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Non-Markovian quantum feedback from homodyne measurements: The effect of a nonzero
feedback delay time
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We solve exactly the non-Markovian dynamics of a cavity mode in the presence of a feedback loop based
on homodyne measurements, in the case of a nonzero feedback delay time. With an appropriate choice of the
feedback parameters, this scheme is able to significantly increase the decoherence time of the cavity mode,
even for delay times not much smaller than the decoherence time [8&G50-29479)00508-9

PACS numbd(s): 42.50.Lc, 03.65-w

. INTRODUCTION ~(yn)~ !, which can be much shorter than the damping time

when the cavity mean photon numberis large. In these

) Although fTedback schemels r?ave bfefen ;sedkffor a IOn@ases, the unavoidable nonzero feedback delay time may
time to contro n0|sde, a Igene(:jra tl eory ot feedbac %r q\L/JVE.mhave important effects and it would be important to deal with
tum systems was developed only some years ago by IS§he exact non-Markovian problem with# 0. There is in fact

man and _I\_/Iilburr[1—3]. Interesting possibilities are opene_d a renewed interest in non-Markovian effects, which can play
by the ability to control systems at the quantum level using, | important role when considering quantum optics in

appropriate feedback loops and some of them have beemgh-Q cavities and in photonic band-gap materials. For this

shown in a series O_f papefé—9]. Referencd4] has shown reason, non-Markovian trajectory theories have been recently
that an electro-optical feedback loop based on homOdynﬁeveloped in Refd12—14

measurements of a cavity mode provides an affordable way The quantum theory of feedback has been developed by

to realize a sqqeezed bath for the mode. As a CONSeqUeNGRiseman and Milburn in[1,2] using quantum trajectory
homodyne-mediated feedback can be used to get Squeezifigh v 115], and only later Wiseman showed an equivalent
[5], and, in the case of optical cavities with an oscillatingderivation ,based on the input-output thedip—18 in Ref.
mirror, it can be used to significantly cool the mirror. This 3]. However Ref[3] proved the equivalence between the
fact can bg extremely useful for the ?nte_rferometric detectio wo approaches in the perfect detectigr1 case only. In

of grawtgtlonal wavee{S]. “The apphcaﬂgn Of. a feedback this paper we shall see how to extend the quantum Langevin
loop realizes an effective “reservoir engineeringl0] and, approach of the input-output theory to the nonunit efficiency

therefore, it can be useful also for decoherence ContrOI(:ase and we shall see that this theoretical framework is best

which is a rapidly expanding field since decoherence is th%uited to deal with the non-Markovian case of nonzero feed-

main limiting factor for quantum information processing b : ; ;
ack delay time. We shall consider the non-Markovian ef-
[11]. Reference$5—7,9 have already shown that the deco- fects by completely solving the dynamics of a cavity mode in

herence induced by photon leakage in electromagnetic cavip fah dvne-mediated electro-optical feed-
ties can be significantly suppressed with appropriate fee% € presence ol a homodyne-medialed electro-optical 1ee
back loops, using the homodyne photocurren{5r6] and ack Iqop, Wh'ch has been already considefiedhe zero-
direct photodetection and atomic injection[i,9]. delay limit only) in Ref. [6].

However, all the relevant applications considered up to 1 N€ Paper is organized as follows. In Sec. Il we shall
now always assume the zero feedback delay time limit reconsider the quantum theory qf feedbgck in the case of
—0, which is much easier to handle because the problefiomodyne measurements, adopting the input-output theory
becomes Markovian and the effect of feedback can be exdf Gardiner and Colletf16—-18, and we shall see how to
pressed in terms of an effective master equatm] The introduce the nonunit detection efficiency in this framework.
presence of a nonzero delay has been considered briefly onl§ Sec. 1ll we shall completely solve the non-Markovian dy-
in [3], where the spectrum of a homodyne measurement hagamics in the presence of a nonzero feedback delay by con-
been evaluated for a simple case. The Markovian treatment gidering the time evolution of the probability distribution of
justified whenever the feedback delay time is much smallethe measured field quadrature and of the characteristic func-
than the typical cavity time scale. If one considers squeezingon. We shall consider in particular the possibility of inhib-
or some other stationary state phenomenon, the feedback di@ing the decoherence of a Schlinger-cat state initially gen-
lay time 7 has to be compared with the cavity relaxation timeerated in the cavity and we shall see that the significant
v~ ! and for sufficiently good cavities the Markovian condi- decoherence suppression which can be obtained, for appro-
tion y7<<1 is usually satisfied. However, if one considers thepriately chosen feedback parameters, in the zero-delay case
feedback scheme for decoherence control, the delags to  (see Ref[6]) is recovered even in the presence of not neg-
be negligible with respect to the decoherence tityg, ligible feedback delay times.
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Il. HOMODYNE-MEDIATED QUANTUM FEEDBACK where the vecto]W(t)); obeys the following stochastic
THEORY WITHIN THE INPUT-OUTPUT FORMALISM equation:

We shall consider an optical cavity, with annihilation op- y
eratora, subject to the homodyne measurement of the fieldd| ¥ (t))r=1 \yadB'(t)— ya'd B(t)—za’radt |W(t)r.
quadrature 2.9

Xo=5(ae "+ a'e'?). (2.)  Using the commutation’s rule@.3), it is easy to prove that
the Heisenberg evolutiof2.5) satisfies the usual requirement
We shall consider the possibility of applying a feedback loopthat the input noiselB(t) has to commute with every cavity
to this cavity mode, by feeding back part of the output ho-operator evaluated at preceding times,
modyne photocurrent to control in some way thenode . .
dynamics. [dB(t),0(t")]=[dB'(t),0(t')]=0 for t=t'.

