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Non-Markovian quantum feedback from homodyne measurements: The effect of a nonzero
feedback delay time

V. Giovannetti, P. Tombesi, and D. Vitali
Dipartimento di Matematica e Fisica, Universita` di Camerino, via Madonna delle Carceri I-62032 Camerino, Italy

and Istituto Nazionale per la Fisica della Materia, Camerino, Italy
~Received 24 February 1999!

We solve exactly the non-Markovian dynamics of a cavity mode in the presence of a feedback loop based
on homodyne measurements, in the case of a nonzero feedback delay time. With an appropriate choice of the
feedback parameters, this scheme is able to significantly increase the decoherence time of the cavity mode,
even for delay times not much smaller than the decoherence time itself.@S1050-2947~99!00508-9#

PACS number~s!: 42.50.Lc, 03.65.2w
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I. INTRODUCTION

Although feedback schemes have been used for a
time to control noise, a general theory of feedback for qu
tum systems was developed only some years ago by W
man and Milburn@1–3#. Interesting possibilities are opene
by the ability to control systems at the quantum level us
appropriate feedback loops and some of them have b
shown in a series of papers@4–9#. Reference@4# has shown
that an electro-optical feedback loop based on homod
measurements of a cavity mode provides an affordable
to realize a squeezed bath for the mode. As a conseque
homodyne-mediated feedback can be used to get squee
@5#, and, in the case of optical cavities with an oscillati
mirror, it can be used to significantly cool the mirror. Th
fact can be extremely useful for the interferometric detect
of gravitational waves@8#. The application of a feedbac
loop realizes an effective ‘‘reservoir engineering’’@10# and,
therefore, it can be useful also for decoherence con
which is a rapidly expanding field since decoherence is
main limiting factor for quantum information processin
@11#. References@5–7,9# have already shown that the dec
herence induced by photon leakage in electromagnetic c
ties can be significantly suppressed with appropriate fe
back loops, using the homodyne photocurrent in@5,6# and
direct photodetection and atomic injection in@7,9#.

However, all the relevant applications considered up
now always assume the zero feedback delay time limt
˜0, which is much easier to handle because the prob
becomes Markovian and the effect of feedback can be
pressed in terms of an effective master equation@1–3#. The
presence of a nonzero delay has been considered briefly
in @3#, where the spectrum of a homodyne measurement
been evaluated for a simple case. The Markovian treatme
justified whenever the feedback delay time is much sma
than the typical cavity time scale. If one considers squeez
or some other stationary state phenomenon, the feedbac
lay timet has to be compared with the cavity relaxation tim
g21 and for sufficiently good cavities the Markovian cond
tion gt!1 is usually satisfied. However, if one considers t
feedback scheme for decoherence control, the delayt has to
be negligible with respect to the decoherence timetdec
PRA 601050-2947/99/60~2!/1549~13!/$15.00
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.(gn̄)21, which can be much shorter than the damping tim

when the cavity mean photon numbern̄ is large. In these
cases, the unavoidable nonzero feedback delay time
have important effects and it would be important to deal w
the exact non-Markovian problem withtÞ0. There is in fact
a renewed interest in non-Markovian effects, which can p
an important role when considering quantum optics
high-Q cavities and in photonic band-gap materials. For t
reason, non-Markovian trajectory theories have been rece
developed in Refs.@12–14#.

The quantum theory of feedback has been developed
Wiseman and Milburn in@1,2# using quantum trajectory
theory @15#, and only later Wiseman showed an equivale
derivation based on the input-output theory@16–18# in Ref.
@3#. However Ref.@3# proved the equivalence between th
two approaches in the perfect detectionh51 case only. In
this paper we shall see how to extend the quantum Lang
approach of the input-output theory to the nonunit efficien
case and we shall see that this theoretical framework is
suited to deal with the non-Markovian case of nonzero fe
back delay time. We shall consider the non-Markovian
fects by completely solving the dynamics of a cavity mode
the presence of a homodyne-mediated electro-optical fe
back loop, which has been already considered~in the zero-
delay limit only! in Ref. @6#.

The paper is organized as follows. In Sec. II we sh
reconsider the quantum theory of feedback in the case
homodyne measurements, adopting the input-output the
of Gardiner and Collett@16–18#, and we shall see how to
introduce the nonunit detection efficiency in this framewo
In Sec. III we shall completely solve the non-Markovian d
namics in the presence of a nonzero feedback delay by
sidering the time evolution of the probability distribution o
the measured field quadrature and of the characteristic fu
tion. We shall consider in particular the possibility of inhib
iting the decoherence of a Schro¨dinger-cat state initially gen-
erated in the cavity and we shall see that the signific
decoherence suppression which can be obtained, for ap
priately chosen feedback parameters, in the zero-delay
~see Ref.@6#! is recovered even in the presence of not ne
ligible feedback delay times.
1549 ©1999 The American Physical Society
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II. HOMODYNE-MEDIATED QUANTUM FEEDBACK
THEORY WITHIN THE INPUT-OUTPUT FORMALISM

We shall consider an optical cavity, with annihilation o
eratora, subject to the homodyne measurement of the fi
quadrature

Xw5
1

2
~ae2 iw1a†eiw!. ~2.1!

We shall consider the possibility of applying a feedback lo
to this cavity mode, by feeding back part of the output h
modyne photocurrent to control in some way thea mode
dynamics.

First of all, it is convenient to reformulate the Wisema
and Milburn quantum theory of feedback@1,2# using the
input-output theory developed by Gardiner and Coll
@16,17#. The input-output formalism is essentially a Heise
berg approach for the whole system~cavity and vacuum
bath!, in which the environment dynamics is described
the white-noise input operatordB(t) satisfing the Ito rules
@16–19#:

dB~ t !25dB†~ t !250, dB†~ t !dB~ t !50,

~2.2!
dB~ t !dB†~ t !5dt,

and the following commutation’s relations:

@dB~ t !,dB~ t8!#50,

~2.3!
@dB~ t !,dB†~ t8!#5d~ t2t8!dtdt8.

In the absence of any feedback loop, the evolution o
generic cavity mode operatorÔ(t) in the interaction picture
is described by the quantum Langevin equation@16,17#:

dÔ~ t !5
g

2
@2a†~ t !Ô~ t !a~ t !2a†~ t !a~ t !Ô~ t !

2Ô~ t !a†~ t !a~ t !#dt2Ag@Ô~ t !,a†~ t !#dB~ t !

1Ag@Ô~ t !,a~ t !#dB†~ t !, ~2.4!

whereg is the cavity damping rate.
Equation ~2.4! can be solved explicitly in terms of th

evolution operatorU(t,t0),

Ô~ t !5U†~ t,0!ÔU~ t,0!, ~2.5!

which in the absence of feedback takes the following fo
@18#:

U~ t,t0!5expQSAgE
t0

t

dB†~ t8!a2AgE
t0

t

dB~ t8!a†D ,

~2.6!

wherea anda† are in the Schro¨dinger representation and exQ

denotes the time-ordered exponential. The evolution oper
U(t,t0) describes also the evolution in the Schro¨dinger rep-
resentation@18,19#,

uC~ t !&T5U~ t,0!$ucA& ^ u0&%, ~2.7!
d

p
-

t
-

a

or

where the vectoruC(t)&T obeys the following stochastic
equation:

duC~ t !&T5HAgadB†~ t !2Aga†dB~ t !2
g

2
a†adtJ uC~ t !&T .

