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Atomic soliton reservoir: How to increase the critical atom number
in negative-scattering-length Bose-Einstein gases
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We study the stabilization of a large negative scattering length Bose-Einstein condensate by using a multi-
soliton fringe system. Each fringe behaves like a quasiparticle and the whole cloud forms a stable system when
the trapping in one or two directions is switched off. The resulting system can be used as a coherent source of
atomic solitons. A discussion on how to generate the soliton fringe system experimentally is made.
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[. INTRODUCTION work [13]. In this case, the cloud as a whole behaves as a
particle and can be controlled by acting on it with external
The recent development of the so-called atom la4ér fields. These solutions can be properly called solitons since
has triggered the study of the multiple exciting possibilitiesthey appear as a consequence of self-interaction and not
of optics of coherent matter waves. The experimental obsemerely because of the effect of an external potential.
vation of interference fringes in the overlapping of two Bose- Our aim in the present work is to show that it is possible
Einstein condensatd®] is a good example of one of the to go one step forward and obtain a stable condensate with a
applications that can be expected in this active area of phydarger number of particleén fact with an arbitrarily high
ics. These remarkable results have been possible due to predmbej, as a periodic copy of the mentioned soliton state.
vious important experiments on Bose-Einstein condensatioihe idea is to use the fringe pattern obtained in the interfer-
(BEC) in ultracold atomic gasds,4]. Since then, the inves- ence between two condensates to generate multiple copies of
tigation of the properties of this new state of matter has bethe one-dimensional soliton cloud. Due to the robust nature
come a hot topic. Specifically, an important goal is to obtainof solitons, the system of matter-wave fringes will give rise
condensates with higher number of particles in order to imio a stationary state formed by parallel one-dimensional soli-
prove experimental results and to get a better understandirigns. The critical number of particles present in each soliton
of the behavior of these coherent gases. Recently reportdtnge can be calculated by means of a perturbative method.
experimentg5,6], show a significant progress in this way. The configuration proposed can be used as a reservoir of
The interaction between the constitutive bosons inside thatomic solitons which could be used as a source for an
condensate is defined in terms of the ground state scatterirgjomic soliton laser. Additionally this configuration allows
lengtha. Whena>0 the interaction between the particles in the stabilization of systems with a large number of particles
the condensate is repulsive, whereasafer0, the interaction as we will see later.
is attractive. Most BEC experiments use gases with positive Our detailed plan is as follows. In Sec. Il we describe the
scattering length. However, recent experimental regulls  system and make an analytical description using multiscale
show that it is possible to use Feshbach resonances to coexpansions and a simplified stability analysis. In Sec. Il we
tinuously detune the value af from positive to negative support our theoretical predictions with detailed numerical
values, by means of external magnetic fields. This providesimulations. Finally In Sec. IV we discuss the experimental
new interest to the analysis of attractively interacting conimplications of our results as well as a summary of our con-
densates. However, in this case, the practical realization aflusions[14].
the condensate is limited by a critical number of parti¢fds
above which the condensate is unstable and destroyed by the
collapse phenomendi8—12. In spite of this serious diffi- Il. ANALYTICAL RESULTS
culty, negative scattering length condensates have some pe-
culiarities which make them interesting. One of them is that
if the trap is removed in one direction, the attractive interac- The usual theoretical model used to describe a system of
tion yields (for a given number of particlesto a self- Weakly two-body interacting bosons of masswith a fixed
confined stationary state as it has been shown in a previousean numbeN, trapped in a parabolic potentiM(F) is a

A. System configuration and theoretical model
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Trapping potential change the linear mode profile in tkelirection, however it
(magnetic field) Atom-atom interaction can be put on more rigorous ground as shown in our previous

' work.

B. Multiscale analysis

Multiplying Eqg. (1) by ¢ and integrating over we find
the following time-dependent equation for the wave function
on the trasversg-y plane
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FIG. 1. The system studied. Shown are the effects which domi-
nate the dynamics in each directigee the texjt

For the sake of simplicity we will first consider an infinitely
extended system. We will study the evolution of initial data

of the form
nonlinear Schrdinger equation which in this context is B
called the Gross-PitaevskiGP) equation, Po(x,y,H)=u(x,t)cosky), )
EXG 52 _ whereu is a spatial profile to be fixed later with a scale of
iﬁE: - ﬁVZ\If+V(r)\If+UO|‘I’|2‘I’, (1) variation much larger than =2x/k. This function repre-

sents an initial state which corresponds to a fringe system
with interfringe alongy given by A =2=/k.