First of all, it is convenient to reformulate the Wiseman 2.9
and Milburn quantum theory of feedbad¢k,2?] using the : . .
input-output theory developed by Gardiner and Collett eq-JatIOI’I(-Z.4) can be lfsed to get the time evolution of a
[16,17). The input-output formalism is essentially a Heisen-generic matrix element d(t) between two state vectors of
berg approach for the whole systefoavity and vacuum the whole system of the formy,)®|0) and|¢g)®|0), in
bath, in which the environment dynamics is described bywhich the environment is left in the vacuum state,
the white-noise input operataB(t) satisfing the Ito rules

[16-19; (O(1) aa=312(a' () O(Da(D) s~ (@l (D) O(D) ag
dB(*=dB'(B)"=0, dBI(DdBE(t)=0, on —(B(haT(ha)aghdt, 210
dB(t)dB'(t)=dt, " where
and the following commutation’s relations: (O(t)as={(0l&(sal}O(D{l¥s)e|0)}. (2.1
[dB(t),dB(t')]=0 Let us now introduce the feedback loop associated to the

homodyne measurement of the quadrate Differently
23 from Ref. [3], we assume the possibility of a nonunit homo-

[dB(t),dB'(t")]=5(t—t")dtdt’. dyne detection efficiencyy<1. The application of a feed-

back loop is equivalent to adding a feedback Hamiltonian

In the absence of any fe?dback loop, the evolution of erb(t) [1,2,5), so that the correction to the Heisenberg evo-
generic cavity mode operat@(t) in the interaction picture |ution of Eq.(2.4) takes the form

is described by the quantum Langevin equafib,17):

JydY, (t—7)
n

dOp(t) = [F1).0M], (212

dO(t) = %[ZaT(t)O(t)a(t) —ala)oo)

N N N . where F(t) is the observable of the cavity mode through
—O(ha'(ha(t)Jdt—»[O(t),a’ (1) 1dB(Y) which the feedback acts on the system amgdt) is the out-
- t put field operator associated to the homodyne measurement.
+\710(),a(t)dB'(b), (24 In the quantum trajectory approach [if,2], the fed-back
wherey is the cavity damping rate.

homodyne photocurrent (t) is a classical quantity, but in
Equation (2.4) can be solved explicitly in terms of the the quantum Langevin approach it must be an operator with
evolution operatotJ (t,t;),

its quantum fluctuations. However, one can adopt the general
theory of homodyne measurements of R26f)] and write the
A(t)=U'(t,0)0U(t,0), 2.5 photocurrent operator in an analogous way,

which in the absence of feedback takes the following form de(t)ZZ\/;”st(t)dH ‘/77d5sv(t)' (213

[18]: whered= ,(t) describes the “noisy” part of the output pho-

tocurrent operator. The only delicate point in the derivation
of the quantum theory of feedback [df,2] in the imperfect
(2.6) detection case using the input-output theory is just the exact
determination of this noisy operatdE ,(t). SinceY ,(t) is
wherea anda’ are in the Schidinger representation and exp an output operator, it is quite natural to consider E413
denotes the time-ordered exponential. The evolution operatds an input-output relatiofi6,17,19, so that the noisy term
U(t,t,) describes also the evolution in the Satirger rep- would simply be the input fielddZ(t)=dB(t)e '¢
resentatior{ 18,19, +dBT(t)e"P. However, this interpretation of Eq2.13 is
correct only in the perfect detection cage 1, because only
| W (t))r=U(t,0/{|¥a)®|0)}, (2.70  in this case does the output of the detection apparatus coin-

U(t,to):Ex_p( ﬁf:dBT(t')a— J}fds(t')aT
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cide with the cavity output and the quantum fluctuations oftection efficiency and it coincides with the quantum Ito equa-
the vacuum bath are transferred unaltered by the detector. lion derived in Ref.[3] in the case of perfect homodyne
the presence of imperfect detection, the output photocurrerdetection n=1. We have also explicitly inserted the step
may be nontrivially related with the input noigd(t) and in  function ® (t— 7) with respect to Ref{3] to stress the im-
general one has to describe the noisy operdﬁcp(t) in possibility for the feedback to act on the system before the
terms of anew noise dB¢(t), which we shall call “feed- delay time r has elapsed since the initial condition. This
back” noise. Therefore, one has to write means that the evolution @¥(t) for 0<t<r coincides with
qu,(t):dBf(t)e‘i‘HdB}L(t)ei‘P, (2.14 that in absence of feedpack, describe-d byAaF.l). Mor-e-
over, we observe that, since the equationd@t) contains
where the feedback nois#B;(t) satisfies the same proper- only stochastic terms evaluated for timgsst (preciselyt
ties (2.2) and (2.3) of the input noise; moreover, this feed- andt—7), it is possible to conclude that the commutation
back noise is correlated with the input noidB(t) and this  relations(2.9) are valid also in the presence of feedback and,
correlation is determined just by the detection efficiengy  more in general, that E42.16 preserves the canonical com-
since one has mutation rules form(t) anda'(t).
[dB(1),dB(t")]=0, 2.15 A. Zero-delay time limit
[d B(t),dB;r(t’)]= \/Zé(t—t’)dtdt’. Up to now, the explicit applications of the quantum theory
o ) ] . of feedback of Wiseman and Milburn have considered the
It is immediate to see that in the perfect detection case zero-delay time case=0 only, when one has a tractable
=1, one can identify the feedback noise with the input noisaviarkovian equation. Whenever one considers a nonzero de-
dBy(t)=dB(t), while in the opposite casgy=0 the two  |ay, the problem becomes non-Markovian and difficult to
noises are uncorrelated, as it can be easily expected since dgjye.
this case the fed-back noise has nothing to do with the The feedback master equation for homodyne-mediated
vacuum input noise. _ ) feedback in the zero-delay limit has been first derived in its
In the feedback correctio(2.12) of the Heisenberg evo- general form using quantum trajectory thedfp] in Refs.
lution, 7 is the delay time associated to the feedback 1001 7). In the case of perfect homodyne detectipr 1, the
and since it is a non-negative quantity, it ensures that th@ame homodyne-mediated feedback equation has been re-
output operatolY ,(t—7) commutes with all system opera- derived using input-output theory by Wisemar(8} and, in
tors evaluated at time In particular,Y (t—7) commutes its linear stochastic form, by Goetset al. in Ref.[6]. How-
with F(t) and so there is no ambiguity in the definition of ever, the connection between this linear stochastic approach
dOg(t). As it has been stressed in REf,2,5, one must be anq thg input-output theO(y was not made expliqit there. In
careful in using Eq(212), the feedback process is phys|- reVIeWIr\'g the Zel’o—delay tlme case, we shall Clarlfy here the
cally added to the evolution of the system of interest, so itg#onnections between the different approaches and we show
stochastic differential contribution has to be introduced as # Particular that the linear stochastic Sotlirger equation
limit of a real process. This implies that E@.12 has to be  a@PProach of Refl6] is equivalent to the input-output result
considered in the Stratonovich sense. Therefore, it is conve?l E- (2.1 (in the casey=1) in the same way as E(.8)

nient to rewrite it in the Ito form f;\nd then add it to E§.4), 1S ?r%lgvsifr?itngo;gﬁltqg?mgrgnﬁ;s%se\g? F?gé’ﬁtéﬁtﬁé evolu-
so that the resulting equation fax(t) becomes tion equation for the state vectp¥ (t)) of the whole sys-

