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Atomic soliton reservoir: How to increase the critical atom number
in negative-scattering-length Bose-Einstein gases

Humberto Michinel
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We study the stabilization of a large negative scattering length Bose-Einstein condensate by using a multi-
soliton fringe system. Each fringe behaves like a quasiparticle and the whole cloud forms a stable system when
the trapping in one or two directions is switched off. The resulting system can be used as a coherent source of
atomic solitons. A discussion on how to generate the soliton fringe system experimentally is made.
@S1050-2947~99!10208-7#

PACS number~s!: 03.75.Fi, 03.65.Ge
ies
se
e

e
hy
p

tio
-
be
ai
im
di
rt

th
ri
in

tiv

co

de
n

n

y

ha
ac

io

s a
al

nce
not

le
ith a

te.
fer-
es of
ure
se
oli-
ton
od.

ir of
an
s
les

he
ale

we
cal
tal
n-

of
I. INTRODUCTION

The recent development of the so-called atom laser@1#
has triggered the study of the multiple exciting possibilit
of optics of coherent matter waves. The experimental ob
vation of interference fringes in the overlapping of two Bos
Einstein condensates@2# is a good example of one of th
applications that can be expected in this active area of p
ics. These remarkable results have been possible due to
vious important experiments on Bose-Einstein condensa
~BEC! in ultracold atomic gases@3,4#. Since then, the inves
tigation of the properties of this new state of matter has
come a hot topic. Specifically, an important goal is to obt
condensates with higher number of particles in order to
prove experimental results and to get a better understan
of the behavior of these coherent gases. Recently repo
experiments@5,6#, show a significant progress in this way.

The interaction between the constitutive bosons inside
condensate is defined in terms of the ground state scatte
lengtha. Whena.0 the interaction between the particles
the condensate is repulsive, whereas fora,0, the interaction
is attractive. Most BEC experiments use gases with posi
scattering length. However, recent experimental results@7#,
show that it is possible to use Feshbach resonances to
tinuously detune the value ofa from positive to negative
values, by means of external magnetic fields. This provi
new interest to the analysis of attractively interacting co
densates. However, in this case, the practical realizatio
the condensate is limited by a critical number of particles@4#
above which the condensate is unstable and destroyed b
collapse phenomenon@8–12#. In spite of this serious diffi-
culty, negative scattering length condensates have some
culiarities which make them interesting. One of them is t
if the trap is removed in one direction, the attractive inter
tion yields ~for a given number of particles! to a self-
confined stationary state as it has been shown in a prev
PRA 601050-2947/99/60~2!/1513~6!/$15.00
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work @13#. In this case, the cloud as a whole behaves a
particle and can be controlled by acting on it with extern
fields. These solutions can be properly called solitons si
they appear as a consequence of self-interaction and
merely because of the effect of an external potential.

Our aim in the present work is to show that it is possib
to go one step forward and obtain a stable condensate w
larger number of particles~in fact with an arbitrarily high
number!, as a periodic copy of the mentioned soliton sta
The idea is to use the fringe pattern obtained in the inter
ence between two condensates to generate multiple copi
the one-dimensional soliton cloud. Due to the robust nat
of solitons, the system of matter-wave fringes will give ri
to a stationary state formed by parallel one-dimensional s
tons. The critical number of particles present in each soli
fringe can be calculated by means of a perturbative meth
The configuration proposed can be used as a reservo
atomic solitons which could be used as a source for
atomic soliton laser. Additionally this configuration allow
the stabilization of systems with a large number of partic
as we will see later.

Our detailed plan is as follows. In Sec. II we describe t
system and make an analytical description using multisc
expansions and a simplified stability analysis. In Sec. III
support our theoretical predictions with detailed numeri
simulations. Finally In Sec. IV we discuss the experimen
implications of our results as well as a summary of our co
clusions@14#.