Our consideration of an infinitely extended system makes
the theoretical analysis to be performed later simpler but the
conclusions obtained are essentially valid when a weak trap-

where Uy=4m#i2a/m characterizes the two-body interac-
tion, the normalization foW is N= [|W|? d®, and the trap-
ping parabolic potential is given by

152(x2 v2 72 ping potential is included iy, the only difference being that
V(r)==— .y, z , instead of considering a cosine functiomhich is an eigen-
2miag a; a; function of the free linear problenwe should use a Hermite

function (which is the eigenfunction of the parabolic poten-
wherea, , (7=x,y,z) are constants describing the charac-tial) as we will show later in Sec. Il when presenting the
teristic length of the trap. This equation is valid when thenumerical results. In practice our use of a cosine function
particle density|W|? and temperature of the condensate aremeans that we will consider a large numieof fringes but
small enough and boson-boson interactions can be consiés will be shown later the results are valid when the number
ered as a Dirac delta function. Recent theoretical work exof fringes is quite small.
tends the applicability of the GPE to the high density limit We will look for solutions(x,y,t) depending on a small
[15]. On the other hand linearized stability analysis based oparametete which will be related to the quotient of the two
perturbative expansions onyIN seems to point that the va- characteristic scales present in the initial data in the form
lidity of the equation is restricted to the cases where no ex-
ponential separation of nearby orbits appear as it happens for =€t Yot ... . 5)
example in chaotic pulsations of the atom clddé,17].

Let us consider a system as shown in Fig. 1. The condenfhe physical idea behind the previous expansion is that the
sate is strongly trapped ip in they direction a weak or no adimensional quantity &/plays the role of a scaling factor
trapping will be considered whilg is a completely free di- between the several spatio-temporal scales involved in the
rection. Our aim is to study the stability of a fringe system asevolution of the cloud. If the scaling factor of the problem is
the one shown in the figure. We will make the problem morehigh enough, the different scales involved can be considered
precise in what follows. In the figure we have indicated theas independent and thus, it is possible to define a set of
effects which are proven to be dominant in each directiorvariablesx;= e/x,y;= ely,t;= €'t for the jth order of pertur-
provided the parameter ranges are appropriate. This hierapation and make the expansion:
chy of efects will be clear after the subsequent analysis.

The fact that the potential im provides a tight trapping X—=XotXptXp+ ..o, (6)
means that the wave function along thaxis will essentially
take the form of the fundamental gaussian mggeof char- d d d d
gctgristic widtha, and the solution of Eq1) can be factor- X axg Cax T €’ A (6b)
ized as

R - beingxq the usual spatial dimension and the same holds for
W(r,t)=(XY,t)do(2)=h(X,y,t)e ? l2ag, (2 y andt. This perturbative method is usually called “multiple
scale analysis” or “two timing”[18] and is widely used in
beingay=a,, as can be easily seen using multiscale analysisonlinear sciencgl9].
[13]. The intuitive idea is that the trap alorgis strong For the sake of conciseness we will use the notalttipto
enough that nonlinear boson-boson interactions do nadenote the expansion of the linear operator in equd8bop
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to thejth perturbative order, then we can write the perturba- Uy
tive expansion of the linear operator up to the first order as: LoztLythot+| Lo— EWJZ 1=0, (14)
g hE|[ & &
=t —t—| | — 4 — | —g72 and then
Lo " (7u2+(9u1 1% 9%uy
2l &2 92 of3=| —ih| =+ — |- 5———
LlEiﬁ—+— ( + , (7b) (9t1 atz 2m (9X1
gt m |\ ax0%o  dy19Yo
3 :
2 —ioty
B 52 P 52 2P +_4\/§U0|U1| us|cogkyp)e
Ly=it—+=—|2 + +—+—].
gty 2m| T\ 9Xa0Xo  3Y20¥0)  gx5  ay?
(79 + i|u1|Zulcos(3ky0)e‘i“‘t0. (15)
442

The calculations start by writing the wave functiort &0 as
a function of the expanded coordinatgsup to first order:  Here we have again a secular term which resonates at the
spatial frequenck and another term oscillating ak3vhich
P(t=0)=u(X1,X2, . ..,)cogKyy), (8  will be analyzed later. Since; does not depend ohy, we

) ) ) ) o find thatu, is as much, linearly dependent on However,
Since we look for solutions with slowly varyingprofile itis 5 avoid unbounded growth of these solutions with u,

assumed that depends only on the “slow” variables. Using ghoyid not depend ory. Under this condition and setting the

Eq. (3) we find resonant term to zero, the following equation is obtained:
g h? h? 2 2
: du;  h° 9°u 3
Logh=|ih—+5=V5— 1=0. 9) e LA S 2 _
(9t0 m Zma% i ﬂtz +2m axi 4\/§U0|Ul| Ul 0, (16)

