PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999
Spin-mixing dynamics of a spinor Bose-Einstein condensate
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We study the spin-mixing dynamics of dr=1 spinor condensate. We show that the dynamics is sensitive
to the relative phase and particle number distribution among the individual components of the condensate, and
find that complex structures can develop in the density profiles during the time evolution. We investigate the
different time scales of the spin-mixing process and their dependence on the total particle number.
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[. INTRODUCTION tions and the population distribution among different spin
components, as well as on the total particle number. This
Experiments on dilute alkali-metal vapor condensatesstudy will help us gain insight into such properties as quan-
with internal degrees of freedom have opened up new aredsm phase diffusion, particle number fluctuations, spatial do-
in the study of Bose-Einstein condensation. Such a systerfain formation, etc.
was first realized in JILA where a magnetically confined This paper is organized as follows. In Sec. Il we study the
Bose condensate composed of two hyperfine spin states §Pin-mixing dynamics under the single-mode approximation
87Rb atoms was produced via sympathetic cooliigand, (SMA) — all three spin states can be described by the same
later, via a two_photon transiti({m]_ |nteresting phenomena wave function whose spatial profile is time-independent. The
such as suppression of phase diffusion and interference efMA allows us to construct a set of angular momentum op-
fects have been studied both theoretic&By4] and experi- ~ €rators to describe the Hamiltonian of the condenfafé
mentally[5]. Recently, the MIT group have realized a con- with which we study the evolution of the condensate by as-
densate composed of all three hyperfine states off thé suming that the condensate is in a Fock state. These results
ground-state multiplet of3Na atoms in a far-off-resonant Will be presented in Sec. Il A. In Sec. Il B, we adopt the
optical dipole trap[6]. Besides the number of spin states conventional view that a condensate is in a coherent state
involved, a major difference between the JILA condensateédssociated with a macroscopic wave function with both am-
and the MIT condensate is that in the former, the bare eneRlitude and phase. To this end, we treat the operators in Sec.
gies of the two spin states are separated by about 7 GH}, Aasc numbers and derive three coupled differential equa-
hence the two spin components are not free to convert int§ons to describe the condensate evolution and show how the
each other without external couplings such as microwav&Vvolution depends on the phase and particle number distri-
pu]sesy while in the |a’[ter, the energy levels of all three Spirputions in an individual Spin state. We examine the limit of
states are degenerate in the absence of magnetic fields. THte validity of the SMA in Sec. lll, where we derive a set of
spin degree of freedom is completely released under thi§oupled nonlinear Schdinger-like equations which we use
condition, and population can be transferred from one spifi© study the condensate dynamics numerically. We show that
state to another under internal nonlinear interactions withou¢nder certain conditions, the SMA becomes invalid and com-
the presence of external fields. The properties of such glex spatial structures develop in the spatial density profile of
three_component spinor Condensate Confined in a trap Weme condensate during the time evolution as a result of the
studied by Ho[7], Ohmi and Machidd8], Goldstein and mixing of various excitation modes. Finally, some conclud-
Meystre[9], and, more recently, by three of {50]. A key  ing remarks are given in Sec. IV.
feature of this system is that besides the usual two-body re-
pulsive hard-core interactions, there also exist spin-exchange Il. SPIN-MIXING DYNAMICS UNDER THE SMA
interactions that cause spin mixing within the condensate. In
Ref.[10], we used a model to describe such interactions and
we constructed a simple algebraic representation of the total First, let us briefly review the algebraic method presented
Hamiltonian, from which we readily found a set of collective in Ref.[10]. We use the following general form for the two-
spin states as the ground-state of the spinor condensate. body nonlinear interactiofi7,8,11:
In this paper, we extend the work presented in R&d). ) F
But instead of focusing on the ground state structure, here we _
investigate the more complete dynamics of a spinor conden- Ulri.rz)= 5(r1—r2)FZO gFMZ,F [F Me)(F,Mel.
sate confined in a harmonic trap under the spin-exchange )
interactions. We show that the time evolution of a spinor
condensate depends on the relative phase of the wave funidere|F,M) is the total hyperfine spin state formed by two

A. Angular momentum algebra for the spinor condensate
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atoms each with spii=1, andgr=4mh2%ar/M with ap
being thes-wave scattering length in the channel. For
bosons, only evelfr states contribute to the above summa-
tion. The interaction(1) preserves angular momentum and
rotation symmetry in hyperfine spin space.

