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Validity of the shape-independent approximation for Bose-Einstein condensates
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The validity of the shape-independent approximation is studied for three trapped atoms. By comparing the
total ground-state energy calculated using pseudopotentials in the Hartree-Fock approximation to the exact
ground-state energy, the shape-independent approximation is shown to agree quantitatively only in the low-
density limit. It is also shown using configuration interaction that a Diracd function is not suitable as a
replacement for the two-body interaction in exact theories.@S1050-2947~99!01208-1#

PACS number~s!: 03.75.Fi, 34.20.2b, 03.65.Nk
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I. INTRODUCTION

The calculation of observables for current dilute atom
Bose-Einstein condensation~BEC! experiments is greatly
simplified by the disparity in the length scales of the atom
interactions and the trapping potential. Thes-wave scattering
length asc characterizes the scale of atom-atom interacti
and has a typical magnitude in the vicinity of 10–100 a.u.
alkali-metal atoms. The trap length scale is approximat
the classical turning point of a single atom in the lowe
oscillator state, and is typically on the order of a few micro
in present experiments. The de Broglie wavelength ass
ated with atomic motion in the nodeless condensate gro
state is thus three to four orders of magnitude larger than
interaction length scale. The atom-atom interaction poten
is consequently well-described in the shape-independen
proximation ~SIA!, also referred to as the pseudopotent
approximation. In using just thes-wave scattering length, i
is also assumed that since the average interparticle spaci
much larger thanasc, the effects of other particles can b
neglected in obtaining the effective two-body interactio
The criterion for the validity of this assumption in the hom
geneous case is typically written asnasc

3 !1, wheren is the
number density. This same condition has been applied
trapped atoms, takingn to be some characteristic numb
density in the trap. The precise nature of these assumpt
for trapped gases was recently explored in detail
Proukakiset al. @1# using many-body perturbation theor
They obtained the validity condition for harmonical
trapped atoms,n4p\2asc/m!\v.

In this paper, we develop an approach complementar
that of Proukakiset al. We compare the Hartree-Fock sol
tion to a nearly exact solution of the Schro¨dinger equation
for three atoms in a trap. We compare the total energy of
ground state in the two approaches over a broad rang
trapping frequencies. As the frequency is varied, the den
dependence of the SIA can be studied while keeping
number of atoms fixed. In fact, since mean-field theory
pends only on the combinationNascAv, one can imagine
that in some sense the number of atoms in the mean-
equation is being varied instead of the frequency. We w
also demonstrate that the pseudopotential should be use
rectly in the Hamiltonian only with the understanding th
PRA 601050-2947/99/60~2!/1451~12!/$15.00
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the Schro¨dinger equationmust not be solved exactly—a point
made below in several contexts. The ground-state energy
culated using configuration interaction, for instance, does
converge. We interpret this failure as a reflection of t
pathological singularity of the three-dimensional Diracd
function when used directly as a potential in the Schro¨dinger
equation.

The shape-independent approximation amounts to rep
ing the atom-atom interaction potential by ad function—the
pseudopotential—whose strength is chosen so that the
body scattering wave function is ‘‘reproduced asympto
cally’’ in some sense. For the very-low-energy collisions ta
ing place in the condensate, the coefficient of thed function
is simply proportional to thes-wave scattering length. Cor
rections for higher energies and higher partial waves can
be made@2,3#. The s-wave pseudopotential approximatio
can be viewed loosely as a replacement of the physical at
atom interaction by a hard sphere whose radius equals
scattering length. One of the first instances in which
shape-independent approximation was employed in
spirit was in a 1935 article by Fermi@4#. He introduced~in
effect! the contact potential and used it to obtain a sim
formula for the energy levels of a Rydberg atom in the pr
ence of a neutral perturbing rare-gas atom. In the contex
a weakly interacting gas, the pseudopotential was first u
by Huang@2# to derive the low-lying energy spectrum fo
bosons in the perturbative limit.

A road map of the present study is as follows. Section
details the various theoretical approaches used in this w
namely the hyperspherical, Hartree-Fock, and configura
interaction approaches. Section III compares the ground-s
energies obtained in each approximation and discusses
implications for the use of the pseudopotential in BE
theory. We also present numerical evidence for the failure
the pseudopotential as an ‘‘exact’’ interaction potential
documenting the divergence of the ground-state ene
within the configuration interaction approach. Section
summarizes our conclusions based on these results.

II. THEORY

There are two general approaches to solving the ma
body Schro¨dinger equation: treating the particles collective
1451 ©1999 The American Physical Society
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1452 PRA 60B.D. ESRY AND CHRIS H. GREENE
and treating the particles independently. Currently, for tw
and three-electron systems, the former approach—the
leraas expansion in particular—provides the most accu
bound-state energies available. Another collective coordin
approach, the hyperspherical coordinate method, has pr
useful in describing multiple excitations in two- and thre
electron systems, in describing weakly bound systems s
as the helium trimer, and in describing the two-electron c
tinuum in double ionization. For more than a few particle
however, such approaches become intractable and the
plifying independent-particle approximation must be ma
The successes of this approach are also well known
range from atomic structure to the current application to
system of trapped bosonic atoms. Configuration interac
~CI! is one way to include correlations beyond t
independent-particle approximation. For the ground state
three particles, all of these methods remain of manage
size. We briefly describe the hyperspherical, Hartree-Fo
and configuration interaction approaches and their spe
ization to the trapped boson problem in the next three s
tions.

A. Adiabatic hyperspherical method

The adiabatic hyperspherical method has been expla
in detail in several previous works@5–8#. Here, we outline
the method and the necessary modifications for three ide
cal, interacting particles in an isotropic harmonic trappi
potential.

The Schro¨dinger equation in laboratory frame coordinat
(r1 ,r2 ,r3) is given by

F(
i 51

3

2
\2

2m
¹ r i

2 1
1

2
mv2r i

21(
i , j

3

V~r i j !GC5EC, ~1!

assuming the particles interactvia the two-body potential
V(r ). In this equation,m is the mass of the particles andv is
the frequency of the trap. In principle, for three interacti
atoms there are also pure three-body terms due to the c
posite nature of the atoms. The lowest such term appea
in perturbation theory was found by Axilrod and Teller@9#
~see also Ref.@10#! and is essentially the three-body anal
of the van der Waal’s interaction. This Axilrod-Teller inte
action depends on the hyperradius asR29 asymptotically,
however, so we neglect it here and in the Hartree-Fock eq
tions.