A y . . tem (cavity and vacuum bajhln the no-feedback case, this
dO(t)= =[2a’(t)O(t)a(t)—a'(t)a(t)O(t) equation is obviously equal to E.9); the feedback loop is
2 then introduced using the same Hamiltonian modification of
Eqg. (2.12 in the casep=1. However, since in Ref6] the
zero-delay time limit is considered from the beginning, one
has to be careful with operator ordering, because in this cir-
\/TyaT(t— 7)e'edt cumstance one is not guaranteed #h¥,(t) commutes with
the cavity mode operatd¥(t) at the same time. In Ref6]
the question is solved by imposing that “the feedback acts
i ~ later,” i.e., that|W(t+dt)) is obtained from|W(t)); by
"P1TF(1),0(t)]0(t— T T
© )[ (1),0(0]10(=7) means ofU (t+dt,t) (the evolution operator in the absence
of feedback loopfirst and by the Hamiltonian feedback cor-
e rection latefsee Eq(2.11) of [6]]. It is clear that in this way
\/§a(t— T)e '¥dt the equivalence with the input-output approach of R&fis
not so evident. However, the equivalence can be proved by
considering the following evolution operator:

- t
UF(t,to) = exf{ J;
0

—iJyFe tedB(t')—iyFe'*dB'(t")

—O(val(Ha(t)]dt—Vy[O(1),a’(t)]dB(1)

+y[O(1),a(t)]dBI (1) +iy

dBl(t—17)
+—

Vn

+iVy[F(1),0(1)]

dBf(t_ T)
4+

N

Zyn(t— HIF),[F(1),0(t)1dt. (2.16

ei‘P)(t—T)
JydBf(t")a—/ydB(t)a'

This is the quantum Ito stochastic equation describing the y ‘ v _
time evolution in the presence of feedback and nonunit de- =i Ea*Fe“"dt’—i EFae"‘Pdt’)}, (2.1
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wherea, a', andF are in Schidinger representation. Using lll. FEEDBACK DYNAMICS IN THE PRESENCE
the Ito rules(2.2) to evaluate the differentiadlO(t), it is OF A NONZERO DELAY

possible to check thad ¢(t,to) is just the evolution operator  The gynamics in the presence of a feedback loop with a
determining the formal solution of E2.16) inther=0 and  ponzero-delay time has never been completely solved be-

=1 limit, according to the usual rule cause of its intrinsic non-Markovian nature. In this paper we
shall analyze the effects of a nonzero feedback delay by con-
O(t)zUE(t,O)OUF(t,O). (2.19  sidering a specific example for the “feedback operator”
F(1),

As can be easily expected, the zero-delay evolution operator g ' _
Ug(t,to) reduces to the no-feedback od¢t,t,) of Eq.(2.6) F(t)=gX,(t)= E[a(t)e"’“r a'(t)e'’], (3.2
when F=0. This suggests that an equivalent Sclimger
representation could be obtained also in the case of feedbaglt e the constang represents the gain of the feedback
with zero-delay “T"e’ starting from an equat_io_n_ analogous tcf:)rocess and is an experimentally controllable phase. The
Eq. (2.7. In fact, if we appIyUF(i,O) to the initial state of particular choice(3.1) of F means that the feedback loop
the total system and we use agan t_he Ito “('Rag).’ one gets  4ds a driving term to the mode dynamics, which could be
the following linear stochastic Schamger equation: achieved, e.g., by using an electro-optic device with variable
transmittivity driven by the homodyne photocurrent. The
Y homodyne-mediated feedback model with the chdigd)
d|q’(t)>T:i VradB'(t) - ya'd B(t)—EaTadt for F(t) has been completely solved in RE8] in the Mar-
. kovian limit of zero-delay time and, therefore, the compari-
—iVyFdE (1) —iyFae 'edt son with the results of Ref6] will be very instructive. As it
is shown in Ref.[6], the main virtue of the homodyne-
— Zdeti 1P (1))r (2.19  Mediated feedback is its capability of slowing down the de-
2 coherence associated with cavity damping provided that the
feedback parametegsand 6 are appropriately chosen. Here
coinciding with the equation obtained [i&]. This shows that We shall see that the decoherence inhibition caused by the
the approach of Ref6] and that of Ref[3] are, respectively, feedback takes place also in the presence of a nonzero feed-

the Schrdinger and Heisenberg view of the same theory,back delay time; in particular, decoherence is appreciably
with UF(titO) the unitary operator mediating the transition slowed down even for delay times not much smaller than the

from one to the other. decoherence time itself.

In Ref.[6], by adopting an appropriate representation ba- First of all, we shall show the exact time evolution for the
sis for the vacuum modésee, for exampld19]), Eq.(2.19 marginal probability distributiorP(x, ,t) of the quadrature
was then reduced to a linear stochastic equation for the cagomponentX(t): this will result in a quite simple expres-
ity mode only, which was solved numerically. In Appendix sion which can be easily analyzed. Then we shall give the
A we shall reconsider this linear stochastic equation for thecomplete solution of the system dynamics in terms of the
cavity mode and we shall see how it is possible to solve isymmetrically ordered characteristic function.
analytically by adopting the integration method described in
[21]. A. The marginal probability distribution
fo the 120 case fs much more diffult and we shail not /A 990, ever if not complete, descipton of the state of
consider this strategy to study the nonzero-delay proble t_he_cawty mode is given by the marginal probability distri-

Mhution P(x,,t) of the measured quadrature component

i/?gltg:g’ I\Equ fzhElllé)aqrooptgger:]gegt?:égi#;omaléirgi|W 2;\7\23: »(t). We shall consider the following class of initial states

consider generic matrix elements as those of Exll), for the whole system:
whose evolution equation can be easily derived from Eq.

(2.16: pT<0>=aEB N, gla)(B8|®]0)(0], 3.2

d . Y - - i.e., a linear superposition of coherent states for th it

a _Y T ot .e., perposition of coherent states for the cavity

dt<o(t)>AB 2{2<a (HO(Ha(t)as—(@'(Ha(t)O(t))as mode and the vacuum state for the electromagnetic bath. We
shall focus on the evaluation of the moments

(XD ga=1(0l2(BIXJ(D{|ay®|0)} (3.3

(N is an integer. P(x,,0) is a superposition of Gaussian

—(O(va'(t)a(t))as}

+iy{(@'(t—[F(t),0(t)]) ae'?