By expanding the total spin state, M) in terms of basis
vectors |[f=1m;=a)®|f=1m;=8) (a,=-1,0,1 de-
note the three spin stalesve obtain the Hamiltonian in the

form of the sum of a symmetric part and a nonsymmetric

part H="Hg+ Ha, Where

HS=§a) Jdrqrg(T+vT)qra+7sa23 drit i ¥,
2
and
Aa VIRVIEVIRY T O 3 J
Ha=— | dr(PPoiv, b+ 97 0T 00,
+2U IV W, o+ 20T W v_ ¥,
SA 8 AN R TR G (S () (Y
+20 10T W), 3)

Here T is the kinetic energy operatoN/; is the trapping
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FIG. 1. Population of the spin-0 component as a function of
time. The corresponding populations in the other two components
are (ny)=(n_;)=(N—(ng))/2. The initial state is|y(t=0))
=|0,N,0).

Since the Hamiltonian conserves the total number of par-

ticles, andHg is a function ofN only, Hg is a constant op-
erator. Hence, we need only to focus on the nonsymmetric
part H,. Following Refs.[10,12,13, we construct a set of
angular momentum operators:

L-=\2(ajap+ada-),

L. =2(ala;+a’ ay), ®

f Ay s aga
L,=(a"ja-1—a;ay).

potential, which is assumed to be the same for all three com-

ponents 7], As=(do+29,)/3, and A\,=(g>,—gy)/3. The
symmetric partHg remains unchanged for any interchange
of the spin-component indices.

Next, we assume thgdh>|\,| (recent estimates have

indicated that both sodium and rubidium atoms indeed sat:

isfy this assumptioni7]) such thatHg dominates ovef, .
Hence, the wave functions for each spin componen
¢,.(r) (k=0,£1) are approximated by the same wave
function ¢(r) defined as the ground-state solution of the
Gross-Pitaevskii equation resulting froky (the validity of
this single-mode approximation will be discussed later

(T+V+AN|9|?) o=, (4)

whereN is the total particle number in the condensate and

is the chemical potential. Now we can approximate the field

operators in the zero-temperature limit by

V. ~ap(r), «x=0x1. (5)
Here éK is the annihilation operator which obeys the usual
boson commutation relations. Using Edd) and (5), the
leading parts of{s andH,, denoted byHs andH ,, respec-

tively, have the following expressions:

He=uN—-NN(N-1), (6)
Ha=\i(alala,3,+a,a" ;8,4 ,+2ala03,8,
+2a",a8a_,8,-2ala" 4,8, +220ala,a,
+2ala" ,2030). (7)

Here\/=(\/2)[dr|¢(X)|* (i=s,a).

Using the above operators,, takes a very simple form,

= 9
ne can easily see that all three operators defined in&q.
are constants of motion since they commute with bdth
F\nd H,. The energy spectrum of the total Hamiltonigh
=H+H,is EP=E+E{, where

Ha=NA(L2—2N).

O

Eq=uN—XA.N(N-1),
ED=\[1(1+1)—2N],

wherel=0,2,4 ... Nif Niseven,and=1,35... Nif N
is odd. For fixedN, the lowest energy is

Emin= E%'O):ES_Z)\AN for N;>0,
Emin=EMN=E+X\.N(N—1) for \.<O.

Now let us assume that initially the condensate is in a
Fock state|N_;,Ng,N;) defined by the number operators
Nj=a/a; for the three spin components(i.e.,
NjIN_1,No,N3)=Nj|N_1,Ng,N;)) and the total particle
numberN=N_;+Ngy+N;. The time evolution of the con-
densate is governed byl, in Eqg. (9) and can be readily
solved using the Fock state basis. Figures 1 —3 show the
particle number in each spin component as functions of time
given a certain initial state.