II. ANALYTICAL RESULTS

A. System configuration and theoretical model

The usual theoretical model used to describe a system
weakly two-body interacting bosons of massm, with a fixed
mean numberN, trapped in a parabolic potentialV(rW) is a
1513 ©1999 The American Physical Society
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1514 PRA 60MICHINEL, PÉREZ-GARCÍA, AND de la FUENTE
nonlinear Schro¨dinger equation which in this context i
called the Gross-Pitaevskii~GP! equation,

i\
]C

]t
52

\2

2m
¹2C1V~rW !C1U0uCu2C, ~1!

where U054p\2a/m characterizes the two-body intera
tion, the normalization forC is N5* uCu2 d3r , and the trap-
ping parabolic potential is given by

V~rW !5
1

2

\2

m S x2

ax
4

1
y2

ay
4

1
z2

az
4D ,

whereah , (h5x,y,z) are constants describing the chara
teristic length of the trap. This equation is valid when t
particle densityuCu2 and temperature of the condensate
small enough and boson-boson interactions can be con
ered as a Dirac delta function. Recent theoretical work
tends the applicability of the GPE to the high density lim
@15#. On the other hand linearized stability analysis based
perturbative expansions on 1/AN seems to point that the va
lidity of the equation is restricted to the cases where no
ponential separation of nearby orbits appear as it happen
example in chaotic pulsations of the atom cloud@16,17#.

Let us consider a system as shown in Fig. 1. The cond
sate is strongly trapped inz; in the y direction a weak or no
trapping will be considered whilex is a completely free di-
rection. Our aim is to study the stability of a fringe system
the one shown in the figure. We will make the problem mo
precise in what follows. In the figure we have indicated t
effects which are proven to be dominant in each direct
provided the parameter ranges are appropriate. This hie
chy of efects will be clear after the subsequent analysis.

The fact that the potential inz provides a tight trapping
means that the wave function along thez axis will essentially
take the form of the fundamental gaussian modef0 of char-
acteristic widtha0 and the solution of Eq.~1! can be factor-
ized as

C~rW,t !5c~x,y,t !f0~z!5c~x,y,t !e2z2/2a0
2
, ~2!

beinga0[az , as can be easily seen using multiscale analy
@13#. The intuitive idea is that the trap alongz is strong
enough that nonlinear boson-boson interactions do

FIG. 1. The system studied. Shown are the effects which do
nate the dynamics in each direction~see the text!.
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change the linear mode profile in thez direction, however it
can be put on more rigorous ground as shown in our previ
work.

B. Multiscale analysis

Multiplying Eq. ~1! by f0* and integrating overz we find
the following time-dependent equation for the wave functi
on the trasversex-y plane

i\
]c

]t
1

\2

2m
~¹'

2 2a0
22!c2

U0

A2
ucu2c50. ~3!

For the sake of simplicity we will first consider an infinitel
extended system. We will study the evolution of initial da
of the form

c0~x,y,t !5u~x,t !cos~ky!, ~4!

whereu is a spatial profile to be fixed later with a scale
variation much larger thanl52p/k. This function repre-
sents an initial state which corresponds to a fringe sys
with interfringe alongy given byl52p/k.

Our consideration of an infinitely extended system ma
the theoretical analysis to be performed later simpler but
conclusions obtained are essentially valid when a weak t
ping potential is included iny, the only difference being tha
instead of considering a cosine function~which is an eigen-
function of the free linear problem! we should use a Hermite
function ~which is the eigenfunction of the parabolic pote
tial! as we will show later in Sec. III when presenting th
numerical results. In practice our use of a cosine funct
means that we will consider a large numbern of fringes but
as will be shown later the results are valid when the num
of fringes is quite small.

We will look for solutionsc(x,y,t) depending on a smal
parametere which will be related to the quotient of the tw
characteristic scales present in the initial data in the form

c5ec11e2c21 . . . . ~5!

The physical idea behind the previous expansion is that
adimensional quantity 1/e plays the role of a scaling facto
between the several spatio-temporal scales involved in
evolution of the cloud. If the scaling factor of the problem
high enough, the different scales involved can be conside
as independent and thus, it is possible to define a se
variablesxj5e j x,yj5e j y,t j5e j t for the j th order of pertur-
bation and make the expansion:

x˜x01x11x21 . . . , ~6a!

