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Probing of atomic beams by using a self-referencing principle
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We discuss a method for reconstructing the wave function of an atomic beam with the help of a self-
referencing principle. At the heart of the method lies the controlled superposition of the original atomic matter
wave with a single reference wave. For this purpose, Bragg scattering of atomic beams at standing light fields
turns out to be perfectly suitefiS1050-294{©9)01508-5

PACS numbeps): 03.75.Be, 03.75.Dg

[. INTRODUCTION In the present work we are guided by the superposition
principle in order to reconstruct the wave function of an
Coherent manipulation and coherent control of wavelikeatomic beanj16,17]. The basic question to be solved then is
objects is certainly one of the most fascinating issues thahe suitable design of a reference wave function. In contrast
reaches from classical physics to quantum physics. Concerio Refs.[13—-15, we propose self-referencirid 8], i.e., we
ing classical optics, the advent of the laser in 1960 has beefHPerpose the object wave function with a replica of itself.
the breakthrough to realize a striking application of coherent his ¢an be achieved with the help of Bragg scattefir
waves:holography[1] conceived by Gabor already in 1949. of the atomic beam and we shall analyze the corresponding
But holograms are by no means limited to recording inter-S€tup. _ _ _
ference patterns produced by classical light. The paper is organized as follows. In Se_c. Il we (_1|scuss
Early attempts have been made to apply the hoIographiH“e heuristics of the proposed self-referencmg principle for
principle to electron bean|®]. The further development of atom bgams. For deta_|led calculanon; we rel_‘er the reader to
coherent electron sources has nowadays made electron HdPPendix A. The algorithm for evaluating the interferograms
lography a practical tool to study a wide range of topicsiS explalned in Sec. II_I and we illustrate the method Wlth an
ranging from very fundamental questions like the Aharonov-example in Sec. IV. Finally, we conclude the paper with Sec.
Bohm effect or the Sagnac effect for electron waves to high¥-
resolution measurement at atomic dimensi8is
Similarly, interferometry with neutron waves has become Il. SELF-REFERENCING PRINCIPLE
a powerful technique to perform many basic quantum experi-
ments[4]. Also here the basic idea is to separate and to Coherent superposition is a fundamental concept to
overlap the matter waves coherently, i.e., the holographi®andle information in wave physi¢s]. It allows one to store
principle is indeed applied. This has been made possible bgnd to retrieve amplitudand phase of a wavelike object.
the use of perfect crystal interferometers which provide thelhe key feature is interference of an object wave with a
coherent manipulation of the neutron befi well-defined reference wave. The resulting interference pat-
Finally, atom interferometergs] have proven to be per- tern encodes the full information on amplitude and phase of
fect tools for fundamental studies in which the coherencéhe object.
properties of an atomic matter wave play an essential role. In We shall show how this principle can be applied to object
particular, the mechanical effects of light on atdiican be ~ Waves that describe the quantum motion of atoms in a beam.
used to coherently split and recombine atom wd@sn an [N complete analogy to classical optics, the object matter
extremely elegant way. In this realm of matter-wave interfer-wave to be analyzed interferes with a reference wave. The
ometry the subjects studied range from fundamental, such &asic question is the proper design of this reference, which
interferometer-based gravimeté®§ or wave-particle duality ~has to be added coherently to the object. We discuss a solu-
[10], to quite applied, such as nanostructurjaig]. tion which uses a replica Qf the object as reference, i.e., we
This quantum-interference variety is based on one comapply a self-referencing principle. _ _
mon and simple rule: the superposition principle for quantum The guantum object to be measured in our case is a sta-
states. This also provides the link to the classic holographiionary beam of two-level atoms of masswhose quantum
principle which basically relies on the coherent superpositiodnotion atz=0 is described by the state
of an object wave with an appropriate reference wave in _
order to store intensity and phase information of the object in |W(x,z=01))=e"EMty(x,z=0)|g) (1)
the corresponding interferograms. As a consequence, the ob-
ject can be reconstructed from suitable interference picturesyith the total energyE=P?/(2m) and with the internal
These concepts turn out to be just as fruitful for the re-ground statég). To be more specific, we shall be concerned
construction of quantum stat¢$2] which encode the com- with the reconstruction of the wave function
plete knowledge of a quantum object. This has been demon-
strated recently for the holographic reconstruction of 1 .
molecular wave packetsl3] and electronic Rydberg wave P(X)=(x,2=0)= _J dp P (p) (2
packetq14,15. N2mh J -

1050-2947/99/6@)/1471(11)/$15.00 PRA 60 1471 ©1999 The American Physical Society



1472 KIENLE, FISCHER, AND FREYBERGER PRA 60

(a) any atomic transition and the atom therefore remains in the
ground stateg).
A An appropriate scheme is depicted in Figo)1 It consists
of only a few basic elements: Two classical standing light
\| fields of wave vectok scatter the atoms of the incoming

P(z) z

beam in the interaction regions<r<z, and zp+1,<z
<2z7,+14, respectively. The sine-mode structure of the first
field can be shifted relative to the second field in xt@irec-
tion with the help of a moving mirror. The last element of
our scheme is a screen atL=2z,+1,+1,, where posi-
tions of scattered atoms are detected.