This is the equation for a wave propagating through a homoghich is the well known one dimensional nonlinear Sehro
geneous linear medium. The solution compatible with thedinger equationNLSE) [20]. For the fundamental soliton

initial condition (8) has the form state, it is straightforward that E¢16) admits a stationary
_ ot solution of the formu,=Bsechfx,)e'"V'2,. Taking into ac-
P1=U1(X1,t. %o 8, - .. )COSkYp)e 0, (10 count thatU,=4m#%a/m and a<0, the relationship be-

tween B and q is found to beB2/q?=—/2/(3wa). The
phase parametéV=3r#aB?/4m is amplitude dependent,
showing the typical self-phase modulation of these kind of
solutions[21]. Defining gx;=gexo=Xo/W,Q=¢€’W and A

= B the solution in terms of tha&,y,z,t usual variables is

Whereu, represents a slowly varying envelope ane (k?
+a52)h/2m. The following step in the perturbative expan-
sion yields to the following equation:

Lopot+ L1y =0. (11)

Substituting back10) into Eq.(3) up to second order on the ‘P(F,t)=AsecV€ i) cog ky)efzzfzagei(ﬂfw)t, (17)
perturbative expansion, we obtain: w

auy _ whereA?w?= — \/2/(3ma). The number of particleBl; per
Lopo=—Lqipy1= _ihT cogkyg)e 'to, (120  fringe (which corresponds tdy=X\/2) can be obtained by
1 integrating(17) on a fringe to obtain

The linear operator in the left-hand-side of E(®.and(12)
is Lg. Thus, the right hand side term in E@.2) is singular N, = 1
because it resonates with a solution of the homogeneous 3V2m
equation(9). This kind of term is usually calledecular To

prevent the appearance of nonphysical solutions we may ei- The important fact from the above discussion is that we
ther takeu,; to be zero or, more generally, demand that:have obtained the soliton profile fonefringe. As the global
du,/dt;=0. This choice can be formalized in the framework wave function is a periodic train of parallel solitons along the
of the Fredholm alternative theorem. Thiig,=0, which  y axis, the total numbeN of particles in the condensate will

agh

m . (19

yields to the following solution up to second order: be distributed over the soliton fringes and thus, the collapse
_ threshold could be higher, depending on the total number of
Wr=Up(Xq,t1,Xz,t5, ... cOgKyg)e o, (13)  fringes of the interference pattern. The intuitive idea is that

the enhanced dispersion provided by the oscillatory profile
Up to this point, the physical meaning of the perturbativecompensates the collapsing tendency alpnthe validity of
expansion is evident; it has been found the best linear aghis idea has been experimentally tested in the frame of non-
proach to the problem. Following the perturbative treatmentinear optics, where interference techniques were used to
up to order three, nonlinear terms will appear, i.e., generate spatial optical solitoh22].
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C. Stability against collapse mental observations of this instability have been also re-

Some questions about the stability of the approximate soSe€Ntly reported26] using a slightly different nonlinearity
lutions remain to be explained. The first one concerns thd1an the proposed in the present analysis.
global nature of the solution, i.e., whether blow up takes Turning ba(;k to the SOIUt'On, derived in ECL7), we can
place in finite time. It is not easy to answer this question orf@ke the amplitude of the previous plane wave to be that of
theoretical grounds since we use a infinitely extended initiafh® Soliton state, i.eWo=A. This yields toA = J3/87w,
data which provides an infinite value for the energy. We carflose to the value of the soliton width calculated(irv). It
however compute the energy per fringe. Since a sufficienf’@y Seem conterintuitive that the soliton S(_)Iut|on will not be
condition for collapse is that the energy is negafi9es, 24 affected(up to the first orders of perturbatipby the char-

it will give us a way to ensure collapse in certain situations:2cteristic lenght of the modulation. However, it is evident
that for larger values of the perturbation wavelengthvays

h , Yo, ., 1 - 5| 3= below the critical value for blow upmore number of atoms
E= J o VU = [ S V() [ W[ dr will correspond to each fringe as is given by Et). In fact,
the effect of modulational instability along theaxis is to
12 (2m)%%, achieve an effective one-dimensional structure for each
“m W> ' (19 fringe along thex axis. Thus, we can conclude that the fringe

