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Spin-mixing dynamics of a spinor Bose-Einstein condensate
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We study the spin-mixing dynamics of anf 51 spinor condensate. We show that the dynamics is sensitive
to the relative phase and particle number distribution among the individual components of the condensate, and
find that complex structures can develop in the density profiles during the time evolution. We investigate the
different time scales of the spin-mixing process and their dependence on the total particle number.
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I. INTRODUCTION

Experiments on dilute alkali-metal vapor condensa
with internal degrees of freedom have opened up new a
in the study of Bose-Einstein condensation. Such a sys
was first realized in JILA where a magnetically confin
Bose condensate composed of two hyperfine spin state
87Rb atoms was produced via sympathetic cooling@1# and,
later, via a two-photon transition@2#. Interesting phenomen
such as suppression of phase diffusion and interference
fects have been studied both theoretically@3,4# and experi-
mentally @5#. Recently, the MIT group have realized a co
densate composed of all three hyperfine states of thef 51
ground-state multiplet of23Na atoms in a far-off-resonan
optical dipole trap@6#. Besides the number of spin stat
involved, a major difference between the JILA condens
and the MIT condensate is that in the former, the bare e
gies of the two spin states are separated by about 7 G
hence the two spin components are not free to convert
each other without external couplings such as microw
pulses, while in the latter, the energy levels of all three s
states are degenerate in the absence of magnetic fields
spin degree of freedom is completely released under
condition, and population can be transferred from one s
state to another under internal nonlinear interactions with
the presence of external fields. The properties of suc
three-component spinor condensate confined in a trap w
studied by Ho@7#, Ohmi and Machida@8#, Goldstein and
Meystre@9#, and, more recently, by three of us@10#. A key
feature of this system is that besides the usual two-body
pulsive hard-core interactions, there also exist spin-excha
interactions that cause spin mixing within the condensate
Ref. @10#, we used a model to describe such interactions
we constructed a simple algebraic representation of the
Hamiltonian, from which we readily found a set of collectiv
spin states as the ground-state of the spinor condensate

In this paper, we extend the work presented in Ref.@10#.
But instead of focusing on the ground state structure, here
investigate the more complete dynamics of a spinor cond
sate confined in a harmonic trap under the spin-excha
interactions. We show that the time evolution of a spin
condensate depends on the relative phase of the wave
PRA 601050-2947/99/60~2!/1463~8!/$15.00
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tions and the population distribution among different sp
components, as well as on the total particle number. T
study will help us gain insight into such properties as qu
tum phase diffusion, particle number fluctuations, spatial
main formation, etc.

This paper is organized as follows. In Sec. II we study
spin-mixing dynamics under the single-mode approximat
~SMA! — all three spin states can be described by the sa
wave function whose spatial profile is time-independent. T
SMA allows us to construct a set of angular momentum
erators to describe the Hamiltonian of the condensate@10#,
with which we study the evolution of the condensate by
suming that the condensate is in a Fock state. These re
will be presented in Sec. II A. In Sec. II B, we adopt th
conventional view that a condensate is in a coherent s
associated with a macroscopic wave function with both a
plitude and phase. To this end, we treat the operators in
II A as c numbers and derive three coupled differential eq
tions to describe the condensate evolution and show how
evolution depends on the phase and particle number di
butions in an individual spin state. We examine the limit
the validity of the SMA in Sec. III, where we derive a set
coupled nonlinear Schro¨dinger-like equations which we us
to study the condensate dynamics numerically. We show
under certain conditions, the SMA becomes invalid and co
plex spatial structures develop in the spatial density profile
the condensate during the time evolution as a result of
mixing of various excitation modes. Finally, some conclu
ing remarks are given in Sec. IV.

II. SPIN-MIXING DYNAMICS UNDER THE SMA

A. Angular momentum algebra for the spinor condensate

First, let us briefly review the algebraic method presen
in Ref. @10#. We use the following general form for the two
body nonlinear interaction@7,8,11#:

U~r1 ,r2!5d~r12r2! (
F50

2

gF (
MF52F

F

uF,MF&^F,MFu.

~1!