In the dispersive regime, the coupling constardf atom
and field is small compared to the detunitgand the inter-
action with each field is governed by the Hamilton[at

z=0 z=1L
screen

(b)

sz
o () 2
< Hzi(A2+A2)+ﬁK—sin2(k§<+ )o )
2m p pz A )03,
@ with the momentum operatogs and p, for the x and z di-
mirrors rections. Internally, the spinlike operaté'@ just leads to a
S I ' phase change, i.eq3/g)=—|g). Hence due to the sinu-

soidal mode function the atoms do actually feel a periodic

FIG. 1. Original atomic beam and the setup for the proposedptical potential which leads to Bragg scattering of the
self-referencing reconstruction. Ie) we illustrate the original —atomic matter wavgl9]. Furthermore, it is important to note
beam of ground-state atoms described by a transverse wave funthat the relative position of the first periodic light structure is
tion ¥(x) atz=0. Free evolution over the distantesimply broad-  controlled via the phase, whereas for the second we simply
ens this wave function and we detect a smeared-out atomic positiofave ¢=0.
distribution atz=L. In (b) the original beam is tilted with respect to For a Comp|ete ana|ysis of the Scattering process in terms
the two standing light fields. The corresponding wave functiongf \yayve functions, we refer the reader to Appendix A. Here

$(x)=e""y(x) has an additional momentum shift efik. There-  \ye shall concentrate on the basic principles in order to bring
fore, the dispersive interaction of the two-level atoms with the flrstout the idea.

standing laser field leads to Bragg scattering. This splits the atomic We only get a Bragg resonance if the incoming atomic

matter wave in two partial waves that are shifted iy, Eq.(6), 1 ter wave has a nonvanishing momentum component at
before they enter the second standing light field. Note that the SizSzﬁk This is just the same situation as encountered in scat-

of the splitting depends on the distanige Both partial waves un- fing light from a perfect crvstal. Since the momentum am-
dergo a second Bragg scattering process in the second field. On '[III% 9’9 P ystal.

screen az=L the four partial waves overlap by pairs, provided the Plitude ¢(p), Eq.(2), of our original atomic beam is concen-
free evolution distance of lenglh is sufficiently large. Two posi- trated aroung=0, we have to shift it byik with respect to
tion distributionsw,,(x,Ax,) for two phasesp of the first standing  the first standing light field. This can be achieved by tilting
light field are sufficient to unravel the essential information of thethe beam appropriately. In effect, the tilted beam can now be
wave functiony(x): the phase information described by the shifted momentum amplitude

defining the transverse motion of the atom as indicated in

Fig. 1(a). We assume the momentum amplituglép) to be
well-concentrated arounpl=0.

How can we generate a reference signal that adds coher- We emphasize that in order to create a shifted replica of

ently to the opject_wave functio(x)? The answer to th|§ the wave function, Eq(2), by Bragg scattering, the momen-
question is fairly simple: Let us use an atomic beam splitter

[8] that divides the beam into two spatially separate but stilfum amplitudey(p) has to be narrow compared to a single
coherent parts. After the beam splitter, the two partial wave®hoton momentunkk. This meansp/(%ik)<1 for all mo-
can therefore interfere and the corresponding interferenc@enta with nonvanishing amplitudi(p). In fact, this is the
pattern, which in our case will be an atomic position distri-main limitation of our scheme.
bution, does certainly contain information on amplitude and As indicated in Fig. (), the tilted atomic beam passes
phase ofy(x). In the following we shall describe a concrete the first interaction zone with a specific probability without
setup that allows us to measure interference patterns encoieing deflected. For an appropriately long interaction time
ing even thecompletenformation on amplitude and phase of 7o, namely 75> w,; * with the photon recoil frequency,
P(x). =#k?/(2m), we will, however, also see a Bragg-resonance
Atomic beam splitting can be achieved with the help ofpeak shifted by— 27k from the incoming beam. Hence the
Bragg scattering at a classical standing light fi¢®l. momentum amplitude of the Bragg-scattered wave is located
Thereby, the interaction of atom and field can be purely disat p=—#k. This coherent scattering process is fully gov-
persive, that is, the frequency of the field is far detuned fronerned by the Hamiltonian, E@3), as shown in Appendix A.

