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Probing of atomic beams by using a self-referencing principle

Stefan H. Kienle, Dietmar G. Fischer, and Matthias Freyberger
Abteilung für Quantenphysik, Universita¨t Ulm, D-89069 Ulm, Germany

~Received 31 August 1998!

We discuss a method for reconstructing the wave function of an atomic beam with the help of a self-
referencing principle. At the heart of the method lies the controlled superposition of the original atomic matter
wave with a single reference wave. For this purpose, Bragg scattering of atomic beams at standing light fields
turns out to be perfectly suited.@S1050-2947~99!01508-5#

PACS number~s!: 03.75.Be, 03.75.Dg
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I. INTRODUCTION

Coherent manipulation and coherent control of wavel
objects is certainly one of the most fascinating issues
reaches from classical physics to quantum physics. Conc
ing classical optics, the advent of the laser in 1960 has b
the breakthrough to realize a striking application of coher
waves:holography@1# conceived by Gabor already in 194
But holograms are by no means limited to recording int
ference patterns produced by classical light.

Early attempts have been made to apply the holograp
principle to electron beams@2#. The further development o
coherent electron sources has nowadays made electron
lography a practical tool to study a wide range of top
ranging from very fundamental questions like the Aharon
Bohm effect or the Sagnac effect for electron waves to hi
resolution measurement at atomic dimensions@3#.

Similarly, interferometry with neutron waves has becom
a powerful technique to perform many basic quantum exp
ments @4#. Also here the basic idea is to separate and
overlap the matter waves coherently, i.e., the holograp
principle is indeed applied. This has been made possible
the use of perfect crystal interferometers which provide
coherent manipulation of the neutron beam@5#.

Finally, atom interferometers@6# have proven to be per
fect tools for fundamental studies in which the coheren
properties of an atomic matter wave play an essential role
particular, the mechanical effects of light on atoms@7# can be
used to coherently split and recombine atom waves@8# in an
extremely elegant way. In this realm of matter-wave interf
ometry the subjects studied range from fundamental, suc
interferometer-based gravimeters@9# or wave-particle duality
@10#, to quite applied, such as nanostructuring@11#.

This quantum-interference variety is based on one co
mon and simple rule: the superposition principle for quant
states. This also provides the link to the classic holograp
principle which basically relies on the coherent superposit
of an object wave with an appropriate reference wave
order to store intensity and phase information of the objec
the corresponding interferograms. As a consequence, the
ject can be reconstructed from suitable interference pictu

These concepts turn out to be just as fruitful for the
construction of quantum states@12# which encode the com
plete knowledge of a quantum object. This has been dem
strated recently for the holographic reconstruction
molecular wave packets@13# and electronic Rydberg wav
packets@14,15#.
PRA 601050-2947/99/60~2!/1471~11!/$15.00
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In the present work we are guided by the superposit
principle in order to reconstruct the wave function of
atomic beam@16,17#. The basic question to be solved then
the suitable design of a reference wave function. In cont
to Refs.@13–15#, we propose self-referencing@18#, i.e., we
superpose the object wave function with a replica of itse
This can be achieved with the help of Bragg scattering@19#
of the atomic beam and we shall analyze the correspond
setup.

The paper is organized as follows. In Sec. II we discu
the heuristics of the proposed self-referencing principle
atom beams. For detailed calculations we refer the reade
Appendix A. The algorithm for evaluating the interferogram
is explained in Sec. III and we illustrate the method with
example in Sec. IV. Finally, we conclude the paper with S
V.

II. SELF-REFERENCING PRINCIPLE

Coherent superposition is a fundamental concept
handle information in wave physics@1#. It allows one to store
and to retrieve amplitudeand phase of a wavelike object
The key feature is interference of an object wave with
well-defined reference wave. The resulting interference p
tern encodes the full information on amplitude and phase
the object.

We shall show how this principle can be applied to obje
waves that describe the quantum motion of atoms in a be
In complete analogy to classical optics, the object ma
wave to be analyzed interferes with a reference wave.
basic question is the proper design of this reference, wh
has to be added coherently to the object. We discuss a s
tion which uses a replica of the object as reference, i.e.,
apply a self-referencing principle.

The quantum object to be measured in our case is a
tionary beam of two-level atoms of massm whose quantum
motion atz50 is described by the state

uC~x,z50,t !&5e2 i (E/\)tc~x,z50!ug& ~1!

with the total energyE[P2/(2m) and with the internal
ground stateug&. To be more specific, we shall be concern
with the reconstruction of the wave function

c~x![c~x,z50!5
1

A2p\
E

2`

`

dp eipx/\c̃~p! ~2!
1471 ©1999 The American Physical Society
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1472 PRA 60KIENLE, FISCHER, AND FREYBERGER
defining the transverse motion of the atom as indicated
Fig. 1~a!. We assume the momentum amplitudec̃(p) to be
well-concentrated aroundp50.

How can we generate a reference signal that adds co
ently to the object wave functionc(x)? The answer to this
question is fairly simple: Let us use an atomic beam spli
@8# that divides the beam into two spatially separate but s
coherent parts. After the beam splitter, the two partial wa
can therefore interfere and the corresponding interfere
pattern, which in our case will be an atomic position dist
bution, does certainly contain information on amplitude a
phase ofc(x). In the following we shall describe a concre
setup that allows us to measure interference patterns en
ing even thecompleteinformation on amplitude and phase
c(x).

