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Communication channels secured from eavesdropping via transmission of photonic Bell states

Kaoru Shimizu and Nobuyuki Imoto
NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan

~Received 24 July 1998; revised manuscript received 13 November 1998!

This paper proposes a quantum communication scheme for sending a definite binary sequence while con-
firming the security of the transmission. The scheme is very suitable for sending a ciphertext in a secret-key
cryptosystem so that we can detect any eavesdropper who attempts to decipher the key. Thus we can continue
to use a secret key unless we detect eavesdropping and the security of a key that is used repeatedly can be
enhanced to the level of one-time-pad cryptography. In our scheme, a pair of entangled photon twins is
employed as a bit carrier which is encoded in a two-term superposition of four Bell states. Different bases are
employed for encoding the binary sequence of a ciphertext and a random test bit. The photon twins are
measured with a Bell state analyzer and any bit can be decoded from the resultant Bell state when the receiver
is later notified of the coding basis through a classical channel. By opening the positions and the values of test
bits, ciphertext can be read and eavesdropping is simultaneously detected.@S1050-2947~99!03107-8#

PACS number~s!: 03.67.Lx, 03.65.Bz, 42.50.Ar, 42.79.Ta
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I. INTRODUCTION

The security of any secret-key cryptosystem relies on
secrecy of the key. The key, therefore, must be distribu
between legitimate users with complete conviction that
one else knows it. Quantum key distribution~QKD! is a
methodology designed to meet this requirement@1–6#.
Heisenberg’s uncertainty principle assures security of
shared key in QKD.

Security can be guaranteed for one-time-pad use i
secret-key cryptosystem@7#. However, repeated use of th
same key necessarily degrades the security. This is bec
Eve, an eavesdropper, can intercept and resend the ciphe
without being detected by the legitimate users. She may
able to decipher the key by comparing different cipherte
ciphered by the same key and finally read all plaintexts
the key @7#. Thus repeated use of the key facilitates su
kinds of attack and the security of the key is not guarante
In the same way, ciphering a lengthy plaintext by means o
short key is also insecure. Security degradation is a ser
problem and is attributed to the use of classical commun
tion channels for sending any ciphertext. This suggests
possibility of avoiding the problem by using a quantu
channel instead of a classical one. Almost all protocols p
posed to date for QKD, however, cannot be employed
sending any definite binary sequence which contains me
ingful information.

For example, in QKD with the four polarization states
a single photon@the Bennett-Brassard 1984~BB84! protocol#
@2#, Alice, the sender, encodes a bit of information by cho
ing a coding basis and Bob, the receiver, selects a meas
ment basis at random. If his measurement basis coinc
with her coding basis, they pick up the corresponding p
tons. Then they check some test photons to see if they h
any bit errors; if none are detected they can finally sh
random binary numbers as a secret key. This means they
detect eavesdropping without fail but Bob cannot receiv
definite binary sequence prepared by Alice. This is beca
the received bit value is meaningless if the measurement
sis selected by Bob is different from the coding basis a
PRA 601050-2947/99/60~1!/157~10!/$15.00
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thus approximately half the received bit values are wro
@2,5,6#.

Provided that the original BB84 protocol can be modifi
so that Bob can wait and delay his measurement of the
larization state until Alice unveils her polarization codin
basis, he can always obtain the correct bit value and an e
free transmission of the bit value can be expected. This
vorable theoretical assumption, however, cannot be app
to implementation in general and we should consider ot
methods of quantum communication based on one by
measurement of the transmitted carrier particles in the w
used for conventional QKD schemes@1–6#.

The use of orthogonal-state quantum cryptography, wh
has been proposed recently@8#, appears to meet our require
ments. However, bit information encoded by Alice is inev
tably destroyed when Eve, an eavesdropper, intercepts
measures a photon. Bob, therefore, cannot expect to ob
the correct information even if he receives a photon a
designated time. In general, the security of any QKD sche
relies on the unavoidable bit error caused by eavesdropp
Therefore, it appears to be a contradiction to send a defi
binary sequence while confirming transmission security
employing secure quantum channels which are based
Heisenberg’s uncertainty principle.

This paper, however, shows theoretically that the use
polarization-entangled photon twins@9–12# instead of a
single photon makes it possible to send a definite bin
sequence, or intelligible information, while confirming th
security of the transmission. Moreover, the receiver can
pect to obtain the binary sequence without transmission
ror, despite it being intercepted and resent by an eavesd
per. Our proposed communication scheme, therefore,
cope with the problem of degradation in key security in
secret-key cryptosystem. As long as the legitimate users
tect no evidence of eavesdropping in the ciphertexts, t
can guarantee the secrecy of the plaintext with an arbitr
level of security and can use the key repeatedly. When t
discover evidence of interception, they can change the k
An eavesdropper, therefore, cannot obtain two or more
phertexts ciphered in the same key. In this way, the secu
157 ©1999 The American Physical Society
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of a cryptosystem with a repeatedly used key is enhance
the level of a one-time-pad system.