$(p)=4(p—1ik), 4

which is peaked ap=+7ik.
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The resulting atomic matter wave after the interaction zonénterferences in the atomic position distribution and these
therefore consists of two partial waves: a transmitted one anihterferences originate from the superposition,b@f‘ with an

a reflected one. o . _ _identical but shifted replica of itself. Hence the self-
It turns out that it is most convenient to describe thisyeferencing principle becomes already visible in ).
Situation in terms Of wave funCtionS Of the Ol’iginally Untilted However, the Corresponding interferograms would be
atomic beam shown in Fig.(d). The transmitted wave after yery difficult to detect since they are dominated by the fast
the first interaction zone is then effectively produced fromgggillations originating from the exponentias *. Never-
such a virtual beam impinging orthogonally on the standingheless, we emphasize that from a principle point of view
light field by kicking part of the atoms with a single photon interferograms taken a,+1, would be sufficient to recon-
momentunv:k in the +x direction, whereas the Bragg beam gtryct the original wave functiog(x). But there is a way to

comes from the remaining part kicked b in the —x di-  get rid of these oscillations. We discuss this in the next sec-
rection. Both processes have to be weighted with certaign.

probability amplitudes and their coherent sum describes the
transmitted matter wave at=z,. From there on the atoms
just experience free evolution over a distahge

Putting these arguments together, we find for the state Our aim is to construct interferograms which are deter-

Avoiding fast oscillations in the interferograms

[20] mined by a superposition of the structure of Ef), but
e without the fast oscillating phase factaes'**.
| D(x,2=2+14,t))=e "EMl(x,z=2,+1,)[g)  (5) For this purpose we first add a second interaction zone in
" . the intervalzy+1,<z=<2z,+1, consisting of a standing light
of the matter wave at=z,+1, a position amplitude field identical to the first one. The Hamiltonian E8) again

i ikx B e ikx governs this interaction, but now fgr=0. Second, we add a
P(X,Zotly) =€ Ce Ty (x—Axy) ~iSe further period of free evolution over the distarigeuntil the
X e 2¢y (x+Axy)]. (6) atoms reach the screenzt L5220+I1+I2:
1 In complete analogy to the first scattering process, effec-
This expression reflects what we have said before. Its bas%Vely described by Eq(6), we now get a transformation .Of
(X,zo+14). Note thatp(x,zg+1,) consists of two ampli-

component is the wave function tudese™*yy (x—Ax;) ande™ ™y (x+Ax,), respectively.
1 o - _ _ The corresponding momentum amplitude of the partial wave
(X)) = \/:ﬁf dp e PTG (p)ePXh - (7) e *yp (x—Axy) is again centered at#ik and hence the
2m N analysis of Appendix A can be applied immediately to find

which we obtain if the originals(x), Eq.(2), evolves in free the transformation

space for the tlme:tlE m(ZO+|1)/P. That iS,tl is Slmply eikxl,// (X_Axl)_)eiaz[ceikwa(x_Axl_AXZ)
determined by the lengthy+1, and by the known charac- h

teristic energyE=P?/(2m)=1mv? of the stationary atom —iSe ™ yYr(x—Ax;+AX,)]  (9)
beam.

Furthermore, the position amplitude, E§), is indeed a i, perfect analogy with Eq6). Here we have now used the
superposition of two copies af,, weighted with the scatter-  gppreviationsT=t,+t,=mL/P for the total evolution time

ing amplitudesC = cog k’zy/(4Av) ] andS=sin k’z/(4Av)],  and
which we derive in Appendix A. Please note that the two
partial waves of Eq(6) are shifted by the spatial ruler

AXZE (10)

ik Pl
AX]_E FI 1- (8)
reflecting the shift of the partial waves due to virtual momen-

This is the essential parameter of the method which, as wiiM kicks. The overall phase®2, appearing in Eq(9), again
will discuss below, limits the resolution of the reconstruc-Pl@ys no role for our considerations. _
tion. In addition, Ax, has a simple geometrical meaning  ©On the other hand, we can also apply the calculations of

since it is the displacement of a classical particle kicked by PPeNdix A to f'“f'iktxhe corresponding transformation of the
%k and moving over a distandg with constant momentum _Partial amplitudes™ "¢ (x+Ax,) which appears in Ed6)

P. Hence we can contrahx; by changingl,. The single With its corresponding momentum amplitude centered at
photon kicks also lead to the phase factefd™ in Eq. (6).  —#ik. We just replac& by —k in Eq. (9) and arrive at
Finally, we emphasize that the phase® ¢ of the superpo- . . ‘

sition, Eq.(6), depends on the relative position of the first e"kx¢t1(x+ Axp)—e 2 Ce ™ yr(x+ AXy+ AXy)
standing light field which can be varied by moving the mir-

ror, as indicated in Fig. (b). The overall phase'®:, also —iSEXyYr(x+Ax;—Axy)]. (1D
derived in Appendix A, plays no role for our further consid-
erations. With the help of Egs(9) and(11), we eventually under-