Equation~1! can be transformed to the coordinates of t
center of massX plus Jacobi coordinatesr1 and r2 for the
internal motion:

X5
1

3
~r11r21r3!,

r15r22r1, r25r32
1

2
~r21r1!.

The advantage of Jacobi coordinates is that they maintain
simple form of the kinetic energy operator, while also deco
pling the center of mass and the relative motion in the c
of a harmonic ~or vanishing! external field. In terms of
(X,r1 ,r2), the Schro¨dinger equation is thus written
-
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@HCM1Hr1
1Hr2

1Vtot~r1 ,r2!#C5E C.

The individual oscillator Hamiltonians in these coordinat
are

HCM52
\2

2M
¹CM

2 1
1

2
Mv2X2,

Hr1
52

\2

2m1
¹r1

2 1
1

2
m1v2r1

2 ,

Hr2
52

\2

2m2
¹r2

2 1
1

2
m2v2r2

2 ,

with M53m, m15m/2, and m252m/3. The interaction
Vtot(r1 ,r2) is the pairwise sum of two-body interaction
from Eq. ~1! and depends only on the internal coordinat
The center-of-mass motion can thus be separated from
internal motion by writing the wave function a
C(X,r1 ,r2)5w(X) c(r1 ,r2). The equation for the motion
of the center of mass is then simply the harmonic-oscilla
equation

HCMwnlm~X!5Enwnlm~X!.

The energy eigenvalues areEn5(n1 3
2 ) \v, and the eigen-

states are the isotropic oscillator solutions.
Defining mass-weighted, body-frame hyperspherical

ordinates@5# as

R25r1
21

4

3
r2

2 , 0<R,`,

tanf5
2

A3

r2

r1
, 0<f<

p

4
,

and

cosu5
r1•r2

r1r2
, 0<u<

p

2
,

the Schro¨dinger equation for the internal motion is

S 2
\2

2m

]2

]R2
1

1

2
mv2R21HadD c~R,f,u!5ec~R,f,u!,

~2!

whereHad is the adiabatic Hamiltonian

Had~R;f,u!5
\2

2mR2 S L22
1

4D1Vtot~R,f,u!.

In the body-frame coordinates, the grand angular momen
operatorL2 is given by

L252
]2

]f2
2

1

sin2 f cos2 f sinu

]

]u S sinu
]

]u D .
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PRA 60 1453VALIDITY OF THE SHAPE-INDEPENDENT . . .
Note that the wave functionc(R,f,u) is rescaled by the
factor R5/2sinf cosf in order to eliminate first derivative
from the kinetic energy operator.

In the adiabatic approach,R is treated as a fixed param
eter, and the equation

Had~R;f,u!Fn~R;f,u!5Un~R!Fn~R;f,u! ~3!

solved for the adiabatic potentialsUn(R) and channel func-
tions Fn(R;f,u). The hyperradius is symmetric under a
permutations of particles so that all of the identical parti
symmetry must be accounted for in the channel functio
For spin-polarized indistinguishable bosons,Fn must be
completely symmetric under all permutations.

We solve Eq.~3! using basis splines@11#. Since the basis
splines are localized, the resultant matrix, while large~on the
order of thousands!, is sparse—typically fewer than 20% o
the entries are nonzero. These large sparse matrices ca
diagonalized on workstations by using thearpack package
~publicly available on the world wide web@12#! which is
based upon a variant of the Lanczos algorithm@13#. This
combination of techniques provides an efficient means
calculate the lowest eigenvalues and eigenvectors of
adiabatic equation, Eq.~3!.

An exact solution to the Schro¨dinger equation can be con
structed by expansion into the adiabatic channel function

c~R,f,u!5(
n

Fn~R!Fn~R;f,u!,

which after substitution into Eq.~2! becomes a set of couple
hyperradial equations for theFn(R) that can be solved nu
merically. The channels are coupled through the depen
of Fn on R. Neglecting the coupling between different cha
nels, however, leads to a simple and useful set of sin
channel equations:

S 2
\2

2m

d2

dR2
1

1

2
mv2R21Un1WnnD Fnn5EnnFnn ,

~4!

where

Wnn~R!52
\2

2m K Fn~R!U ]2

]R2UFn~R!L .

The quantum numbersn andn label the channel and energ
eigenstate within a channel, respectively. Equation~4! is a
one-dimensional radial Schro¨dinger equation with an effec
tive hyperradial potentialUn(R)1Wnn(R) that determines
the three-body spectrum in the adiabatic approximation
can be shown@14# that the ground-state energy obtained
solving Eq. ~4! is an upper bound to the true ground-sta
energy. This can be simply understood from the fact that
approach is formally equivalent to applying the Rayleig
Ritz variational principle, using a trial wave function of th
form

cnn
t ~R,f,u!5Fnn~R!Fn~R;f,u!.

The variational principle then guarantees that the energy
obtained is an upper bound to the true ground-state ene
s.
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Dropping Wnn(R) from Eq. ~4! gives the useful result tha
the energy obtained is a lower bound to the exact grou
state energy@14#. This corresponds to the familiar Born
Oppenheimer approximation. The energy calculated va
tionally, however, is often much closer to the actual ene
than is the lower bound.

As a ‘‘realistic’’ interaction potential in Eq.~1!, we have
chosen the Morse potential@15,16#,

V~r !5De2a(r 2r 0)~e2a(r 2r 0)22!. ~5!

The constantsD, a, and r 0 are chosen to set the dissoci
tion limit, width of the potential well, and location of th
well minimum, respectively. The only significant differenc
from a real neutral atom-atom interaction is the absence
van der Waal’sr 26 tail. This poses no serious difficulty
since both can be considered short-range interactions for
purposes of (s-wave! scattering calculations and since w
consider physics that is controlled essentially by only
scattering length. We have fixed the constantsa and r 0 in
the Morse potential to bea50.35 a.u.21 andr 0511.65 a.u.,
which approximate the Rb1Rb triplet interaction potentia
@17#. The constantD has been left free to vary in order t
generate different scattering lengths.