]

]x
˜

]

]x0
1e

]

]x1
1e2

]

]x2
1 . . . , ~6b!

beingx0 the usual spatial dimension and the same holds
y andt. This perturbative method is usually called ‘‘multipl
scale analysis’’ or ‘‘two timing’’ @18# and is widely used in
nonlinear science@19#.

For the sake of conciseness we will use the notationL j to
denote the expansion of the linear operator in equation~3! up

i-
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to the j th perturbative order, then we can write the perturb
tive expansion of the linear operator up to the first order

L0[ i\
]

]t0
1

\2

2mF S ]2

]x0
2

1
]2

]y0
2D 2a0

22G , ~7a!

L1[ i\
]

]t1
1

\2

m F S ]2

]x1]x0
1

]2

]y1]y0
D G , ~7b!

L2[ i\
]

]t2
1

\2

2mF2S ]2

]x2]x0
1

]2

]y2]y0
D1

]2

]x1
2

1
]2

]y1
2G .

~7c!

The calculations start by writing the wave function att50 as
a function of the expanded coordinatesxi up to first order:

c~ t50!5u~x1 ,x2 , . . . ,!cos~ky0!, ~8!

Since we look for solutions with slowly varyingx profile it is
assumed thatu depends only on the ‘‘slow’’ variables. Usin
Eq. ~3! we find

L0c1[S i\
]

]t0
1

\2

2m
¹0

22
\2

2ma0
2D c150. ~9!

This is the equation for a wave propagating through a hom
geneous linear medium. The solution compatible with
initial condition ~8! has the form

c15u1~x1 ,t1 ,x2 ,t2 , . . . ,!cos~ky0!e2 ivt0, ~10!

Whereu1 represents a slowly varying envelope andv5(k2

1a0
22)\/2m. The following step in the perturbative expa

sion yields to the following equation:

L0c21L1c150. ~11!

Substituting back~10! into Eq.~3! up to second order on th
perturbative expansion, we obtain:

L0c252L1c152 i\
]u1

]t1
cos~ky0!e2 ivt0. ~12!

The linear operator in the left-hand-side of Eqs.~9! and~12!
is L0. Thus, the right hand side term in Eq.~12! is singular
because it resonates with a solution of the homogene
equation~9!. This kind of term is usually calledsecular. To
prevent the appearance of nonphysical solutions we may
ther takeu1 to be zero or, more generally, demand th
]u1 /]t150. This choice can be formalized in the framewo
of the Fredholm alternative theorem. Thus,L0c250, which
yields to the following solution up to second order:

c25u2~x1 ,t1 ,x2 ,t2 , . . . ,!cos~ky0!e2 ivt0. ~13!

Up to this point, the physical meaning of the perturbat
expansion is evident; it has been found the best linear
proach to the problem. Following the perturbative treatm
up to order three, nonlinear terms will appear, i.e.,
-
s:

-
e

us

i-
:

p-
t

L0c31L1c21S L22
U0

A2
uc1u2D c150, ~14!

and then

L0c35F2 i\S ]u2

]t1
1

]u1

]t2
D2

\2

2m

]2u1

]x1
2

1
3

4A2
U0uu1u2u1Gcos~ky0!e2 ivt0

1
U0

4A2
uu1u2u1cos~3ky0!e2 ivt0. ~15!

Here we have again a secular term which resonates at
spatial frequencyk and another term oscillating at 3k which
will be analyzed later. Sinceu1 does not depend ont1, we
find thatu2 is as much, linearly dependent ont1. However,
to avoid unbounded growth of these solutions witht1 , u2
should not depend ont1. Under this condition and setting th
resonant term to zero, the following equation is obtained

i\
]u1

]t2
1

\2

2m

]2u1

]x1
2

2
3

4A2
U0uu1u2u150, ~16!