Therefore, we now understand the basic components aftand the complete transformation é{x,z,+1,), Eq. (6),
the position amplitude, Ed6). It would lead, of course, to into the position amplitude
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B(x,L) =€ (1t D[ C2e ¥y (x— Axy— AXy) position distribution measured on the screem=at . This is,
. ik however, not what we aim at. We want only two partial
—iCSe Pr(x+Axa—Axq) waves at a time to interfere with each other, namely those
_iSCe 2%y (x4 Axy+ AX,) multiplied with either thee'* phase factor or the ¥ phase

o factor. Only in this case can we get rid of the fast oscillations
— S ey (x— AXp+ AXy) ] (120 in a position distribution dominated g/,

We achieve such interferences by pairs, if the shik,
becomes large enough so that the amplitugeéx— Ax,
*AX,) and ¢(x+Ax,=AX;) no longer overlap. Note fur-
cally consists of four replicas of the original wave function ther thatAx,, Eq. (10), can be controlled simply by varying

#(x) spread in free space for tineto give y(x), as de- the di;tanf:dz. Such a situation of oyerlap by pairs i_s in_di-
fined by Eq.(7). In principle, all four replicas contribute to a cated in Fig. 1b) and the corresponding position distribution

that describes the atomic matter wave in the plzad., i.e.,
on the detection screen.
We emphasize that the position amplitude, B@), basi-

|C2yr(x— Axy— AXy) —e 2¢Siyr(x—Axp,+ Axq) |2 for x=0

WO AX)ZIPONDI=1 (812 (x+ Axg— Axy) +e 2 9r(x+ Axg+ Axp) P for  x<0

13

now consists of two spatially separated p42%|. The inter- does allow us to extract the pure interference tepp{x
ferogram, Eq(13), still depends on the phasg i.e., on the  —Ax,) 45 (x+Ax,). We emphasize that the real part and the
mirror position, and on the rulekx,, Eq. (8). Both quanti- imaginary part of this interference term stem from two dis-
ties are essential for analyzing the interferogram, as we poirtinct interferograms recorded with=0 ande = 7/4, respec-
out in the next section, and they are both controlled by geotively. We basically just subtract from each other the two
metrical means. spatially separated parts of one interferogram. Note further
We stress that Eq13) indeed constitutes the heart of our that the left-hand side of E¢14) contains only experimen-
idea. It clearly shows again the self-referencing principletally measurable distributions and known parameters of the
namely the coherent superposition ¢f (objech with a  setup.
shifted replicareference In addition, the interferograms are Hence it remains to be shown how one can extract the
only determined by object wave and reference wave and wphase® from the interference term. From the premeasure-
got rid of the fast oscillations complicating the scheme. Thement we know the modululs/(x)| that allows us to deter-
resulting interferences will allow us to reconstrygt(x) and  mine the interval Xpin, Xmax in Which ¢(x) differs substan-
eventuallyy(x). We discuss the corresponding algorithm in tially from zero. Now we start at the positiox,,+AX;.

the next section. With the help of the interference term, E44), we evaluate
the phase differenc® +(Xmyin) — O1t(Xmint 2AX4). Proceed-
lll. EVALUATING THE INTERFERENCE DATA ing to the point Xmin+3AX;, we get O(Xmint 2AX,)

— O1(Xmint4AX,). In this way we go on to cover the com-
plete interval [ Xmin,Xmax] @nd to find the corresponding
phase differences. In order to reconstruct the individual
phases, we replac@®(Xmin), remaining unknown, by
0 xi) =0. With this initial phase setting we finally find
Jecursively O xyn+2Ax;),  OF*xpn+4AXy), . . .

It remains to be shown that the corresponding interfero
gram, Eq.(13), contains enough information to reconstruct
the underlying wave functiogi+(x), Eq. (7). Eventually it is
a straightforward task to find the desirg(x) by just invert-
ing free time evolution.

We begin the evaluation of the interference data with \
premeasurement of an atomic position distributiorzat, ~ ToM the phase differences.
where the light fields have been switched off. The resulting | nerefore, by evaluating the interference term, Eid),
position distribution directly provides us the modulus " the way just described, we arrive at the reconstructed
l47(x)| and we can therefore focus on the reconstruction ofVave function
the phase x) of the wave function X _
=| ¢T(?<)|ex[ii®1gx))]- ) YA x) = rr(x) @1 OTCmi), (15

In the next step we measure two different distributions o _ _ _

w,, Eq. (13), for the phasesp=0 and w/4. We get the which is given on a grid with spacingAX; in the _mterval
highest visibility for the interference patterns when we[Xmin:Xmaxl- Hence the parametexx,, Eq. (8), defines the

choose the scattering amplitudes= S=1/y/2. Then the ap- resolution of the method. The overall phase factor
propriate combination exfd —iO1(Xnin) ] just expresses the well-known fact that any

wave function is defined up to a constant phase. It is, how-
Wo(X—AXp,AX1) —Wo(X+ AXy, AXy) +iW (X +AX,,AX1)  ever, worth noting that here such a phase comes in very
naturally via the recursive algorithm.
As the final step, provided the resolution is sufficient, we
(14  can numerically propagat#{®®, Eq.(15), back in time us-