~2.8!

Using the commutation’s rules~2.3!, it is easy to prove that
the Heisenberg evolution~2.5! satisfies the usual requireme
that the input noisedB(t) has to commute with every cavit
operator evaluated at preceding times,

@dB~ t !,Ô~ t8!#5@dB†~ t !,Ô~ t8!#50 for t>t8.
~2.9!

Equation~2.4! can be used to get the time evolution of
generic matrix element ofÔ(t) between two state vectors o
the whole system of the formucA& ^ u0& and ucB& ^ u0&, in
which the environment is left in the vacuum state,

d^Ô~ t !&AB5
g

2
$2^a†~ t !Ô~ t !a~ t !&AB2^a†~ t !a~ t !Ô~ t !&AB

2^Ô~ t !a†~ t !a~ t !&AB%dt, ~2.10!

where

^Ô~ t !&AB[$^0u ^ ^cAu%Ô~ t !$ucB& ^ u0&%. ~2.11!

Let us now introduce the feedback loop associated to
homodyne measurement of the quadratureXw . Differently
from Ref. @3#, we assume the possibility of a nonunit hom
dyne detection efficiencyh<1. The application of a feed
back loop is equivalent to adding a feedback Hamilton
H fb(t) @1,2,5#, so that the correction to the Heisenberg ev
lution of Eq. ~2.4! takes the form

dÔfb~ t !5
iAgdYw~ t2t!

h
@F~ t !,Ô~ t !#, ~2.12!

where F(t) is the observable of the cavity mode throug
which the feedback acts on the system andYw(t) is the out-
put field operator associated to the homodyne measurem
In the quantum trajectory approach of@1,2#, the fed-back
homodyne photocurrentYw(t) is a classical quantity, but in
the quantum Langevin approach it must be an operator w
its quantum fluctuations. However, one can adopt the gen
theory of homodyne measurements of Ref.@20# and write the
photocurrent operator in an analogous way,

dYw~ t !52AghXw~ t !dt1AhdJw~ t !, ~2.13!

wheredJw(t) describes the ‘‘noisy’’ part of the output pho
tocurrent operator. The only delicate point in the derivati
of the quantum theory of feedback of@1,2# in the imperfect
detection case using the input-output theory is just the ex
determination of this noisy operatordJw(t). SinceYw(t) is
an output operator, it is quite natural to consider Eq.~2.13!
as an input-output relation@16,17,19#, so that the noisy term
would simply be the input fielddJw(t)5dB(t)e2 iw

1dB†(t)eiw. However, this interpretation of Eq.~2.13! is
correct only in the perfect detection caseh51, because only
in this case does the output of the detection apparatus c
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cide with the cavity output and the quantum fluctuations
the vacuum bath are transferred unaltered by the detecto
the presence of imperfect detection, the output photocur
may be nontrivially related with the input noisedB(t) and in
general one has to describe the noisy operatordJw(t) in
terms of anew noise dBf(t), which we shall call ‘‘feed-
back’’ noise. Therefore, one has to write

dJw~ t !5dBf~ t !e2 iw1dBf
†~ t !eiw, ~2.14!

where the feedback noisedBf(t) satisfies the same prope
ties ~2.2! and ~2.3! of the input noise; moreover, this feed
back noise is correlated with the input noisedB(t) and this
correlation is determined just by the detection efficiencyh,
since one has

@dB~ t !,dBf~ t8!#50,
~2.15!

@dB~ t !,dBf
†~ t8!#5Ahd~ t2t8!dtdt8.

It is immediate to see that in the perfect detection cash
51, one can identify the feedback noise with the input no
dBf(t)5dB(t), while in the opposite caseh50 the two
noises are uncorrelated, as it can be easily expected sin
this case the fed-back noise has nothing to do with
vacuum input noise.

In the feedback correction~2.12! of the Heisenberg evo
lution, t is the delay time associated to the feedback lo
and since it is a non-negative quantity, it ensures that
output operatorYw(t2t) commutes with all system opera
tors evaluated at timet. In particular,Yw(t2t) commutes
with F(t) and so there is no ambiguity in the definition
dÔfb(t). As it has been stressed in Ref.@1,2,5#, one must be
careful in using Eq.~2.12!; the feedback process is phys
cally added to the evolution of the system of interest, so
stochastic differential contribution has to be introduced a
limit of a real process. This implies that Eq.~2.12! has to be
considered in the Stratonovich sense. Therefore, it is con
nient to rewrite it in the Ito form and then add it to Eq.~2.4!,
so that the resulting equation forÔ(t) becomes

dÔ~ t !5
g

2
@2a†~ t !Ô~ t !a~ t !2a†~ t !a~ t !Ô~ t !

2Ô~ t !a†~ t !a~ t !#dt2Ag@Ô~ t !,a†~ t !#dB~ t !

1Ag@Ô~ t !,a~ t !#dB†~ t !1 iAgS Aga†~ t2t!eiwdt

1
dBf

†~ t2t!

Ah
eiwD @F~ t !,Ô~ t !#Q~ t2t!

1 iAg@F~ t !,Ô~ t !#S Aga~ t2t!e2 iwdt

1
dBf~ t2t!

Ah
e2 iwD Q~ t2t!

2
g

2h
Q~ t2t!†F~ t !,@F~ t !,Ô~ t !#‡dt. ~2.16!

This is the quantum Ito stochastic equation describing
time evolution in the presence of feedback and nonunit
f
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tection efficiency and it coincides with the quantum Ito equ
tion derived in Ref.@3# in the case of perfect homodyn
detectionh51. We have also explicitly inserted the ste
function Q(t2t) with respect to Ref.@3# to stress the im-
possibility for the feedback to act on the system before
delay time t has elapsed since the initial condition. Th
means that the evolution ofÔ(t) for 0<t<t coincides with
that in absence of feedback, described by Eq.~2.4!. More-
over, we observe that, since the equation fordÔ(t) contains
only stochastic terms evaluated for timest8<t ~preciselyt
and t2t), it is possible to conclude that the commutatio
relations~2.9! are valid also in the presence of feedback a
more in general, that Eq.~2.16! preserves the canonical com
mutation rules fora(t) anda†(t).

A. Zero-delay time limit

Up to now, the explicit applications of the quantum theo
of feedback of Wiseman and Milburn have considered
zero-delay time caset50 only, when one has a tractab
Markovian equation. Whenever one considers a nonzero
lay, the problem becomes non-Markovian and difficult
solve.