The large difference in length scales that makes
pseudopotential so useful in mean-field calculations lead
difficulties in an exact calculation such as the hyperspher
approach. For example, the classical turning point is at
proximately 17 700 a.u. in an isotropic trap with a frequen
of 133 Hz. It is both difficult and unnecessary to calcula
the potential curves numerically to such a large distance.
difficulty lies in the fact that the two-body interaction regio
in the (f,u) plane shrinks roughly asR21 so that the nu-
merical solution of the adiabatic eigenvalue equation
comes increasingly intensive numerically asR increases.
But, for the hyperradial potential that correlates to three f
atoms atR˜`, the asymptotic form of the potential fo
short range two-body interactions is known@18# to be

U0~R!˜
15

8mR2
1

aasc

R3
1

basc
2

R4
1•••

for finite asc and positive constantsa andb. Thus, the po-
tentials can be fitted at some reasonably asymptotic dista
~400–500 a.u. for these examples! and extrapolated to dis
tances on the trap scale.

B. Hartree-Fock approximation

With the Hartree-Fock approximation, one seeks the b
independent-particle wave function given the occupancy
each single-particle orbital. In the present case, we conc
trate on the ground state of a system of bosons~i.e., the state
in which all particles occupy the lowest orbital! although
more general states can be considered. Considerable free
exists in the choice of a single-particle basis set. This fl
ibility is used to derive an equation that determines tho
single-particle states which variationally minimize the to
energy. In other words, the Hamiltonian is approximate
diagonalized, including as much of the interparticle intera
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1454 PRA 60B.D. ESRY AND CHRIS H. GREENE
tions as is possible given that the trial wave function is c
strained to independent-particle form.

The Hartree-Fock equation can be derived from eit
first- or second-quantized formalisms. Each provides se
rate and useful insights. The first-quantized derivation p
vides a simple picture that can be easily understood in te
of basic quantum mechanics. The second-quantized de
tion, on the other hand, provides greater insight into
physics included in the trial wave function. Both approach
of course, yield identical results.

We present the first-quantized derivation here and re
the interested reader to Ref.@19# for a second-quantized der
vation. In many respects, the derivation presented here
allels the derivation of the Hartree-Fock equations for ferm
ons ~see Cowan@20#, for example!. The ansatz for the tota
ground-state wave functionF in the independent-particle ap
proximation is

F~r1 , . . . ,rN!'c0~r1!•••c0~rN!, ~6!

where the single-particle orbitalsc0 are to be determined
The spin part of the wave function is similarly a product
the spin kets for each atom and otherwise does not ente
calculation. The equation forc0 results from an application
of the variational principle to the Hamiltonian

H5(
i 51

N

H0~r i !1(
i , j

N

V~r i2r j !. ~7!

In this expression, the one-particle operatorH0(r ) includes
the trapping potential and is given by

H0~r !52
\2

2m
¹21

1

2
mv2r 2.

The analogy to atomic structure calculations can be see
this point if the trapping potential is replaced by the electro
nucleus Coulomb interaction. The two-particle opera
V(xi2xj ) in Eq. ~7! is the particle-particle interaction. In th
case of neutral trapped atoms, it is a typical diatom inter
tion potential, while in atomic structure calculations, it is ju
the electronic Coulomb repulsion.

For the trial wave function in Eq.~6!, the expectation
value of the Hamiltonian@Eq. ~7!# is

E0
HF5N

^c0uH0uc0&

^c0uc0&
1

N~N21!

2

^c0c0uVuc0c0&

^c0uc0&
2

.

The one-particle matrix element is

^c0uH0uc0&5E d3r c0* ~r ! H0~r ! c0~r !,

and the two-particle matrix element involves a double in
gral over the coordinates of two particles

^c0c0uVuc0c0&5E d3r E d3r 8c0* ~r ! c0* ~r 8!

3V~r2r 8! c0~r ! c0~r 8!.
-

r
a-
-
s
a-
e
,

r
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-

he
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Taking the variation ofE with respect toc0* gives, after
some algebra,

dE0
HF

N
5

^dc0uH0uc0&

^c0uc0&
1

~N21!

2

^dc0c01c0dc0uVuc0c0&

^c0uc0&
2

2S E0
HF

N
2

~N21!

2

^c0c0uVuc0c0&

^c0uc0&
2 D ^dc0uc0&

^c0uc0&
.

For arbitrary variationsdc0* , the stationary condition
dE0

HF50 subject tô c0uc0&51 is satisfied when

@H0~r !1VHF~r !#c0~r !5«0c0~r !, ~8!

where the mean fieldVHF is given by

VHF~r !5~N21!E d3r 8 c0* ~r 8! V~r2r 8! c0~r 8!. ~9!

For a small number of atoms, the factorN21 is critical for
comparisons with number-conserving solutions. Using
standard factor ofN0 present in the Gross-Pitaevskii trea
ment@21–23# will lead to orderN21 differences as found in
Ref. @24#. The eigenenergy«0 in Eq. ~8! is defined as

«05
E0

HF

N
1

~N21!

2
^c0c0uVuc0c0& ~10!

and is just the ground-state orbital energy.
Interestingly,«0 obeys Koopmans theorem@25# as do the

orbital energies for fermions. The statement of Koopma
theorem applicable to a system of bosons is that the orb
energy represents the difference between the Hartree-F
ground-state energy forN particles andN21 particles pro-
vided the difference between the ground-state orbital foN
particles and the ground-state orbital forN21 orbitals can
be neglected. In the limitN@1, the latter approximation is
physically reasonable given the orderN21 effect of a single
additional particle on the orbital. In fact, Koopmans theore
holds quite well for as few as 10 particles. From the abo
statement, it can also be recognized that Koopmans theo
is essentially a statement of the definition of the chemi
potential encountered in the Gross-Pitaevskii equation. F
Eq. ~10!, the total energy for a system ofN particles can be
written as

E0
HF5N^c0uH0uc0&1

N~N21!