Figure 1 illustrates the spin mixing of an initially spin-
polarized condensate with all the atoms in the spin-0 com-
ponentat=0, i.e.,|(t=0))=|0N,0). The particle number
distribution quickly collapses to a ‘“steady state” with
(N1)ss= (N_1)ss=(Ng)sd2=N/4 [14], and the collapse time
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However, it is customary to consider the condensate to be in
a coherent stateassociated with a macroscopic wave func-
tion with both magnitude anphase the presence of which is

(Noy/'N

0.4 . due to the spontaneous breaking of gauge symniétsy.
This is the view we will adopt here, to assume the conden-
0.3 WNY/N = N VN T sate to be in such a coherent state with a definite phase in

0.2 . ) V\/\ each spin component:
0.00 0.10 0.20 0.30 0.40 . . .
Mgt |®)=|a_1,80,a1)=| VN_1€'-1,{Noe' %0, /N €'%2).
(10)
FIG. 2. Population of each spin component as a function of ) ) )
time. The initial state i$y(t=0))=|N/3N/3,N/3). Here,N=300. As the coherent state) is analogous to a classical field

of complex amplitudev, it is customary to replace the op-

t. is approximately given b jt.~1/(2y/N). Inthe Thomas- eratorsa;,a’ by ¢ numbersa; and a* , respectively. The
Fermi limit, \,~N"® in three dimensiong3D) and A\,  semiclassical equations of motion can be derived from

~N~3in 1D, thereforet,~N¥%in 3D andt,~N"Y%in  HamiltonianH, as

1D.
Figure 2 shows the time evolution of a condensate whose ia_;=2\)(L,a_,+ L_ag/V2),
spin components are initially equally populated, iei(t
=0))=|N/3,N/3N/3). In this case, the particle number in iay= JE)\;(L,aﬁ— Lia_,), (12)
each spin component executes oscillations before it settles to
the steady—stalte \{alue which IS the same as |,n the previous ié11=2)\;(—LZa1+L+a0/\/§),
case. The oscillation frequenayis about 1. KA ,N. In the
Thomas-Fermi limity~N?°in 3D andv~N?3in 1D. where the quantitiek .. ,L, arec number counterparts of the

Figure 3 shows another example where initially the spin-Q,
and the spin-1 components are equally populated, while th
spin-(—1) component is not populated, i.el.y(t=0))
=|0,N/2,N/2). In this case, the steady-state values for popu

lation in each component af _1)ss=N/12,(No)ss=N/3,  constant energy shiff.a, that can be trivially eliminated by
and({N,)s=7N/12. The system approaches the Steady'Stat‘éhangingai to aje s,

like a damped oscillator: The particle number in each com- 114 eigenfrequencies of the system of E€Kl) are 0,
ponent oscillates around its steady state value sinusoidall¥92i2|)\,|l_ with corresponding eigenvectors

with the oscillation amplitude modulated by a Gaussian a
damping function. A good analytical functional fit to the data

1

s =—|—L_,\2L,,L.), 12

! |(PO> \/i| \/_ > (12a
(Ni(1)) = (N;) s~ cog 2mft)e(—t?/13),

peratorsL. and L,, respectively, and are therefore con-
Stants of motion determined by the initial valuesapk. In
deriving Egs.(11), we have neglected the contribution from
H, which will give each of the three equations in Efjl) a

L
where f=0.55\/N and t;=0.89/(\ ,\/N). In the Thomas- |¢:>=%|AQL+ N2AL L), (12b
Fermi limit, f~N?°in 3D andf~N?%3in 1D; t4~N¥in ILi[*+A%L
3D andty~N~8in 1D. Note thaty has the samal depen-
dence ag. in Fig. 1, andf has the samdl dependence as ~ WhereL=yL;+L L andA.=L,*L. o
in Fig. 2. This is not surprising since the only difference  Interestingly, eigenstatgp,) is orthogonal to the initial
between these three examples is the initial population distristate(10), i.e., (¢o|®)=0. The population in spinat timet

butions. will be P;=[(i|®(t))[?/N, with [(t)) given by
|D(1)=(. | D))+ (p_|D)e_)e

In the preceding subsection, we have assumed that tharticularly, for states witlh. ,=0, i.e.,N_,=N;, we have
system can be represented by a Fock sfitgNg,N_;).