Atomic beam splitting can be achieved with the help
Bragg scattering at a classical standing light field@8#.
Thereby, the interaction of atom and field can be purely d
persive, that is, the frequency of the field is far detuned fr

FIG. 1. Original atomic beam and the setup for the propo
self-referencing reconstruction. In~a! we illustrate the original
beam of ground-state atoms described by a transverse wave
tion c(x) at z50. Free evolution over the distanceL simply broad-
ens this wave function and we detect a smeared-out atomic pos
distribution atz5L. In ~b! the original beam is tilted with respect t
the two standing light fields. The corresponding wave funct
f(x)5eikxc(x) has an additional momentum shift of1\k. There-
fore, the dispersive interaction of the two-level atoms with the fi
standing laser field leads to Bragg scattering. This splits the ato
matter wave in two partial waves that are shifted by 2Dx1, Eq. ~6!,
before they enter the second standing light field. Note that the
of the splitting depends on the distancel 1. Both partial waves un-
dergo a second Bragg scattering process in the second field. O
screen atz5L the four partial waves overlap by pairs, provided t
free evolution distance of lengthl 2 is sufficiently large. Two posi-
tion distributionsww(x,Dx1) for two phasesw of the first standing
light field are sufficient to unravel the essential information of t
wave functionc(x): the phase information.
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any atomic transition and the atom therefore remains in
ground stateug&.

An appropriate scheme is depicted in Fig. 1~b!. It consists
of only a few basic elements: Two classical standing lig
fields of wave vectork scatter the atoms of the incomin
beam in the interaction regions 0<z<z0 and z01 l 1<z
<2z01 l 1, respectively. The sine-mode structure of the fi
field can be shifted relative to the second field in thex direc-
tion with the help of a moving mirror. The last element
our scheme is a screen atz5L[2z01 l 11 l 2, where posi-
tions of scattered atoms are detected.

In the dispersive regime, the coupling constantk of atom
and field is small compared to the detuningD and the inter-
action with each field is governed by the Hamiltonian@7#

Ĥ5
1

2m
~ p̂21 p̂z

2!1\
k2

D
sin2~kx̂1w!ŝ3 , ~3!

with the momentum operatorsp̂ and p̂z for the x and z di-
rections. Internally, the spinlike operatorŝ3 just leads to a
phase change, i.e.,ŝ3ug&52ug&. Hence due to the sinu
soidal mode function the atoms do actually feel a perio
optical potential which leads to Bragg scattering of t
atomic matter wave@19#. Furthermore, it is important to not
that the relative position of the first periodic light structure
controlled via the phasew, whereas for the second we simp
havew[0.

For a complete analysis of the scattering process in te
of wave functions, we refer the reader to Appendix A. He
we shall concentrate on the basic principles in order to br
out the idea.

We only get a Bragg resonance if the incoming atom
matter wave has a nonvanishing momentum componen
p5\k. This is just the same situation as encountered in s
tering light from a perfect crystal. Since the momentum a
plitude c̃(p), Eq. ~2!, of our original atomic beam is concen
trated aroundp50, we have to shift it by\k with respect to
the first standing light field. This can be achieved by tiltin
the beam appropriately. In effect, the tilted beam can now
described by the shifted momentum amplitude

f̃~p![c̃~p2\k!, ~4!

which is peaked atp5\k.
We emphasize that in order to create a shifted replica

the wave function, Eq.~2!, by Bragg scattering, the momen
tum amplitudec̃(p) has to be narrow compared to a sing
photon momentum\k. This meansp/(\k)!1 for all mo-
menta with nonvanishing amplitudec̃(p). In fact, this is the
main limitation of our scheme.

As indicated in Fig. 1~b!, the tilted atomic beam passe
the first interaction zone with a specific probability witho
being deflected. For an appropriately long interaction ti
t0, namely t0@v r

21 with the photon recoil frequencyv r

5\k2/(2m), we will, however, also see a Bragg-resonan
peak shifted by22\k from the incoming beam. Hence th
momentum amplitude of the Bragg-scattered wave is loca
at p52\k. This coherent scattering process is fully go
erned by the Hamiltonian, Eq.~3!, as shown in Appendix A.
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The resulting atomic matter wave after the interaction zo
therefore consists of two partial waves: a transmitted one
a reflected one.

It turns out that it is most convenient to describe th
situation in terms of wave functions of the originally untilte
atomic beam shown in Fig. 1~a!. The transmitted wave afte
the first interaction zone is then effectively produced fro
such a virtual beam impinging orthogonally on the stand
light field by kicking part of the atoms with a single photo
momentum\k in the1x direction, whereas the Bragg bea
comes from the remaining part kicked by\k in the 2x di-
rection. Both processes have to be weighted with cer
probability amplitudes and their coherent sum describes
transmitted matter wave atz5z0. From there on the atom
just experience free evolution over a distancel 1.

Putting these arguments together, we find for the s
@20#

uF~x,z5z01 l 1 ,t !&5e2 i (E/\)tf~x,z5z01 l 1!ug& ~5!

of the matter wave atz5z01 l 1 a position amplitude

f~x,z01 l 1!5eia1@Ceikxc t1
~x2Dx1!2 iSe2 ikx

3e22iwc t1
~x1Dx1!#. ~6!