The feedback master equation for homodyne-media
feedback in the zero-delay limit has been first derived in
general form using quantum trajectory theory@15# in Refs.
@1,2#. In the case of perfect homodyne detectionh51, the
same homodyne-mediated feedback equation has bee
derived using input-output theory by Wiseman in@3# and, in
its linear stochastic form, by Goetschet al. in Ref.@6#. How-
ever, the connection between this linear stochastic appro
and the input-output theory was not made explicit there.
reviewing the zero-delay time case, we shall clarify here
connections between the different approaches and we s
in particular that the linear stochastic Schro¨dinger equation
approach of Ref.@6# is equivalent to the input-output resu
of Eq. ~2.16! ~in the caseh51) in the same way as Eq.~2.8!
is equivalent to the quantum Langevin equation~2.4!.

The starting point of the analysis of Ref.@6# is the evolu-
tion equation for the state vectoruC(t)&T of the whole sys-
tem ~cavity and vacuum bath!. In the no-feedback case, th
equation is obviously equal to Eq.~2.8!; the feedback loop is
then introduced using the same Hamiltonian modification
Eq. ~2.12! in the caseh51. However, since in Ref.@6# the
zero-delay time limit is considered from the beginning, o
has to be careful with operator ordering, because in this
cumstance one is not guaranteed thatdYw(t) commutes with
the cavity mode operatorF(t) at the same time. In Ref.@6#
the question is solved by imposing that ‘‘the feedback a
later,’’ i.e., that uC(t1dt)&T is obtained fromuC(t)&T by
means ofU(t1dt,t) ~the evolution operator in the absenc
of feedback loop! first and by the Hamiltonian feedback co
rection later@see Eq.~2.11! of @6##. It is clear that in this way
the equivalence with the input-output approach of Ref.@3# is
not so evident. However, the equivalence can be proved
considering the following evolution operator:

UF~ t,t0!5expQH E
t0

t SAgdB†~ t8!a2AgdB~ t8!a†

2 iAgFe2 iwdB~ t8!2 iAgFeiwdB†~ t8!

2 i
g

2
a†Feiwdt82 i

g

2
Fae2 iwdt8D J , ~2.17!
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wherea, a†, andF are in Schro¨dinger representation. Usin
the Ito rules~2.2! to evaluate the differentialdÔ(t), it is
possible to check thatUF(t,t0) is just the evolution operato
determining the formal solution of Eq.~2.16! in thet50 and
h51 limit, according to the usual rule

Ô~ t !5UF
†~ t,0!ÔUF~ t,0!. ~2.18!

As can be easily expected, the zero-delay evolution oper
UF(t,t0) reduces to the no-feedback oneU(t,t0) of Eq. ~2.6!
when F50. This suggests that an equivalent Schro¨dinger
representation could be obtained also in the case of feed
with zero-delay time, starting from an equation analogous
Eq. ~2.7!. In fact, if we applyUF(t,0) to the initial state of
the total system and we use again the Ito rules~2.2!, one gets
the following linear stochastic Schro¨dinger equation:

duC~ t !&T5HAgadB†~ t !2Aga†dB~ t !2
g

2
a†adt

2 iAgFdJw~ t !2 igFae2 iwdt

2
g

2
F2dtJ uC~ t !&T ~2.19!

coinciding with the equation obtained in@6#. This shows that
the approach of Ref.@6# and that of Ref.@3# are, respectively,
the Schro¨dinger and Heisenberg view of the same theo
with UF(t,t0) the unitary operator mediating the transitio
from one to the other.

In Ref. @6#, by adopting an appropriate representation
sis for the vacuum modes~see, for example,@19#!, Eq. ~2.19!
was then reduced to a linear stochastic equation for the
ity mode only, which was solved numerically. In Append
A we shall reconsider this linear stochastic equation for
cavity mode and we shall see how it is possible to solv
analytically by adopting the integration method described
@21#.

Determining an evolution operator analogous toUF(t,t0)
for the tÞ0 case is much more difficult and we shall n
consider this strategy to study the nonzero-delay probl
Instead, we shall adopt the input-output formalism which h
yielded Eq. ~2.16!. To be more specific, we shall alway
consider generic matrix elements as those of Eq.~2.11!,
whose evolution equation can be easily derived from
~2.16!:

d

dt
^Ô~ t !&AB5

g

2
$2^a†~ t !Ô~ t !a~ t !&AB2^a†~ t !a~ t !Ô~ t !&AB

2^Ô~ t !a†~ t !a~ t !&AB%

1 ig$^a†~ t2t!@F~ t !,Ô~ t !#&ABeiw

1^@F~ t !,Ô~ t !#a~ t2t!&ABe2 iw%Q~ t2t!

2
g

2h
^†F~ t !,@F~ t !,Ô~ t !#‡&ABQ~ t2t!.

~2.20!
or

ck
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III. FEEDBACK DYNAMICS IN THE PRESENCE
OF A NONZERO DELAY

The dynamics in the presence of a feedback loop wit
nonzero-delay time has never been completely solved
cause of its intrinsic non-Markovian nature. In this paper
shall analyze the effects of a nonzero feedback delay by c
sidering a specific example for the ‘‘feedback operato
F(t),

F~ t !5gXu~ t !5
g

2
@a~ t !e2 iu1a†~ t !eiu#, ~3.1!

where the constantg represents the gain of the feedba
process andu is an experimentally controllable phase. Th
particular choice~3.1! of F means that the feedback loo
adds a driving term to the mode dynamics, which could
achieved, e.g., by using an electro-optic device with varia
transmittivity driven by the homodyne photocurrent. T
homodyne-mediated feedback model with the choice~3.1!
for F(t) has been completely solved in Ref.@6# in the Mar-
kovian limit of zero-delay time and, therefore, the compa
son with the results of Ref.@6# will be very instructive. As it
is shown in Ref.@6#, the main virtue of the homodyne
mediated feedback is its capability of slowing down the d
coherence associated with cavity damping provided that
feedback parametersg andu are appropriately chosen. Her
we shall see that the decoherence inhibition caused by
feedback takes place also in the presence of a nonzero f
back delay time; in particular, decoherence is apprecia
slowed down even for delay times not much smaller than
decoherence time itself.

First of all, we shall show the exact time evolution for th
marginal probability distributionP(xw ,t) of the quadrature
componentXw(t): this will result in a quite simple expres
sion which can be easily analyzed. Then we shall give
complete solution of the system dynamics in terms of
symmetrically ordered characteristic function.

A. The marginal probability distribution

A good, even if not complete, description of the state
the cavity mode is given by the marginal probability dist
bution P(xw ,t) of the measured quadrature compone
Xw(t). We shall consider the following class of initial state
for the whole system:

rT~0!5(
a,b

Na,bua&^bu ^ u0&^0u, ~3.2!

i.e., a linear superposition of coherent states for the ca
mode and the vacuum state for the electromagnetic bath.
shall focus on the evaluation of the moments

^Xw
N~ t !&ba[$^0u ^ ^bu%Xw

N~ t !$ua& ^ u0&% ~3.3!