B. Condensate in coherent state: Semiclassical treatment

Po(0,t)=1/2—(1/2—ng)cog 2Q2t)

Z: W y'N ] — Jno(1—nyg)sin( 6/2)sin(20t), .

0.4 (NoY'N : P1(6,1)=P_1(6,t)=[1—Py(6,1)]/2,

0.2 _ whereny=Ny/N is the initial population in spin-04=26,
. YN — 61— 60_ is the initial relative phase, and

0'8‘00 0.10 x;¢ 0.20 0.30 Q:4|)\;wa5{0/2)|_ (14)

FIG. 3. Population of each spin component as a function ofHence we find that the population in each spin state oscil-
time. The initial state i$(t=0))=|0,N/2,N/2), N=200. lates with frequency @, the value of which depends on the
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L 4 j0=n/4

(b) |

0.8
0.4
0.0 ha - :

0 20 40 60 80 100 o 20 40 60 80 100
Wzt ozt
0.10 . . . .
FIG. 4. Population of spin-0 component as a function of time. 0 20 40 60 80 100
Initially, n;=ny=n_,. Dashed lines: the SMA results according to Wzt

Eq. (13); solid lines: numerical results of Sec. Ill. The parameters
we used in the calculation arew,=27xX40Hz, =1, a,
=46ag, a,=52ag (ag is the Bohr radius N=4000.

FIG. 6. Population of spin-0 component as a function of time,
averaged over initial particle number distribution. Initialty, and
ne has a Gaussian distribution centeredsanith a width of An,
=0.1 for(a) andAny=0.4 for (b); n_;=0. Same parameters as in
Fig. 4. Dashed lines are the SMA results of Sec. Il and solid lines
are numerical results of Sec. lI.

initial phase and population of the condensate. Ept0,
the oscillation frequency Eq14) will be modified as

Q=2N;IN case, the population distribution reaches a steady-state with
\/ " Po()=1/2 andP _ () =P,()=1/4. These values agree
XN (N-1—Ng)+2ng(N_1+ny)+4ng\VN1n_;COSH. with the steady state values obtained using the Fock-state

(15) representatiorisee Fig. 1
Next, we study a case that the initial population in each
Figure 4 illustratedo( 0,t) for several different values of ~ spin state is not well determined. Assume that the initial state
and for the initial state that all three spin states are equalljs given by |®(0))=]0,\/Nge' %, \N—Nye'?2), where the
populated. Experimental observation of this population oscilpopulation in spin-Ony=Ny/N, has a Gaussian distribution
lation may help us determine the phase of the condensate.centered at; with a width Ang: p(ng)=Nexd—(ng
Instead of assuming a definite phase, it will also be in-—1/2)%/(Any)?], where is the normalization factor. After
structive to study the case thatis not well determined. For some algebra, we find that for a certain valuengf the
example, let us assume théatis uniformly distributed over population in spin-0 at timeéis given by
the range (0,2]. Integrating Eqs(13) over # gives 1-n
83 Po(no,t)z2_—nz[1+(1—no)cos(29t)], (17)
Po(t)=3—(3—Np)Jo Tp\é“\” , (16)
where ) =2\,N \/1—n02 and the corresponding populations
in the other two states arB_;(ng,t)=[ng—Py(ng,t)]/2
gnd P1(ng,t)=1—[ng+ Py(ng,t)]/2. Taking the distribu-
tion  p(ng) into account, we  have Py(t)
=f(1)P0(n0,t)p(n0)dno, which is plotted in Fig. 6. We can
see that the population reaches a steady state with

A S (P_1(),Po(), Py1(x)) = (1/12,1/3,7/12) like a damped os-
0.4 (\/WVWVWAMNWVW cillator with oscillation frequency=0.5%\/N. The damping

time depends on the widthng: the largerAn, is, the faster

0.2 W it reaches equilibrium. Furthermore, for smalin,, the
damping envelope is approximately a Gaussian, while for

large Any, it is closer to an exponential. For fixeth, the

0 50 100 150 200 Qamplng time is inversely proportlonal_lcgN. Itis mtere;t— _
Wzt ing that both the steady-state population and the oscillation

frequency are the same as those presented in Fig. 3, where

FIG. 5. Population of each spin component as a function ofyye have a Fock Staﬂ@’N/Z,N/2> att=0.
time, averaged over initial relative phagevhich is uniformly dis-

whereJy(X) is the zeroth-order ordinary Bessel function. An
example is represented by the dashed lines in Fig. 5. In thi