This expression reflects what we have said before. Its b
component is the wave function

c t~x!5
1

A2p\
E

2`

`

dp e2 ip2/(2m\)tc̃~p!eipx/\, ~7!

which we obtain if the originalc(x), Eq. ~2!, evolves in free
space for the timet5t1[m(z01 l 1)/P. That is,t1 is simply
determined by the lengthz01 l 1 and by the known charac
teristic energyE[P2/(2m)[ 1

2 mv2 of the stationary atom
beam.

Furthermore, the position amplitude, Eq.~6!, is indeed a
superposition of two copies ofc t1

weighted with the scatter

ing amplitudesC5cos@k2z0/(4Dv)# andS5sin@k2z0/(4Dv)#,
which we derive in Appendix A. Please note that the tw
partial waves of Eq.~6! are shifted by the spatial ruler

Dx1[
\k

P
l 1 . ~8!

This is the essential parameter of the method which, as
will discuss below, limits the resolution of the reconstru
tion. In addition, Dx1 has a simple geometrical meanin
since it is the displacement of a classical particle kicked
\k and moving over a distancel 1 with constant momentum
P. Hence we can controlDx1 by changingl 1. The single
photon kicks also lead to the phase factorse6 ikx in Eq. ~6!.
Finally, we emphasize that the phasee22iw of the superpo-
sition, Eq. ~6!, depends on the relative position of the fir
standing light field which can be varied by moving the m
ror, as indicated in Fig. 1~b!. The overall phaseeia1, also
derived in Appendix A, plays no role for our further consi
erations.

Therefore, we now understand the basic component
the position amplitude, Eq.~6!. It would lead, of course, to
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interferences in the atomic position distribution and the
interferences originate from the superposition ofc t1

with an
identical but shifted replica of itself. Hence the se
referencing principle becomes already visible in Eq.~6!.

However, the corresponding interferograms would
very difficult to detect since they are dominated by the f
oscillations originating from the exponentialse6 ikx. Never-
theless, we emphasize that from a principle point of vi
interferograms taken atz01 l 1 would be sufficient to recon-
struct the original wave functionc(x). But there is a way to
get rid of these oscillations. We discuss this in the next s
tion.

Avoiding fast oscillations in the interferograms

Our aim is to construct interferograms which are det
mined by a superposition of the structure of Eq.~6!, but
without the fast oscillating phase factorse6 ikx.

For this purpose we first add a second interaction zon
the intervalz01 l 1,z<2z01 l 1 consisting of a standing ligh
field identical to the first one. The Hamiltonian Eq.~3! again
governs this interaction, but now forw[0. Second, we add a
further period of free evolution over the distancel 2 until the
atoms reach the screen atz5L[2z01 l 11 l 2.

In complete analogy to the first scattering process, eff
tively described by Eq.~6!, we now get a transformation o
f(x,z01 l 1). Note thatf(x,z01 l 1) consists of two ampli-
tudeseikxc t1

(x2Dx1) and e2 ikxc t1
(x1Dx1), respectively.

The corresponding momentum amplitude of the partial wa
eikxc t1

(x2Dx1) is again centered at1\k and hence the
analysis of Appendix A can be applied immediately to fi
the transformation

eikxc t1
~x2Dx1!˜eia2@CeikxcT~x2Dx12Dx2!

2 iSe2 ikxcT~x2Dx11Dx2!# ~9!

in perfect analogy with Eq.~6!. Here we have now used th
abbreviationsT5t11t25mL/P for the total evolution time
and

Dx2[
\k

P
l 2 ~10!

reflecting the shift of the partial waves due to virtual mome
tum kicks. The overall phaseeia2, appearing in Eq.~9!, again
plays no role for our considerations.

On the other hand, we can also apply the calculations
Appendix A to find the corresponding transformation of t
partial amplitudee2 ikxc t1

(x1Dx1) which appears in Eq.~6!

with its corresponding momentum amplitude centered
2\k. We just replacek by 2k in Eq. ~9! and arrive at

e2 ikxc t1
~x1Dx1!˜eia2@Ce2 ikxcT~x1Dx11Dx2!

2 iSeikxcT~x1Dx12Dx2!#. ~11!

With the help of Eqs.~9! and ~11!, we eventually under-
stand the complete transformation off(x,z01 l 1), Eq. ~6!,
into the position amplitude
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f~x,L !5ei (a11a2)@C2eikxcT~x2Dx22Dx1!

2 iCSe2 ikxcT~x1Dx22Dx1!

2 iSCe22iwe2 ikxcT~x1Dx21Dx1!

2S2e22iweikxcT~x2Dx21Dx1!# ~12!

that describes the atomic matter wave in the planez5L, i.e.,
on the detection screen.

We emphasize that the position amplitude, Eq.~12!, basi-
cally consists of four replicas of the original wave functio
c(x) spread in free space for timeT to give cT(x), as de-
fined by Eq.~7!. In principle, all four replicas contribute to
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position distribution measured on the screen atz5L. This is,
however, not what we aim at. We want only two part
waves at a time to interfere with each other, namely th
multiplied with either theeikx phase factor or thee2 ikx phase
factor. Only in this case can we get rid of the fast oscillatio
in a position distribution dominated bye6 ikx.