— W a(X— AXp,AXq) = thr(X— AXy) h7 (X+ AXy)
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ing Eq. (7), which eventually yields the reconstructed wave

function @ “ |(p/Rk)[?
Plred(x) = y(x) e~ OT0min), (16)
30
Here the notatior= reminds us that the reconstruction is, of
course, limited by the resolutionAX, [22]. In the next sec- 10
tion we shall discuss a numerical example that basically N
demonstrates the influence of the grid spacifg? ® ) |Dane (9 ks 20)
IV. EXAMPLE
. . . L. . 15
This section addresses two different topi@s.First, we
shall numerically show that the approximations made in the
derivation of the Bragg scattered amplitudes, Eg), are 5
valid if the original atomic wave functiog(x) is narrowly < <
peaked in momentum space @t 0. (i) Second, we shall (© [ @rum.(p/Fkes zo)[*

illustrate the presented method for an example. In particular, 2

we emphasize the influence of the resolutiohx?, which
has a strong influence on the quality of the reconstructed 15
matter wave.

A. Numerical check A\
2105 -1 -0.95 095 1 105

Note that it is absolutely crucial for the presented method p/hk
to have an analytical result at hand. Otherwise it would not . . . .
have been possible to evaluate the interference data as ShOWFIEEZ.GAzaIyUC.S.I res;]"t é’s numerlcall simulation. In order to
) ) : . chec (6) describing the Bragg scattering process, we compare
in the preceding section. Since, on the other hand, the der a(6) 1oing a9 ng p W P

. f th d ired I i to the numerically integrated Schitimger equation(A10). For
vation of the Bragg scattered wave, Ef), required severa _ this check the underlying stat#(x) is a Schrdinger-cat state, Eq.

apprOXImatlons', as §hown in Appendix A, we now numerl-(17)_ It is a superposition of two Gaussians of widthr=50, spa-
cally check their validity. ) tially separated by 2x,=200. The momentum distributid@(p) |
For that purpose we use the wave function of the corresponding tilted beam described gfx) =y (x) is
o2 )2 depicted in(a). Note that it is well-centered aroung=#k. The
¢(X):NI exp( i (X=Xo) ) +i exp( N (X+Xo) ) } parameters of atom, field, and interaction have been chosen as fol-
202 2 ' lows: kzy=5x10% P/(Ak)=10% andk?7o/(4A)= /4. After the
(17) interaction, the momentum distributigi) calculated analytically
with the help of Eq(6) and the momentum distributiofr) calcu-
which represents the atomic beamzat0 with parameters lated numerically with the help of EGA10) are in perfect agree-
ko=50, kxo=100, and a normalization constanf This  ment.

Schralinger-cat state is a superposition of two Gaussian? ts. One looks like the original and the oth h
centered at- x, having the same widithr. wo parts. One looks like the original and the other one—the

In Fig. 2a), we depict the momentum distribution replica—kept the shape but is shifted in momentum space

|#(p)|?>=|d(p—#k)|? of the corresponding tilted beam. from +ik to —fik.
Note that it is peaked gi= +7k. In Fig. 2b), we show the
momentum distribution after a single atom-field interaction ) ) o
calculated via the analytical expression, E8), for the scat- To llustrate the reconstruction utilizing the self-
tered wave. Note that Fig(1) coincides extremely well with  referencing principle described in the previous sections, we
the momentum distribution shown in Fig(c2, which we  Use the Schidinger-cat state of Eq17). For all parameters
have obtained by numerically integrating £410). The fol-  that define the atom, the standing light fields, and the corre-
lowing parameters for atom, light field, and their interactionSPonding interaction, we have chosen the same values as in
have been chosenkz=5x10% P/(Ak)=10" and the numerical simulation presented above.

20

B. Example for the reconstruction

K210l (AA) = /4. Figure 3 shows the atomic position distributiong—the

Also the overlap interferograms—with kAx; =30, kAx,=300, and field
phasesp=0 and ¢= /4, respectively. These are the two

(D ana(Zo)| P rum(20))~0.99 (18)  required distributionsvy(x,Ax;) andw,.,4(x,AX,) in order

to apply the recursive reconstruction algorithm described in
between the analytical result and the numerical result for th&ec. lIl.
scattered wave is very close to 1. This confirms the approxi- With the help of these data, we have reconstructed the
mations made in Appendix A in order to get the analyticalwave function("®°(x), Eq.(16). The corresponding Wigner
expression, Eq(6), for the Bragg scattered wave. We em- function is depicted in Fig. @) and it agrees well with the
phasize that indeed the momentum distribution after the scatigner function for the original matter waug(x), see Fig.
tering process, see Figsih? and Zc), has been splitted into  4(a).
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107w (a)