0.6

0.0

tributed over (O,ZT] InitiaIIy, ni=Np=n_1. Dashed lines: the I1l. NUMERICAL METHOD BEYOND THE SMA
SMA results according to Eq16); solid lines: numerical results of
Sec. llI(shifted down by 0.1 for clarity Same parameters as in Fig. In Sec. Il, we have assumed that during the time evolu-

4. tion, the wave functions for all spin components retain the
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same spatial profile as defined in E@). Therefore, we where £,=—d¥dZ%+z2/4+ N Nn5(|d_ 1%+ | do|2+]| H1]?),
could trace out the spatial dependence of the wave functiorsnd in dimensionless form,

and focus on the change of the population in each spin com-

ponent as a function of time. Now we study the spin-mixing

dynamics of the spinor condensate by directly integrating the f dxdylo, (x,y)|* 1
coupled nonlinear Schdinger-like partial differential equa- i ﬂ_
tions which include the time variation of the spatial wave f dxdylé, (x,y)[2 ~am Wz
functions. This allows us to study the complex structures L

developed in the density profiles of the condensate and also
to examine the validity of the SMA. In the above equations, the units for length, energy, and time

are VAi/(2mw,), hw,, and 1lb,, respectively.
A. Physical model

Denotingy; as the wave function for spin-the equations B. Phase-dependent time evolution
of motion of ¢; may be derived from Hamiltonian®) and ) ) ) )
(3): The coupled nonlinear differential equatiof®0) are nu-
merically integrated using a fourth-order Runge-Kutta
i7ih_1=L_ 1+ NaNRYE + 1P 1+ ol 201 method. The initial wave functiong;(z,0) are taken to be

the ground-state solutions of

—[ ¢l 1),
1% L,9i(2,0)= ue;(z,0)

i ho= Lo+ NaN(2epyth_ 1455 + |1 [*tho+ 911 *tho),
(18 and are normalized as

i7i= L+ NGNS 1+ [ |2+ ol — || Pu0),

where £="T+V+NN(|¢r_ 1|2+ |o|?+| 1)) and y's are
normalized such thatf (|¢_|?+|¢o|?+|¥1|?)dr=1. We
now assume that the trapping potential is a cigar-shaped hawhereN; is the initial particle number in spip- The three
monic potential with tight confinement in the transverse di-¢;(z,0) have the same spatial shape.

rection (this is indeed the case for the MIT experim¢6t), Solid lines in Fig. 4 illustrate the population in spin-0,
ie., obtained using this numerical method, as a function of time
for different initial values of relative phas€=26q,— 6,
—6_,, where¢); is the phase of the complex wave function
$i(2,0), ie., ¢](z 0)=|¢;(z,0)|e". In this example, the
three spin states are initially equally populated. We see that
We approximate the transverse wave function of the condenthere is a good agreement between the numerical results and
sate as the ground state of a two-dimensional harmonic oshe analytical results of Eq13), supporting the validity of
cillator (with transverse potentialHence the wave function the SMA in this situation. Solid lines in Fig. 5 and Fig. 6

f |¢i(2,0)|?dz=N; /N,

1
mw Z° with o, >w,.

1
mwi(x +y 2+ = 5

VT2

associated with the spinstate may be written 9] represent the population averaged odeand particle num-
ot ber distribution, respectively. Again, good agreement with
(XY, zH) = (Xy) di(z,t)e 'L, (19 the SMA results of Sec. I is found.

where ¢, (x,y) satisfies
) C. The validity of the SMA
h

- —V2 += ! mwl(x 24y | (X Y)=thow, d, (XY). The single-mode assumption assumes that the wave func-
tion for each spin component retains the same spatial profile
during the time evolution, and the wave function is deter-
mined by Eq.(4). The numerical method developed in this
sectlon can be used to examine the validity of this assump-
tion. We found the SMA to be well satisfied for small par-
ticle numberN. This is because the SMA corresponds to
neglecting the effect of the nonsymmetric part of the Hamil-
tonian,H,, on the evolution of the wave function. For small