We achieve such interferences by pairs, if the shiftDx2

becomes large enough so that the amplitudescT(x2Dx2

6Dx1) andcT(x1Dx26Dx1) no longer overlap. Note fur-
ther thatDx2, Eq. ~10!, can be controlled simply by varying
the distancel 2. Such a situation of overlap by pairs is ind
cated in Fig. 1~b! and the corresponding position distributio
ww~x,Dx1!5uf~x,L !u25H uC2cT~x2Dx22Dx1!2e22iwS2cT~x2Dx21Dx1!u2 for x>0

~CS!2ucT~x1Dx22Dx1!1e22iwcT~x1Dx21Dx1!u2 for x,0
~13!
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now consists of two spatially separated parts@21#. The inter-
ferogram, Eq.~13!, still depends on the phasew, i.e., on the
mirror position, and on the rulerDx1, Eq. ~8!. Both quanti-
ties are essential for analyzing the interferogram, as we p
out in the next section, and they are both controlled by g
metrical means.

We stress that Eq.~13! indeed constitutes the heart of o
idea. It clearly shows again the self-referencing princip
namely the coherent superposition ofcT ~object! with a
shifted replica~reference!. In addition, the interferograms ar
only determined by object wave and reference wave and
got rid of the fast oscillations complicating the scheme. T
resulting interferences will allow us to reconstructcT(x) and
eventuallyc(x). We discuss the corresponding algorithm
the next section.

III. EVALUATING THE INTERFERENCE DATA

It remains to be shown that the corresponding interfe
gram, Eq.~13!, contains enough information to reconstru
the underlying wave functioncT(x), Eq. ~7!. Eventually it is
a straightforward task to find the desiredc(x) by just invert-
ing free time evolution.

We begin the evaluation of the interference data with
premeasurement of an atomic position distribution atz5L,
where the light fields have been switched off. The result
position distribution directly provides us the modul
ucT(x)u and we can therefore focus on the reconstruction
the phase QT(x) of the wave function cT(x)
5ucT(x)uexp@iQT(x)#.

In the next step we measure two different distributio
ww , Eq. ~13!, for the phasesw50 and p/4. We get the
highest visibility for the interference patterns when w
choose the scattering amplitudesC5S51/A2. Then the ap-
propriate combination

w0~x2Dx2 ,Dx1!2w0~x1Dx2 ,Dx1!1 iwp/4~x1Dx2 ,Dx1!

2 iwp/4~x2Dx2 ,Dx1!5cT~x2Dx1!cT* ~x1Dx1!

~14!
nt
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does allow us to extract the pure interference termcT(x
2Dx1)cT* (x1Dx1). We emphasize that the real part and t
imaginary part of this interference term stem from two d
tinct interferograms recorded withw50 andw5p/4, respec-
tively. We basically just subtract from each other the tw
spatially separated parts of one interferogram. Note furt
that the left-hand side of Eq.~14! contains only experimen
tally measurable distributions and known parameters of
setup.

Hence it remains to be shown how one can extract
phaseQT from the interference term. From the premeasu
ment we know the modulusucT(x)u that allows us to deter-
mine the interval@xmin ,xmax# in which cT(x) differs substan-
tially from zero. Now we start at the positionxmin1Dx1.
With the help of the interference term, Eq.~14!, we evaluate
the phase differenceQT(xmin)2QT(xmin12Dx1). Proceed-
ing to the point xmin13Dx1, we get QT(xmin12Dx1)
2QT(xmin14Dx1). In this way we go on to cover the com
plete interval @xmin ,xmax# and to find the correspondin
phase differences. In order to reconstruct the individ
phases, we replaceQT(xmin), remaining unknown, by
QT

(rec)(xmin)[0. With this initial phase setting we finally find
recursively QT

(rec)(xmin12Dx1), QT
(rec)(xmin14Dx1), . . .

from the phase differences.
Therefore, by evaluating the interference term, Eq.~14!,

in the way just described, we arrive at the reconstruc
wave function

cT
(rec)~x!5cT~x!e2 iQT(xmin), ~15!

which is given on a grid with spacing 2Dx1 in the interval
@xmin ,xmax#. Hence the parameterDx1, Eq. ~8!, defines the
resolution of the method. The overall phase fac
exp@2iQT(xmin)# just expresses the well-known fact that a
wave function is defined up to a constant phase. It is, ho
ever, worth noting that here such a phase comes in v
naturally via the recursive algorithm.

As the final step, provided the resolution is sufficient, w
can numerically propagatecT

(rec) , Eq. ~15!, back in time us-
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ing Eq. ~7!, which eventually yields the reconstructed wa
function

c (rec)~x!>c~x!e2 iQT(xmin). ~16!

Here the notation> reminds us that the reconstruction is,
course, limited by the resolution 2Dx1 @22#. In the next sec-
tion we shall discuss a numerical example that basic
demonstrates the influence of the grid spacing 2Dx1.