+([F(1),0(t)]a(t—7))age '“}O(t—7) functions and, thanks to the choice of E8.1) for the feed-

y R back operator, the evolution in the presence of feedback re-
- 2—<[F(t),[F(t),O(t)]])AB®(t—7). mains linear, so tha®(x,,,t) will maintain its initial Gauss-

K ian behavior. This fact will be explicitly verified at the end of

(2.20 the section.
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FIG. 1. Normalized mean value of the mea-
sured quadraturg(t) [see Eq.3.95] for g sin(¢
—¢)=0 (without feedback, dot-dashed line
g sin(@—¢)=0.45, and some values of the delay
time. From bottom to top:yr=5,yr=2.5, yr
=1,yr=0.5 (full lines), and yr=0 (dashed
line).
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We now proceed step by step: first we explicitly deter-easily verified using good optical cavities and common
mine the evolution of the first- and second-order moment anelectro-optical feedback loops. From the exact solut®6)
then we derive a recursive relation between the momentene gets
clearly showing the Gaussian nature of the corresponding
probability distribution.

For N=1, Eq. (3.3 becomes the matrix element of the x(1)
measured quadratube,(t), and Eqs(2.20 and(3.1) yield
the following differential equation for its evolution:

sin(6—
={1— w{z_ yt[1—2g

X sin(6— qo)]}'yr] e [1-29sin(@=)l(»2)t (38

d 4 .
gt Xe()ae=— 5 (X ())ast ygsin(6—¢) We have plotted the solutioi3.6) in Fig. 1, in which there is
also a comparison with the no-feedback case and with the
X (X (t=7))ag®(t—17), (3.9 Markovian feedback case of the zero-delay time limit. This

plot makes evident how the major part of the difference be-
which can be integrated fae0 using Laplace transforms as tween the zero delay and the delayed cases comes from the
is discussed in Appendix B: retardation caused by the presencedqt — 7): for simplic-
ity, we shall refer to this effect in the following as the “step
(Xe(1))ag=(X,(0)) apx(t) (3.5  effect.”
For the determination of the second order monidty.
with (3.3 with N=2], it is convenient to study the correlation
function C(t,t") =(X,(t)X,(t")) s, for every positive value
[gsin(0—)]" of t andt’. We first focus on the dependence tnand
=T e 2 y(t—n7)]", differentiateC(t,t’) by t’ using Eq.(2.16) to get the follow-
ing differential equation:

In[t/7]

x(= >

n=0 n!
(3.6

where In[X] indicates the integer part of the real numkein dcC(t,t’)=— %C(t,t’)dt’ +ygsin(6—¢)C(t,t'—7)
the case of the initial conditio(8.2), one has simply to con-

sider|#a)=|B8) and|¥g) =|a) in Eq.(3.5), even though it is N

clear that this solution is valid for any choice of the initial X0t —r)dt' — 7e"P([X‘p(t),dBT(t’)])ﬁa

state of the cavity. The functiog(t) of Eq. (3.6) will often

appear in the complete analytical solution of the problem y .

described in the following and it is therefore useful to de- + \/4—9 sin(0—¢)e'?

scribe its behavior in the various limits. The solutith6) K

has the correct behavior both in tige=0 limit, where one X ([ X (t),dBI(t’—r)]}E Ot —7). (3.9
has the simple exponential decgyt)=e~""2 and in ther ¢ “

—0 limit, yielding The corresponding initial condition can be obtained from Eq.

(3.9 and is given byC(t,0)=(X,(0)X,(0))g.x(t). Now
Eqg. (3.9 can be integrated once the explicitdependence of
the commutators between the nois#B'(t') and dBI(t’
—7) and the operatoX(t) is known. For the determination
which is the same solution which can be derived from theof these commutators, let us define first of &[t,t’)
exact treatment of Ref6]. It is interesting to consider the =[X¢(t),BT(t’)], in which B(t") is the sum of all the Ito
limit of small delay, yr<1, because this condition can be increments of the input noise from the initial time up

X(t)zexp{—;—y[l—zg sin—o)ltt, (3.7



1554 V. GIOVANNETTI, P. TOMBESI, AND D. VITALI PRA 60

tot’. Now we can proceed in an analogous way as we have [a(t),dBI(t’)]= —Rfl*(t,t’)dt’,
done to write Eq(3.9) and we differentiate in by keepingt’
constant. Using the commutation rules of E2.3), we get [aT(t),dBf(t’)]=Rfl(t,t')dt’,
1%
Ef(t,t’) =-— %’f(t,t’) +ygsin(6—¢)f(t—7,t")O(t—17) [af(t),dB(t")]=—R™(t,t")dt’,
\/; _ where
——e 'Ot —t)—gsin(0— : '
2 { ( ) 9 n( QD) R(t,t/):i\/T;Qel(ﬂJr(p){@(t_tr_T)(e7/2(tt —7)
XO(t—7)0(t' —t+7)}, (3.10 ,
X(t_t/)_e—7/2(t—t )
which, except for the presence of the last term, which is a - T A— +O(t—t'-27)
. . ; . - gsin(6—¢)
known function of time, is an equation similar to E®.4)
and therefore can be solved using Laplace transforms and the ottt
initial condition f(04')=0 implied by Eq.(2.9). The com- X[x(t=t' =) —e VAU =R(t-t'),
mutation rules betweeX(t) and the Ito incremerd BT(t")
can now be obtained by simply differentiating this solution (3.16
with respect ta’ and the final result is Ry(tt)=—2e ¢ (t,t")—e 2eR(t,t' ) =Ry(t—t"),
[X,(1),dB(t")]=FAt.t)dt’, (3.11) @19
where RIt,t)=i /4_7;79ei(0+¢)[ O(t—t' —1) e Y2(t-t'—1)
Ftt)=— £ye“@{@(t—t')X(t—t')—gsin(ev— ¢) Clx(t-t)—e R o
2 - +0O(t—t'—27)
gsin(6—¢)
XO(t—t'—7m)x(t—t'—7)}
=Ft-t'). (3.12 ><[x(t—t'—r)—e‘“‘“"f)’z]]ERf(t—t’),
The same procedure can be adopted to determine the com- (3.18
muta@or[x(p(t),dBI(t’)] involving the feedback noise and Rg(t,t’)z _zefigo]jfk(t,tr)_e—zinf(t,t/)ERfl(t_tr)_
one finally gets (3.19
[X,(1),dBf(t")]=F(t,t")dt’, (313  Note that all these commutators ar@umber functions and
this is essentially a consequence of the commutation rules
where between the noise operators given by E@s3) and(2.15.