2
^c0c0uVuc0c0&.

The energy difference between a system withN particles and
one withN21 is thus

E0
HF~N!2E0

HF~N21!

5^c0uH0uc0&1~N21!^c0c0uVuc0c0&5«0 .

Thus, Koopmans theorem is also satisfied by bosons.

C. Configuration interaction

A further connection to standard atomic structure meth
can be made through an application of configuration inter
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PRA 60 1455VALIDITY OF THE SHAPE-INDEPENDENT . . .
tion methods@20# to the system of bosons~see Ref.@24#!.
The term ‘‘configuration’’ in this context means a given s
of occupation numbers$ni% corresponding to a set of single
particle orbitals$c i(x)%. Configuration interaction, then, i
the variational approach in which the trial wave function
expanded on a complete basis of many-body w
functions—or configurations—including the ground sta
and singly to multiply excited configurations. Since this is
complete many-body basis, the exact, time-independ
many-body energy eigenstates can in principle be calcula
In practice, of course, the expansion must be limited t
finite number of basis functions.

For three bosons, the configuration interaction wave fu
tion consists of the ground state, singly excited states, do
excited states, and triply excited states. This can be wri
explicitly as

uC&5a0un053&1 (
pÞ0

apun052,1p&

1 (
p,p8Þ0

bpp8un051,1p,1p8&

1 (
p,p8,p9Þ0

cpp8p9un050,1p,1p8,1p9&,

where the notation 1p indicates that thepth single-particle
orbital is occupied by one boson, i.e.,np51. This wave
function is thus the most general completely symme
three-body wave function. Upon truncation, the variatio
principle for the total energy yields the matrix eigenval
problem

HCn5EnCn ,

where Cn is the vector of expansion coefficients. To ef
ciently diagonalize the Hamiltonian matrixH, only those
configurations that contribute most should be included, si
the number of configurations can be quite large even
three atoms. Haugset and Haugerud, for instance, obta
matrices up to order 80 000 for a few tens of particles in o
and two dimensions.

The first step in choosing the most efficient configurat
basis is to adopt the best single-particle basis. One near
timal single-particle basis is obtained by solving

S 2
\2

2m

d2

dr2
1

l ~ l 11!

2mr2
1

1

2
mv2r 21VHFD Rnl5«nlRnl ,

~11!

where the angular part of the orbital is just a spherical h
monic, Ylm(u,f). The mean-field term lifts the degenera
in l, but the degeneracy inm remains. For (n,l ,m)
5(0,0,0), Eq.~11! is just the Hartree-Fock equation for th
ground-state orbital, while for all other (n,l ,m) it is a linear
equation with an effective potential that includes the me
field. To reduce the number of configurations, we use th
criteria based upon the orbital properties determined by
~11!.

Our first criterion for inclusion of a given configuration
based upon its symmetry. We expect that the exact gro
t

e

t,
d.
a

-
ly
n

c
l

e
r
ed
e

p-

r-

n
e
q.

nd

state has zero total orbital angular momentumL and thus
zero total angular momentum projectionML . While the con-
figurations are not themselves eigenstates of total ang
momentum, only those that have components ofL50 and
ML50 are included. Similarly, only even total parity con
figurations are included in the expansion. The maxim
single-particle angular momentum and energy can also
varied independently of these requirements and e
other—a facility that we take advantage of in the pres
studies.

Our second criterion is based upon the structure of
Hamiltonian matrix. To simplify the visualization of th
Hamiltonian matrix, we can partition it into submatrices a
cording to the states that the submatrix couples. The gro
state will be labeled with aG, singly excited states with anS,
doubly excited states with aD, and triply excited states with
a T. Explicitly,

H5S HGG HGS HGD HGT

HSG HSS HSD HST

HDG HDS HDD HDT

HTG HTS HTD HTT

D .

Since only two-body interactions are included, the subma
cesHGT and HTG are zero. Also, since we use the singl
particle basis defined by the ground-state Hartree-Fock e
tion, the submatricesHGS and HSG vanish by Brillouin’s
theorem. The Hamiltonian is thus

H5S HGG 0 HGD 0

0 HSS HSD HST

HDG HDS HDD HDT

0 HTS HTD HTT

D . ~12!

The selection of configurations is greatly simplified by t
fact that we are only interested in the ground-state ene
Examination of Eq.~12! shows that the contribution of triple
excitations to the ground-state energy enters first at fou
order~in a Rayleigh-Ritz perturbation scheme, for instanc!.
Because we will consider systems in which the deviat
from noninteracting is minor, triple excitations can b
neglected—a huge reduction in the number of configu
tions. A typical case is shown in Table I. Eliminating trip
excitations in this calculation reduced the matrix size
more than a factor of 7. Numerical checks confirm that trip
excitations affect the ground-state energy only beyond
level of accuracy that interests us here. For the paramete
Table I, for instance, the total ground-state energy calcula
with triple excitations is 4.536 456 3\v and with only up to
double excitations included 4.536 456 4\v. Single excita-
tions could have similarly been excluded from the calcu
tion since they also enter first at fourth order for the groun
state energy, but the resulting reduction in the number
configurations would normally be less than 1%~see Table I!.
Note that while the decoupling of single excitations from t
ground state depends on the single-particle basis, the de
pling of triple excitations depends only on the fact that tw
body excitations are included. For other single-particle ba
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however, triple excitations typically contribute a larger fra
tion to the ground-state energy even though they still en
first at fourth order.