-400  -200 0 200 400

kx

-0.04

FIG. 3. Atomic position distributionsv,(x,AX;), Eq. (13), for
the Schrdinger-cat state, Eq17), depicted for the two phases FIG. 4. Wigner functions of the initial wave functiafi(x) and
=0 ande=7/4 of the first standing light field. For the spatial ruler the reconstructed wave functiogé®(x) exemplified here for the
Ax,, Eq.(8), and the separatioix,, Eq.(10), we have chosen the Schralinger-cat state, Eq(17). All Wigner functions have been
values kAx; =30 and kAx,=300. All other parameters are the plotted for the same parameters as in Fig. 2(dnwe show the
same as in Fig. 2. The spatial separation of the two parts of thgvigner function of the initial Schidinger-cat state, Eq17). The
position distributions caused by the free evolution after the secon@legative parts illustrate the nonclassical character of the shite.
laser field and encoded in the parametay, is clearly visible. Note  and(c) represent Wigner functions of the reconstructed wave func-
that according to Eq(14) the distributionw, yields the real part, tions ¢("%(x) for kAx,=300 and two different values of the ruler
whereasw ;4 yields the imaginary part of the interference term kAx,, which sets the spatial resolution of our reconstruction
br(X— AXq) F (X+ AXq). scheme. In(b) we have usedkAx;=30 and the reconstructed
Wigner function agrees very well with the initial one. However, as
Figure 4c) shows the same plot agb} but for a spatial ~ shown in(c), the reconstruction quality decreases when we increase
ruler kAx; =60. That is, we have a spatial resolution which the value tokAx, =60.
is lower as in the reconstruction procedure féb)4 Conse-

guently, the reconstruction gets worse. comes already very close to a possible realization of the idea
From this example, we see that the simple reconstructioanalyzed in the present work. Furthermore, we are convinced
algorithm based on Eq14) indeed works very well. that it would be very interesting to apply our reconstruction

scheme to the cw output beam of an atom 1488}
V. CONCLUSIONS

We have discussed the reconstruction of wave functions ACKNOWLEDGMENTS
describing the state of a stationary atomic beam. The method
relies on a superposition principle: The object wave function '€ authors thank V. P. Yakovlev, S.-Y. Zhu, and I. A.
interferes with a suited reference wave function. We have//almsley for many fruitful and vivifying discussions and
shown that only three interferograms are sufficient to retrievé® DAAD for financial support. S. H. K. acknowledges sup-
the object wave function. The corresponding recursive algoPOrt Py the Studienstiftung des Deutschen Volkes.
rithm has turned out to be quite simple and we have applied
it to the reconstruction of a Schiimger-cat wave function.
The simplicity of the algorithm, i.e., the simple recursive
mapping of the measured data onto the wave function, is the In this appendix we explicitly analyze the dispersive
main difference compared to the successful tomographic reBragg scattering of an atom beam at a standing light field.
construction of atomic beanfi&6]. On the other hand we can Since it is most appropriate for our purpose, we shall present
apply the proposed method only for reconstructing purehe calculations in terms of wave functions. In fact, accord-
states and for beams with a narrow momentum distributioring to the setup shown in Fig.(d), we have to investigate
(for a different regime, see Rdf17]). two such scattering events. However, since the correspond-
We emphasize that the recent experiment described img standing light fields are identical, we can simply use the
Ref. [10], although treating a different type of problem, analysis, described below, twice.

APPENDIX: SCATTERED ATOMIC MATTER WAVE
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We start with a matter wave of two-level atoms described

by the state

|W(x,z=01))=e """ y(x,z=0)|g)

—iEt/h

V2mh

dp €P"(p,z=0)|g)

— o0

=e

(A1)

in the planez=0. We assume the beam to be infinitely ex-
tended in they direction. HerekE denotes the total energy of
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p2+pZ(p)

om )eipz(p)Z/h’a)(plz)

en
oy~

2 2
_ iPAP 2 9
dz  2m yz2

R ~
i —p.p) B(p.2)

K2e—2i<p
+h——

X eipZ(erZﬁk)Z/ﬁa(p_i_ th,Z)

2 2i¢

+h elPP= 202G (n— 21k, 2)

the stationary state and the atoms have been prepared in their

internal ground statég). Our final aim is the reconstruction
of the wave function/(x)= (x,z=0) or the corresponding

momentum amplitude/(p)=(p,z=0).
Note thaty(p) of the original beam is well-concentrated

aroundp=0. However, in order to get Bragg resonances we

in momentum representation. Now we cho@sép) so that

p?+p2(p)
2m

P2

E= 2m

(AB)

need an atomic beam with a momentum amplitude having

nonvanishing contributions g¢=#k and hence we have to
shift the original momentum amplitude by#k. This con-
stant shift byik can be approximately achieved if the atomic

beam impinges nonorthogonally on the standing light field S&l Kinetic energyp

and we neglect the terfx?/(2A)<E. Furthermore, the to-
tal energyE is assumed to be much larger than any transver-
2/(2m). Hence the momentum in the

as indicated in Fig. (b). Hence in the calculations below, we direction is basically dominated hy,(p)~P and¢(p,z) is

will be concerned with a shifted amplitude(p)="4(p

— k) describing atoms in the tilted beam in momentum rep-

resentation.