(N is an integer!. P(xw,0) is a superposition of Gaussia
functions and, thanks to the choice of Eq.~3.1! for the feed-
back operator, the evolution in the presence of feedback
mains linear, so thatP(xw ,t) will maintain its initial Gauss-
ian behavior. This fact will be explicitly verified at the end o
the section.
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FIG. 1. Normalized mean value of the me
sured quadraturex(t) @see Eq.~3.5!# for g sin(u
2w)50 ~without feedback, dot-dashed line!,
g sin(u2w)50.45, and some values of the dela
time. From bottom to top:gt55,gt52.5, gt
51,gt50.5 ~full lines!, and gt50 ~dashed
line!.
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We now proceed step by step: first we explicitly det
mine the evolution of the first- and second-order moment
then we derive a recursive relation between the mome
clearly showing the Gaussian nature of the correspond
probability distribution.

For N51, Eq. ~3.3! becomes the matrix element of th
measured quadratureXw(t), and Eqs.~2.20! and ~3.1! yield
the following differential equation for its evolution:

d

dt
^Xw~ t !&AB52

g

2
^Xw~ t !&AB1gg sin~u2w!

3^Xw~ t2t!&ABQ~ t2t!, ~3.4!

which can be integrated fort>0 using Laplace transforms a
is discussed in Appendix B:

^Xw~ t !&AB5^Xw~0!&ABx~ t ! ~3.5!

with

x~ t !5 (
n50

ln@ t/t]
@g sin~u2w!#n

n!
e2g/2(t2nt)@g~ t2nt!#n,

~3.6!

where lnt@x# indicates the integer part of the real numberx. In
the case of the initial condition~3.2!, one has simply to con
siderucA&[ub& anducB&5ua& in Eq. ~3.5!, even though it is
clear that this solution is valid for any choice of the initi
state of the cavity. The functionx(t) of Eq. ~3.6! will often
appear in the complete analytical solution of the probl
described in the following and it is therefore useful to d
scribe its behavior in the various limits. The solution~3.6!
has the correct behavior both in theg˜0 limit, where one
has the simple exponential decayx(t)5e2gt/2, and in thet
˜0 limit, yielding

x~ t !5expH 2
g

2
@122g sin~u2w!#tJ , ~3.7!

which is the same solution which can be derived from
exact treatment of Ref.@6#. It is interesting to consider the
limit of small delay,gt!1, because this condition can b
-
d
ts
g

-

e

easily verified using good optical cavities and comm
electro-optical feedback loops. From the exact solution~3.6!
one gets

x~ t !5H 12
g sin~u2w!

2
$22gt@122g

3sin~u2w!#%gtJ e2[122g sin(u2w)](g/2)t. ~3.8!

We have plotted the solution~3.6! in Fig. 1, in which there is
also a comparison with the no-feedback case and with
Markovian feedback case of the zero-delay time limit. Th
plot makes evident how the major part of the difference
tween the zero delay and the delayed cases comes from
retardation caused by the presence ofQ(t2t): for simplic-
ity, we shall refer to this effect in the following as the ‘‘ste
effect.’’

For the determination of the second order moment@Eq.
~3.3! with N52], it is convenient to study the correlatio
function C(t,t8)5^Xw(t)Xw(t8)&ba for every positive value
of t and t8. We first focus on the dependence ont8 and
differentiateC(t,t8) by t8 using Eq.~2.16! to get the follow-
ing differential equation:

dC~ t,t8!52
g

2
C~ t,t8!dt81gg sin~u2w!C~ t,t82t!

3Q~ t82t!dt82
Ag

2
eiw^@Xw~ t !,dB†~ t8!#&ba

1A g

4h
g sin~u2w!eiw

3^@Xw~ t !,dBf
†~ t82t!#&baQ~ t82t!. ~3.9!

The corresponding initial condition can be obtained from E
~3.5! and is given byC(t,0)5^Xw(0)Xw(0)&bax(t). Now
Eq. ~3.9! can be integrated once the explicitt8 dependence of
the commutators between the noisesdB†(t8) and dBf

†(t8
2t) and the operatorXw(t) is known. For the determination
of these commutators, let us define first of allf (t,t8)
5@Xw(t),B†(t8)#, in which B†(t8) is the sum of all the Ito
increments of the input noise from the initial time u
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to t8. Now we can proceed in an analogous way as we h
done to write Eq.~3.9! and we differentiate int by keepingt8
constant. Using the commutation rules of Eq.~2.3!, we get

]

]t
f ~ t,t8!52

g

2
f ~ t,t8!1gg sin~u2w! f ~ t2t,t8!Q~ t2t!

2
Ag

2
e2 iw$Q~ t82t !2g sin~u2w!

3Q~ t2t!Q~ t82t1t!%, ~3.10!

which, except for the presence of the last term, which i
known function of time, is an equation similar to Eq.~3.4!
and therefore can be solved using Laplace transforms and
initial condition f (0,t8)50 implied by Eq.~2.9!. The com-
mutation rules betweenXw(t) and the Ito incrementdB†(t8)
can now be obtained by simply differentiating this soluti
with respect tot8 and the final result is

@Xw~ t !,dB†~ t8!#5F~ t,t8!dt8, ~3.11!

where

F~ t,t8!52
Ag

2
e2 iw$Q~ t2t8!x~ t2t8!2g sin~u2w!

3Q~ t2t82t!x~ t2t82t!%

[F~ t2t8!. ~3.12!

The same procedure can be adopted to determine the
mutator @Xw(t),dBf

†(t8)# involving the feedback noise an
one finally gets

@Xw~ t !,dBf
†~ t8!#5Ff~ t,t8!dt8, ~3.13!

where

Ff~ t,t8!52
Ag

2
e2 iwH AhQ~ t2t8!x~ t2t8!

2
g sin~u2w!

Ah
Q~ t2t82t!x~ t2t82t!J

[Ff~ t2t8!. ~3.14!

Proceeding as before, it is possible to compute also
commutation rules between the noise operatorsdB(t8),
dB†(t8), dBf(t8), dBf

†(t8), anda(t),a†(t8), which we ex-
plicitly report here because they will be useful in the follow
ing:

@a~ t !,dB~ t8!#5R~ t,t8!dt8,

@a~ t !,dB†~ t8!#52R1* ~ t,t8!dt8,

@a†~ t !,dB~ t8!#5R1~ t,t8!dt8, ~3.15!

@a†~ t !,dB†~ t8!#52R* ~ t,t8!dt8,

@a~ t !,dBf~ t8!#5R f~ t,t8!dt8,
e

a

he

m-

e

@a~ t !,dBf
†~ t8!#52R 1

f* ~ t,t8!dt8,

@a†~ t !,dBf~ t8!#5R 1
f ~ t,t8!dt8,

@a†~ t !,dBf
†~ t8!#52R f* ~ t,t8!dt8,

where

R~ t,t8!5 i
Ag

2
gei (u1w)H Q~ t2t82t!S e2g/2(t2t82t)

2
x~ t2t8!2e2g/2(t2t8)

g sin~u2w!
D 1Q~ t2t822t!

3@x~ t2t82t!2e2g/2(t2t82t)#J [R~ t2t8!,

~3.16!

R1~ t,t8!522e2 iwF* ~ t,t8!2e22iwR~ t,t8![R1~ t2t8!,
~3.17!

R f~ t,t8!5 iA g

4h
gei (u1w)H Q~ t2t82t!S e2g/2(t2t82t)

2
h@x~ t2t8!2e2g(t2t8)/2#

g sin~u2w!
D 1Q~ t2t822t!