Our third criterion involves the energies of the orbita
making up a given configuration. The expansion includes
states consistent with the above criteria up to a given c
figuration energy. The configuration energy is just the exp
tation value of the Hamiltonian for a particular configuratio
in other words the diagonal element of Eq.~12!. As in Eq.
~10!, the configuration energy is not simply the sum of t
energies of the orbitals comprising the configuration, but
cludes corrections for double counting of two-body intera
tion energies. Nevertheless, the orbital energies prove to
useful guide for including a configuration. We show in Fig
the contribution of each configuration to the total energy
the ground state of the three-particle system as a functio
the difference in orbital energies. The ground orbital ene
is excluded from the difference, and a configuration’s con
bution is measured by the product of the configuration

TABLE I. The number of singly, doubly, and triply excite
configurations for three87Rb atoms in a 1 kHzisotropic trap. The
scattering length is taken to be 100 a.u. The total orbital ang
momentum is zero and the total parity is even. Onlys waves are
allowed for the orbital wave functions, and excitation energies u
300\v are included. The orbitals were calculated within a spher
box of radius 5A\/mv.

Number of Number of
excitations configurations

0 1
1 37
2 544
3 4511

Total 5093

FIG. 1. The diagonal contribution of each configuration to t
total energy for three87Rb atoms in a 1 kHz isotropic trap. The
product of the configuration energyEi and the square of the con
figuration interaction expansion coefficientci as a function ofD«.
The dotted line atD«575hn indicates the cutoff used in the calcu
lations. The basis parameters are as in Table I except that only
double excitations were included.
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ergy and the square of the expansion coefficient obtai
from a full calculation. So, recalling that only up to doub
excitations are allowed, this difference is just the differen
in the orbital energies of the two excited particles. For e
ample, if a configuration consists of orbitals~0,0,0!, ~4,0,0!,
and ~10,0,0!, then the relevant energy difference isD«
5u«4, 02«10 ,0u. The parameters used for Fig. 1 are the sa
as for Table I except that triple excitations are excluded. I
evident from the figure that most configurations with lar
D« contribute very little to the total energy. It is also evide
that if we are only interested in obtaining four to five digi
of the total ground-state energy, then we can exclude fr
the calculation all of those configurations having aD«
greater than about 75\v. When the maximum allowed con
figuration energy is large as in the figure, this translates i
a large reduction in the number of configurations—almos
factor of 2 for the parameters of the figure, or from 582
313. The total energy calculated after the reduction
4.536 456 4\v, which is identical to the energy before th
reduction.

In order to test the convergence of the expansion w
respect to the maximum configuration energy, it is necess
to be able to include very-high-energy configurations~ener-
gies up to several hundred\v). Given that the spectrum o
Eq. ~11! is roughly similar to that of a harmonic oscillato
the number of states necessary to form a complete set u
some energy is proportional to that energy. This num
quickly becomes unmanageable, and a further reduc
must be sought. Our solution, since we are interested onl
the ground state at this point, is to solve for the sing
particle states within a box that is just large enough to c
tain the ground-state orbital. The energy spectrum with t
boundary condition quickly switches from the oscillatorlik
linear dependence of the orbital energy on the princi
quantum numbern to a boxlike quadratic dependence. Th
number of states necessary to obtain a complete set of sin
particle states up to a given energy over this restricted sp
thus scales like the square root of that energy. Numer
tests for the modest maximal configuration energies att
able without the box show that the ground-state energy
unaffected by the box boundary condition.

III. RESULTS AND DISCUSSION

Use of the pseudopotential based on the knowns-wave
atom-atom scattering length reproduces the two-body s
tering wave function at large atomic separations. This i
physically intuitive approach, but it can also be viewed fro
the rather different and more mathematical perspective
many-body perturbation theory. In this language, a ma
body problem is written in terms of some independe
particle basis and the interactions accounted for in a per
bation expansion. Each term of the expansion can then
represented diagrammatically. The general goal of this
proach is to include as many of these diagrams as possib
a given calculation. Several techniques have been devise
fact, to include particular classes of diagrams to infinite or
in the interaction. The Hartree-Fock and random-phase
proximations are two such techniques which sum differ
classes of diagrams to all orders. For two-body interacti
with a very strongly repulsive core, however, an addition
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class of diagrams must be taken into account. These
grams represent repeated two-body interactions and co
spond to the usual Born series in scattering theory. In
first Born approximation, thes-wave scattering length is

aB5
m

2p\2E d3r V~r !,

wherem is the reduced mass andV(r ) is the two-body in-
teraction. Summing the Born series within the many-bo
perturbation theory expansion essentially amounts to rep
ing the first Born scattering length above by the scatter
length obtained in a two-body scattering calculation. N
that such a replacement is valid only in the low-density lim
It is this process that has led others in this field to sim
write the two-body interaction in the Hamiltonian in the for
of a Fermi contact potential.~For a full development specifi
cally for trapped gases, see Proukakiset al. @1#.! A more
general effective interaction theory has been developed
Brueckner and others to handle strongly repulsive two-b
interactions including the effects of the mean field@26–28#.

One way to see the importance of these consideration
to examine the mean-field term from the Hartree-Fock eq
tion, Eq.~8!. The orbitalc0(r ) varies slowly on the scale o
V(r ) (s-wave scattering!, wherebyVHF(r ) can be approxi-
mately rewritten as

VHF~r !'~N21!uc0~r !u2E d3r 8 V~r2r 8!

5~N21!
2p\2aB

m
uc0~r !u2.

Because of the large repulsive core inV(r ), aB is a large
positive number regardless of the other details of the po
tial. It is this result that leads to the rather counterintuiti
conclusion that using a realistic two-body potential in t
Hartree-Fock equation yields a much poorer approxima
than using ad-function potential. Thus, it is not onlyconve-
nient to make the shape-independent approximation but
tually essentialin order to obtain quantitatively correct re
sults.