Section II explains some basic features of our propo
quantum channel which employs polarization-entangled p
ton twins as a bit carrier. In Sec. III we describe in det
how our proposed quantum channel can be applied to cip
text transmission. We estimate the failure probability wh
detecting eavesdropping and discuss a method for redu
this probability. In Sec. IV, we describe a photonic impl
mentation of our quantum channel. We also discuss the
sibility of an experimental demonstration which uses
Hong-Ou-Mandel two-photon interferometer.

II. COMMUNICATION VIA TRANSMISSION OF BELL
STATES

In our proposed communication scheme, informat
transmission is separated into two steps. First, Alice enco
a bit of information on a quantum state of polarizatio
entangled photon twins and sends them to Bob. He meas
them by using an appropriate basis and obtains partial in
mation concerning the quantum state. Later Alice notifi
Bob of the additional information which Bob needs to det
mine the quantum state.

A. Preparation of quantum states and information encoding

Alice encodes a bit of information on an entangled qu
tum state of photon twins. Here we should employ the se
four Bell states$uP&,uQ&,uR&,uS&% @12–14# as a normalized
orthonormal basis for expressing purely entangled quan
states of photon twins. The four Bell states are

uP&[F 1
0
0
0
G[uC1&5

1

&
~ uH& IuV& II1uV& IuH& II), ~2.1!

uQ&[F 0
1
0
0
G[ i uC2&5 i

1

&
~ uH& IuV& II2uV& IuH& II),

~2.2!

uR&[F 0
0
1
0
G[ i uF1&5 i

1

&
~ uH& IuH& II1uV& IuV& II),

~2.3!

and

uS&[F 0
0
0
1
G[uF2&5

1

&
~ uH& IuH& II2uV& IuV& II), ~2.4!

whereH andV, respectively, mean the horizontal and ver
cal linear polarization states and the subscripts I and II m
entangled photons I and II. Additionalp/2 phase shifts for
the statesuC2& anduF1& very conveniently explain the stat
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transformations of the photon twins. We assign fou
dimensional unit vectors for each of the four Bell states
shown in Eqs.~2.1!–~2.4!. We can transform each state in
another state by operating an appropriate spinor rotation
one photon as detailed in Sec. IV.

Alice does not send a solitary Bell state directly but p
pares a quantum state given by a two-term superpositio
the four Bell states. These are expressed as follows:

uA1&[
1

&
~ uP&1uQ&)5

1

& F 1
1
0
0
G , ~2.5!

uB1&[
1

&
~ uR&1uS&)5

1

& F 0
0
1
1
G , ~2.6!

uC1&[
1

&
~ uP&1uR&)5

1

& F 1
0
1
0
G , ~2.7!

and

uD1&[
1

&
~ uQ&1uS&)5

1

& F 0
1
0
1
G . ~2.8!

The statesuA1& and uB1& constitute a set of orthonorma
quantum states as well as the statesuC1& and uD1& making
up another set. However, two quantum states belonging
the different sets are nonorthonormal. Therefore both of
two sets can be regarded as two different coding ba
which are analogous to the linear and circular polarizat
bases for a single photon. Here we define the two sets
$uA1&,uB1&% and $uC1&,uD1&% as theAB-coding set and
CD-coding set, respectively.

Alice, the information sender, selects one of the two co
ing sets in accordance with the following rules when s
encodes a bit of information on photon twins:

uA1&[0 and uB1&[1 for AB-coding set

and

uC1&[0 and uD1&[1 for CD-coding set.

Alice can prepare each state ofuA1&, uB1&, uC1&, anduD1&
by operating an appropriate one-photon spinor rotation
any Bell state. These operations are detailed in Sec. IV.

The AB-coding set can be extended to a normalized
thonormal basis of a four-dimensional Hilbert space by
troducing two additional quantum states:

uA2&[
1

&
~ uP&2uQ&)5

1

& F 1
21

0
0
G ~2.9!
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and

uB2&[
1

&
~ uR&2uS&)5

1

& F 0
0
1

21
G . ~2.10!

Any two elements of$uA1&,uB1&,uA2&,uB2&% are orthonor-
mal to each other. In a similar manne
$uC1&,uD1&,uC2&,uD2&% makes up another normalized o
thonormal basis, where

uC2&[
1

&
~ uP&2uR&)5

1

& F 1
0

21
0
G ~2.11!

and

uD2&[
1

&
~ uQ&2uS&)5

1

& F 0
1
0

21
G . ~2.12!

The inner product for any quantum states belonging to
two different bases is12 or 21

2. For example,uC1& anduD1&
can be expanded as follows by using t
$uA1&,uB1&,uA2&,uB2&% basis:

uC1&5 1
2 ~ uA1&1uA2&1uB1&1uB2&) ~2.13!

and

uD1&5 1
2 ~ uA1&2uA2&1uB1&2uB2&). ~2.14!

Therefore Heisenberg’s uncertainty principle ensures
there is a non-orthonormal relation between theAB- and
CD-coding bases which are employed for encoding a bi
information. The use of the two different orthonormal bas
$uA1&,uB1&,uA2&,uB2&% and $uC1&,uD1&,uC2&,uD2&%
makes it possible for Alice to prepare quantum states wh
cannot be measured correctly without knowing the cod
basis.