which is the well known one dimensional nonlinear Sch¨-
dinger equation~NLSE! @20#. For the fundamental soliton
state, it is straightforward that Eq.~16! admits a stationary
solution of the formu15Bsech(qx1)eiWt2,. Taking into ac-
count thatU054p\2a/m and a,0, the relationship be-
tween B and q is found to beB2/q252A2/(3pa). The
phase parameterW53p\aB2/4m is amplitude dependent
showing the typical self-phase modulation of these kind
solutions@21#. Defining qx15qex05x0 /w,V5e2W and A
5eB the solution in terms of thex,y,z,t usual variables is

C~rW,t !5A sechS x

wD cos~ky!e2z2/2a0
2
ei (V2v)t, ~17!

whereA2w252A2/(3pa). The number of particlesNf per
fringe ~which corresponds toDy5l/2) can be obtained by
integrating~17! on a fringe to obtain

Nf5
1

3A2p
S a0l

uauwD . ~18!

The important fact from the above discussion is that
have obtained the soliton profile foronefringe. As the global
wave function is a periodic train of parallel solitons along t
y axis, the total numberN of particles in the condensate wi
be distributed over the soliton fringes and thus, the colla
threshold could be higher, depending on the total numbe
fringes of the interference pattern. The intuitive idea is th
the enhanced dispersion provided by the oscillatory pro
compensates the collapsing tendency alongy. The validity of
this idea has been experimentally tested in the frame of n
linear optics, where interference techniques were used
generate spatial optical solitons@22#.
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C. Stability against collapse

Some questions about the stability of the approximate
lutions remain to be explained. The first one concerns
global nature of the solution, i.e., whether blow up tak
place in finite time. It is not easy to answer this question
theoretical grounds since we use a infinitely extended in
data which provides an infinite value for the energy. We c
however compute the energy per fringe. Since a suffic
condition for collapse is that the energy is negative@9,8,24#
it will give us a way to ensure collapse in certain situatio

E5E F \

2m
u¹Cu21

U0

2
uCu41

1

2
V~rW !uCu2Gd3rW

5
\2

m

~2p!3/2a0

6wuaul
.0. ~19!

This result means that the proposed configuration is a g
candidate to avoid collapse. However, it is important to ke
in mind that this is only a necessary condition to avoid c
lapse. So data satisfying this condition could in princip
collapse. Concerning sharp estimates some works have
published for the free NLSE@23# and recent work addrese
the trap case@24#, however there are no better results a
collapse has to be analyzed in practice numerically, a st
we defer to a later section. In fact, as we will see later, d
of the type~17! may collapse by the combination of a des
bilization mechanism which first breaks the fringe syst
and then concentrates many particles in small regions of
space to get local negative energy densities.

D. Stability against transverse perturbations

The fact that the fringe system could be stable agaist
lapse does not imply its dynamical stability. We will n
perform here a detailed stability analysis, which would
quite complicated for our present purpouses but only
simple discussion to have a qualitative picture of the poss
instabilites that could arise on top of our proposed confi
ration. To simplify the calculations, let us consider a reg
of the condensate far from the limits of the trap where
cloud can be taken as a planar wave of amplitudeC0. Let us
consider the evolution of the solution when a small spatia
periodic perturbation with a wavelengthlp is added to the
condensate

C5~C01«!eigt, ~20!

where«5«0ei (y/2plp1Gt). Substituting back in~1!, lineariz-
ing on «, we arrive to the following condition forG

G25
kp

2

2m S \2kp
2

2m
12U0uC0u2D . ~21!

Thus taking into account thatU054p\2/ma, a,0 we find
a critical value lcr5A2p/4a/uC0u of the perturbation
wavelength, such that the perturbation keeps oscillating w
t for lp,lcr , asG2.0. Forlp.lcr , the amplitude of the
perturbation grows exponentially asG2,0. The maximum
rate of growth takes place for a characteristic widthlmax

5A2lcr . This behavior is called modulational instabilit
and is well known in other areas of physics@25,27#. Experi-
o-
e
s
n
l

n
nt

:

d
p
-

en

y
ta
-

e

l-

e
a
le
-

e

y

th

mental observations of this instability have been also
cently reported@26# using a slightly different nonlinearity
than the proposed in the present analysis.