IV. EXAMPLE

This section addresses two different topics.~i! First, we
shall numerically show that the approximations made in
derivation of the Bragg scattered amplitudes, Eq.~6!, are
valid if the original atomic wave functionc(x) is narrowly
peaked in momentum space atp50. ~ii ! Second, we shal
illustrate the presented method for an example. In particu
we emphasize the influence of the resolution 2Dx1, which
has a strong influence on the quality of the reconstruc
matter wave.

A. Numerical check

Note that it is absolutely crucial for the presented meth
to have an analytical result at hand. Otherwise it would
have been possible to evaluate the interference data as s
in the preceding section. Since, on the other hand, the d
vation of the Bragg scattered wave, Eq.~6!, required severa
approximations, as shown in Appendix A, we now nume
cally check their validity.

For that purpose we use the wave function

c~x!5NH expS 2
~x2x0!2

2s2 D 1 i expS 2
~x1x0!2

2s2 D J ,

~17!

which represents the atomic beam atz50 with parameters
ks550, kx05100, and a normalization constantN. This
Schrödinger-cat state is a superposition of two Gaussi
centered at6x0 having the same widths.

In Fig. 2~a!, we depict the momentum distributio
uf̃(p)u25uc̃(p2\k)u2 of the corresponding tilted beam
Note that it is peaked atp51\k. In Fig. 2~b!, we show the
momentum distribution after a single atom-field interacti
calculated via the analytical expression, Eq.~6!, for the scat-
tered wave. Note that Fig. 2~b! coincides extremely well with
the momentum distribution shown in Fig. 2~c!, which we
have obtained by numerically integrating Eq.~A10!. The fol-
lowing parameters for atom, light field, and their interacti
have been chosen:kz0553104, P/(\k)5104, and
k2t0 /(4D)5p/4.

Also the overlap

^Fana~z0!uFnum~z0!&'0.99 ~18!

between the analytical result and the numerical result for
scattered wave is very close to 1. This confirms the appr
mations made in Appendix A in order to get the analytic
expression, Eq.~6!, for the Bragg scattered wave. We em
phasize that indeed the momentum distribution after the s
tering process, see Figs. 2~b! and 2~c!, has been splitted into
ly

e

r,

d

d
t
wn
ri-

-

s

e
i-
l

t-

two parts. One looks like the original and the other one—
replica—kept the shape but is shifted in momentum sp
from 1\k to 2\k.

B. Example for the reconstruction

To illustrate the reconstruction utilizing the sel
referencing principle described in the previous sections,
use the Schro¨dinger-cat state of Eq.~17!. For all parameters
that define the atom, the standing light fields, and the co
sponding interaction, we have chosen the same values a
the numerical simulation presented above.

Figure 3 shows the atomic position distributionsww—the
interferograms—with kDx1530, kDx25300, and field
phasesw50 and w5p/4, respectively. These are the tw
required distributionsw0(x,Dx1) andwp/4(x,Dx1) in order
to apply the recursive reconstruction algorithm described
Sec. III.

With the help of these data, we have reconstructed
wave functionc (rec)(x), Eq. ~16!. The corresponding Wigne
function is depicted in Fig. 4~b! and it agrees well with the
Wigner function for the original matter wavec(x), see Fig.
4~a!.

FIG. 2. Analytical result vs numerical simulation. In order
check Eq.~6! describing the Bragg scattering process, we comp
it to the numerically integrated Schro¨dinger equation~A10!. For
this check the underlying statec(x) is a Schro¨dinger-cat state, Eq
~17!. It is a superposition of two Gaussians of widthks550, spa-

tially separated by 2kx05200. The momentum distributionuf̃(p)u2

of the corresponding tilted beam described byf(x)5eikxc(x) is
depicted in~a!. Note that it is well-centered aroundp5\k. The
parameters of atom, field, and interaction have been chosen as
lows: kz0553104, P/(\k)5104, andk2t0 /(4D)5p/4. After the
interaction, the momentum distribution~b! calculated analytically
with the help of Eq.~6! and the momentum distribution~c! calcu-
lated numerically with the help of Eq.~A10! are in perfect agree-
ment.
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Figure 4~c! shows the same plot as 4~b! but for a spatial
ruler kDx1560. That is, we have a spatial resolution whi
is lower as in the reconstruction procedure for 4~b!. Conse-
quently, the reconstruction gets worse.

From this example, we see that the simple reconstruc
algorithm based on Eq.~14! indeed works very well.

V. CONCLUSIONS

We have discussed the reconstruction of wave functi
describing the state of a stationary atomic beam. The me
relies on a superposition principle: The object wave funct
interferes with a suited reference wave function. We ha
shown that only three interferograms are sufficient to retri
the object wave function. The corresponding recursive al
rithm has turned out to be quite simple and we have app
it to the reconstruction of a Schro¨dinger-cat wave function.

The simplicity of the algorithm, i.e., the simple recursi
mapping of the measured data onto the wave function, is
main difference compared to the successful tomographic
construction of atomic beams@16#. On the other hand we ca
apply the proposed method only for reconstructing p
states and for beams with a narrow momentum distribu
~for a different regime, see Ref.@17#!.