3@x~ t2t82t!2e2g(t2t82t)/2#J [R f~ t2t8!,

~3.18!

R 1
f ~ t,t8!522e2 iwFf* ~ t,t8!2e22iwR f~ t,t8![R 1

f ~ t2t8!.
~3.19!

Note that all these commutators arec-number functions and
this is essentially a consequence of the commutation r
between the noise operators given by Eqs.~2.3! and ~2.15!.
At this point it is possible to compute the correlation fun
tion C(t,t8) replacing Eq.~3.11! in Eq. ~3.9!: we obtain an
integrable differential equation of the same form of E
~3.10!, whose solution is

C~ t,t8!5C~0,0!x~ t !x~ t8!1^bua&G~ t,t8!, ~3.20!

where

G~ t,t8!5
g

4 H E
0

min[t,t8]
dt9x~ t2t9!x~ t82t9!2g sin~u2w!

3Q~ t82t!E
0

min[t,t82t]
dt9x~ t2t9!x~ t82t2t9!

2g sin~u2w!Q~ t2t!E
0

min[t2t,t8]
dt9x~ t2t2t9!

3x~ t82t9!1
g2 sin2~u2w!

h
Q~ t2t!Q~ t82t!

3E
0

min[t2t,t82t]
dt9x~ t2t2t9!x~ t82t2t9!J .

~3.21!
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If we now sett85t in this expression, we get the secon
order moment@Eq. ~3.3! with N52]; it is, however, more
useful to consider the expression of the following ‘‘va
ance’’:

s (2)~ t !52H ^Xw
2~ t !&ba

^bua&
2S ^Xw~ t !&ba

^bua& D 2J ~3.22!

5
1

2
1

g

2h
g2 sin2~u2w!Q~ t2t!E

0

t2t

dt9x2~ t9!.

~3.23!

Let us consider again the physically interesting limit of sm
delay,gt!1, in which the variance of Eq.~3.23! can be well
approximated by the first-order expansion ingt, which is
given by

s (2)~ t !5
1

2 H 11
g2

h
sin2~u2w!S 12e2g[122g sin(u2w)] t

122g sin~u2w! D J
2

g2 sin2~u2w!

2h H @11gtg sin~u2w!#

3e2g[122g sin(u2w)] t1g sin~u2w!

3S 12e2g[122g sin(u2w)] t

122g sin~u2w! D J gt. ~3.24!

This expression, as well as Eq.~3.8!, is valid for t.t only,
since fort,t the feedback is not yet acting and the varian
assumes its value in the absence of feedback,s (2)(t)51/2.

As concerns the higher-order variances, it is convenien
consider the following quantities:

^X̂w
N~ t !&ba5^@Xw~ t !2x~ t !Xw~0!#N&ba ~3.25!

and to proceed as in the previous case, that is, by conside
the function^X̂w

N21(t)X̂w(t8)&ba , and differentiating it with
respect tot8 by keepingt constant. This gives a differentia
equation which can be formally integrated and setting th
t5t8 it is easy to get the following recursive relation:

^X̂w
N~ t !&ba5~N21!G~ t,t !^X̂w

N22~ t !&ba . ~3.26!

This relation can be easily solved and it can be expresse
the following way:

K S Xw~ t !2
^Xw~ t !&ba

^bua& D NL
ba

5 K S Xw~ t !2
ae2 iw1b* eiw

2
x~ t ! D NL

ba

~3.27!

5^bua&3H 0 for N odd

~N21!!!

2N/2
@s (2)~ t !#N/2 for N even,

~3.28!

reproducing the results for the mean and the variance der
above forN51 andN52, respectively.
l

e

to

ng

n

in

ed

The moments of Eq.~3.28! satisfy the typical relation of a
Gaussian process and this provides an independent che
the fact that the probability distributionP(xw ,t), being a
superposition of Gaussians att50, remains Gaussian at a
times, as it must be, due to the linearity of the evoluti
equation. This probability distribution can be written in th
following form:

P~xw ,t !5(
a,b

Na,b

^bua&

Aps (2)~ t !

3expH 2

S xw2
ae2 iw1b* eiw

2
x~ t ! D 2

s (2)~ t !
J ,

~3.29!

with x(t) and s (2)(t) given, respectively, by Eq.~3.6! and
Eq. ~3.23!. If we sett50 in these expressions, we obtain th
exact solution of the ideal case of zero feedback delay, wh
has been derived in@6#.

It is instructive to apply the general result of Eq.~3.29! to
the case of an initial even Schro¨dinger-cat state,

uCcat&T5N$ua0&1u2a0&% ^ u0&, ~3.30!

in which u6a0& are two coherent states of the cavity mo
and N5(11e22ua0u2)21/2 is the normalization constant, t
see the effect of the nonzero delay on the decoherence
cess. The marginal probability distributionP(xw ,t) for this
initial condition can be written as~see also Ref.@6#!

P~xw ,t !5N2$p1
2 ~xw ,t !1p2

2 ~xw ,t !

12p1~xw ,t !p2~xw ,t !cos@V~xw ,t !#

3^a0u2a0&
m(t)%, ~3.31!

where the first two terms,

p6
2 ~xw ,t !5

1

Aps (2)~ t !
expH 2

@xw7Re$a0e2 iw%x~ t !#2

s (2)~ t !
J ,

~3.32!

pertain to the two initial coherent state, while the third, co
taining the functions

V~xw ,t !5
2xwIm$a0e2 iw%x~ t !

s (2)~ t !
~3.33!

and

m~ t !512
@x~ t !#2

2s (2)~ t !
, ~3.34!

describes the time evolution of the quantum interference
tween them. In Ref.@6# it is shown that, in the case of zer
feedback delay time (t50) and perfect homodyne detectio
h51, this interference term decays with a decoherence ti

tdec~g!.
1

2gua0u2@12g sin~u2w!#2
, ~3.35!

which for 0<gsin(u2w)<2 implies that quantum coherenc
survives for a longer time with respect to the no-feedba
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FIG. 2. Time evolution of the marginal probability distributionP(x,t) (x5xw) for the initial state~3.30! with a05 i5. ~a! refers to the
no-feedback case@g sin(u2w)50#; ~b! refers to the ideal limit of zero feedback delay time andh51, with g sin(u2w)51; ~c! refers to the
case with a nonzero feedback delay time (gt50.01) h51, and withg sin(u2w)51; ~d! refers to the casegt50.01, h50.9, andg sin(u
2w)51.
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case (g50). If we consider the presence of a nonzero-de
time, the correction to this feedback-induced decohere
slowing down can be evaluated from the behavior of
fringe visibility function m(t) of Eq. ~3.34!. It is, however,
more instructive to see the effects of the feedback delay
the plots of the probability distribution. In Fig. 2 and Fig.
we show the plots ofP(xw ,t) (x5xw50) for the casea0
5 i5. What is relevant in Fig. 2 is that the probability dist
bution in the presence of a nonzero delaygt50.01 and ef-
ficiency h51 @Fig. 2~c!# loses its interference fringes onl
slightly faster than the ideal case of zero delay andh51
@Fig. 2~b!# and that the decoherence is still much slower th
the no-feedback case@Fig. 2~a!#. Moreover, in Fig. 2~c! the
‘‘step effect’’ is once again very evident, producing a rap
initial ‘‘flattening’’ of the probability distribution, which is
quantitatively the main effect of the feedback delay. Figu
2~d! shows the effect of a nonunit detection efficiencyh
50.9) which, as can be easily expected, degrades the pe
mance of the homodyne feedback scheme in an apprec
way.