Turning back to the solution derived in Eq.~17!, we can
take the amplitude of the previous plane wave to be tha
the soliton state, i.e.,C05A. This yields tolcr5A3/8pw,
close to the value of the soliton width calculated in~17!. It
may seem conterintuitive that the soliton solution will not
affected~up to the first orders of perturbation! by the char-
acteristic lenght of the modulation. However, it is evide
that for larger values of the perturbation wavelength~always
below the critical value for blow up! more number of atoms
will correspond to each fringe as is given by Eq.~18!. In fact,
the effect of modulational instability along they axis is to
achieve an effective one-dimensional structure for e
fringe along thex axis. Thus, we can conclude that the fring
pattern resulting from the interference of two overlappi
condensates will be stable against periodic perturbation
the interfringe is below the modulational instability critic
lengthlcr and the spatial scalesx-y in the plane transverse
to the trappinng axis are much larger than the confinem
size ~i.e., v,ay@a0).

III. CONFINED SYSTEMS

The main result of our preceeding analysis is that
soliton-fringe system can be stabilized by choosing an app
priate wave function at least for some time~which can be
longer than the condensate timelife! before the instabilities
appear. However the analysis was done in the infinitely
tended case which is neither realistic from the experime
point of view nor computationaly tractable. Let us then co
sider the more realistic system where a trapping poten
along y is added. Though it is possible to apply again t
multiscale technique, the computation is quite complica
and physical insight is lost. To study the changes with
spect to the previous situation we will make numerical sim
lations of Eq. ~3! taking as initial data the product of a
hyperbolic secant alongx by a Hermite function~the eigen-
function of the parabolic potential! in the y direction. We
have analyzed the adimensional form of the equation, wh
is obtained defining the new variables:x5a0X,y5a0Y,z
5a0Z,t5nt the constants, Q054paN/a0 ,w5a0w0 ,l
5a0l0 and renormalizingc by definingc5CAa0

3/N. Once
the Z variable is eliminated using the first part of the mul
scale expansion one findsc(X,Y,Z).x(Z)w(X,Y). Then
eliminating a phase factor the 2D reduced equation for
wave function inX,Y obeys the following equation:

2 1
2 ¹X,Y

2 w1 1
2 l0

2Y2w1Q0uwu2w5 i
]w

]t
, ~22!

and the solution is normalized to 1 (* uwu2dXdYdZ51).
The idea is the same as before; the interfringe system

provided by the Hermite function instead of the cosine fun
tion and the trapping inx is provided by the nonlinearity. If
the number of particles per fringe is taken near the solito
value~18! we obtain highly stable solutions until the partic
number is increased above a collapsing threshold. To ch
whether the idea is extensible to the trapped system we h
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run numerical simulations of the evolution of Eq.~22! using
as initial data the normalized wave function:

C~t50!

5S a

w02n11pn!
D 1/2

sechS X

w0
De2

Z2

2 Hn~aY!e2
a2Y2

2 ,

~23!

wherea measures the strength of the potential iny direction
as compared toz (a5Al0) andw0 is not free if one wants
solitonic solutions alongX but given by the expression

w05
4pA2n!2n11

3aQ
.

Numerical simulations of Eq.~22! have been done using
symmetrized second order in time Fourier pseudospec
method on a grid with up to 102431024 points. Typical
simulation times of the model where of the order of 1
~integration stepDt50.05) which correspond to physica
values of the orders of seconds, which are about the lifetim
of the condensates.

In Fig. 2 we show the computed collapse threshold
different number of fringes~order of the Hermite function
considered!. To compute these threshold values one has
keep in mind that collapse can stop at a scale which
smaller than the grid size and then near the collapse poi
grid as large as possible must be used to improve the qu
of the approximation. In practice to compute the thresh
we start using a rough numerical grid and then incre
slowly the value ofQ0 until collapse is observed. Then w
refine the grid and continue increasing the norm until c
lapse is observed. We repeat this process until a saturatio
observed for the larger grids used of 102431024 points.

