate crucially depends on the choice of

FIG. 4. The lower boundr min of the parameterr, Eq. ~52!, is
shown as a function of the damping parameterg/vT . The region
below the curve is the part where the~normalized! transverse decay
rateG'/G0 may take negative values and is therefore forbidden
t
.
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radius of the virtual cavity. It is worth noting that inclusio
in the local field of the noise polarization leads to a radiu
dependent transverse decay rate that describes both rad
and nonradiative decay. In particular, from the depende
on the radius of the transverse rate a second condition
validity can be imposed on the underlying model. In order
obtain for any transition frequency a positive transverse
cay rate, the cavity radius must not exceed some up
bound.

The Clausius-Mossotti virtual-cavity model is common
based on the assumptions that the near field that arises
the atoms inside the cavity averages to zero and the fi
outside the cavity is not modified by the presence of
cavity. In quantum optics these assumptions may fail,
cause of the modification of the vacuum noise associa
with these effects, which may be an explanation for the
strictions found. Further, from the Power-Zienau-Wooll
transformation, it is suggested that~in dipole approximation!
only the transverse electromagnetic field contributes to
decay rate via spontaneous emission and nonradiative en
transfer associated with virtual photon exchange. Henc
might be expected that there is no longitudinal decay r
and the nonradiative decay can fully be obtained from
interaction of the atom with the transverse field. In order
clarify these points and extend the range of validity of t
theory, a more refined concept seems to be necessary.
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APPENDIX: COMMUTATION RELATIONS
OF THE LOCAL-FIELD OPERATORS

From Eq. ~23! together with Eq.~22!, the local electric
field operator reads, in Fourier space

Êloc~r ,v!5
e~r ,v!12

3
Ê~r ,v!1

i

3e0
A\e0

p
e I~r ,v! f̂~r ,v!.

~A1!

Combining Eqs.~24! and~A1!, we obtain, for the local mag
netic field in Fourier space,

B̂loc~r 8,v8!5“3FP 1

iv8
Ê~r 8,v8!

e~r 8,v8!12

3

1
1

3e0
P 1

v8
A\e0

p
e I~r 8,v8! f̂~r 8,v8!G .

~A2!

Recalling Eqs.~25! and ~26!, from Eqs.~A1! and ~A2! to-
gether with Eq.~16! the local electric and magnetic fields a
given by
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Êi
loc~r !5A\e0

p E
0

`

dvE d3sF e~r ,v!12

3e0

iv2

c2

3Ae I~s,v!Gi j ~r ,s,v! f̂ j~s,v!1H.c.G1
1

3e0
A\e0

p E
0

`

dv@ iAe I~r ,v! f̂ i~r ,v!1H.c.#, ~A3!

B̂k
loc~r 8!5eklm] l

r 8HA\e0

p
PE

0

`

dv8E d3s8F e~r 8,v8!12

3e0

v8

c2
Ae I~s8,v8!Gmn~r 8,s8,v8! f̂ n~s8,v8!1H.c.G

1
1

3e0
A\e0

p
PE

0

`dv8

v8
@Ae I~r 8,v8! f̂ m~r 8,v8!1H.c.#J . ~A4!

Thus, the~equal-time! commutator between the local electric and magnetic fields can be given by

@Êi
loc~r !,B̂k

loc~r 8!#5
\e0

p
eklm] l

r 8HPE
0

`

dvE d3sF iv3

c4

e~r ,v!12

3e0

e* ~r 8,v!12

3e0
e I~s,v!Gi j ~r ,s,v!Gm j* ~r 8,s,v!2c.c.G

1
1

3e0
PE

0

`

dvF e* ~r 8,v!12

3e0

iv

c2
e I~r ,v!Gmi* ~r 8,r ,v!2c.c.G

1
1

3e0
PE

0

`

dvF e~r ,v!12

3e0

iv

c2
e I~r 8,v!Gim~r ,r 8,v!2c.c.G1

2i

9e0
2
PE

0

`dv

v
@e I~r ,v!d imd~r2r 8!#J .

~A5!
re-
The remaining spatial integral in Eq.~A5! can be calculated
using the symmetry relation

Gi j ~r ,r 8,v!5Gji ~r 8,r ,v!, ~A6!

the crossing relation

Gi j ~r ,r 8,v!5Gi j* ~r ,r 8,2v!, ~A7!

and the integral relation@25#

v2

c2 E d3se I~s,v!Gli ~s,r ,v!Gl j* ~s,r 8,v!

5
1

2i
@Gji ~r 8,r ,v!2Gi j* ~r ,r 8,v!#. ~A8!

Straightforward calculation yields

@Êi
loc~r !,B̂k

loc~r 8!#5
\

pe0
eklm] l

r 8@ I im
(1)~r ,r 8!1I im

(2)~r ,r 8!#,

~A9!

where
I im
(1)~r ,r 8!5PE

2`

`

dv
v

c2
Gim~r ,r 8,v!H 11 1

3 @e~r ,v!21#

1
1

3
@e~r 8,v!21#1 1

9 @e~r ,v!21#

3@e~r 8,v!21#J , ~A10!

I im
(2)~r ,r 8!5PE

2`

`

dv
e I~r ,v!

v
d imd~r2r 8!. ~A11!

Closing the integration contour in the upper complex f
quency half-plane and following the line in@23#, we derive
that

I im
(1)~r ,r 8!5 ipd imd~r2r 8!. ~A12!

Recalling the Kramers-Kronig relations, thev integration in
Eq. ~A11! is easily performed to obtain

I im
(2)~r ,r 8!5p@eR~r ,0!21#d imd~r2r 8!

5p@e~r ,0!21#d imd~r2r 8!. ~A13!

Combining Eqs.~A9!, ~A12!, and~A13! then yields the com-
mutation relation~27!.
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