Here uF,MF& is the total hyperfine spin state formed by tw
1463 ©1999 The American Physical Society
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1464 PRA 60PU, LAW, RAGHAVAN, EBERLY, AND BIGELOW
atoms each with spinf 51, andgF[4p\2aF /M with aF
being thes-wave scattering length in theF channel. For
bosons, only evenF states contribute to the above summ
tion. The interaction~1! preserves angular momentum a
rotation symmetry in hyperfine spin space.

By expanding the total spin stateuF,MF& in terms of basis
vectors u f 51,mf5a& ^ u f 51,mf5b& (a,b521,0,1 de-
note the three spin states!, we obtain the Hamiltonian in the
form of the sum of a symmetric part and a nonsymme
partH5HS1HA , where

HS5(
a

E drĈa
†~ T̂1VT!Ĉa1

ls

2 (
a,b

E drĈa
†Ĉb

†ĈaĈb

~2!

and

HA5
la

2 E dr ~Ĉ1
†Ĉ1

†Ĉ1Ĉ11Ĉ21
† Ĉ21

† Ĉ21Ĉ21

12Ĉ1
†Ĉ0

†Ĉ1Ĉ012Ĉ21
† Ĉ0

†Ĉ21Ĉ0

22Ĉ1
†Ĉ21

† Ĉ1Ĉ2112Ĉ0
†Ĉ0

†Ĉ1Ĉ21

12Ĉ1
†Ĉ21

† Ĉ0Ĉ0!. ~3!

Here T̂ is the kinetic energy operator,VT is the trapping
potential, which is assumed to be the same for all three c
ponents @7#, ls[(g012g2)/3, and la[(g22g0)/3. The
symmetric partHS remains unchanged for any interchan
of the spin-component indices.

Next, we assume thatulsu@ulau ~recent estimates hav
indicated that both sodium and rubidium atoms indeed
isfy this assumption@7#! such thatHS dominates overHA .
Hence, the wave functions for each spin compon
fk(r ) (k50,61) are approximated by the same wa
function f(r ) defined as the ground-state solution of t
Gross-Pitaevskii equation resulting fromHS ~the validity of
this single-mode approximation will be discussed later!:

~ T̂1VT1lsNufu2!f5mf, ~4!

whereN is the total particle number in the condensate andm
is the chemical potential. Now we can approximate the fi
operators in the zero-temperature limit by

Ĉk'âkf~r !, k50,61. ~5!

Here âk is the annihilation operator which obeys the usu
boson commutation relations. Using Eqs.~4! and ~5!, the
leading parts ofHS andHA , denoted byHs andHa, respec-
tively, have the following expressions:

Hs5mN̂2ls8N̂~N̂21!, ~6!

Ha5la8~ â1
†â1

†â1â11â21
† â21

† â21â2112â1
†â0

†â1â0

12â21
† â0

†â21â022â1
†â21

† â1â2112â0
†â0

†â1â21

12â1
†â21

† â0â0!. ~7!

Herel i8[(l i /2)*dr uf(xW )u4 ( i 5s,a).
-

c

-

t-

t

d

l

Since the Hamiltonian conserves the total number of p
ticles, andHs is a function ofN̂ only, Hs is a constant op-
erator. Hence, we need only to focus on the nonsymme
part Ha. Following Refs.@10,12,13#, we construct a set o
angular momentum operators:

L̂2[A2~ â1
†â01â0

†â21!,

L̂1[A2~ â0
†â11â21

† â0!, ~8!

L̂z[~ â21
† â212â1

†â1!.

Using the above operators,Ha takes a very simple form,

Ha5la8~ L̂222N̂!. ~9!

One can easily see that all three operators defined in Eq~8!
are constants of motion since they commute with bothHs
and Ha. The energy spectrum of the total HamiltonianH
5Hs1Ha is ET

( l )5Es1Ea
( l ) , where

Es5mN2ls8N~N21!,

Ea
( l )5la8@ l ~ l 11!22N#,

wherel 50,2,4, . . . ,N if N is even, andl 51,3,5, . . . ,N if N
is odd. For fixedN, the lowest energy is

Emin5ET
(0)5Es22la8N for la8.0,

Emin5ET
(N)5Es1la8N~N21! for la8,0.