Figures 2 and 3 show that an appreciable decohere
retardation is obtained when the conditiongt<0.01 is satis-
fied and this means a feedback delay time equal to one-
of the decoherence time in the absence of feedback,tdec(0)
50.02g21. Therefore, the feedback-induced decoherence
tardation takes place even in the presence of a nonzero d
and Figs. 2 and 3 show that one can even tolerate delay t
of the order of the decoherence time itself.

B. Complete solution of the dynamics

In this section we exactly solve the time evolution of t
cavity mode in terms of the symmetrically ordered char
y
ce
e

n

n

e

or-
ble

ce

alf

e-
lay
es

-

teristic function, which is nothing but the expectation val
of the cavity mode dispacement operator on the initial st
of the whole system,

xW~l,t !5Tr„rT~0!D~l,t !…,
~3.36!

D~l,t !5exp@la†~ t !2l* a~ t !#.

Using the commutation rules of this operator witha(t), Eq.
~2.16! becomes in this case

dD~l,t !5
g

2
$l* D~l,t !a~ t !2la†~ t !D~l,t !%dt

1Agl* D~l,t !dB~ t !2AglD~l,t !dB†~ t !

2
g

8h
g2~le2 iu1l* eiu!2D~l,t !Q~ t2t!dt

1 i
Ag

2
g~le2 iu1l* eiu!H Aga†~ t2t!eiwdt

1
dBf

†~ t2t!

Ah
eiwJ D~l,t !Q~ t2t!

1 i
Ag

2
g~le2 iu1l* eiu!D~l,t !H Aga~ t2t!

3e2 iwdt1
dBf~ t2t!

Ah
e2 iwJ Q~ t2t!. ~3.37!

When we consider the initial condition of Eq.~3.2!, we can
simply focus on the matrix element
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FIG. 3. Comparison atgt50.1 of the mar-
ginal probability distributionP(x,t) between the
cases of no feedback~dot-dashed line!, feedback
with zero delay time @g sin(u2w)51,h51,
dashed line#, feedback with nonzero delay tim
gt50.01 andh51 @g sin(u2w)51, full line#,
and feedback with nonzero delay time and impe
fect detection gt50.01 and h50.9 @g sin(u
2w)51, dotted line#.
,
e

i-
^D~l,t !&ba5$^0u ^ ^bu%D~l,t !$ua& ^ u0&%, ~3.38!

which obeys the following evolution equation:

d

dt
^D~l,t !&ba5

g

2
$l* ^D~l,t !a~ t !&ba2l^a†~ t !D~l,t !&ba%

2
g

8h
g2~le2 iu1l* eiu!2^D~l,t !&ba

3Q~ t2t!1 i
g

2
g~le2 iu1l* eiu!

3$eiw^a†~ t2t!D~l,t !&ba

1e2 iw^D~l,t !a~ t2t!&ba%Q~ t2t!.

~3.39!

To solve Eq.~3.39!, we have to deal with terms of the form
^D(l,t)a(t8)&ba . We first focus on itst8 dependence
which can be determined in the same way as we have don
the preceding section for̂Xw(t)Xw(t8)&ba , that is, by dif-
ferentiating with respect tot8^D(l,t)a(t8)&ba , by keepingt
constant. Using the commutation rules of Eq.~3.15!, it is
possible to derive the following relations, valid for all pos
tive value oft and t8:

@D~l,t !,a~0!#5D~l,t !Vl~ t !,

@D~l,t !,a†~0!#5D~l,t !Vl* ~ t !,

@D~l,t !,dB~ t8!#5D~l,t !Rl~ t2t8!dt8,
~3.40!

@D~l,t !,dB†~ t8!#5D~l,t !Rl* ~ t2t8!dt8,

@D~l,t !,dBf~ t8!#5D~l,t !R l
f ~ t2t8!dt8,

@D~l,t !,dBf
†~ t8!#5D~l,t !R l

f* ~ t2t8!dt8,

where we have defined
in

Vl~ t !52le2(g/2)t2
i

2
eiw~le2 iu1l* eiu!Q~ t2t!

3
x~ t !2e2(g/2)t

sin~u2w!
, ~3.41!

Rl~ t !5lR1~ t !2l*R~ t !, ~3.42!

R l
f ~ t !5lR 1

f ~ t !2l*R f~ t ! ~3.43!

@R(t), R1(t), R f(t), andR 1
f (t) are given by Eqs.~3.16!,

~3.17!, ~3.18!, and~3.19!#. Using Eqs.~3.40!, we then obtain

^D~l,t !a~ t8!&ba

5^D~l,t !&baH ae2(g/2)t82
i

2
eiu~b* eiw1ae2 iw!

3Q~ t82t!
x~ t8!2e2(g/2)t8

sin~u2w!
1e2g/2(t82t)

3Q~ t82t!Wl~ t82t,t !J , ~3.44!

where

Wl~ t82t,t !52 i
Ag

2
geiuE

0

t82t
dt9e(g/2)t9

3H 2AgLl~ t9,t !1eiw
R l

f* ~ t2t9!

Ah
J ,

~3.45!

Ll~ t,t8!52
Ag

2
eiwE

0

t

dt9x~ t2t9!S Q~ t82t9!Rl* ~ t82t9!

2g sin~u2w!Q~ t92t!
R l

f* ~ t82t91t!

Ah
D

1
1

2
eiwx~ t !Vl* ~ t8!. ~3.46!
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Using the fact that̂ a†(t8)D(l,t)&ba5^D(2l,t)a(t8)&ab*
and Eq.~3.44!, Eq. ~3.39! becomes the simple homogeneo
differential equation

d

dt
^D~l,t !&ba5H~ t !^D~l,t !&ba ~3.47!

whose solution is

^D~l,t !&ba5^D~l,0!&baexpS E
0

t

dt9H~ t9! D . ~3.48!

This result is only apparently simple, since the explicit tim
dependence ofH(t) is given by

H~ t !5
g

2
~l* a2lb* !e2(g/2)t1

i

2
~le2 iu1l* eiu!

3~b* eiw1ae2 iw!Q~ t2t!

ẋ~ t !1
g

2
e2(g/2)t

sin~u2w!

2
g

8h
g2~le2 iu1l* eiu!2Q~ t2t!1

g

2
Q~ t2t!

3e2g/2(t2t)@l*Wl~ t2t,t !1lWl* ~ t2t,t !#

1 i
g

2
g~le2 iu1l* eiu!Q~ t22t!

3e2g/2(t22t)@e2 iwWl~ t22t,t !2eiwWl* ~ t22t,t !#.