We emphasize that the recent experiment describe
Ref. @10#, although treating a different type of problem

FIG. 3. Atomic position distributionsww(x,Dx1), Eq. ~13!, for
the Schro¨dinger-cat state, Eq.~17!, depicted for the two phasesw
50 andw5p/4 of the first standing light field. For the spatial rule
Dx1, Eq. ~8!, and the separationDx2, Eq. ~10!, we have chosen the
values kDx1530 and kDx25300. All other parameters are th
same as in Fig. 2. The spatial separation of the two parts of
position distributions caused by the free evolution after the sec
laser field and encoded in the parameterDx2 is clearly visible. Note
that according to Eq.~14! the distributionw0 yields the real part,
whereaswp/4 yields the imaginary part of the interference ter
cT(x2Dx1)cT* (x1Dx1).
n

s
od
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e
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comes already very close to a possible realization of the i
analyzed in the present work. Furthermore, we are convin
that it would be very interesting to apply our reconstructi
scheme to the cw output beam of an atom laser@23#.
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APPENDIX: SCATTERED ATOMIC MATTER WAVE

In this appendix we explicitly analyze the dispersi
Bragg scattering of an atom beam at a standing light fie
Since it is most appropriate for our purpose, we shall pres
the calculations in terms of wave functions. In fact, acco
ing to the setup shown in Fig. 1~b!, we have to investigate
two such scattering events. However, since the correspo
ing standing light fields are identical, we can simply use
analysis, described below, twice.

e
d

FIG. 4. Wigner functions of the initial wave functionc(x) and
the reconstructed wave functionsc (rec)(x) exemplified here for the
Schrödinger-cat state, Eq.~17!. All Wigner functions have been
plotted for the same parameters as in Fig. 2. In~a! we show the
Wigner function of the initial Schro¨dinger-cat state, Eq.~17!. The
negative parts illustrate the nonclassical character of the state~b!
and~c! represent Wigner functions of the reconstructed wave fu
tions c (rec)(x) for kDx25300 and two different values of the rule
kDx1, which sets the spatial resolution of our reconstructi
scheme. In~b! we have usedkDx1530 and the reconstructe
Wigner function agrees very well with the initial one. However,
shown in~c!, the reconstruction quality decreases when we incre
the value tokDx1560.
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We start with a matter wave of two-level atoms describ
by the state

uC~x,z50,t !&5e2 iEt/\c~x,z50!ug&

5e2 iEt/\
1

A2p\
E

2`

`

dp eipx/\c̃~p,z50!ug&

~A1!

in the planez50. We assume the beam to be infinitely e
tended in they direction. HereE denotes the total energy o
the stationary state and the atoms have been prepared in
internal ground stateug&. Our final aim is the reconstructio
of the wave functionc(x)[c(x,z50) or the corresponding
momentum amplitudec̃(p)[c̃(p,z50).

Note thatc̃(p) of the original beam is well-concentrate
aroundp50. However, in order to get Bragg resonances
need an atomic beam with a momentum amplitude hav
nonvanishing contributions atp5\k and hence we have t
shift the original momentum amplitude by1\k. This con-
stant shift by\k can be approximately achieved if the atom
beam impinges nonorthogonally on the standing light fie
as indicated in Fig. 1~b!. Hence in the calculations below, w
will be concerned with a shifted amplitudef̃(p)[c̃(p
2\k) describing atoms in the tilted beam in momentum re
resentation.

The dispersive interaction between atoms and laser l
in the region 0<z<z0 can be described by the Hamiltonia
Eq. ~3!,

Ĥ5
p̂21 p̂z

2

2m
1\

k2

D
sin2~kx̂1w!ŝ3 . ~A2!

To determine the stationary solution atz5z0, we substi-
tute the ansatz

uF~x,z,t !&5e2 iEt/\f~x,z!ug&

5e2 iEt/\
1

A2p\
E

2`

`

dp ei [ pz(p)z1px]/\f̃~p,z!ug&

~A3!

in the time-dependent Schro¨dinger equation

i\
]

]t
uF&5ĤuF&, ~A4!

where we can choosepz(p) so thatf̃(p,z) is a slowly vary-
ing amplitude. Then we arrive at the equation

S E1\
k2

2D Df~x,z!5F p̂21 p̂z
2

2m
1\

k2

2D

3cos 2~kx1w!Gf~x,z!, ~A5!

which, using Eq.~A3!, reads
d

eir

e
g

,

-

ht

S E1\
k2

2D
2

p21pz
2~p!

2m Deipz(p)z/\f̃~p,z!

5eipz(p)z/\F2 i
\

m
pz~p!

]

]z
2

\2

2m

]2

]z2G f̃~p,z!

1\
k2e22iw

4D
eipz(p12\k)z/\f̃~p12\k,z!

1\
k2e2iw

4D
eipz(p22\k)z/\f̃~p22\k,z!

in momentum representation. Now we choosepz(p) so that

p21pz
2~p!

2m
5E[

P2

2m
~A6!

and we neglect the term\k2/(2D)!E. Furthermore, the to-
tal energyE is assumed to be much larger than any transv
sal kinetic energyp2/(2m). Hence the momentum in thez
direction is basically dominated bypz(p)'P andf̃(p,z) is
slowly varying withz. Consequently, we neglect second d
rivatives

U ]2

]z2
f̃~p,z!U!

2pz~p!

\ U ]

]z
f̃~p,z!U, ~A7!

which considerably simplifies Eq.~A6! and we find

iv
]

]z
f̃~p,z!5

k2e22iw

4D
ei [ pz(p12\k)2pz(p)]z/\f̃~p12\k,z!