Now let us assume that initially the condensate is in
Fock stateuN21 ,N0 ,N1& defined by the number operato
N̂j[â j

†â j for the three spin components ~i.e.,

N̂j uN21 ,N0 ,N1&5Nj uN21 ,N0 ,N1&) and the total particle
numberN5N211N01N1. The time evolution of the con-
densate is governed byHa in Eq. ~9! and can be readily
solved using the Fock state basis. Figures 1 –3 show
particle number in each spin component as functions of t
given a certain initial state.

Figure 1 illustrates the spin mixing of an initially spin
polarized condensate with all the atoms in the spin-0 co
ponent att50, i.e.,uc(t50)&5u0,N,0&. The particle number
distribution quickly collapses to a ‘‘steady state’’ wit
^N1&ss5^N21&ss5^N0&ss/25N/4 @14#, and the collapse time

FIG. 1. Population of the spin-0 component as a function
time. The corresponding populations in the other two compone
are ^n1&5^n21&5(N2^n0&)/2. The initial state is uc(t50)&
5u0,N,0&.
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PRA 60 1465SPIN-MIXING DYNAMICS OF A SPINOR BOSE- . . .
tc is approximately given byla8tc'1/(2AN). In the Thomas-
Fermi limit, la8;N23/5 in three dimensions~3D! and la8
;N21/3 in 1D, therefore,tc;N1/10 in 3D and tc;N21/6 in
1D.

Figure 2 shows the time evolution of a condensate wh
spin components are initially equally populated, i.e.,uc(t
50)&5uN/3,N/3,N/3&. In this case, the particle number
each spin component executes oscillations before it settle
the steady-state value which is the same as in the prev
case. The oscillation frequencyn is about 1.73la8N. In the
Thomas-Fermi limit,n;N2/5 in 3D andn;N2/3 in 1D.

Figure 3 shows another example where initially the spi
and the spin-1 components are equally populated, while
spin-(21) component is not populated, i.e.,uc(t50)&
5u0,N/2,N/2&. In this case, the steady-state values for po
lation in each component arêN21&ss5N/12, ^N0&ss5N/3,
and ^N1&ss57N/12. The system approaches the steady-s
like a damped oscillator: The particle number in each co
ponent oscillates around its steady state value sinusoid
with the oscillation amplitude modulated by a Gauss
damping function. A good analytical functional fit to the da
is

^Ni~ t !&2^Ni&ss;cos~2p f t !e~2t2/td
2!,

where f 50.55la8N and td50.89/(la8AN). In the Thomas-
Fermi limit, f ;N2/5 in 3D and f ;N2/3 in 1D; td;N1/10 in
3D andtd;N21/6 in 1D. Note thattd has the sameN depen-
dence astc in Fig. 1, andf has the sameN dependence asn
in Fig. 2. This is not surprising since the only differen
between these three examples is the initial population di
butions.

B. Condensate in coherent state: Semiclassical treatment

In the preceding subsection, we have assumed that
system can be represented by a Fock stateuN1 ,N0 ,N21&.

FIG. 2. Population of each spin component as a function
time. The initial state isuc(t50)&5uN/3,N/3,N/3&. Here,N5300.

FIG. 3. Population of each spin component as a function
time. The initial state isuc(t50)&5u0,N/2,N/2&, N5200.
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However, it is customary to consider the condensate to b
a coherent state, associated with a macroscopic wave fun
tion with both magnitude andphase, the presence of which is
due to the spontaneous breaking of gauge symmetry@15#.
This is the view we will adopt here, to assume the cond
sate to be in such a coherent state with a definite phas
each spin component:

uF&5ua21 ,a0 ,a1&5uAN21eiu21,AN0eiu0,AN1eiu1&.
~10!

As the coherent stateuv& is analogous to a classical fiel
of complex amplitudev, it is customary to replace the op
eratorsâi ,âi

† by c numbersai and ai* , respectively. The
semiclassical equations of motion can be derived fr
HamiltonianHa as

i ȧ2152la8~Lza211L2a0 /A2!,

i ȧ05A2la8~L2a11L1a21!, ~11!

i ȧ152la8~2Lza11L1a0 /A2!,

where the quantitiesL6 ,Lz arec number counterparts of th
operatorsL̂6 and L̂z , respectively, and are therefore co
stants of motion determined by the initial values ofai ’s. In
deriving Eqs.~11!, we have neglected the contribution fro
Hs which will give each of the three equations in Eq.~11! a
constant energy shiftEsai that can be trivially eliminated by
changingai to aie

2 iEst.
The eigenfrequencies of the system of Eqs.~11! are 0,

6V562ula8uL with corresponding eigenvectors

uw0&5
1

A2L
u2L2 ,A2Lz ,L1&, ~12a!

uw6&5
uL1u

uL1u21A6
2

uA6
2 /L1 ,A2A6 ,L1&, ~12b!

whereL[ALz
21L1L2 andA6[Lz6L.