Interestingly, the solution of the Hartree-Fock equatio
using a Morse interaction potential, is not accurate even
the high-density limit where it might be expected that t
structure of the two-body interaction plays a more import
role. The difficulty of the hard core remains, however, a
the simple product form of the wave function is not suf
ciently flexible to account for the correlated exclusion of t
wave function from the hard-core region. This is the ana
of the well known cusp problem from atomic and molecu
structure. The difference here is that instead of reachin
finite value with a discontinuous first derivative at the tw
body coalescence points, the wave function is merely s
pressed in the classically forbidden region under the h
core of the two-body interaction. So, for instance, man
body bound states cannot be obtained using realistic t
body interactions in the Hartree-Fock equation.
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A. Ground-state energies

Since the pseudopotential approximation is valid only
the low-density limit, i.e.,nasc

3 !1 or n4p\2asc/m!\v, we
should expect to see deviations from the exact result as
density is increased. Accordingly, we document these de
tions in Figs. 2 and 3. The total ground-state energy a
function of trap frequency is shown for four cases:asc'
2100 a.u.,210 a.u., 10 a.u., and 100 a.u. In each case,
lower and upper bounds determined from the hyperspher
approach are indicated by thick solid lines and the Hartr
Fock with pseudopotential result is indicated by a dash
line. The scattering lengths used in the Hartree-Fock ca
lation corresponded to the exact scattering lengthasc calcu-
lated for the Morse potentials used in the hyperspherical
culation. The precise values of the scattering lengths a

FIG. 2. Comparison of the total ground-state energy calcula
using the Hartree-Fock and adiabatic hyperspherical approxi
tions for the negative scattering lengths~a! asc5210 a.u. and~b!
asc52100 a.u. as a function of trapping frequency. The dashed
with circles corresponds to the pseudopotential Hartree-Fock re
and the two solid lines to the lower and upper bounds provided
the hyperspherical analysis. The insets expand the energy sca
include the result of the Hartree-Fock approximation with Mor
two-body interactions~dotted line with squares!.

FIG. 3. Comparison of the total ground-state energy calcula
using the Hartree-Fock and adiabatic hyperspherical approxi
tions for the positive scattering lengths~a! asc510 a.u. and~b! asc

5100 a.u. as a function of trapping frequency. The dashed line w
circles corresponds to the Hartree-Fock result and the two s
lines to the lower and upper bounds provided by the hypersphe
analysis. The insets expand the energy scale to include the res
the Hartree-Fock approximation with Morse two-body interactio
~dotted line with squares!.
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298.220 a.u.,29.9226 a.u., 10.023 a.u., and 99.798 a
~corresponding toD51.7431027 a.u., 1.0931027 a.u.,
1.1831026 a.u., and 2.19731027 a.u., respectively!. As ex-
pected, the two approaches yield similar results in the lo
density ~low trap frequency! regime, but the Hartree-Foc
energy is consistently close to the hyperspherical bou
only for asc'10 a.u., Fig. 3~a!. Interestingly, both positive
scattering length cases are closer to the exact bounds tha
negative scattering length cases. The physical origin of
difference can be understood by recalling the relation
tween the phase shift and scattering length—a negative s
tering length means that the two-body scattering wave fu
tion is shifted towards smallerr relative to the noninteracting
wave function, while a positive scattering length means t
the wave function is shifted towards largerr. The negative
scattering length wave function thus samples the two-b
potential more than the positive scattering length wave fu
tion.

It is worth pointing out that the results shown in Figs.
and 3 will almost certainly change quantitatively for diffe
ent choices of model potentials. We do not expect that t
will change qualitatively, though, provided the model pote
tial is short-ranged.

To illustrate the importance of including the correct tw
body scattering physics, we solve the Hartree-Fock equa
Eq. ~8!, ‘‘directly’’ using realistic two-body Morse interac
tions as in the adiabatic hyperspherical approximation~see
Sec. II A!. This is simplified by the fact that fors-wave or-
bitals the angular integrals in the Hartree-Fock potential
be analytically evaluated. The integrals and the result
Hartree-Fock equation are given in Appendix A. T
Hartree-Fock equation is thus reduced to a one-dimensi
equation with a nonlocal potential Eq.~A1!. Solving this
equation withD51.7431027 a.u. gives for three atoms in
1 kHz trap a total energy of 4.645\v. This choice ofD
clearly exposes the shortcoming of using a realistic two-b
potential because it corresponds to a scattering lengthasc that
is negative—a relatively large negative scattering length o
298.22 a.u., in fact. For a negative scattering length,
total energy is expected to be lower than the noninterac
value of 4.5\v, rather than larger. At 4.464\v, the upper
bound on the exact energy calculated using the hypersp
cal approach is consistent with this expectation. The hig
energy obtained with the Morse potential is, however, c
sistent with the fact that the Born scattering length for th
parameters is large and positive, 407.5 a.u. The dotted l
with square symbols in the insets of Figs. 2 and 3 show m
extensive results of the Hartree-Fock approximation w
Morse two-body interactions. As discussed above, the t
energies are spectacularly bad over the whole range of
frequencies. For the negative scattering length cases sh
in Fig. 2, even the qualitative behavior is incorrect. Forasc
5210 a.u., just as forasc52100 a.u., this failure can be
traced back to the fact that the Born scattering length is la
and positive~255.3 a.u.!.

The interpretation of Fig. 2~b! is complicated by the pres
ence of a bound three-body state for this choice of poten
parameters, even in the absence of the trap. This state li
the inner well of the potential shown as a dotted line in F
4 which has a depth of between 9 and 14 mK~upper and
lower bounds, respectively!. In fact, because there are n
.
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two-body bound states, this is an example of a halo st
Loosely bound three-body states that exist when no two
the particles are separately bound are called halo states
are a well-studied phenomenon in nuclear physics. Exam
tion of the wave function for the three-body bound sta
shows that it has a very large spatial extent with a me
hyperradius on the order of a few hundred atomic units. E
so, this state is well localized on the scale of the trap si
the classical turning point for the noninteracting oscillator
the highest frequency considered in Fig. 2~b! is still nearly
4000 a.u. Physically, this state represents a bound tri
whose center of mass obeys a simple harmonic-oscill
equation. We would thus associate the first excited state w
the ‘‘condensate ground state’’ in a trap since the majority
its probability density lies beyond the potential barrier.