1
k2e2iw

4D
ei [ pz(p22\k)2pz(p)]z/\f̃~p22\k,z!,

~A8!

where we have introduced the characteristic velocityv
[P/m. Expanding

pz~p!5AP22p2'P2p2/~2P! ~A9!

in the exponents of Eq.~A8! yields

iv
]

]z
f̃~p,z!5

k2e22iw

4D
e22i (\k1p)kz/Pf̃~p12\k,z!

1
k2e2iw

4D
e22i (\k2p)kz/Pf̃~p22\k,z!.

~A10!
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We solve this differential equation in the interaction regi
0<z<z0 with the boundary conditionf̃(p,0)5f̃(p).

Formally integrating Eq.~A10! leads to

i @f̃~p,z0!2f̃~p!#5
k2e22iw

4Dv E
0

z0
dz e22i (\k1p)kz/P

3f̃~p12\k,z!1
k2e2iw

4Dv

3E
0

z0
dz e22i (\k2p)kz/Pf̃~p22\k,z!.

~A11!

Let us have a closer look at the integrals on the right-h
side. Since we assumef̃(p,z) to vary slowly with z, the
behavior of the integrals is dominated by the exponen
functions. We first consider momenta close to\k that is
2u\k2pukz0 /P,1. Then the value of the first integral i
determined by the fast oscillating exponentiale24i\k2z/P

[e28ivrz/v, because we work in the Bragg regime defined
the first condition@7,19#

4v rt0@1, ~A12!

where v r5\k2/(2m) denotes the photon recoil frequenc
and t0[z0 /v denotes the characteristic atom-light intera
tion time. We can now estimate the first integral by appro
mating f̃(p12\k,z) with a constant of the order 1. Henc
the value of the first integral is restricted by the fac
v/(4v r), which finally means that due to the second Bra
condition @7,19#

\
k2

4D
!4\v r ~A13!

we can neglect the first term in Eq.~A11!. The second Bragg
condition forces the maximal optical potential seen by
atoms to be much weaker than the photon recoil ene
Analogously whenp is close to2\k the second integra
vanishes.

The above reasoning allows us to rewrite Eq.~A11! in
terms of two coupled equations

iv
]

]z
f̃~`1\k,z!5

k2e2iw

4D
e2i `(kz/P)f̃~`2\k,z!

~A14!

for momenta close to\k, i.e., p5`1\k, and

iv
]

]z
f̃~`2\k,z!5

k2e22iw

4D
e22i `(kz/P)f̃~`1\k,z!

~A15!
d

l

y

-
-

r
g

e
y.

for momenta close to2\k, i.e., p5`2\k. In the following
we denote bỳ the small deviations from the photon mo
mentum 6\k and we keep in mind that these deviatio
have to fulfill the condition

2u\k6pukz0

P
[4v rt0

u`u
\k

,1, ~A16!

with the characteristic interaction timet05z0 /v.
In order to solve the coupled differential equations~A14!

and ~A15!, we differentiate them with respect to thez coor-
dinate and find the uncoupled equations

]2

]z2
f̃~`6\k,z!72i `

k

P

]

]z
f̃~`6\k,z!

1S k2

4Dv D 2

f̃~`6\k,z!50 ~A17!

which are valid forf̃(`1\k,z) and f̃(`2\k,z), respec-
tively. The boundary conditions

f̃~`6\k,z50!5f̃~`6\k! ~A18!

and

]

]z
f̃~`6\k,z50!52 i

k2e62iw

4Dv
f̃~`7\k! ~A19!

are fixed by demanding that atz50 the solutions have to
coincide withf̃(p). As mentioned before, we concentrate
a situation wheref̃(p) differs from zero only in the vicinity
of p5\k, that is, the tilted incident matter wave has a m
mentum distribution peaked at\k and thereforef̃(`2\k)
50.

With the ansatz

f̃~`6\k,z!5e6 i `(k/P)zf ~`6\k,z!, ~A20!

Eq. ~A17! reduces to

]2

]z2
f ~`6\k,z!1S k2

4Dv D 2

f ~`6\k,z!50 ~A21!

when we neglect terms of the order̀(k/P) compared to
those of the orderk2/(4Dv). Consequent application of thi
approximation leads us to the final expression for the s
tered atomic matter wave
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f̃~p,z!5H ei `(k/P)z cosS k2z

4Dv D f̃~`1\k! for p5`1\k

2 ie22iwe2 i `(k/P)z sinS k2z

4Dv D f̃~`1\k! for p5`2\k.

~A22!
ns
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Note that the momentum amplitudef̃(p,z) now has two
coherent contributions: one part is centered aroundp5\k
and a second part is centered aroundp52\k. Both parts are
determined by the original amplitudef̃(p) of the incoming
beam and by the scattering amplitudes cos@k2z/(4Dv)# and
sin@k2z/(4Dv)#. The phase factors exp„6 i (`/P)kz… express
the relative Doppler shift of the two coherent contributio
of f̃(p,z). Hence depending on the scattering lengthz, we
basically have weighted replicas of the incoming moment
amplitude oscillating@24# between the centers at1\k and
2\k, respectively. In addition, we can control their mutu
phase relation via the factor exp(22iw). Equation ~A22!
clearly formulates the self-referencing principle: Due to t
Bragg scattering of atoms at a standing light field, we ge
second reference amplitude centered atp52\k phase co-
herently added to the incoming amplitude atp51\k.