Interestingly, eigenstateuw0& is orthogonal to the initial
state~10!, i.e., ^w0uF&50. The population in spini at timet
will be Pi5 z^ i uF(t)& z2/N, with uF(t)& given by

uF~ t !&5^w1uF&uw1&eiVt1^w2uF&uw2&e2 iVt.

Particularly, for states withLz50, i.e.,N215N1, we have

P0~u,t !51/22~1/22n0!cos~2Vt !

2An0~12n0!sin~u/2!sin~2Vt !,
~13!

P1~u,t !5P21~u,t !5@12P0~u,t !#/2,

wheren05N0 /N is the initial population in spin-0,u52u0
2u12u21 is the initial relative phase, and

V54ula8NAn0~12n0!cos~u/2!u. ~14!

Hence we find that the population in each spin state os
lates with frequency 2V, the value of which depends on th

f

f
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1466 PRA 60PU, LAW, RAGHAVAN, EBERLY, AND BIGELOW
initial phase and population of the condensate. ForLzÞ0,
the oscillation frequency Eq.~14! will be modified as

V52ula8uN

3A~n212n1!212n0~n211n1!14n0An1n21cosu.

~15!

Figure 4 illustratesP0(u,t) for several different values ofu
and for the initial state that all three spin states are equ
populated. Experimental observation of this population os
lation may help us determine the phase of the condensa

Instead of assuming a definite phase, it will also be
structive to study the case thatu is not well determined. For
example, let us assume thatu is uniformly distributed over
the range (0,2p#. Integrating Eqs.~13! over u gives

P0~ t !5 1
2 2~ 1

2 2n0!J0S 8A2

3
ula8uNtD , ~16!

whereJ0(x) is the zeroth-order ordinary Bessel function. A
example is represented by the dashed lines in Fig. 5. In

FIG. 4. Population of spin-0 component as a function of tim
Initially, n15n05n21. Dashed lines: the SMA results according
Eq. ~13!; solid lines: numerical results of Sec. III. The paramet
we used in the calculation arevz52p340Hz, h51, a0

546aB , a2552aB (aB is the Bohr radius!, N54000.

FIG. 5. Population of each spin component as a function
time, averaged over initial relative phaseu which is uniformly dis-
tributed over (0,2p#. Initially, n15n05n21. Dashed lines: the
SMA results according to Eq.~16!; solid lines: numerical results o
Sec. III ~shifted down by 0.1 for clarity!. Same parameters as in Fi
4.
ly
l-
.
-

is

case, the population distribution reaches a steady-state
P0(`)51/2 andP21(`)5P1(`)51/4. These values agre
with the steady state values obtained using the Fock-s
representation~see Fig. 1!.

Next, we study a case that the initial population in ea
spin state is not well determined. Assume that the initial st
is given by uF(0)&5u0,AN0eiu0,AN2N0eiu1&, where the
population in spin-0,n05N0 /N, has a Gaussian distributio
centered at 1

2 with a width Dn0 : p(n0)5Nexp@2(n0
21/2)2/(Dn0)2#, whereN is the normalization factor. After
some algebra, we find that for a certain value ofn0, the
population in spin-0 at timet is given by

P0~n0 ,t !5
12n0

22n0
@11~12n0!cos~2Vt !#, ~17!

whereV52la8NA12n0
2 and the corresponding population

in the other two states areP21(n0 ,t)5@n02P0(n0 ,t)#/2
and P1(n0 ,t)512@n01P0(n0 ,t)#/2. Taking the distribu-
tion p(n0) into account, we have P0(t)
5*0

1P0(n0 ,t)p(n0)dn0, which is plotted in Fig. 6. We can
see that the population reaches a steady state
„P21(`),P0(`),P1(`)…5(1/12,1/3,7/12) like a damped os
cillator with oscillation frequencyf 50.55la8N. The damping
time depends on the widthDn0: the largerDn0 is, the faster
it reaches equilibrium. Furthermore, for smallDn0, the
damping envelope is approximately a Gaussian, while
largeDn0, it is closer to an exponential. For fixedDn0, the
damping time is inversely proportional tola8N. It is interest-
ing that both the steady-state population and the oscilla
frequency are the same as those presented in Fig. 3, w
we have a Fock stateu0,N/2,N/2& at t50.