At this point it is possible to compute the correlation func-
tion C(t,t") replacing Eq(3.11) in Eq. (3.9): we obtain an
integrable differential equation of the same form of Eg.
(3.10, whose solution is

vy

Fi(tt)=——e "% {y0(t—t)x(t-t")

gsin(6—¢) , ,
_T®(t_t —m)x(t—t'—7) C(t,t")=C(0,0 x(t)x(t")+(Bla)G(t,t"), (3.20
=F(t—t'). (3.14  where

Proceeding as before, it is possible to compute also thej(t,t’)= Zr fmin[t't ]dt”x(t—t”)x(t’—t”)—gsin( 0— o)
commutation rules between the noise operatd&(t’), 41 Jo
dBT(t"), dB(t’), dBi(t’), anda(t),a’(t’), which we ex-

plicitly report here because they will be useful in the follow- XO(t' — 1) f Omi”“'t T (=t () — —t")
ing:
[a(t),dB(t")]=R(t,t")dt, —gsin(6— q;)@(t—r)fmi”“”’t Yt v (t—7—t7)
0
[a(t),dB'(t")]=—R}(t,t")dt’, g2 sirf(0— o)
)yt =+ 2 g et — 1)
[a'(t),dB(t")]=Ry(t,t")dt’, (3.19 g
min[t— nt' - 7] " 4 ! 4
[a’(t),dBY(t")]=—R*(t,t")dt’, X . dt"x(t=7—t")x(t' —7=t").

[a(t),dBy(t)]=R (t,t")dt’, (3.21)
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If we now sett’ =t in this expression, we get the second- The moments of E(3.28 satisfy the typical relation of a
order momen{Eq. (3.3) with N=2]; it is, however, more Gaussian process and this provides an independent check of
useful to consider the expression of the following “vari- the fact that the probability distributioR(x,,t), being a
ance”: superposition of Gaussians &t 0, remains Gaussian at all
X , times,_ as it must be, _QUe to 'ghe _Iinearity of thg evo_lution
_, (Xo(D)ga [ {(Xp(1)) ga equation. This probability distribution can be written in the

2
A= [ (Bl ) _( (Bla) ) j (3.22 following form:
(Bla)
1 tr P(Xg,1)= 2 N
=—+—g 2sirk(9— @)@(t—r)f dt” x2(t"). ap mo (1)
3.2 ae*i(,p_kﬂ*ei(p 2
823 Xy~ ————x()
Let us consider again the physically interesting limit of small xXexp| — B ,
delay,yr<1, in which the variance of E¢3.23 can be well a(t)
approximated by the first-order expansion ym, which is (3.29
given by

, with x(t) and o®)(t) given, respectively, by Eq3.6) and

@) 1 1+ Lo 1—e L-2gsn@=olt Eq.(3.23. If we setr=0 in these expressions, we obtain the
oY= 2 7 SIM(6-=¢) 1-2gsin(6—¢) exact solution of the ideal case of zero feedback delay, which
) . has been derived if6].
9 Si(6—¢) [14 ytg sin(0— )] It is instructive to apply the general result of E§.29 to
27 V19 ¢ the case of an initial even Sclilinger-cat state,

x e~ Ml-29 sin(&—(p)]t_{_gsm(g_ ®) |q’ca&T:N{|aO>+|_0‘0>}®|O>y (3.30

(1—e 711 =29 sin(0-¢)] )]77 (324  inwhich|+a) are two coherent states of the cavity mode
1-2gsin(6—¢) and N=(1+e 212 s the normalization constant, to

see the effect of the nonzero delay on the decoherence pro-

T_his expression, as well as EG.9) is V"’?"d fort>r 0”'3_/’ cess. The marginal probability distributid®(x, ,t) for this
since fort<r the feedback is not yet acting and the variancej,itial condition can be written atsee also Re1[6])

assumes its value in the absence of feedbat®(t) = 1/2.
As concerns the higher-order variances, it is convenient to P(X,,t)= NZ{Pi(X(p )+ pZ_(X(P t)
consider the following quantities:
X +2p; (Xg,1)p_(X,,t)cog (X, 1)]
(Xe(0)pa= (XD =X (DX O)]Y) 5o (3.29 X (arg|— g O}, (3.3

and to proceed as in the previous case, that is, by con&denq,ghere the first two terms,
the function(X} *(t)X,(t")) ., and differentiating it with

respect tat’ by keepingt constant. This gives a differential 2 ( ) expl — [x,+Re{ape™ “hx(1)]
equation which can be formally integrated and setting then ™~ ¢’ Jma@(t) oA (t)
t=t’ it is easy to get the following recursive relation: (3.32

(X (1) ga= (N=1)G(t, t)<XN Z(t)>ﬁa (3.26 pe'rt'ain to the two initial coherent state, while the third, con-
taining the functions

This relation can be easily solved and it can be expressed in 2x Im{age  “}x(t
the following way: Qx,,t)=—F ; (3.33
o )(t)
<X<p(t)>ﬁa N and
X (1) — ok ,
Bley | [ 4, [x(D)]
_ _ p)=1-——--—, (3.39
ae et grele N 203)(t)
= (xq,(t)— fm)) (327 | | | |
Ba describes the time evolution of the quantum interference be-
tween them. In Refl.6] it is shown that, in the case of zero
0 for N odd feedback delay time7(=0) and perfect homodyne detection
=1, this interference term decays with a decoherence time
= x4 (N—1 K ’
(Bla) —( ) [c@(t)]V? for N even, 1
2N/ tyed 9)=
ded 9) : : (3.39
(3.28 T 29 ag[1-gsin(6-¢)]?

reproducing the results for the mean and the variance deriveghich for 0<gsin(6— ¢)<2 implies that quantum coherence
above forN=1 andN=2, respectively. survives for a longer time with respect to the no-feedback
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FIG. 2. Time evolution of the marginal probability distributi®t{x,t) (x=x,) for the initial state(3.30 with aq=15. (a) refers to the
no-feedback casy sin(6—¢)=0]; (b) refers to the ideal limit of zero feedback delay time a1, with g sin(f—¢)=1; (c) refers to the
case with a nonzero feedback delay timer€0.01) »=1, and withg sin(6—¢)=1; (d) refers to the casgr=0.01, »=0.9, andg sin(¢