~3.49!

Equations~3.48! and ~3.49! describe the time evolution o
the cavity mode starting from the initial condition~3.2!, in
the case of a nonzero feedback delay time. It is, howe
interesting to consider the approximated expression of
result at first order ingt since this condition can be easi
realized experimentally with usual electro-optical feedba
loops and good cavities.

C. Approximated expression for ŠD„l,t…‹ba

in the gt!1 limit

We have two possible equivalent ways to deal with
gt!1 limit. The most straightforward one is simply to co
sider this limit in the exact solution Eq.~3.48!. However, this
procedure is not very transparent from the physical poin
view because of the complicated form of the functionH(t).
It is instead more instructive to perform the same limit fro
the beginning on the evolution equation for^D(l,t)&ba , Eq.
~3.39!, and then integrate it. We shall consider this seco
approach also because it can be adopted not only in the p
lem considered in this paper@linear choice~3.1! for the feed-
back operatorF(t)] but also for more general forms of th
operatorF(t). Let us go back, therefore, to Eq.~3.39!, where
r,
is

k

e

f

d
b-

the difficult terms to handle are those containi
^D(l,t)a(t2t)&ba and its complex conjugate, which can b
rewritten as

^D~l,t !a~ t2t!&ba5^D~l,t !a~ t !&ba

2^D~l,t !Da~ t2t!&ba ,

~3.50!

where

Da~ t2t![a~ t !2a~ t2t!. ~3.51!

In the limit gt!1, we can use Eq.~2.16! to approximate Eq.
~3.51! at the first order int so that we can write~we also
considert>2t)

^D~l,t !a~ t2t!&ba.K D~l,t !H a~ t !1
g

2
a~ t2t!t

1 iggeiuXw~ t22t!tJ L
ba

1 igA g

4h
ei (u1w)

3^D~l,t !DBf
†~ t22t!&ba ,

~3.52!

whereDBf(t22t) is the following Ito increment:

DBf~ t22t!5Bf~ t2t!2Bf~ t22t!. ~3.53!

The last term on the right-hand side of Eq.~3.52! can be
simplified using the identity

D~l,t !5D~l,t22t!1$D~l,t !2D~l,t22t!% ~3.54!

and approximating the term in the curly brackets again
first order int. Finally, one gets

^D~l,t !a~ t2t!&ba.S 11
gt

2
~11 igei (u2w)! D

3^D~l,t !a~ t !&ba

1 i
gt

2
ei (u1w)^a†~ t !D~l,t !&ba

2
gt

4h
g2~le2 iu1l* eiu!

3eiu^D~l,t !&ba . ~3.55!

Replacing this approximated expression in Eq.~3.39! to-
gether with the corresponding one for^a†(t
2t)D(l,t)&ba , one obtains a simple integrable equati
~valid for t>2t! having the following solution:

^D~l,t !&ba5^bua&exp$2A~ t !ulu21B1~ t !l21B2~ t !~l* !2

1C~ t !l1D~ t !l* %, ~3.56!

where
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A~ t !5
1

2
1

g2

4h
$F0~ t !2gtF1~ t !%, ~3.57!

B1~ t !5„B2~ t !…* 52
g2

8h
$F0~ t !2gtF1~ t !%e22iu,

~3.58!

in which

F0~ t !5
12e2(122g sin u)gt

122g sinu
, ~3.59!

F1~ t !5~11gt g sinu!e2(122g sin u)gt1~g sinu!F0~ t !,
~3.60!

and

C~ t !52
i

2 sinu
~ae2 iu1b* eiu!e2(g/2)t1

ie2 iu

2 sinu
~a1b* !

3e2(122g sin u)~g/2!t 1H i

2
ge2 iu~a1b* !

3S ~122g sinu!
g

2
t21De2(122g sin u)(g/2)tJ gt,

~3.61!

D~ t !52
i

2 sinu
~ae2 iu1b* eiu!e2(g/2)t1

ieiu

2 sinu
~a1b* !

3e2(122g sin u)(g/2)t1H i

2
geiu~a1b* !

3S ~122g sinu!
g

2
t21De2(122g sin u)(g/2)tJ gt.

~3.62!

~We have chosen the phases so thatw50.! As expected,
settingt50 one obtains the same results of Ref.@6#. It is
important to note that Eq.~3.56! has been obtained integra
ing from t52t, i.e., using^D(l,2t)&ba as initial condition.
This initial condition could be derived from the exact sol

FIG. 4. Time evolution of 2̂D(2a0 ,t)& for a05 i5 andw50
for g sinu50 ~dot-dashed line!, g sinu51 with gt50 ~dashed
line!, and g sinu51 with, from bottom to top,gt50.02,gt
50.01,gt50.001~full lines!.
tion Eq. ~3.48!, but it could also be obtained by noting th
Eq. ~3.39! takes a very simple form for 0<t<2t. In fact, the
terms ^D(l,t)a(t2t)&ba and ^a†(t2t)D(l,t)&ba , for t
<t<2t, can be written as

^D~l,t !a~ t2t!&ba5a^D~l,t !&bae2g/2(t2t),

~3.63!

^a†~ t2t!D~l,t !&ba5b* ^D~l,t !&bae2g/2(t2t),

depending on the fact that fort<t<2t the operatorsa(t
2t) and a†(t2t) are not affected by the feedback loo
Moreover, for 0<t<t these terms do not contribute to th
evolution because of the presence of the step function in
equation. In this way Eq.~3.39! can be simply integrated fo
0<t<2t too.

In Ref. @6#, the decoherence inhibition capabilities of th
homodyne-mediated feedback scheme have been desc
by looking at the so-called coherence functionC(t)
5^2a0ur(t)ua0& . However, an equivalent description o
the decoherence of the Schro¨dinger-cat state~3.30! is pro-
vided by the time evolution of the expectation value of t
operatorD(2a0 ,t) on the state~3.30!. In fact, for ua0u2@1
and gt!1, this quantity has the same time behavior of t
coherent functionC(t) of Ref. @6#, because its off-diagona
contributions are greater than the diagonal ones by the e
nential factore2ua0u2. In the small delay time limitgt!1,
this equivalent coherence function takes a simple form, gi
by

^D~2a0 ,t !&.
1

2
expH 22ua0u2S 21

~g sinu!2

h

3@F0~ t !2gtF1~ t !#22eg/2(122g sin u)t

1~g sinu!@22gt~122g sinu!#

3gte2g/2(122g sin u)tD J , ~3.64!

where we have defined phases so thatw50 and considered
Re$a0%50. In the zero-delay time case (t50), when gt