III. NUMERICAL METHOD BEYOND THE SMA

In Sec. II, we have assumed that during the time evo
tion, the wave functions for all spin components retain t

.

s

f

FIG. 6. Population of spin-0 component as a function of tim
averaged over initial particle number distribution. Initially,n1 and
n0 has a Gaussian distribution centered at1

2 with a width of Dn0

50.1 for ~a! andDn050.4 for ~b!; n2150. Same parameters as i
Fig. 4. Dashed lines are the SMA results of Sec. II and solid lin
are numerical results of Sec. III.
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same spatial profile as defined in Eq.~4!. Therefore, we
could trace out the spatial dependence of the wave funct
and focus on the change of the population in each spin c
ponent as a function of time. Now we study the spin-mixi
dynamics of the spinor condensate by directly integrating
coupled nonlinear Schro¨dinger-like partial differential equa
tions which include the time variation of the spatial wa
functions. This allows us to study the complex structu
developed in the density profiles of the condensate and
to examine the validity of the SMA.

A. Physical model

Denotingc i as the wave function for spin-i , the equations
of motion of c i may be derived from Hamiltonians~2! and
~3!:

i\ċ215Lc211laN~c0
2c1* 1uc21u2c211uc0u2c21

2uc1u2c21!,

i\ċ05Lc01laN~2c1c21c0* 1uc21u2c01uc1u2c0!,
~18!

i\ċ15Lc11laN~c0
2c21* 1uc1u2c11uc0u2c12uc21u2c1!,

whereL5T̂1VT1lsN(uc21u21uc0u21uc1u2) andc i ’s are
normalized such that*(uc21u21uc0u21uc1u2)dr51. We
now assume that the trapping potential is a cigar-shaped
monic potential with tight confinement in the transverse
rection ~this is indeed the case for the MIT experiment@6#!,
i.e.,

VT5
1

2
mv'

2 ~x21y2!1
1

2
mvz

2z2 with v'@vz .

We approximate the transverse wave function of the cond
sate as the ground state of a two-dimensional harmonic
cillator ~with transverse potential!. Hence the wave function
associated with the spin-i state may be written as@9#

c i~x,y,z,t !5f'~x,y!f i~z,t !e2 iv't, ~19!

wheref'(x,y) satisfies

F2
\2

2m
¹'

2 1
1

2
mv'

2 ~x21y2!Gf'~x,y!5\v'f'~x,y!.

Inserting Eqs.~19! into ~18!, we obtain the equations o
motion for the longitudinal wave functionsf i(z,t). In di-
mensionless form, these equations have the following
pressions:

i ḟ215Lzf211laNh~f0
2f1* 1uf21u2f211uf0u2f21

2uf1u2f21!,

i ḟ05Lzf01laNh~2f1f21f0* 1uf21u2f01uf1u2f0!,
~20!

i ḟ15Lzf11laNh~f0
2f21* 1uf1u2f11uf0u2f1

2uf21u2f1!,
ns
-

e

s
so

ar-
-

n-
s-

x-

where Lz52d2/dz21z2/41lsNh(uf21u21uf0u21uf1u2),
and in dimensionless form,

h5

E dxdyuf'~x,y!u4

E dxdyuf'~x,y!u2
5

1

4p

v'

vz
.

In the above equations, the units for length, energy, and t
areA\/(2mvz), \vz , and 1/vz , respectively.

B. Phase-dependent time evolution

The coupled nonlinear differential equations~20! are nu-
merically integrated using a fourth-order Runge-Ku
method. The initial wave functionsf j (z,0) are taken to be
the ground-state solutions of

Lzf j~z,0!5mf j~z,0!

and are normalized as

E uf j~z,0!u2dz5Nj /N,

whereNj is the initial particle number in spin-j . The three
f j (z,0) have the same spatial shape.