Of course since our analytical prediction was made for
free space solutions there are deviations when trying to
tend the idea to the confined system. In particular as
number of fringes increases it becomes more difficult to
crease the critical number as can be seen in the satura
present for high particle numbers. The reason is that the H
mite mode has its absolute maxima localized in the last

FIG. 2. Maximum number of particles as a function of the nu
ber of fringes~the order of the trasverse Hermite mode is used
the initial condition!.
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riod of the oscillation and increases its amplitude with t
mode number so that although the mean amplitude is cle
lower for the higher order Hermite modes the peak amplitu
does not decay~Fig. 3!.

We have analyzed Hermite modes withm50,1,2,3.
Simulation of higher ordery modes corresponds to very ex
tended systems inx since the higher the mode the lower th
peak density value and thus the solitonic width is larger. T
fact leads to very anisotropic systems which present com
tational difficulties. The optimum computational approach
this problem would be to use a robust multigrid method a
work is ongoing@28#.

The change ofl0 is not relevant for collapsing propertie
of the wave packet as we have tested in our numerical si
lations. In fact, we have observed that the collapsing sin
larity in these cases happens through compression of
wave function alongx.

The dynamical stability has been observed by letting
initial data evolve for large times. Typical evolution of th
spatial profiles after long times and of the normalized pe
density for a condensate with three fringes~hermite mode
H2) are shown in Fig. 3 where it is seen that the condens
fringe system is very stable and only small pulsations aro
the stationary solution are observed in the dynamics.

IV. DISCUSSION AND CONCLUSIONS

Our proposed system is able to confine in a stable wa
negative scattering length condensate. A related ques
concerns how to generate such state. Although it is not
intention to go through many experimental details we wo
like at least to point out some ideas.

A simple way to generate the fringe system could be
start with a positive scattering length condensate which
splitted and then joined again as it is done in the interfere
experiments@2,29#. This could be done by removing the tra
along thex-y plane and driving the condensates along thy
axis to make them collide, whereas the trap alongz remains
unaltered. Using Feschbach’s resonances combined wit
external field, it could be posible to switch the sign of t
scattering length and then the soliton fringe system would
obtained provided the parameters of the system~trapping

-
s FIG. 3. ~a! Two normalized Hermite modes showing the satu
tion of the peak value for increasingn. ~b! The peak amplitude as a
function of n.
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1518 PRA 60MICHINEL, PÉREZ-GARCÍA, AND de la FUENTE
along z, interfringe! are tuned to select approximately th
solitonic particle number per fringe. However there is no
great sensitivity to this parameter as we have confirmed
our numerical simulations.

When the particle number exceeds the soliton val
higher order states are excited or collapse is obtained. C
cerning the dynamical stability for typical experimental va
ues such as the ones used in@2# with l'15 mm !s
'1 mm, s being the soliton width the stability condition i
satisfied.

As the maximum growth rate is reached forlmax

5pA3/4s, we can derive another interesting question fro
the previous stability analysis, concerning cigar-shaped c
densates. For this geometry, it has been experimen
shown @30# that optical dipole forces can be used to exc
wave packets in a Bose-Einstein condensate. Thus, if
important result is combined with the above stability ana
sis, it can be derived that a periodically perturbed conden
will evolve into a train of soliton pulses of matter and thu
induced modulational instability could yield to stable trai
of solitonic Bose-Einstein condensates. This could be
other way to obtain coherent condensate states with h
number of particles in the negative scattering case.

In conclusion, we have derived in the present work
d
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analytical description of the interference pattern of two ov
lapping Bose-Einstein condensates with negative scatte
length. The solutions obtained show that the interference
tern can be considered as a set of multiple copies of a si
soliton state with fixed number of particles. Thus it possib
to obtain, in the frame of current experiments, no
collapsing Bose-Einstein condensates with negative sca
ing length with higher number of particles than the critic
particle number, provided the value of the interfringel is
below a critical value. This could be a way to avoid th
current bound imposed by the critical number in negat
scattering length condensates.

We hope that this study will stimulate the investigation
the behavior of BEC’s with negative scattering length a
think that the soliton solutions here studied will be of pra
tical applicability for experimentalists dealing with Bos
Einstein condensate engineering.
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