pattern resulting from the interference of two overlapping
This result means that the proposed configuration is a goodondensates will be stable against periodic perturbations if
candidate to avoid collapse. However, it is important to keeghe interfringe is below the modulational instability critical
in mind that this is only a necessary condition to avoid col-length\ ., and the spatial scalesy in the plane transverse
lapse. So data satisfying this condition could in principleto the trappinng axis are much larger than the confinement
collapse. Concerning sharp estimates some works have besize(i.e., ,a,>a,).
published for the free NLSIE23] and recent work addresed
the trap cas¢24], however there are no better results and
collapse has to be analyzed in practice numerically, a study
we defer to a later section. In fact, as we will see later, data The main result of our preceeding analysis is that the
of the type(17) may collapse by the combination of a desta- soliton-fringe system can be stabilized by choosing an appro-
bilization mechanism which first breaks the fringe systempriate wave function at least for some timhich can be
and then concentrates many particles in small regions of theynger than the condensate timelifeefore the instabilities

IIl. CONFINED SYSTEMS

space to get local negative energy densities. appear. However the analysis was done in the infinitely ex-
tended case which is neither realistic from the experimental
D. Stability against transverse perturbations point of view nor computationaly tractable. Let us then con-

The fact that the fringe system could be stable agaist colSider th? more realistic system wh(_are a trapping pqtential
lapse does not imply its dynamical stability. We will not 20ngYy is added. Though it is possible to apply again the
perform here a detailed stability analysis, which would peMultiscale technique, the computation is quite complicated

quite complicated for our present purpouses but only @&nd physical insight is lost. To study the changes with re-
simple discussion to have a qualitative picture of the possibI§PECt t0 the previous situation we will make numerical simu-
instabilites that could arise on top of our proposed configuiations of Eq.(3) taking as initial data the product of an
ration. To simplify the calculations, let us consider a regionhyperbOIIC secant along by a Hermite functior(the eigen-

of the condensate far from the limits of the trap where thgunction of the parabolic potentiain the y direction. We
cloud can be taken as a planar wave of amplitdge Let us _have a’?a'yzed t_h_e adimensional fc_)rm of the equation, which
consider the evolution of the solution when a small spatially’S OPtainéd defining the new variables:=aoX,y=aoY,z

periodic perturbation with a wavelengi, is added to the ~— 204, 7= ¥t the ~ constants, Qo=4maN/ag,w=agWo,\
condensate =ag\g and renormalizing/ by defmlngz//:\If\/ag/N. Once

_ the Z variable is eliminated using the first part of the multi-
T=(Vy+e)e', (200  scale expansion one findg(X,Y,Z)=x(Z)¢(X,Y). Then
eliminating a phase factor the 2D reduced equation for the

wheree =g qe' 2™ 1. Substituting back ir(1), lineariz-  wave function inX,Y obeys the following equation:
ing on e, we arrive to the following condition foF

K2 (72> 102 1y 2y2 2 .99
Fz:ﬁ(Tmp"‘ZUoPPoF)- (22) 2V y@+3NaY e+ Qol ¢l e=l—, (22)
Thus taking into account that,=4m%i%/ma, a<0 we find  and the solution is normalized to T ||2dXdYdZ1).

a critical value N, =+/—m/4a/|Wy| of the perturbation The idea is the same as before; the interfringe system is
wavelength, such that the perturbation keeps oscillating witlprovided by the Hermite function instead of the cosine func-

t for \y<\¢r, as['>>0. For\,>\,,, the amplitude of the tion and the trapping ix is provided by the nonlinearity. If
perturbation grows exponentially 4#<0. The maximum the number of particles per fringe is taken near the solitonic
rate of growth takes place for a characteristic widt,,  value(18) we obtain highly stable solutions until the particle
=2\, . This behavior is called modulational instability number is increased above a collapsing threshold. To check
and is well known in other areas of physi@5,27. Experi-  whether the idea is extensible to the trapped system we have
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FIG. 2. Maximum number of particles as a function of the num- . . .
ber of fringes(the order of the trasverse Hermite mode is used as, G- 3 (8 Two normalized Hermite modes showing the satura-
the initial condition. tion of the peak value for increasimyg (b) The peak amplitude as a

function of n.

run numerical simulations of the evolution of H§2) using

as initial data the normalized wave function: riod of the oscillation and increases its amplitude with the

mode number so that although the mean amplitude is clearly

W (7=0) lower for the higher order Hermite modes the peak amplitude
o does not decayFig. 3.
a 2 _a?Y? We have analyzed Hermite modes with=0,1,2,3.
:<m) 560’6 W_O>e ZHp(aY)e 727, Simulation of higher ordey modes corresponds to very ex-

tended systems ir since the higher the mode the lower the
(23 peak density value and thus the solitonic width is larger. This
o fact leads to very anisotropic systems which present compu-
where« measures the strength of the potentiayidirection  tational difficulties. The optimum computational approach to
as compared ta (a= o) andw, is not free if one wants this problem would be to use a robust multigrid method and

solitonic solutions along but given by the expression work is ongoing[28].
R The change of g is not relevant for collapsing properties
W :477\/5”-2 of the wave packet as we have tested in our numerical simu-
0 3aQ ' lations. In fact, we have observed that the collapsing singu-