It has recently been emphasized that the pseudopote
approach is not valid if many-body bound states exist in
problem when the trap is turned off. Given our labeling
the first excited state as the one relevant for the conden
‘‘ground state’’ in a trap, we see from Fig. 2~b! that the
Hartree-Fock with pseudopotential actually does quite w
in the limit of low frequencies even in this case. Thus, t
influence of a many-body bound state does not seem to
serious problem for the pseudopotential approximation. T
is reassuring since the true ground state for trapped alk
metal gases is a many-body bound state just like the
ground state in this three-body example. Figure 5 shows
behavior of the total energy of the bound state as a func
of the trap frequency. When the32 \v associated with the
center-of-mass zero-point energy is taken into account,
clear that the state remains a bound three-body state for
the highest trap frequency. Note that the lower limit on t
bound-state energy remains negative over the entire
quency range plotted and is not shown. The height of
barrier ~see the dotted line in Fig. 4! is also indicated in the
figure as a long dashed line. For frequencies above about
kHz, the first excited state@the state shown in Fig. 2~b!# is

FIG. 4. The adiabatic hyperspherical potential curves that c
relate to three free atoms for different two-body scattering leng
~in a.u.! as indicated in the figure. The thin solid line midway b
tween theasc510 a.u. andasc5210 a.u. curves indicates the non
interacting hyperspherical potential. Note that the lowest curve
the figure, forasc52100 a.u., has a well approximately 10 m
deep at smallR that is not shown.



o
n
a
on
m
o

sta
e

e

rl
ta
s
th
te
ll
te

in
s
e
t

e
m
x
th
co

d
th
pl
th

he
rd
om-

x-

the

la-
n is
ear.

of
l of
u-
by
in

ee-

nt
is

nel

ten-
ion

ed

u.
d in
s a
n-
s.

the

ite
ed
se

res

ap-
ob-

-
tia

re
pe
lin
th
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above the potential barrier. At this point, the identification
this state as the one relevant for trapping fails, and, i
system in which two-body bound states exist, this pass
over the barrier would correspond to the collapse of the c
densate as spin-flipping processes and three-body reco
nation would destroy the condensate. It is interesting to n
that the Hartree-Fock energy is showing no sign of the in
bility. In fact, the critical frequency predicted from th
Hartree-Fock formula

~N21!
uascu
b

50.574 97

with b5A\/mv is 2 MHz—about an order of magnitud
too large.

For the positive scattering length cases, it was simila
necessary to identify an excited state as the relevant s
instead of the ground state. The reason in these cases wa
presence of two-body bound states. Here, however, it is
potential curves in Fig. 4 which are not the ground sta
There are lower-lying curves which correlate asymptotica
with a molecule plus free atom. We are interested in sta
which correlate to three free atoms. Further, the lower-ly
potential curves support three-body bound states. But, a
the case of the negative scattering length above, the pres
of many-body bound states does not seem to degrade
pseudopotential approximation for low frequencies.

The differences between the Hartree-Fock and hyp
spherical results at higher densities can be attributed pri
rily to two effects neglected in the pseudopotential appro
mation. The first is the lack of energy dependence in
scattering length. As the trap is made tighter, the mean
lision energy is increased, making thes-wave scattering
length approximation poorer. The second effect neglecte
the pseudopotential approximation is the influence of
many-body system on the two-body collision. One exam
of this influence can be seen in the three-body system. If

FIG. 5. Expanded view of Fig. 2~b! showing also the total en
ergy of the three-body state bound in the inner well of the poten
in Fig. 4. The dashed line with circles corresponds to the Hart
Fock result and the upper two solid lines to the lower and up
bounds provided by the hyperspherical analysis. The thick solid
indicates the energy of the three-body bound state, and the
dashed line indicates the height of the potential barrier~see Fig. 4!.
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third atom is nearby during a two-body collision, then t
collision energy is affected by the interaction with that thi
atom. When more particles are present, of course, more c
plicated processes can occur.

B. Breakdown of the pseudopotential as an exact Hamiltonian

The Hamiltonian used in calculations for atomic BEC e
periments has routinely been written as

H5(
i

N

H0~xi !1
4p\2asc

m (
i , j

N

d~xi2xj !, ~13!

leading some to use this as an exact Hamiltonian for
many-body system. It has been emphasized previously@1#
that this Hamiltonian should not be used for exact calcu
tions, and we stress it again here. If the above Hamiltonia
applied to a two-particle system, the problem becomes cl
Appendix B shows one way to see the pathological nature
this form of the interaction potential when used as a mode
the full Hamiltonian of the system. Even perturbative form
lations are not exempt from the pathology, as evidenced
the fact that one can prove that the energy correction
second-order perturbation theory diverges for a thr
dimensional Diracd-function interaction potential. In a dif-
ferent context@29#, it has also been shown that diverge
series arise when this type of an interaction potential
treated using a partial wave expansion of the multichan
scattering solution.

The problems with thisd-function potential can also be
seen from Fig. 6, where we present the outcome of an ex
sive numerical study of the convergence of a configurat
interaction calculation based on Eq.~13! as the ‘‘exact’’
Hamiltonian. The details of our calculation were describ
above in Sec. II C. The results shown are for three87Rb
atoms in a 1 kHz trap with a scattering length of 100 a.
Using all of the basis-set reduction techniques describe
Sec. II C, we calculated the total ground-state energy a
function of the maximum orbital energy and maximum a
gular momentum per orbital allowed in the configuration
The maximum angular momentum per orbital is fixed at
indicated value for the eight curves in Fig. 6~a!. For instance,
the l max53 curve includes orbitals withl 50, 1, 2, and 3.
Each of these eight curves converges in the limit of infin
orbital energy, but to a different value. The fully converg
energy of the ground state would then be the limit of the
extrapolated values asl max˜`. In Fig. 6~b!, we show the
extrapolated values of each curve in Fig. 6~a! as a function of
l max. The extrapolation was accomplished by a least-squa
fitting of the form

E0~«max,l max!5E0~`,l max!1
a

«max
b

.

Only those portions of the curves at«max>210\v were in-
cluded in the fitting. The curve in Fig. 6~b! is not showing
any evidence of converging in the limitl max˜`.

It is clear, then, that thed function is not suitable as an
exact potential in a three-dimensional system. When
proximations are made, however, finite results can be
tained. In the present case, each curve in Fig. 6~a! converges
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1460 PRA 60B.D. ESRY AND CHRIS H. GREENE
nicely to some value whenl max is fixed. Similarly, if the
ground-state energy is plotted as a function ofl max with «max
fixed, the curves each converge.