FIG. 5. Time evolution of 2̂D(2a0 ,t)& for a05 i5 andw50 in
the presence of feedback with nonzero delay time (gt50.01 and
g sinu51) and for different values of the homodyne detection e
ciencyh; from bottom to top,h50.75,h50.9,h50.95,h51 ~full
lines!. The dashed line refers to the no-feedback case.
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!1, this function is an exponential with characteristic tim
equal to Eq.~3.35! ~see Ref.@6#!. We have plotted Eq.~3.64!
in Fig. 4 again fora05 i5 in the ideal caseh51 for different
values of the feedback delay and we have compared it w
the no-feedback case~dot-dashed line! and with the ideal
caset50 andh51 ~dashed line!. As we have seen above
the decoherence slowing down is significant up togt
50.01, i.e.,t50.5tdec, and of course increases as long as
feedback delay decreases. In Fig. 5 the effect of an imper
homodyne detection is considered and it is shown how
expected, the decay of the coherence functionD(2a0 ,t) be-
comes faster and faster as long as the efficiencyh decreases

IV. CONCLUSIONS

In this paper the dynamics of a cavity mode subject t
feedback loop using a fraction of the output homodyne p
tocurrent to control the transmittivity of a mirror has be
completely solved in the general non-Markovian case
which the feedback delay time is not negligible. To solve t
problem, we have generalized the derivation of the feedb
quantum Langevin equation based on the input-output the
of Ref. @3# to the nonunit detection efficiency case. We ha
seen that whenh<1, the fed-back photocurrent involves
new Ito noise term, coinciding with the usual input noi
only in theh51 limit.

We have seen that the main effect of the delay is
‘‘step effect,’’ that is, the fact that the feedback loop sta
acting only after the timet has elapsed. Apart from this, th
dynamical behavior in the presence of a feedback delay d
not differ very much from the predictions of the Markovia
treatment based on the zero-delay limit, as long asgt!1. As
a consequence, the significant decoherence slowing d
demonstrated in Ref.@6# for the zero-delay limit holds even
in the presence of a nonzero delayt, and one gets a goo
decoherence inhibition for values oft up to one-half of the
decoherence time.
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APPENDIX A

Let us consider the evolution equation for the cavity mo
state vectorucw(t)& for the case of feedback with zero-dela
time, given in@6#:

ducw~ t !&5$Adt1Bdw~ t !%ucw~ t !&, ~A1!

in which dw(t) is a real-valued Wiener increment derivin
from the input noise, and

A52
g

2
a†a2

g

2
F22 igFae2 iw, ~A2!

B5Ag~ae2 iw2 iF !, ~A3!
th

e
ct
s

a
-

n
s
ck
ry
e

e

es

n

e

are cavity mode operators in the Schro¨dinger picture, with
F5g(ae2 iu1a†eiu)/2 as in Eq.~3.1!: this equation can be
derived from Eq.~2.19! by means of the method develope
in @19#. Now we adopt the stochastic integration method d
rived in @21# to explicitly solve Eq.~A1!. The explicit ana-
lytical solution is given by

ucw~ t !&5Ew~ t !ucw~0!&, ~A4!

where the evolution operator is

Ew~ t !5exp@ iL~ t !#expF S A2
B2

2 D t Gexp@x2~ t !a1x1~ t !a†#,

~A5!

with L(t) andx6(t) complex functionals of the Wiener pro
cessw(t); defining in particular the functions

f 1~ t !5
Ag

23/2
$2 ig~11e2 i2w!eiue(g/2)t

1@2 ige2 iu12e2 iw1 igei (u22w)#e2(g/2)t%,

~A6!

f 2~ t !5
Ag

23/2
$2g~12e2 i2w!eiue(g/2)t

1 i @2 ige2 iu12e2 iw1 igei (u22w)#e2(g/2)t%,

~A7!

we have that

x j~ t !5E
0

t

f j~ t8!dw~ t8! for j 51,2, ~A8!

L~ t !5E
0

t

f 1~ t8!x2~ t8!dw~ t8!2E
0

t

f 2~ t8!x1~ t8!dw~ t8!,

~A9!

x6~ t !5
1

A2
@x1~ t !6 ix2~ t !#. ~A10!

If we consider the case of an initial coherent stateua0&, Eq.
~A5! gives

ucw~ t !&5Ew~ t !u@x1~ t !1a0#e2(g/2)t&, ~A11!

that is, the state remains coherent with amplitude@x1(t)
1a0#e2(g/2)t, andEw(t) is a complex weight given by

Ew~ t !5exp„iL~ t !1 1
2 @x1~ t !* 1x2~ t !#@x1~ t !12a0#

1 i Im@x1~ t !a0* #1 i
g

4
gtei (u2w)2 1

2 $ux1~ t !1a0u2

1@x1~ t !1a0#2e22iw%~12e2gt!…. ~A12!

First of all we note that replacingg50 in Eq. ~A11!, we
correctly obtain the same results of Ref.@22# for the case of
a no-feedback loop. The state remains coherent in agreem
with the ‘‘no-go’’ theorem of Ref.@2#, according to which
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homodyne-mediated feedback is not able to increase the
classicality of the output light. Using linearity, from Eq
~A11!, one easily gets the evolution of the Schro¨dinger-cat
state

uccat&5N$ua0&1u2a0&% ~A13!

and it is also possible to evaluate the coherent function
fined in @6#,

Cw~ t !5
^2a0ucw~ t !&^cw~ t !ua0&

^cw~ t !ucw~ t !&
. ~A14!

By considering the limitsua0u@1 andgt!1 and settingw
50 and Re$a0%50 as in@6#, one gets the following expres
sion:

Cw~ t !5 1
2 exp$2 1

4 gg2w2~ t !22iAgua0u~12g sinu!w~ t !%,
~A15!

reproducing very well the numerically obtained stochas
trajectories of Ref.@6#. Equation ~A15! clearly shows the
results of Ref.@6#, i.e., that the modulus ofCw(t) is not
u-dependent and that the large fluctuations in the absenc
feedback and those in the presence of feedback but
phaseuÞp/2 are essentially phase fluctuations.

APPENDIX B

Let us consider Eq.~3.4! for the function^Xw(t)&AB ,

d

dj
Z~j!52Z~j!12kZ~j2y!Q~j2y!, ~B1!

where for the sake of simplicity we have introduced the f
lowing notation:

j5
gt

2
, y5

gt

2
,

tt
n-

e-

c

of
ith

-

Z~j!5 K XwS 2j

g D L
AB

,

~B2!

k5g sin~u2w!.

We are interested in studying Eq.~B1! for j>0, with
initial condition Z(0)5Z0. First of all we observe thatZ(j)
is a continuous function of classC`(I ) on every intervalI
5] n y,(n11) y @ , with nPN. Moreover it is possible to
verify that its pth derivative is not continuous atj5py.
Apart from this irregular behavior due to the presence
Q(j2y), it is easy to see from Eq.~B1! that the generic
solutionZ(j) is bounded by a locally integrable function an
therefore it can be Laplace-transformed. Denoting withZ̃(s)
the Laplace transform ofZ(j), from Eq. ~B1! we have

Z̃~s!5
Z0

~s11!S 12
2ke2sy

s11 D . ~B3!

It is always possible to choose the integration path for
antitransformation so that

U2ke2sy

s11 U,1, ~B4!

and using the geometrical series, we can write Eq.~B3! as

Z̃~s!5Z0(
n50

1`
~2k!ne2sny

~s11!n11
~B5!

which can be easily antitransformed. Using Eqs.~B2!, we
then obtain the solution~3.5! of Sec. III A.
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