Although the photon twins generally have an informati
capacity of 2 bits, Alice intentionally does not emplo
$uA2&,uB2&% or $uC2&,uD2&% to encode a second bit of in
formation. Encoding less information than the capacity
lows Bob to perform a new kind of quantum measureme
He can obtain partial information concerning the quant
state sent by Alice even though he knows nothing about
coding basis. Such a possibility is ruled out for a single p
ton. In the next subsection, we describe the quantum m
surement executed by Bob.

B. Quantum state measurement and information decoding

Bob, the information receiver, performs a joint measu
ment of the photon twins by using an appropriate meas
ment basis. As long as he selects eith
$uA1&,uB1&,uA2&,uB2&% or $uC1&,uD1&,uC2&,uD2&% as the
basis, his measurement destroys the encoded informa
completely when his choice differs from that of Alice. As
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the QKD with the four polarization states, he cannot obt
any information about the quantum state without knowi
the coding basis and a received bit value is meaning
whenever his basis is wrong. Therefore it is impossible
transmit a definite binary sequence from Alice to Bo
though they can successfully share random numbers.

Bob, however, can adopt other kinds of measurem
bases. We now show that the use of a Bell state analy
makes it possible for Bob to read out partial informati
concerning the quantum state sent by Alice without know
the coding basis. Bell state analysis is a quantum meas
ment which employs the$uP&,uQ&,uR&,uS&% basis. Figure 1
summarizes the relationships between the quantum s
prepared by Alice and the Bell states obtained by B
Whenever he obtains the Bell stateuP&, he has the partia
information that Alice has sent either theuA1& or uC1& state.
No further information is available at this stage. However,
will be able to decode all the information related to the qua
tum state when Alice eventually notifies him of the selec
coding basis through a classical channel. Thus a bit of in
mation can finally be transmitted from Alice to Bob witho
bit errors even if Bob knows nothing about the coding ba
when he measures the photon twins.

As the Bell state analysis destroys any phase informa
between two Bell states, the two statesuA1& and uA2& are
indistinguishable. This means that the information capac
of the photon twins is limited to 1 bit provided Alice enable
Bob to obtain the partial information concerning the qua
tum state. In other words, one of the two internal freedoms
the bispinor is devoted to constructing a new kind of co
munication scheme and the other is employed as a bit car

From the viewpoint of information theory, one bit of cla
sical information is transmitted by the photon twins throu
a quantum channel as a first step. Bob can reject two qu
tum states from the initial four candidates ofuA1&, uB1&,
uC1&, anduD1& based on this information. Then another b
of classical information is transmitted later so that Bob c
finally determine the quantum state sent by Alice. Eve,
eavesdropper, can also read the first bit of information
intercepting the photon twins and measuring them with
Bell state analyzer. However, she cannot resend the quan
state correctly because she cannot obtain the second b
information until Alice opens it. If Eve tries to resenduA1&,
uB1&, uC1&, or uD1& to Bob, she has to guess but this resu

FIG. 1. Relationships between prepared quantum states an
sultant Bell states.
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in a bit error with a finite probability if her guess is wron
This is the basic device for detecting an eavesdropper in
proposed communication scheme. Eve can, however, re
her resultant Bell state directly to Bob and so can comple
escape detection as illustrated in Fig. 2. Our communica
scheme, therefore, must be improved to cope with this s
egy of Eve’s.

In the improved scheme, Bob operates an appropriate
tary transformationU at random, preceding the Bell sta
analysis. TheU transformation is defined by

U5
1

2 F 1 1 1 21

1 1 21 1

21 1 1 1

1 21 1 1

G . ~2.15!

The transformation does not change the quantum st
uA1&@5(1,1,0,0)/&# and uB1&@5(0,0,1,1)/&#:

UuA1&5uA1& and UuB1&5uB1&. ~2.16!

The statesuC1&@5(1,0,1,0)/&# and uD1&@5(0,1,0,1)/&#
are transformed as follows:

UuC1&5
1

& F 1
0
0
1
G5

1

&
~ uP&1uS&) ~2.17!

and

UuD1&5
1

& F 0
1
1
0
G5

1

&
~ uQ&1uR&). ~2.18!

Figure 3 summarizes the relationships between the quan
states prepared by Alice and the resultant Bell states a
operating theU transformation. Although the positions ofuR&
anduS& are the reverse of these in Fig. 1, Bob can read out
encoded information with additional information notifyin
him of the coding basis. Thus the transmission of the inf
mation suffers no disturbance from the random operation
the U transformation.

By contrast, theU transformation changes any solita
Bell state into a four-term superposition of the four B
states with an equal probability amplitude of1

2 as follows:

UuP&5 1
2 ~ uP&1uQ&2uR&1uS&), ~2.19!

UuQ&5 1
2 ~ uP&1uQ&1uR&2uS&), ~2.20!

FIG. 2. Eavesdropping strategy of resending a resultant
state.
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UuR&5 1
2 ~ uP&2uQ&1uR&1uS&), ~2.21!

and

UuS&5 1
2 ~2uP&1uQ&1uR&1uS&). ~2.22!