—¢)=1

case §=0). If we consider the presence of a nonzero-delayteristic function, which is nothing but the expectation value
time, the correction to this feedback-induced decoherencef the cavity mode dispacement operator on the initial state
slowing down can be evaluated from the behavior of theof the whole system,

fringe visibility function u(t) of Eqg. (3.34. It is, however,
more instructive to see the effects of the feedback delay on
the plots of the probability distribution. In Fig. 2 and Fig. 3
we show the plots oP(x,,t) (x=X,-o) for the casea,

xw(X, 1) =Tr(pr(0)D(A,1)),

D(A,t)=exdraf(t)—A*a(t)]. (339

=i5. What is relevant in Fig. 2 is that the probability distri- USIng the commutation rules of this operator weift), Eq.

bution in the presence of a nonzero delay=0.01 and ef-
ficiency »=1 [Fig. 2(c)] loses its interference fringes only
slightly faster than the ideal case of zero delay ajw 1
[Fig. 2(b)] and that the decoherence is still much slower than
the no-feedback cadé&ig. 2(a)]. Moreover, in Fig. ) the
“step effect” is once again very evident, producing a rapid
initial “flattening” of the probability distribution, which is
guantitatively the main effect of the feedback delay. Figure
2(d) shows the effect of a nonunit detection efficiency (
=0.9) which, as can be easily expected, degrades the perfor-
mance of the homodyne feedback scheme in an appreciable
way.

Figures 2 and 3 show that an appreciable decoherence
retardation is obtained when the conditipn<0.01 is satis-
fied and this means a feedback delay time equal to one-half
of the decoherence time in the absence of feedbiagk0)
=0.02y L. Therefore, the feedback-induced decoherence re-
tardation takes place even in the presence of a nonzero delay
and Figs. 2 and 3 show that one can even tolerate delay times
of the order of the decoherence time itself.

B. Complete solution of the dynamics

(2.16) becomes in this case

dD(\,t)= %{)\*D()\,t)a(t)—)\aT(t)D()\,t)}dt

+JyA*D(N,H)AB(t) — VyAD(N, 1) dBT()
Y —i * Al _

—ggz(xe 04 \*ei®)2D(\,1)0 (t— 7)dt

+iJ7;9(>\e“0+>\*e“") Vyal(t—re“dt

dBl(t—17)
+—
n

e DN, 1)O(t—1)

+igg()\e”’+)\*e”’)D()\,t) Jya(t—1)

dBf(t—’T)

e 't O(t—1).
7 (t—7)

X e tedt+ (3.37

In this section we exactly solve the time evolution of the When we consider the initial condition of E(B.2), we can
cavity mode in terms of the symmetrically ordered charac-simply focus on the matrix element
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FIG. 3. Comparison atyt=0.1 of the mar-
ginal probability distributionP(x,t) between the
cases of no feedbadklot-dashed ling feedback
with zero delay time [gsin(@—¢)=1,7=1,
dashed ling feedback with nonzero delay time
y7=0.01 andn=1 [gsin(@—¢)=1, full line],
and feedback with nonzero delay time and imper-
fect detection yr=0.01 and »=0.9 [g sin(@
—¢)=1, dotted ling.

(D(N1) ga={(0]@(BI}D(ND){|a)®[0)}, (3.3

i _ _
V(1) = —xe*<7’2>‘—§e'¢(>\e*'9+ A e (t— 1)

which obeys the following evolution equation:
x(H)—e (2

d y T Sino—¢) " 40
Gt (DO ga=5 N (DN Da(D) g M@ (OD (N D)o}
Ra(t)=AR.(t) —N*R(1), (3.42
Y s .
—@gz(xe AT e )ADNY) ga RIO=ARLD)-N*R(1) (3.43
y . . [R(t), Ri(t), RY(1), andel(t) are given by Eqs(3.16),
XO(t—71)+i Eg()\e""+ A*el?) (3.17, (3.18, and(3.19]. Using Eqgs(3.40, we then obtain
x{e(a’(t— D\, D)o (DA DA(L)) g
—ie _ D (t — , i . .
+e '"(D(\,ba(t T)>/3a}(t 7). :<D()\’t)>,8a ae~ (Yt _ _eIQ(B*er_;’_ae—lgo)
(3.39 2
X(t/)_ef('y/Z)t'
To solve Eq.(3.39, we have to deal with terms of the form XO(t' —7)—————+e yl2(t' = 7)
(D(\,t)a(t’))g,. We first focus on itst’ dependence, sin(0—¢)
which can be determined in the same way as we have done in
the preceding section faiX,(t)X,(t"))s,, that is, by dif- X(t’—r)WA(t’—r,t)}, (3.44)
ferentiating with respect to (D(\,t)a(t’)) g, by keeping

constant. Using the commutation rules of Eg.15), it is
possible to derive the following relations, valid for all posi-
tive value oft andt’:

where

Wt —7t)=—i ggemft,fdt"e(ylz)t”
[D()\,t),a(O)]:D()\,t)V)\(t), 0

ORI (t—t")
[D(\,1),a7(0)]=D(\ D)V (1), X\ 2y A\ (1" 1) +el¢ ———T}
Vn
[D(\,1),dB(t")]=D(\,t) Ry (t—t")dt’, (3.49
(3.40 &5 g

[D(\,1),dBT(t")]=D(\H R} (t—t")dt’, A(tt)=— %ei“’fodt”x(t—t”)( O(t' —t")RE (' —t")

[D(\,1),dB(t")]=D(\, DR (t—t")dt’, R (4 —t"+ 7)

_gSin(a_(P)@(t”_T)#

[D(A,1),dBI(t)]=D(\,HR ™ (t—t")dt, 7
1

where we have defined tae OV (3.48
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Using the fact tht:ll(&ff(t’)D()\,t)>5a=(D(—)\,t)a1(t’)>§[g the difficult terms to handle are those containing
and Eq.(3.44), Eq. (3.39 becomes the simple homogeneous(D(\,t)a(t— 7))z, and its complex conjugate, which can be

differential equation rewritten as
d (DN Ha(t—1))ga=(D(\D)a(t))gq
i P ga=HO(D(N 1) pa (3.47 —(D(\,HAa(t— 7)) g4,
(3.50
whose solution is where
Aa(t—7)=a(t)—a(t— 7). (3.5

t
<D()\!t)>ﬁa:<D()\io)>ﬁanF( f dt”H(t”)>- (3.48
0 In the limit y7<<1, we can use Ed2.16) to approximate Eq.
(3.51) at the first order inr so that we can writéwe also
This result is only apparently simple, since the explicit timeconsidert=27)
dependence oF{(t) is given by
(D()\,t)a(t—r)>ﬁa=< D()\,t)(a(t)Jr %a(t— 7
i . A
H(t)= 2 (\Fa—Ag*)e 024 2 (ne 1P+ xel?)
+igye 0X¢(t—27)7]>

x()+ Ze*(V/Z)t
><(,8*e“"+oze‘i"’)@(t—r)—2 +ig \/ el (7 ®)
sin(6— o) 47

Ba

y y X(D(N,DAB](t—27)) .,
_ N2 —if * AlN2@ (+ ZO(t—
8”g (Ae "'+ NTe')O(t 7-)+2(t 7) (3.52
X e MR ANE W, (1= )+ AWE (1= 7,1)] whereAB¢(t—27) is the following Ito increment:
AB¢(t—27)=B¢(t—7)—Bs(t—27). (3.53
Y —ig io
+tizge T+ ATen)O(t-2n) The last term on the right-hand side of E&.52 can be
simplified using the identity
xe A2 IO, (t-27,t) — e WS (t—-27,1)].