The dispersive interaction between atoms and laser light

in the region B=z=<z, can be described by the Hamiltonian,
Ea. (3.

"2+"2 2 R R
P pz+h%sin2(kx+ ).

2m

H= (A2)

To determine the stationary solution &t z,, we substi-
tute the ansatz

|D(x,z,t))=e "E" p(x,2)|g)

“ieun_—_ |7 gp dlper e 2)|g)

=e
2mhJ —=
(A3)
in the time-dependent Schiimger equation
J N
ifi—|®)=H|®), (A4)

where we can choosg,(p) so thaté(p,z) is a slowly vary-
ing amplitude. Then we arrive at the equation

K2 _ pZ+p; K?
(E+ﬁﬂ)¢(x,2)— m +ﬁﬂ
X cos Akx+ @) |d(X,z), (AD)

which, using Eq(A3), reads

slowly varying withz. Consequently, we neglect second de-
rivatives

d ~

2p,(p)
722

h

: (A7)

9? -
— Z)| <<
‘&quﬁ(p )

which considerably simplifies E§A6) and we find

K2 —2ig

Z—©/[PAP 2RO PPIZ G bt 2k 2)

o
|VE¢(paZ)—

22i¢p
+

e/ [P(P=21) =PIt — D11k 7),
(A8)

where we have introduced the characteristic veloaity
=P/m. Expanding

p,(p)=\P?—p*~P—p?(2P) (A9)

in the exponents of EqA8) yields

K2972|(p

o
v b(p2) ="

A e—2i(fik+p)kZ/P$(p+2hk’Z)

2:2ip
&e—m(hk—p)kﬂpa(p_ 27K, 2).

T aA

(A10)
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We solve this differential equation in the interaction regionfor momenta close te-#k, i.e.,p=g —fik. In the following

0=<z=<z, with the boundary conditiom(p,0)=¢(p). we denote byy the small deviations from the photon mo-
Formally integrating Eq(A10) leads to mentum =74k and we keep in mind that these deviations
have to fulfill the condition
—2igp
i 7 — dze i 2i(hk+p)kz/P
(3020~ =" | * ok o
———— =4, 7y—<1, (A16)
2e2i¢ P rk

X d(p+2%ik,z)+

4Av
with the characteristic interaction timg=z,/v.
J dz e 2k=pkAPG (5 27k, Z). In order to solve the coupled differential equatidAd.4)
and (A15), we differentiate them with respect to theoor-
(A11) dinate and find the uncoupled equations

Let us have a closer look at the integrals on the right-hand 2

side. Since we assum@(p,z) to vary slowly with z, the —<;/>(g)+ﬁk 2)F2ip :; &Zd)(p fik,z)
behavior of the integrals is dominated by the exponential
functions. We first consider momenta close7t& that is
2|hik—plkzy/P<1. Then the value of the first integral is
determined by the fast oscillating exponential 47Z/P

=e 8e?V pecause we work in the Bragg regime defined by
the first condition[ 7,19

2

4Av

2
d(p+hk,z)=0 (A17)

which are valid for¢(p +#k,z) and ¢(p —#k,z), respec-
tively. The boundary conditions

4o, 79>1, (A12)
o1k z=0)=d(p=1k) (A18)
where w,=#%k?/(2m) denotes the photon recoil frequency
and 7o=2z,/v denotes the characteristic atom-light interac-
tion time. We can now estimate the first integral by approxi-and
mating ¢(p+ 27k,z) with a constant of the order 1. Hence
the value of the first integral is restricted by the factor p 2 i
v/(4w,), which finally means that due to the second Bragg Zho+hkz=0)=— DoThk) (A19
condition[7.19] 5,9 =hk,z=0) aay PloFhk)  (A19)
K? are fixed by demanding that at=0 the solutions have to
ﬁ—<4ﬁwr (A13) o o~ .
4A coincide with¢(p). As mentioned before, we concentrate on

a situation whereh(p) differs from zero only in the vicinity
of p=1k, that is, the tilted incident matter wave has a mo-

we can neglect the first term in EGA11). The second Bragg mentum distribution peaked dk and thereforah(e — k)

condition forces the maximal optical potential seen by the
atoms to be much weaker than the photon recoil energy.
Analogously whenp is close to—#k the second integral
vanishes.