Therefore Eve must abandon her strategy of resending a
sultant Bell state because it will lead to a bit error with
finite probability if Bob operates theU transformation. For
example, the above procedure can be explained as follo
~i! Alice sendsuC1&, ~ii ! Eve intercepts the photon twins an
obtains the Bell stateuP&, ~iii ! Eve resendsuP& to Bob, ~iv!
Bob operates theU transformation and obtains the Bell sta
uQ& or uR& with a probability of 1

2, ~v! Alice notifies Bob that
she has sentuC1&, and ~vi! Bob can detect eavesdroppin
because the transformed stateUuC1& does not contain the
Bell statesuQ& and uR&. Thus our device for detecting a
eavesdropper works well by introducing the random ope
tion of U preceding the Bell state analysis. We will descri
in detail how to discover eavesdropping in the next secti

The Bell state analysis after theU transformation is
equivalent to quantum measurement with t
$uP8&,uQ8&,uR8&,uS8&% basis. The basis is composed of

uP8&5U21uP&5
1

2 F 1
1
1

21
G , uQ8&5U21uQ&5

1

2 F 1
1

21
1
G ,

~2.23!

uR8&5U21uR&5
1

2 F 21
1
1
1
G , uS8&5U21uS&5

1

2 F 1
21

1
1
G .

These are completely nonorthogonal with t
$uP&,uQ&,uR&,uS&% basis given by Eqs.~2.1!–~2.4!. Any
quantum state prepared by Alice can also be expressed
two-term superposition by use of the$uP8&,uQ8&,uR8&,uS8&%
basis;

ll

FIG. 3. Relationships between prepared quantum states an
sultant Bell states~with U transformation!.
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uA1&5
1

&
~ uP8&1uQ8&), uB1&5

1

&
~ uR8&1uS8&),

~2.24!

uC1&5
1

&
~ uP8&1uS8&), uD1&5

1

&
~ uQ8&1uR8&).

We can derive Eqs.~2.24! by operatingU21 on both sides of
Eqs.~2.16!–~2.18! and Eq.~2.24! means that theU transfor-
mation does not disturb information transmission at all.

Alice adopts a pair of different orthonormal bas
$uA1&,uB1&,uA2&,uB2&% and $uC1&,uD1&,uC2&,uD2&% for
preparing quantum states which cannot be measured
rectly without knowing the coding bases. By contrast, B
employs another pair of orthonormal bas
$uP&,uQ&,uR&,uS&% and$uP8&,uQ8&,uR8&,uS8&% for measuring
them. This asymmetrical quantum state arrangement betw
the coding and measurement bases is a necessary con
for our communication scheme and we can satisfy this c
dition by using polarization-entangled photon twins as a
carrier. Our proposed communication scheme is based on
two different kinds of uncertainty relation in the fou
dimensional Hilbert space of the photon twins.

The use of theU transformation makes it impossible fo
Alice to prepareuA2&, uB2&, uC2&, anduD2&. If the U trans-
formation is operated by Bob for these states, the resul
Bell states are indistinguishable from those foruB1&,
uA1&, UuD1&, andUuC1& as shown in the following:

UuA2&52
1

&
~ uR&2uS&), UuB2&5

1

&
~ uP&2uQ&),

~2.25!

UuC2&5
1

&
~ uQ&2uR&), UuD2&5

1

&
~ uP&2uS&),

respectively. Bob cannot identify bit values.

III. COMMUNICATION PROTOCOL
FOR SENDING A CIPHERTEXT

Here we describe how to use our quantum channel
plained in the preceding section to send an intelligible bin
sequence in a secure manner. In particular, we focus o
application to ciphertext transmission in a secret key cryp
system to cope with the security degradation problem of
secret key. The degradation is caused by a series of unde
able interceptions by an eavesdropper who attempts to d
pher the key. If the legitimate users can detect eavesdrop
for a ciphertext, they can avoid any risk of key deciph
ment.

A. Basic protocol

A ciphertext is given by a lengthy definite binary s
quence and we define each bit as an intelligible bit. By c
trast, we introduce a test bit as a binary random num
which is employed for detecting eavesdroppers. Alice,
sender, inserts some test bits into the intelligible bit seque
at random and prepares a mixed sequence of intelligible
test bits.
or-
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Before sending the mixed bit sequence, Alice and B
make a decision~possibly in public! thatAB- andCD-coding
bases will be employed for encoding the intelligible bit a
the test bit, respectively. The encoding scheme is as follo

uA1&[0 and uB1&[1 for an intelligible bit,

and

uC1&[0 and uD1&[1 for a test bit.

As a bit of information is encoded in a quantum state u
known to anyone else, nobody can decode the informa
and distinguish the intelligible and test bits until Alice u
veils the coding basis. The number of test bits depends
the degree of secrecy required@1# but it can be far smaller
than the number of intelligible bits.

Bob, the receiver, measures photon twins by setting ei
the $uP&,uQ&,uR&,uS&% or $uP8&,uQ8&,uR8&,uS8&% basis, given
by Eq. ~2.23!, at random. The latter arrangement is realiz
by operating theU transformation on the photon twins befo
Bell state analysis. Then Bob obtains a sequence of resu
Bell states but he cannot determine the quantum state
pared by Alice at this stage. Thus the first step via a quan
channel is accomplished.