(3.49

D(\,t)=D(\,t—27)+{D(\,t)—D(\,t—27)} (3.54)

and approximating the term in the curly brackets again at

) _ _ ) first order in7. Finally, one gets
Equations(3.48 and (3.49 describe the time evolution of

the cavity mode starting from the initial conditidB.2), in yT e
the case of a nonzero feedback delay time. It is, however, (D(\,t)a(t—7))g,=|1+ 5 (1+igen™ )
interesting to consider the approximated expression of this

result at first order inyr since this condition can be easily X(D(A,t)a(t))Ba
realized experimentally with usual electro-optical feedback
loops and good cavities. +i %Tei(ew)(af(t)D()\’t))ﬁa

C. Approximated expression for(D(X 1)) g, yr . _
in the y7<<1 limit — Egz(ke_lg‘i” )
We have two possible equivalent ways to deal with the »

y7<1 limit. The most straightforward one is simply to con- X e'(D(N\,1))ga- (3.59
sider this limit in the exact solution E¢3.48. However, this , ) ) o
procedure is not very transparent from the physical point of¥€Placing this approximated expression in Eg.39 ,tro'
view because of the complicated form of the functiagt). ~ 9ether — with  the  corresponding one  for(a’(t
It is instead more instructive to perform the same limit from ~ 7)D(N,t)) g, ONe obtains a simple mt_egr.able equation
the beginning on the evolution equation @ (X t)) 5, , Eq. (valid for t=27) having the following solution:
(3.39, and then integrate it. We shall consider this second _ B 2 2 12
approach also because it can be adopted not only in the prolgp()"t)>ﬁ“_<'8|a>e)(p{ AN+ Bi(A*+ Bo () ()
lem considered in this papfinear choice(3.1) for the feed- +C(HON+D(HN*D, (3.56)
back operatof(t)] but also for more general forms of the
operator(t). Let us go back, therefore, to E(@.39, where  where
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2 <D[2 ayp.t]>
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FIG. 4. Time evolution of 2D(2ay,t)) for ay=i5 ande=0
for gsin#=0 (dot-dashed ling gsinf=1 with y7=0 (dashed
line), and gsiné=1 with, from bottom to top,y7=0.02,yr
=0.01,y7=0.001(full lines).

1 ¢
Al =5+ E]{fo(t)— yrFi(H)}, (3.57

2
By(t) = (By(t))* = — g—nwt)— yrF(D}e 2,

(3.58
in which
1_e7(1fzgsin0)yt
Fo(t)= 1-2gsing ' (3.59
Fi(t)=(1+ytgsing)e 1729sNDN4 (g sing) Fy(t),
(3.60
and
. . ie i
- _ —if * Al 0\ o= (Y/2)t *
C(t) 2sin0<ae +B*e'%e +23in0(a+'8 )
) i )
Xe—(1—2gsm0)(y/2)t+ Ege_'o(oﬁ-ﬁ*)
x| (1—-2g sine)%t—l e‘(l‘zgsm“’)(y’zﬁ]yr,
(3.6
D(t)=— | (ae '+ prelf)e” (VA e (a+B*)
2sing 2sing
) [
Xe*(l*2g SIﬂG)(y/Z)t+ zgela(a'i'ﬂ*)

x| (1—2gsing) %t— 1) e~ (1~2gsin ”)W’Z)t} yT.

(3.62

(We have chosen the phases so that0. As expected,
setting 7=0 one obtains the same results of Ref]. It is

important to note that Eq3.56) has been obtained integrat-

ing fromt=2r, i.e., using(D(\,27)) g, as initial condition.

2 <D[2 ayp.t]>
1

0.3

0.6

04

02

0.1 02 03 04 ”
FIG. 5. Time evolution of 2D (2aq,t)) for ;=15 ande=0 in
the presence of feedback with nonzero delay timpe=€0.01 and
g sin=1) and for different values of the homodyne detection effi-
ciency #; from bottom to top,7=0.75,7=0.9,7=0.95,7=1 (full
lines). The dashed line refers to the no-feedback case.

tion Eq. (3.48), but it could also be obtained by noting that
Eq. (3.39 takes a very simple form for8t<27. In fact, the
terms (D(\,t)a(t— 7))z, and (@'(t—7)D(\ 1)) g,, for 7
<t=<2r, can be written as

(DN Da(t— 1)) ga=a(D(\,1)) g0~ 207,
(3.63
<aT(t— T)D()\’t»ﬁa:B"(D()\,t))ﬁae’ yI2(t-7).

depending on the fact that far<t<2r the operatora(t

—17) anda'(t—7) are not affected by the feedback loop.
Moreover, for G=t< 7 these terms do not contribute to the
evolution because of the presence of the step function in the
equation. In this way Eq3.39 can be simply integrated for
0<t=<2r too.