_ _ _ _ larity in these cases happens through compression of the
Numerical simulations of Eq22) have been done using a wave function along.

symmetrized second order in time Fourier pseudospectral The dynamical stability has been observed by letting the
method on a grid with up to 10241024 points. Typical jnitial data evolve for large times. Typical evolution of the
simulation times of the model where of the order of 100spatial profiles after long times and of the normalized peak
(integration stepAt=0.05) which correspond to physical density for a condensate with three fringémermite mode
values of the orders of seconds, which are about the lifetimeg ,) are shown in Fig. 3 where it is seen that the condensate
of the condensates. fringe system is very stable and only small pulsations around

In Fig. 2 we show the computed collapse threshold forthe stationary solution are observed in the dynamics.
different number of fringegorder of the Hermite function

conswl_erebi_ To compute these threshold values one h_as to IV. DISCUSSION AND CONCLUSIONS
keep in mind that collapse can stop at a scale which is
smaller than the grid size and then near the collapse point a Our proposed system is able to confine in a stable way a
grid as large as possible must be used to improve the qualityegative scattering length condensate. A related question
of the approximation. In practice to compute the thresholdconcerns how to generate such state. Although it is not our
we start using a rough numerical grid and then increasétention to go through many experimental details we would
slowly the value ofQ, until collapse is observed. Then we like at least to point out some ideas.
refine the grid and continue increasing the norm until col- A simple way to generate the fringe system could be to
lapse is observed. We repeat this process until a saturation $¢art with a positive scattering length condensate which is
observed for the larger grids used of 1624024 points. splitted and then joined again as it is done in the interference
Of course since our analytical prediction was made for theexperiment$2,29]. This could be done by removing the trap
free space solutions there are deviations when trying to exalong thex-y plane and driving the condensates alongythe
tend the idea to the confined system. In particular as thexis to make them collide, whereas the trap alamgmains
number of fringes increases it becomes more difficult to in-unaltered. Using Feschbach’s resonances combined with an
crease the critical number as can be seen in the saturati@xternal field, it could be posible to switch the sign of the
present for high particle numbers. The reason is that the Hescattering length and then the soliton fringe system would be
mite mode has its absolute maxima localized in the last peebtained provided the parameters of the systgmpping
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along z, interfringe are tuned to select approximately the analytical description of the interference pattern of two over-
solitonic particle number per fringe. However there is not alapping Bose-Einstein condensates with negative scattering
great sensitivity to this parameter as we have confirmed iength. The solutions obtained show that the interference pat-
our numerical simulations. tern can be considered as a set of multiple copies of a single
When the particle number exceeds the soliton valuesoliton state with fixed number of particles. Thus it possible
higher order states are excited or CO”apse is obtained. CO@O Obtain’ in the frame of current experimentsy non-
cerning the dynamical stability for typical experimental val- ¢o|lapsing Bose-Einstein condensates with negative scatter-
ues such as the ones used [B] with A~15um <o  jng ength with higher number of particles than the critical
%1_ mm, o being the soliton width the stability condition is particle number, provided the value of the interfringds
satisfied. _ _ below a critical value. This could be a way to avoid the
As_the maximum growth rate is reached f@ra.x  current bound imposed by the critical number in negative
= m\3/4s, we can derive another interesting question fromscattering length condensates.
the previous stability analysis, concerning cigar-shaped con- e hope that this study will stimulate the investigation of
densates. For this geometry, it has been experimentalihe hehavior of BEC's with negative scattering length and
shown[30] that optical dipole forces can be used to excitethink that the soliton solutions here studied will be of prac-

wave packets in a Bose-Einstein condensate. Thus, if thigcal applicability for experimentalists dealing with Bose-
important result is combined with the above stability analy-gjnstein condensate engineering.

sis, it can be derived that a periodically perturbed condensate
will evolve into a train of soliton pulses of matter and thus,
induced modulational instability could yield to stable trains
of solitonic Bose-Einstein condensates. This could be an-
other way to obtain coherent condensate states with high This work has been partially supported by Spanish DG-
number of particles in the negative scattering case. CYT (Grant Nos. PB95-0389 and PB96-0%2hd Xunta de

In conclusion, we have derived in the present work anGalicia (Project XUGA 22901A98
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