Solid lines in Fig. 4 illustrate the population in spin-
obtained using this numerical method, as a function of ti
for different initial values of relative phaseu52u02u1
2u21, whereu j is the phase of the complex wave functio
f j (z,0), i.e., f j (z,0)5uf j (z,0)ueiu j . In this example, the
three spin states are initially equally populated. We see
there is a good agreement between the numerical results
the analytical results of Eq.~13!, supporting the validity of
the SMA in this situation. Solid lines in Fig. 5 and Fig.
represent the population averaged overu and particle num-
ber distribution, respectively. Again, good agreement w
the SMA results of Sec. II is found.

C. The validity of the SMA

The single-mode assumption assumes that the wave f
tion for each spin component retains the same spatial pro
during the time evolution, and the wave function is det
mined by Eq.~4!. The numerical method developed in th
section can be used to examine the validity of this assu
tion. We found the SMA to be well satisfied for small pa
ticle numberN. This is because the SMA corresponds
neglecting the effect of the nonsymmetric part of the Ham
tonian,Ha , on the evolution of the wave function. For sma
N, Ha can be safely neglected. However, asN increases,
except for certain situations~see below!, the contribution
from Ha may become non-negligible, and hence the cond
sate becomes coupled to higher excitation modes, invali
ing the SMA.

To study the validity of the SMA in detail, let us examin
Es and Ea , the energy contributed byHs and Ha , respec-
tively. For the initial wave function defined by Eq.~4!,
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Ea~ t50!5la8@Lz
212N0~N2N0!

12N0A~N2N0!22Lz
2cosu#. ~21!

Because the wave function is the ground-state solution of
~4!, it minimizesHs ~for fixed total particle numberN). In
other words,Es is bounded from below by its initial value
he

-

a

s
ch

ic
ho
n
a

fo
fo
q.

Since the total energy,ET5Es1Ea , is conserved, it follows
that Ea(t.0)<Ea(t50). ~In practice, the bounding value
of Es , Ea , and the conservation ofET are used to check the
accuracy of our numerical code.! For givenN andLz , Ea of
Eq. ~21! has a minimum value (Ea)min .

~i! For la8.0,
~Ea!min5H la8Lz
2 for LzÞ0 when N050

0 for Lz50 when N050 or N, or u5p.
~22!
is-
the
ring
h

tate

A
4,
-
is

e-
e

8,
u-

In

pa-

lid
of
~ii ! For la8,0,

~Ea!min5la8N
2 when N05

N

2 S 12
Lz

2

N2D and u50.

~23!

Thus we can take the following as the criterion for t
validity of the SMA:

DEa5Ea~ t50!2~Ea!min!N\vz ~24!

because if Eq.~24! is not satisfied,Ha can contribute enough
energy to couple the population into higher modes~the exci-
tation energy per atom is roughly\vz). For a general initial
spin configuration, we notice thatDEa increases asla8N

2

;N5/3. Therefore, the SMA breaks down whenN is suffi-
ciently large. For the parameters used in our calculations~see
Fig. 4 caption! and the initial state with all three spin com
ponents are equally populated andu50, we estimated from
Eq. ~24! that in order for the SMA to be valid,N should be
much less thanNmax'43104. Our numerical calculations
confirm such an estimation by showing that the SMA is s
isfactory up toN'104. Note thatNmax scales as 1/Avz ~as-
sumingh is fixed!, hence for a weaker trap, the SMA work
for larger N. There are also initial spin configurations su
that DEa does not carry theN5/3 dependence~for example,
the case when most atoms are in the spin-0 state andla8
.0). These configurations correspond to the states wh
have energies very close to the ground-state energy. In t
cases, the internal spin-mixing dynamics essentially do
affect the external spatial wave function even for large p

FIG. 7. Population of spin-0 component as a function of time
u50 ~numerical results!. Same parameters as in Fig. 4, except
N5106.
t-

h
se

ot
r-

ticle numbers. In particular, when the initial condition sat
fies DEa50, the system is in a stationary state such that
population in each spin component does not change du
the time evolution, i.e.,there is no spin-mixing under suc
conditions. A closer examination shows that condition~23!
corresponds to the fact that the system is in the eigens
uw1& of Eqs.~11! @16#.