After receiving all the photon twins, he asks Alice to u
veil all the test bit positions and she does so. These
notified through a classical public channel and this make
possible for Bob to distinguish intelligible bits from test bit
Then Bob can decode all the bit values by using the diagra
shown in Figs. 1 and 3. Thus he can read the definite bin
sequence from his sequenced Bell states and the informa
transmission is completed. Alice and Bob compare the
coded and decoded bit values for all the test bits so that t
can confirm security. If they detect no error in the test b
they can guarantee that security has been maintained.
flow of our basic protocol is shown schematically in Fig.

Here it should be noted that the linear and circular pol
ization bases for a single photon can be assigned to the
telligible and test bits, respectively, if we are allowed to e
ploy the delayed and correctly measured BB84 protocol@2#
as a quantum channel.

B. Eavesdropping and bit error per test bit

Intercept/resend strategy is a standard scheme for ea
dropping classical information. Hence we assume that E
also employs this strategy for eavesdropping informat

FIG. 4. Basic protocol for the secure transmission of ciphertex
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TABLE I. Bit error in a test bit;uC1&5(uP&1uR&)/&. The states with an asterisk represent the
errors.

Send

Intercept

Resend

Resultant Bell states

Measurement basis Result WithoutU With U

~i! uC1& $uP&,uQ&,uR&,uS&% uP& uA1& uP& uQ&* uP& uQ&*
uR& uB1& uR& uS&* uR&* uS&

~ii ! uC1& $uA1&,uB1&,uA2&,uB2&% uA1& uA1& uP& uQ&* uP& uQ&*
uB1& uB1& uR& uS&* uR&* uS&

uA2& uC1& uP& uR& uP& uS&

uB2& uD1& uQ&* uS&* uQ&* uR&*
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from the photon twins. Any strategy which employs cloni
is prohibited by the quantum no-cloning theorem@15,16#. As
a transmission bit error is regarded as evidence of eavesd
ping, Eve must attempt to minimize the total frequency of
errors which may appear in the whole transmitted bit
quence. In particular, errors must be avoided in intelligi
bits because this would give rise to an unavoidable dis
bance in a deciphered plaintext and Bob necessarily reg
any such disturbance as explicit evidence of eavesdropp

Here Eve should also be assumed to know that~i! AB-
andCD-coding bases are employed for intelligible and t
bits, respectively, and~ii ! the number of intelligible bits is
relatively larger than that of test bits. With these assum
tions, she can successfully behave so as not to leave
evidence in an intelligible bit provided she exploits t
AB-coding basis when she resends the photon twins a
interception. Thus she can greatly reduce the total numbe
bit errors. Nevertheless, she cannot escape detection be
she necessarily resendsuA1& or uB1& even thoughuC1& or
uD1& is prepared by Alice as a test bit. Therefore there i
finite probability that Eve will leave evidence in a test.

There are two possible ways for Eve to carry out h
interception/resend strategy, i.e., interception with either
$uP&,uQ&,uR&,uS&% or $uA1&,uB1&,uA2&,uB2&% measuremen
basis. With the first interception method, Alice and Bob c
detect Eve as follows:~i! Alice is assumed to senduC1&, test
bit 0, ~ii ! Eve intercepts the photon twins and obtains
Bell stateuP&, ~iii ! Eve resendsuA1& to Bob in accordance
with the resend strategy,~iv! Bob obtains the Bell stateuQ&
with a probability of 1

2, ~v! Alice notifies Bob that she ha
sent a test bit,~vi! Bob considersuQ& to result from test bit 1,
and ~vii ! they finally detect the bit error by comparing th
encoded and decoded bit values. The error probability
test bit is1

2. If Eve obtains the Bell stateuR& and then resend
uB1&, Bob regards the resultant Bell stateuR& or uS& as a bit
error, depending on whether he operates theU transforma-
tion or not. The flows of the resultant and resent states
summarized in Table I.

With the second interception method, Alice and Bob c
detect Eve as follows: quantum statesuC1& and uD1& is
completely destroyed by the interception with t
$uA1&,uA2&,uB1&,uB2&% measurement basis, as suggested
Eqs.~2.13! and~2.14!. Whenever Eve obtainsuA1& or uB1&,
she resends the resultant state and this results in an error
a probability of 1

2 per test bit. By contrast, if Eve obtain
uA2& or uB2& through the measurement, she knows t
Alice prepareduC1& or uD1&. This is because Alice neve
p-
t
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preparesuA2& anduB2&, as mentioned in Sec. II. Eve, how
ever, cannot determine the test bit value and has to gu
when she resends the photon twins. For example, this ca
explained as follows:~i! Alice sentuC1&, test bit 0,~ii ! Eve
obtainsuA2& and resendsuD1& by guessing,~iii ! Bob obtains
the Bell stateuQ&, ~iv! Alice notifies Bob that she has sent
test bit, ~v! Bob considersuQ& to result from test bit 1, and
~vi! they finally detect the bit error after comparing the te
bits. Thus the error probability per test bit is1