Finally, we have to translate the momentum amplitu
Eq. ~A22!, back into position representation since eventua
we will detect an atomic position distribution. Moreover,
will turn out that the atomic matter wave after the Brag
scattering process can be written most nicely in terms of
original wave functionc(x), Eq. ~A1!, which describes the
originally untilted beam.

In order to show this, we start from the position amplitu
at z5z0 @Eq. ~A3!#, which reads

f~x,z5z0!5
1

A2p\
E

2`

`

dp ei [ pz(p)z01px]/\f~p,z0!

~A23!

with the corresponding momentum amplitudef̃(p,z0), Eq.
~A22!. For positionsz.z0 the interaction with the light field
is now switched off, i.e.,k50 in the Hamiltonian, Eq.~A2!.
Hence in order to calculate the wave function at a poinz
.z0, we simply repeat our considerations with a simple fr
Hamiltonian and with boundary conditions as set by E
~A22! and find

f~x,z.z0!5
1

A2p\
E

2`

`

dp eipz(p)(z2z0)/\

3ei [ pz(p)z01px]/\f̃~p,z0! ~A24!

with pz(p)5A2mE2p25AP22p2. Substituting the mo-
mentum amplitudef̃(p,z0), Eq. ~A22!, and expanding
pz(p)'P2p2/(2P) we finally arrive at
l

a

,
y

-
e

e
.

f~x,z01 l 1!5eia1Feikx cosS k2z0

4Dv D 1

A2p\

3E
2`

`

d` e2 i `2/(2\P)(z01 l 1)

3f̃~\k1` !ei [x2(\k/P) l 1] `/\

2 ie22iw1e2 ikx sinS k2z0

4Dv D 1

A2p\

3E
2`

`

d` e2 i `2/(2\P)(z01 l 1)

3f̃~\k1` !ei [x1(\k/P) l 1] `/\G . ~A25!

Here the overall phasea15@P/\2\k2/(2P)#(z01 l 1) is of
no interest, since it will not affect any position distributio
Note that in Eq.~A25! we have extended thè integration
since the momentum amplitudef̃(`1\k)5c̃(`) is cen-
tered around̀ 50 and therefore automatically restricts th
integration.

The essential features of the state, Eq.~A25!, become
much clearer when we rewrite it as

f~x,z01 l 1!5eia1@Ceikxc t1
~x2Dx1!

2 iSe2 ikxe22iwc t1
~x1Dx1!# ~A26!

with the wave function

c t~x!5
1

A2p\
E

2`

`

d` e2 i `2/(2m\)tf̃~\k1` !ei `x/\

5
1

A2p\
E

2`

`

d` e2 i `2/(2m\)tc̃~` !ei `x/\ ~A27!

evolving in free space over a timet5t15m(z01 l 1)/P. The
spatial ruler

Dx15
\k

P
l 1 , ~A28!

the scattering amplitudes

C5cosS k2z0

4Dv D ~A29!

and
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S5sinS k2z0

4Dv D , ~A30!

as well as the phasew are the essential parameters defini
the coherent superposition, Eq.~A26!. We emphasize tha
the wave function defining this superposition is just a tim
evolved replica of the one describing the originally untilt
beam. The timet1, basically defined by the distancel 1 and
therefore at our disposal, is the time a free classical part
se

ch

th
i
.

v.

r t
h

rd

n

J.

k,
.

,
.

se

B.
pt
-

le

with kinetic energyE5P2/(2m) would need to overcome
this distance. Similarly, the rulerDx1, Eq. ~A28!, has a
simple geometrical interpretation: It is the transverse shi
classical particle would accumulate over the distancel 1 after
being kicked by a photon momentum\k. Equation~A26! as
a whole therefore has an obvious geometrical interpreta
and we can see howc t1

(x) plays a twofold role in the pro-
posed scheme: it is the object signal and the reference si
at the same time.
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tions have to be small, i.e.,̀ 2L/(2\P)(dP/P)!1. On the
other hand, the fluctuationsd(Dx2) have to be much smalle
than the characteristic width\/` of the atomic wave function,
i.e., (k` l 2 /P)(dP/P)!1. Since we havè !\k and l 2'L,
the latter inequality is crucial for the monochromaticity. F
the example considered in Sec. IV, we havekDx25300 and
`/(\k)<1/10 and we therefore need a monochromatic
dP/P,5%.

@22# Note thatc~rm!(x) can be calculated at any pointx. Its accu-
racy, however, depends on the values of the wave func
cT

(rec)(x) given only on a grid with spacing 2Dx1. The corre-
sponding restriction can be seen most easily when we cons

the numerical calculation of the momentum amplitudec̃T(p).
The Fourier transform becomes a periodic Fourier sum and
have to restrict ourselves to momentaupu/\k<(2Dx1p/k).
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This is just another expression of the well-known Nyqu
theorem~or sampling theorem!. In other words, due to the
fundamental position resolution given by 2Dx1, we can only
resolve momenta up to6p\/(2Dx1).
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