To illustrate the spin-mixing dynamics when the SM
becomes invalid, we show in Fig. 7 a similar plot as Fig.
but with a much largerN. In this case, the complex oscilla
tory structure obtained from the numerical calculations
quite different from the simple harmonic oscillation pr
dicted by the SMA~not shown!. Such behavior indicates th
existence of higher excitation modes induced byHa . The
density profiles at different times are illustrated in Fig.
where initially all three spin components are equally pop
lated and have the same density profiles. For smallN ~left
column!, the density profiles do not vary much in time.
contrast, for largeN ~middle column!, we see that a ‘‘fish-
bone’’ structure develops in the density profiles, and the s

r
r

FIG. 8. Variation of the density profiles of the condensate. So
lines: Density of the spin-(61) component; dashed lines: density
spin-0 component. The density is normalized to 1. Initially,n1

5n05n2151/3 and the relative phaseu50. Left column: N
54000, u50; middle column:N5106, u50; right column: N
5106, averaged over 200 initial relative phasesu which are uni-
formly distributed over (0,2p#.
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tial variations for spin-0 and spin-(61) components are
complementary to each other, i.e., the maxima of the form
corresponds to the minima of the latter and vice versa. H
ever, this structure will be smoothed out when the init
phases are randomized. The right column of Fig. 8 shows
density profiles averaged over 200 values ofu uniformly
distributed over (0,2p#. This smoothing effect makes Eq
~16! valid even for large particle numbers. We observe
similar effect if the wave functions are averaged over init
particle numbers which have distributions with finite wid
as shown in Fig. 6.

The development of complex structures is quite comm
in systems with nonlinear interactions. For example, wh
two optical beams are copropagating in Kerr media, cro
phase modulation can lead to a transverse modulation in
bility, which in turn manifests itself as spatial modulations
the beam profiles — oscillatory patterns appear in the p
files of the two initially smooth Gaussian beams@17#. Figure
8 clearly demonstrates that the spinor condensate is ano
system that can display such rich behavior. Modulation
stability induced by nonlinear interactions has also be
studied in the context of two-component condensates@18#,
where it has been shown that strong repulsive intercom
nent interactions intend to break the spatial symmetry of
condensate wave functions.

IV. CONCLUSIONS

In conclusion, we have investigated the spin-mixing d
namics of a spinor condensate with ground-state angular
mentumf 51 and identified different time scales in the spi
mixing process. To study this, we first used an angu
momentum algebraic method under the assumption of a
tially invariant wave function and a Fock state representa
of the condensate. Next, we developed a set of semiclas
mean-field equations with the assumption that the conden
is in a coherent state. Finally, we compared the semiclass
results with numerical calculations taking our study beyo
the SMA and examined the evolution of the density profi
of the condensate.

From this study, we have found that the evolution of t
spinor condensate is sensitive to its initial phase and pop
tion distributions. The relative populations of the system w
.
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oscillate and exhibit nonlinear behavior due to the mean-fi
interactions. Similar behavior is also found in nonline
Josephson-type oscillations of a two-component conden
composed of two spin states of87Rb @19#. However, the
oscillations studied in Ref.@19# are induced by external lase
fields, while here, they result from the internal atom-ato
interactions. Therefore, the eigenfrequencyV we found in
Eq. ~15! can be interpreted as a kind of collective excitati
frequency associated with the spin degree of freedom@20#.

We have also shown that a steady state can be reach
either the initial phase or population is not well determin
but displays fluctuations instead. These steady states
achieved purely as a result of nonlinear spin-mixing inter
tions instead of dissipation due to the coupling to a therm
reservoir.

We have studied the limit of the validity of the sing
mode approximation and found that complex structures w
appear in the density profiles during the time evolution wh
the SMA becomes invalid. We attribute this behavior as
result of the modulation instability induced by the nonline
interactions.

As we have shown in this paper, the dynamics of a spi
condensate is extremely rich. In our treatment, noncond
sate atoms have been neglected. These atoms may pla
important role at finite temperatures. However, the nonc
densate effects may be reduced by lowering the tempera
Our work has not taken the magnetic field into account,
presence of which will certainly affect the properties of t
spinor condensate: The longitudinal magnetic field will sh
the energy levels of the spin states through the Zeeman
fect, while the transverse magnetic field will provide ext
coupling between the different spin states. We hope to st
these effects in a future publication.
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