2. Table I also
summarizes several sequences of the measurement resu
the second interception method.

Eve, however, may be able to reduce the error probab
per test bit by employing some other sophisticated eav
dropping strategy@17–20#. Provided that she can only acce
one photon pair at a time, the usual assumption in any Q
scheme, the nonorthonormal relation between theAB- and
CD-coding bases ensures a finite error probability regard
of her eavesdropping strategies and the legitimate users
cope with the reduction by increasing the number ratio
test bits to intelligible bits. By contrast, if Eve is allowed
measure more than two carriers jointly~joint attack or coher-
ent attack!, the security issue of our current scheme nee
further clarification in general and should be the subject o
future investigation@19,20#. As two serious proofs have re
cently been proposed for the security of conventional QK
schemes@21#, it is necessary for us to reexamine the secur
of our current scheme on the basis of these proofs.

C. Ciphertext transmission in secret-key cryptography

Alice and Bob can expect the error-free transmission o
ciphertext provided that Eve adopts the intercept/res
strategy described in the preceding subsection. In this se
Eve does not destroy bit information in any intelligible b
and our communication channel is equivalent to a class
channel as regards the transmission of intelligible bits. T
requirement cannot be satisfied in quantum channels
means of orthogonal-state quantum cryptography@8# as al-
ready mentioned in Sec. I. The use of quantum states
known to anyone else, however, makes it impossible for E
to distinguish test bits from large numbers of intelligible b
and she necessarily fails to resend test bits. As the e
probability per test bit is1

2, Alice and Bob can detect Eve

with a whole probability of 12( 1
2 )M by insertingM test bits.

When Alice unveils all the test bit positions, Eve can al
decode all the bit values and obtain the definite binary
quence prepared by Alice. Thus mutual information betwe
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Alice and Eve becomes unity. It is for this reason that Ali
and Bob employ our communication scheme for sending
plaintext but ciphertext.

Once they have shared a secret key, they must continu
employ our communication scheme whenever they send
ciphertext. As long as they detect no evidence of eavesd
ping, they can guarantee the security of the key and
plaintext with a high level of confidence and use the k
repeatedly. In contrast, if they detect eavesdropping, t
discard the key. Although Eve can intercept all the ciph
text, she can no longer expect to obtain any other ciphert
ciphered in the same key and cannot decipher the key a
This means that the security required for a key that is u
repeatedly can be enhanced to the level of one-time-
cryptography. This greatly reduces the size of the key sto

In terms of the security of our proposed scheme, we m
find a way to design our system so that we can detec
eavesdropper without fail whenever the ciphertext, or a
portion of it, is intercepted. Here we introduce three para
etersL, G, andh to discuss this security issue.L is the length
of the secret key to be protected. We defineG as the number
ratio of test bits to intelligible bits. Parameterh is the frac-
tion of the photon pairs assumed to be intercepted. Eve,
desires to intercept the ciphertext completely, necessa
fixes the parameterh value at unity. In this case, Alice, wh
sets the parameterG value at 1

100, can detect Eve with a prob
ability of 121029 provided that Alice sends approximate
3000 photon pairs per one-time use of the secret keyL
;3000). Although such a lengthy key appears inconven
or less realistic in comparison with 56 bits in data encrypt
standard~DES!, it seems necessary in principle to increa
the key length so that we can assure security in our propo
scheme.

If Eve unwillingly reduces theh parameter to1
10 to escape

detection, she can still successfully intercept approxima
300 bits of intelligible information with a probability of18,
without being detected. To prevent this not insignifica
amount of information from being intercepted easily, Ali
must improve the parameterG value to, for example,1

10.
Then the probability of Eve secretly obtaining the 300 bits
information can be reduced exponentially to 1029.

Thus the probability of detecting an eavesdropper can
close to unity asymptotically by increasing the key lengthL
for a given parameterG value. AsG is necessarily smalle
than the order of unity to ensure the error-free transmiss
of intelligible bits, it is preferable to lengthen the key.
Alice and Bob still desire to protect the secrecy of inte
gible bit values as a precaution against an improbable
nonzero probability failure in the eavesdropping detecti
they must further encrypt the ciphertext. Such anxiety, ho
ever, should generally be dispelled by increasing the par
eterG value and the key lengthL.

In the above discussion, we assume the ideal condition
a zero-loss transmission line, a unity photodetection e
ciency, and a noiseless transmission system. These ass
tions, however, are invalid for any actual transmission s
tem and we must at least establish an error correction c
for intelligible bits to cope with transmission and detecti
noise. The structure of the error correction code, howe
helps Eve guess some possible candidates for the tes
positions in the mixed bit sequence prepared by Alice.
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For example, we assume that Alice employs a parity co
with a block length ofN53 for intelligible bits and prepares
the bit string 1100 with the parity encoded in the last bit. S
then inserts the test bit 0t (5uC1&) between 110 and 0 an
sends 1100t0 to Bob. We express this mixed bit sequence
(a,b,c,d,e)5(1,1,0,0t,0). Here Eve should be assumed
know that Alice employs the error correction code withN
53 and that one of the five bits is a test bit. If Eve obtai
the Bell state, for example,uR& for the fourth positiond, she
necessarily regards the bit sequence as (a,b,c,d,e)
5(1,1,0,1,0) and considersa, b, or d to be a possible test bi
candidate.