Inserting Egs(19) into (18), we obtain the equations of
motion for the longitudinal wave functiong;(z,t). In di-
mensionless form, these equations have the following ex
pressions:

ip_1= L1+ NaN( 3T +|b_1|2d_1+ | bol?d—1

—|1l?h_1), N, H, can be safely neglected. However, Idsincreases,
except for certain situationtgsee beloy, the contribution
i o= Lo+ NaN7(21_ 1% +|b_1|2bo+ | p1|2bo), from H, may become non-negligible, and hence the conden-
sate becomes coupled to higher excitation modes, invalidat-
ing the SMA.
i by =L+ N N7( ¢3¢t1+ | |21+ | do|? s To study the validity of the SMA in detail, let us examine

E; andE,, the energy contributed b, andH,, respec-
—|d_1|?¢1), tively. For the initial wave function defined by E¢),
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E,(t=0)= )\Z;[LEJF 2No(N—Nog) Since the total energf+=Es+E,, is conserved, it follows
that E,(t>0)<E,(t=0). (In practice, the bounding values
+2Ngy/(N—Ng)?—L;cos6]. (21)  of Eg, E,, and the conservation &7 are used to check the

accuracy of our numerical codd-or givenN andL,, E, of
OEq. (21) has a minimum valueR,) min -
(i) For\;>0,

Because the wave function is the ground-state solution of E
(4), it minimizesHg (for fixed total particle numbeN). In
other words E; is bounded from below by its initial value.

AiL2 for L,#0 when Ny=0

e 22
( a)mln [O for LZZO when N0:0 or N, or 6=1r. ( )

(i) For\}<O, ticle numbers. In particular, when the initial condition satis-
fiesAE, =0, the system is in a stationary state such that the
N Lf population in each spin component does not change during

(E2)min=XsN* when No=71|1 INE and 6=0. the time evolution, i.e.there is no spin-mixing under such

conditions A closer examination shows that conditi¢23)
corresponds to the fact that the system is in the eigenstate

Thus we can take the following as the criterion for thel®+) of Egs.(11) [16].

(23

validity of the SMA: To illustrate the spin-mixing dynamics when the SMA
becomes invalid, we show in Fig. 7 a similar plot as Fig. 4,
AE,=E, (t=0)— (Ey)mn<Now, (24) but with a much largeN. In this case, the complex oscilla-

tory structure obtained from the numerical calculations is
because if Eq(24) is not satisfiedH, can contribute enough quite different from the simple harmonic oscillation pre-
energy to couple the population into higher mo@ke exci-  dicted by the SMA(not shown. Such behavior indicates the
tation energy per atom is roughfyw,). For a general initial  existence of higher excitation modes induced Hby. The
spin configuration, we notice thafE, increases as /N density profiles at different times are illustrated in Fig. 8,
~N>3, Therefore, the SMA breaks down whéhis suffi-  where initially all three spin components are equally popu-
ciently large. For the parameters used in our calculatises  lated and have the same density profiles. For sialleft
Fig. 4 caption and the initial state with all three spin com- column, the density profiles do not vary much in time. In
ponents are equally populated afe 0, we estimated from contrast, for largeN (middle column, we see that a “fish-
Eq. (24) that in order for the SMA to be validy should be bone” structure develops in the density profiles, and the spa-
much less tharN,~4x10%. Our numerical calculations

confirm such an estimation by showing that the SMA is sat-  ** Y w| =0
isfactory up toN~10". Note thatN,,, scales as 3w, (as- o sar oo1
suming is fixed), hence for a weaker trap, the SMA works
for largerN. There are also initial spin configurations such
5/3 012 - 0.02 < A 0.0z
that AE, does not carry théN de.pendence.éfor example, AN s AV s 7N, =05
the case when most atoms are in the spin-0 statexgnd sl ATV om )
>0). These configurations correspond to the states which& ** y
. 2
have energies very close to the ground-state energy. In thostg °* oo 000
. . .. . . 1 0.02
cases, the internal spin-mixing dynamics essentially do not= ** ZE NP Y AR (210 ™ 10
affect the external spatial wave function even for large par- ** \ o oo '
004 Y \ 001
©.00 0.00 0.00
0.6 0.12 0.0
’ -\ t=15] o WAL, LS o, t=15
0.08 . N\ 4
py \ LAY 0.01
0.08 / \ 0.01
Po 05 0.00 0.00