The above reasoning allows us to rewrite E411) in
terms of two coupled equations

W|th the ansatz
D(pthk,z)=e WP (p+hk,z),  (A20)

9 (2e2i¢ Eqg. (A17) reduces to
iv—g(p +1ik,2) =——— 2 TP G5 —fik,7)
a9z ' 4A : '
(A14) 2
—f(p+ikz)+
Jz

2

2
Ny ) f(p+#k,2)=0 (A2

for momenta close ték, i.e.,p=¢ +#k, and

when we neglect terms of the ordgi(k/P) compared to
e72ip(kyp)a(p+hk 2) those of the ordek?/(4Av). Consequent application of this
' approximation leads us to the final expression for the scat-
(A15) tered atomic matter wave

2,2

Jd~
ivacﬁ(go—hk,z):
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2

g'v(dP)z cos(%)?p(wﬁk) for p=p+ik
$(p.2)= 2y (A22)
—ie 2ieg iv(P)z sin(m)&(gﬂrﬁk) for p=p—hk.
|
Note that the momentum amplitudg(p,z) now has two , . K’z5\ 1
coherent contributions: one part is centered aroprdik B(X,Zg+1,) =" ek CO{m)—
and a second part is centered aroprd—7 k. Both parts are 2mh
determined by the original amplitudg(p) of the incoming * 2
beam and by the scattering amplitudes[&@®(4Av)] and X f_mdp e IRzt
sin k’ZI(4Av)]. The phase factors ekpi(p/P)kz) express
the relative Doppler shift of the two coherent contributions X p(hk+ p)e!lx—RKP) o/t
of é(p,z). Hence depending on the scattering lengthve )
basically have weighted replicas of the incoming momentum i 2igyanikx ain] K20 1
amplitude oscillatind24] between the centers atfik and e € SN ZAv N
—#k, respectively. In addition, we can control their mutual
phase relation via the factor expRi¢). Equation (A22) * do e~ 1#@iP)(zo+1y)
clearly formulates the self-referencing principle: Due to the X W pe
Bragg scattering of atoms at a standing light field, we get a
second reference amplitude centerecpbat—7%k phase co- - _
herently added to the incoming amplitudepat + 7 k. X p(fik+p)e!lH (RRPNalo/h | (A25)

Finally, we have to translate the momentum amplitude,
Eq. (A22), back into position representation since eventually

we will detect an atomic position distribution. Moreover, it no interest, since it will not affect any position distribution.

will turn out that the atomic matter wave after the Bragg- . . .
scattering process can be written most nicely in terms of theN_ ote that in Eq(A25) we have extended the integration

original wave functiony(x), Eq. (A1), which describes the Sinceé the momentum amplitudé(p +7%k)=y(p) is cen-

Here the overall phase,=[P/A—#k?/(2P)](zo+1,) is of

originally untilted beam. tered aroundy=0 and therefore automatically restricts the
In order to show this, we start from the position amplitude!ntégration.
atz=z, [Eq. (A3)], which reads The essential features of the state, E425), become

much clearer when we rewrite it as

&( ) - fw dp dlPP)Z0+ P gy 70 x.zo+1y) =€ CEYy, (x—Axy)
X,z=29)= —=—=| dpélPLP)2 P.Zo
N2mh J -

—ise e 2oy (x+Ax;)] (A26)
(A23)

with the wave function

with the corresponding momentum amplitugép,z,), Eq. w
(A22). For positionsz>z, the interaction with the light field (X)) = —f dp e MG (Fik+ o)el#X/h
is now switched off, i.e.«=0 in the Hamiltonian, Eq(A2). N2mh ) =

Hence in order to calculate the wave function at a paint

>z,, We simply repeat our considerations with a simple free -
Hamiltonian and with boundary conditions as set by Eqg. \V27h
(A22) and find

fw dg e—ipzl(th)tTp(p)eipx/ﬁ (A27)

evolving in free space over a time=t;=m(z,+1,)/P. The

spatial ruler
1 % A
P(X,z2>2q)= —J dp dPz(p)(z=20)/h
N2mrh J o Ax1=FI1, (A28)
X gilP(P)2o+ PRI g 7 (A24)  the scattering amplitudes
K220
with p,(p)=y2mE—p?=P?—p’. Substituting the mo- C=c0% 2av (A29)

mentum amplitudeé(p,z,), Eq. (A22), and expanding
p,(p)~P—p?/(2P) we finally arrive at and
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[ K%z, with kinetic energyE=P?/(2m) would need to overcome
S=sin Ay (A30)  this distance. Similarly, the ruleAx,, Eq. (A28), has a

simple geometrical interpretation: It is the transverse shift a

as well as the phas@ are the essential parameters definingCIaSSical partide would accumulate over the d|Std@CEﬁer

the coherent superposition, E(A26). We emphasize that being kicked by a photon momentutik. Equation(A26) as

the wave function defining this superposition is just a time-@ whole therefore has an obvious geometrical interpretation
evolved replica of the one describing the originally untiltedand we can see how (x) plays a twofold role in the pro-
beam. The time,, basically defined by the distante and  posed scheme: it is the object signal and the reference signal
therefore at our disposal, is the time a free classical particlat the same time.
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