Thus Eve can guess some possible candidates for the
bit positions by using the structure of the error correcti
code. Nevertheless, her guessing depends on some am
ities and she cannot always locate the correct positions of
test bits. Moreover, if Eve wrongly locates the test bit a
resends it, bit error may occur not only in the correct test
but also in the intelligible bit picked up wrongly by her. Ev
therefore, must resend any intercepted bit as an intellig
bit to minimize the probability of detection whenever s
cannot specify the correct position of the test bit. This su
gests that it is practically impossible for Eve to escape
tection provided that a sufficiently large number of test b
are inserted in a lengthy bit sequence. This issue dese
future quantitative analysis and will be presented elsewh

D. Comparison with usual QKD schemes

From the general viewpoint of secret-key cryptograph
our proposed scheme is an alternative to the one-time-
use of a secret key shared by quantum key distribution.
latter, however, has the disadvantage that a lengthy se
key, which has the same length as the ciphertext, mus
generated every time. A very large number of quantum a
classical information transfers are necessary when sha
such a lengthy key, preceding the classical transmission
each ciphertext. In contrast, once a key is shared in a se
manner, our proposed scheme requires a smaller numb
classical information transfers to notify publicly Bob of a
the positions and values of the test bits.

It should be noted that at this stage the practical advan
of the present proposal to usual QKD plus one-time-p
schemes is still not clear. As a quantum channel is needed
transmitting the ciphertext, our scheme may offer no sav
in the amount of quantum information transmission as co
pared to the usual schemes. Moreover, the ciphertext ma
lost due to photon loss of the quantum channel, leading
the necessity of a retransmission. Also, one cannot res
the use of the quantum channel to off-peak hours, which
possible in the usual QKD. It is also unclear either ho
privacy amplification@22#, which is effective in QKD, can be
applied to the present scheme. All these should be sorted
for practical consideration in the future investigation. In th
paper, however, we concentrate on showing that, in p
ciple, the security of the repeated use of a key can be
hanced to the level of one-time pad by directly sending
ciphertext over the quantum channel.

IV. PHOTONIC IMPLEMENTATION OF A QUANTUM
CHANNEL

This section describes the photonic implementation of
quantum channel. We also discuss a feasible experime
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setup which employs a Hong-Ou-Mandel two-photon int
ferometer.

A. Bell state operation via spinor rotation

The schematic configuration of our quantum channe
shown in Fig. 5~a!, whereD(a,b,g) indicates a one-photon
spinor rotation@23#. Photon twins are emitted from an opt
cal source and identified by two different optical paths I a
II @12,14#. The initial state of the photon twins is assumed
be uP&(5uC1&), given by Eq.~2.1!. Alice can prepare each
of uA1&, uB1&, uC1&, and uD1& by operatingD(a,b,g) on
photon I; D I

A(a,b,g). Bob can perform theU transforma-
tion by operating an appropriate one-photon spinor rota
on each photon such asD I

B(a,b,g) ^ D II
B(a* ,b* ,g* ). Then

Bell state analysis is performed for the photon twins.
The one-photon spinor rotationD(a,b,g) can be ex-

pressed as

D~a,b,g!5Fe2 ia/2 0

0 eia/2GFcosb/2 2sinb/2

sinb/2 cosb/2 G
3Fe2 ig/2 0

0 eig/2G ~4.1!

FIG. 5. ~a! The schematic configuration of our quantum co
munication system by means of polarization-entangled pho
twins: D(a,b,g) indicates a one-photon spinor rotator.~b! The
schematic configuration of a one-photon spinor rotator.
-

s

d

n

by use of Euler angles~a,b,g!. Here the linear polarization
statesH andV are regarded as spin up~1,0! and down~0,1!,
respectively@22#. The configuration of the one-photon spin
operator is shown in Fig. 5~b!. The initial stateuP& is trans-
formed as

D I~a,b,g!uP&5cos
b

2
cos

a1g

2
uP&2cos

b

2
sin

a1g

2
uQ&

1sin
b

2
sin

a2g

2
uR&2sin

b

2
cos

a2g

2
uS&

~4.2!

by operatingD I
A(a,b,g). ThereforeuA1&, uB1&, uC1&, and

uD1& can be generated fromuP& as follows:

D I
A~2p/2,0,0!uP&5

1

&
~ uP&1uQ&)5uA1&, ~4.3!

D I
A~p,p,2p/2!uP&5

1

&
~ uR&1uS&)5uB1&, ~4.4!

D I
A~p/2,p/2,2p/2!uP&5

1

&
~ uP&1uR&)5uC1&, ~4.5!

and

D I
A~p/2,p/2,23p/2!uP&5

1

&
~ uQ&1uS&)5uD1&.

~4.6!