0.00
-10 -5 o 5 10 —60 —40 -20 0 20 40 60 -60 —40 -20 0 20 40 60

Z Z Z
04

FIG. 8. Variation of the density profiles of the condensate. Solid
lines: Density of the spins{ 1) component; dashed lines: density of
0 o 12 30 spin-0 component. The density is normalized to 1. Initiaty,
=ny=n_,=1/3 and the relative phasé=0. Left column: N
FIG. 7. Population of spin-0 component as a function of time for=4000, #=0; middle column:N=1C°, 6=0; right column: N
#=0 (numerical results Same parameters as in Fig. 4, except for =10°, averaged over 200 initial relative phasgsvhich are uni-
N=10°. formly distributed over (0,2].
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tial variations for spin-0 and spinx1) components are oscillate and exhibit nonlinear behavior due to the mean-field
complementary to each other, i.e., the maxima of the formeinteractions. Similar behavior is also found in nonlinear
corresponds to the minima of the latter and vice versa. Howdosephson-type oscillations of a two-component condensate
ever, this structure will be smoothed out when the initialcomposed of two spin states &fRb [19]. However, the
phases are randomized. The right column of Fig. 8 shows thescillations studied in Ref19] are induced by external laser
density profiles averaged over 200 valueséolniformly  fields, while here, they result from the internal atom-atom
distributed over (0,2]. This smoothing effect makes Eq. interactions. Therefore, the eigenfrequeri¢ywe found in
(16) valid even for large particle numbers. We observe aEq.(15) can be interpreted as a kind of collective excitation
similar effect if the wave functions are averaged over initialfrequency associated with the spin degree of freef@dh
particle numbers which have distributions with finite width ~ We have also shown that a steady state can be reached if
as shown in Fig. 6. either the initial phase or population is not well determined
The development of complex structures is quite commorbut displays fluctuations instead. These steady states are
in systems with nonlinear interactions. For example, wherachieved purely as a result of nonlinear spin-mixing interac-
two optical beams are copropagating in Kerr media, crosstions instead of dissipation due to the coupling to a thermal
phase modulation can lead to a transverse modulation instaeservoir.
bility, which in turn manifests itself as spatial modulations of We have studied the limit of the validity of the single
the beam profiles — oscillatory patterns appear in the promode approximation and found that complex structures will
files of the two initially smooth Gaussian beafi§]. Figure  appear in the density profiles during the time evolution when
8 clearly demonstrates that the spinor condensate is anothére SMA becomes invalid. We attribute this behavior as a
system that can display such rich behavior. Modulation in+esult of the modulation instability induced by the nonlinear
stability induced by nonlinear interactions has also beennteractions.
studied in the context of two-component condensies, As we have shown in this paper, the dynamics of a spinor
where it has been shown that strong repulsive intercomposondensate is extremely rich. In our treatment, nonconden-
nent interactions intend to break the spatial symmetry of theate atoms have been neglected. These atoms may play an

condensate wave functions. important role at finite temperatures. However, the noncon-
densate effects may be reduced by lowering the temperature.
IV. CONCLUSIONS Our work has not taken the magnetic field into account, the

) ) ] o presence of which will certainly affect the properties of the

In conclusion, we have investigated the spin-mixing dy-spinor condensate: The longitudinal magnetic field will shift
namics of a spinor condensate with ground-state angular m@ne energy levels of the spin states through the Zeeman ef-

mentumf=1 and identified different time scales in the spin- fect, while the transverse magnetic field will provide extra

mixing process. To study this, we first used an angulagoupling between the different spin states. We hope to study
momentum algebraic method under the assumption of a spghese effects in a future publication.

tially invariant wave function and a Fock state representation

of the condensate. Next, we developed a set of semiclassical
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