In Ref. [6], the decoherence inhibition capabilities of the
homodyne-mediated feedback scheme have been described
by looking at the so-called coherence functidd(t)
=(—ag|p(t)|ap) . However, an equivalent description of
the decoherence of the Schinger-cat stat€3.30 is pro-
vided by the time evolution of the expectation value of the
operatorD (2ay,t) on the state3.30. In fact, for |ag|?>1
and yt<1, this quantity has the same time behavior of the
coherent functiorC(t) of Ref. [6], because its off-diagonal
contributions are greater than the diagonal ones by the expo-

nential factore?/%ol’, In the small delay time limityr<1,
this equivalent coherence function takes a simple form, given
by

i 2
(O (2 1) gerg| ~2laf?| 2+ @

X[ Fo(t) — yrFy(t)]— 2e72(1-2gsin o)t
+(gsing)[2— yt(1-2gsing)]

X yre~ yI2(1-2g sin ﬁ)t) ] , (3.64)

where we have defined phases so that0 and considered

This initial condition could be derived from the exact solu- Re{ay}=0. In the zero-delay time caser£0), when yt
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<1, this function is an exponential with characteristic timeare cavity mode operators in the Sdtiirmger picture, with
equal to Eq(3.35 (see Ref[6]). We have plotted E(3.64) F=g(ae '’+a'e'?)/2 as in Eq.(3.1): this equation can be
in Fig. 4 again forag=i5 in the ideal casey=1 for different  derived from Eq.(2.19 by means of the method developed
values of the feedback delay and we have compared it witin [19]. Now we adopt the stochastic integration method de-
the no-feedback cas@lot-dashed lineand with the ideal rived in[21] to explicitly solve Eq.(Al). The explicit ana-
caser=0 andn=1 (dashed ling As we have seen above, lytical solution is given by

the decoherence slowing down is significant up @

=0.01, i.e.,r=0.54.., and of course increases as long as the | (1)) =Ew(t)[4,(0)), (Ad)
feedback delay decreases. In Fig. 5 the effect of an imperfect
homodyne detection is considered and it is shown how, a¥
expected, the decay of the coherence funcbBd «,t) be-

BZ
comes faster and faster as long as the efficiendecreases. E, (t)=exfdi A(t)]ex;{ ( A— 7)t

here the evolution operator is

exgx—(t)a+x (t)a'],
(A5)

IV. CONCLUSIONS
] ] ) _ with A (t) andy. (t) complex functionals of the Wiener pro-
feedback loop using a fraction of the output homodyne pho-

tocurrent to control the transmittivity of a mirror has been Yy o e o2
completely solved in the general non-Markovian case in fl(t)=27,2{—|9(1+e 12¢) ¢l fel7/21
which the feedback delay time is not negligible. To solve this

problem, we have generalized the derivation of the feedback +[—ige 1?4+ 2e e +igel(f-20) e (v
guantum Langevin equation based on the input-output theory

of Ref.[3] to the nonunit detection efficiency case. We have (A6)
seen that whem=1, the fed-back photocurrent involves a N

new Ito noise term, coinciding with the usual input noise VY 1 ami2e) aifa(yi2t
only in the =1 limit. f2(= 23/2{ g(l-e ")e’e

We have seen that the main effect of the delay is the _ _ .
“step effect,” that is, the fact that the feedback loop starts +i[—ige '?+2e7 ¢ +ige!(?729)]e” (VY
acting only after the time has elapsed. Apart from this, the (A7)
dynamical behavior in the presence of a feedback delay does
not differ very much from the predictions of the Markovian we have that
treatment based on the zero-delay limit, as longas1. As t
a consequence, the significant decoherence slowing down _ / , P
demonst?ated in Refs] fgor the zero-delay limit holds egven xX(0= fofj(t ydw(t’) for j=12, (A8)
in the presence of a nonzero delayand one gets a good

decoherence inhibition for values efup to one-half of the t t
decoherence time. A(t):fofl(t,)XZ(t,)dW(t,)_fOfZ(t,)Xl(t,)dW(t,)a
(A9)
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(A5) gives
APPENDIX A [ (1)) =En(D|[ x4 (1) + agle” 2, (A11)

Let us consider the evolution equation for the cavity modet , . . :
. hat is, the state remains coherent with amplitdige (t
state vectofi,(t)) for the case of feedback with zero-delay +agle "t and&,(t) is a complex weight gi?/erl? by( )

time, given in[6]:
En()=expliA(t)+ 7 [x+(O* +x_(D)][x+ (1) +2aq]

df (1) ={Adt+Bdw(t)}| (1)), (A1)
. 9
in which dw(t) is a real-valued Wiener increment deriving +ilmlx, (Dag ] +i Zyte'(” =3 {|x+ () + arg|?
from the input noise, and _
+x+ (1) + agl’e 2} (1—e™ ). (A12)
A=— %a*a— %Fz—inae“‘P, (A2)  First of all we note that replacing=0 in Eq. (A11), we

correctly obtain the same results of RE#2] for the case of
' a no-feedback loop. The state remains coherent in agreement
B= \/;(ae"‘P—iF), (A3)  with the “no-go” theorem of Ref[2], according to which
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homodyne-mediated feedback is not able to increase the non-

classicality of the output light. Using linearity, from Eq.
(A11), one easily gets the evolution of the Satirmer-cat
state

|cad =N{| o) +|— )} (A13)

and it is also possible to evaluate the coherent function de-

fined in[6],
<_ a0| ‘pw(t)><¢w(t)|a0>
(YD) (D)

By considering the limit§ao/>1 and yt<1 and settingp
=0 and Réap}=0 as in[6], one gets the following expres-
sion:

Cu(t)=Sexp— 2 yg?WA(t) — 2i \y] ag (1— g sin)w(t)},
(A15)

Cu(t)= (A14)

reproducing very well the numerically obtained stochastic

trajectories of Ref[6]. Equation(A15) clearly shows the
results of Ref.[6], i.e., that the modulus of,(t) is not
0-dependent and that the large fluctuations in the absence

NON-MARKOVIAN QUANTUM FEEDBACK FROM ...

1561

Z(§)=<X¢<

e

k=gsin(6— o).

(B2)

We are interested in studying E@B1) for £&=0, with
initial condition Z(0)=Z,. First of all we observe that(¢)

is a continuous function of clags™(l) on every interval
=]ny,(n+1)y[, with neN. Moreover it is possible to
verify that its pth derivative is not continuous &=py.
Apart from this irregular behavior due to the presence of
O(&é—y), it is easy to see from EqB1) that the generic
solutionZ(¢) is bounded by a locally integrable function and
therefore it can be Laplace-transformed. Denoting \&itk)

the Laplace transform aZ(¢), from Eq.(B1) we have

Zy
2ke™sY

s+1

Z(s)= : (B3)

(s+1)|1—

of

feedback and those in the presence of feedback but with iS always possible to choose the integration path for the

phasef+ 7/2 are essentially phase fluctuations.

APPENDIX B
Let us consider Eq(3.4) for the function(X,(t))as,

(&)= (B1)

d_gz —Z(&)+2kZ(E-y)O(é—y),

where for the sake of simplicity we have introduced the fol-

lowing notation:

antitransformation so that

2ke™sY
s+1

<1, (B4)

and using the geometrical series, we can write (B3) as

+ o

Zo,

n=0

(Zk)ne—sny

(s *

which can be easily antitransformed. Using EGB2), we
then obtain the solutiofB3.5 of Sec. Il A.
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