To derive a two-photon spinor rotation corresponding
the U transformation

U5
1

2 F 1 1 1 21

1 1 21 1

21 1 1 1

1 21 1 1

G ,

a four-dimensional representation using t
$uP&,uQ&,uR&,uS&% basis should be employed. The effects
D I(a,b,g) on entangled quantum states can be represe
by

n

D I
B~a,b,g!5F cos~b/2!cosf cos~b/2!sinf 2sin~b/2!sinu sin~b/2!cosu

2cos~b/2!sinf cos~b/2!cosf 2sin~b/2!cosu 2sin~b/2!sinu

sin~b/2!sinu sin~b/2!cosu cos~b/2!cosf 2cos~b/2!sinf

2sin~b/2!cosu sin~b/2!sinu cos~b/2!sinf cos~b/2!cosf

G , ~4.7!

where

f5~a1g!/2 and u5~a2g!/2.
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In the same manner,D II(a* ,b* ,g* ) can be expressed as

D II
B~a* ,b* ,g* !5F cos~b* /2!cosf* 2cos~b* /2!sinf* 2sin~b* /2!sinu* sin~b* /2!cosu*

cos~b* /2!sinf* cos~b* /2!cosf* sin~b* /2!cosu* sin~b* /2!sinu*

sin~b* /2!sinu* 2sin~b* /2!cosu* cos~b* /2!cosf* 2cos~b* /2!sinf*

2sin~b* /2!cosu* 2sin~b* /2!sinu cos~b* /2!sinf* cos~b* /2!cosf*
G , ~4.8!
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f* 5~a* 1g* !/2 and u* 5~a* 2g* !/2.

The U transformation can be realized by the tw
photon spinor rotation given byD I

B(p/2,2p/2,2p/2)
^ D II

B(0,2p/2,0), where

D I
B~p/2,2p/2,2p/2!5

1

& F 1 0 1 0

0 1 0 1

21 0 1 0

0 21 0 1

G ~4.9!

and

D II
B~0,2p/2,0!5

1

& F 1 0 0 21

0 1 21 0

0 1 1 0

1 0 0 1

G . ~4.10!

B. Implementation with a two-photon interferometer

Perfect Bell state analysis is regarded as experimen
unfeasible at this stage@11#. Three of the four Bell states
however, have been distinguished experimentally by usin
Hong-Ou-Mandel two-photon interferometer@14#. Our pro-
posed scheme is valid for such an imperfect but experim
tally feasible Bell state analyzer. We assume thatuP&
([uC1&) or uQ& ([ i uC2&) can be distinguished from th
other three whileuR& ([ i uF1&) and uS& ([uF2&) result in

FIG. 6. The schematic configuration of our quantum chan
with a two-photon interferometer.
lly

a

n-

the same outputuR∨S&. ThereforeuA1& and uB1& can be
completely distinguished with the imperfect analyzer b
uC1& anduD1& are indistinguishable wheneveruR∨S& is the
result. As shown in Figs. 1 and 3, however, Bob can dete
bit error with a finite probability if he obtainsuP& or uQ&. This
can be explained as follows. Case I:~i! Alice sendsuC1&, ~ii !
Eve obtainsuP& and resendsuA1&, ~iii ! Bob obtainsuQ& with
a probability of 1

2 and they can successfully detect Eve. Ca
II: ~ii ! Eve obtainsuR∨S& and resendsuB1& and ~iii ! Bob
obtainsuR∨S&. In this case, he cannot detect Eve. Therefo
the error probability is reduced to14 per test bit but the prob-
ability reduction can be compensated for by inserting m
test bits.

Figure 6 shows the schematic configuration of our qu
tum channel based on two-photon interference@14#.
Polarization-entangled photon twins can be genera
through spontaneous parametric down conversion in a n
linear optical crystal@12#. The signal and idler photons ar
superposed by a 50:50 beam splitter~BS!. A linear polariza-
tion beam splitter~PBS! is inserted in either output directio
of the BS. Output photons are counted by single-photon
tectors numbered d1–d4 and coincidental registration ma
it possible for Bob to distinguishuP&, uQ&, and uR∨S& as
summarized in Table II.

V. CONCLUSION

We propose a kind of secure quantum communicat
scheme for transmitting a definite binary sequence wh
confirming the security of the transmission against an eav
dropper. Our proposed communication scheme is very s
able for sending ciphertext in a secret-key cryptosystem
cause it enables us to detect an eavesdropper who attem
decipher the key. In our proposed scheme, information tra
mission is separated into two steps. Alice, the sender,
codes a bit of quantum information on a quantum state
photon twins. Any quantum state is given by a two-te
superposition of the four Bell statesuC1&, i uC2&, i uF1&,
anduF2&. Bob, the receiver, measures the photon twins w
a Bell state analyzer and obtains partial information conce
ing the quantum state. Then Alice notifies Bob of the s
lected coding basis via a classical channel and Bob can

l

TABLE II. Imperfect Bell state analyzer.

Four Bell states Registration results

uP& ~d1,d2!,~d3,d4!
uQ& ~d1,d3!,~d2,d4!

uR&
uS&J uR∨S&

Two photons are routed
to the same detectors
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termine the quantum state sent by Alice. A random opera
of an appropriate unitary transformation before Bell st
analysis makes it impossible for an eavesdropper to es
detection by Alice and Bob.
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