Some authors, including Huang and Tommasini@30# and
Demkov and Ostrovskii@31#, have bypassed thed-function
pathologies by changing the interactionVc into the follow-
ing form:

V~r i2r j !c5
2p\2asc

m
d~ ur i2r j u!

]~ ur i2r j uc!

]~ ur i2r j u!
,

wherem is the two-body reduced mass andasc is the scat-
tering length. This form of the interaction leads to a no
Hermitian Hamiltonian unless the class of wave functio
allowed in Hilbert space is constrained to obey the followi
boundary condition near every coalescence point in confi
ration space:

c~r i2r j ! ˜

r i˜r j
Ci j S 1

ur i2r j u
2 1

asc
D ,

with Ci j an arbitrary normalization constant. In practice, th
boundary condition cannot be readily imposed when utiliz
the independent-particle many-body trial wave functions t
are convenient for the description of the ground state
excited states of a Bose-Einstein condensate. The boun
condition constraint could be applied to solutions written
the Jastrow form, however, which includesr i j 5r i2r j as an
explicit coordinate in the wave function. But this form a
pears to be useful only for calculations of the condens
ground state. In any event, we do not view the methods
Refs. @30,31# as providing a solution which can bypass t
d-function pathologies documented above and in Appen
B, except possibly for Jastrow-type descriptions of t
ground state.

Even if we could ignore thed-function interaction pa-
thologies, the configuration interaction approach has a
ond problem. The point of CI is to account for interactio
not already diagonalized by the basis set. Since the resi

FIG. 6. Convergence of the configuration interaction expans
for three 87Rb atoms in a 1 kHzisotropic trap. Each curve in~a!
shows the convergence of the total ground-state energy as a
tion of the maximum orbital energy for various values ofl max. The
extrapolation of these curves to«max˜` yields the points in~b!.
The error in the extrapolation is roughly the size of the symbols
~b!.
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interactions are essentially the two-body terms, CI can
thought of as accounting~eventually! for two-body colli-
sions. But, by writing the coefficient of thed function as the
scattering lengthasc, the two-body collisions have been a
counted for to infinite ordervia the Born series. When use
with Eq. ~13!, the CI approach thus ‘‘double counts’’ th
effects of two-body interactions.

IV. SUMMARY

While it is not straightforward to extrapolate the abo
results for three atoms to the general case ofN atoms, the
results document a breakdown in the pseudopotential
proximation that should occur when the density grows lar
We have shown that such a breakdown definitely occurs
the three-body case. And, if the dependence of the Hart
Fock solutions on the combinationNascAv is considered,
then the breakdown frequencies presented here might tr
late into a semiquantitative estimate of the critical numb
for condensates with more atoms. We have also shown
result of using the pseudopotential as if it constitutes an ‘‘
act Hamiltonian.’’ In particular, the three-dimensionald
function causes the ground-state energy to diverge as
number of basis functions is increased. For the o
dimensional case studied by Haugsetet al., these diver-
gences are absent, and a well behaved exact solution is
sible. Already in their two-dimensional study, howeve
divergences can be expected as the expansions appr
completeness.
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APPENDIX A: HARTREE-FOCK
WITH MORSE INTERACTIONS

At first thought, a direct solution of the Hartree-Foc
equation, Eq.~8!, with no approximation forV(r ) in Eq. ~9!
would seem to be an improvement over the seemingly se
approximationV(r )˜gd(r ) with g some strength param
eter. The Morse potential Eq.~5! is ideal for testing this
proposition since the mean-field interaction integral can
performed in part analytically. Thec0(r ) is assumed to have
the form

c000~r !5R00~r !Y00~u,f!5
R00~r !

A4p
.

The mean-field term in Eq.~9! is explicitly written as

VHF~r !5~N21!E dr8r 82uR00~r 8!u2E dV8

4p

V~ ur2r 8u!
\v

.

The angular integrals inVHF(r ) can be evaluated analyticall
for the Morse potential Eq.~5!. The result is
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VHF~r !5~N21!
D

a2E
0

`

r 82dr8
uR0~r 8!u2

r .r ,

3F1

8
$F~2a,r 0 ;r .2r ,!2F~2a,r 0 ;r .1r ,!%

2$F~a,r 0 ;r .2r ,!2F~a,r 0 ;r .1r ,!%G , ~A1!

where

F~a,b;y!5e2a(y2b)~11ay!.

In this expression,r . (r ,) indicate that the larger~smaller!
of r and r 8 is to be used. Equation~8! can now be readily
solved numerically. Its solution for a trap frequency on t
order of 100 Hz, however, is identical~within the precision
of our calculations! to the solution of the Hartree-Fock equ
tion with the approximationV(r )'4p\2m21aBd(r ) be-
cause of the disparity in length scales. The first Born
proximation to the scattering length for a Morse potentia
given by

aB5
mD

4\2a0a3 ear 0~ear 0216!. ~A2!

With all quantities on the right-hand side in SI units,aB will
be in atomic units.

From Eq.~A2!, it is clear that using a realistic potentia
directly in the Hartree-Fock equations will give quantit
tively poor results sinceaB is monotonic as a function ofD.
The physical scattering length, on the other hand, show
tangentlike pole structure. The shortcoming is especially e
dent for negative scattering lengths sinceaB will remain
positive even in this case.
A

-

g

-
s

a
i-

APPENDIX B: d-FUNCTION PATHOLOGY

The pathology of a Diracd-function potential can be dis
cerned from the following analysis. Consider the scatter
of a single Schro¨dinger particle from the potential

V~r !5V0d~r2a!,

with a some fixed point in space. If we denote the thre
dimensional outgoing-wave free-particle Green’s function
G0(r ,r 8);eikur2r8u/ur2r 8u, then the integral form of the
Schrödinger equation for a scattering state that represent
incident particle with wave vectork0 is

c~r !5eik0•r1E d3r 8G0~r ,r 8!V~r 8!c~r 8!.

For thed-function potential, this can be solved, giving

c~r !5eik0•r1V0G0~r ,a!c~a!,

in terms of an as-yet-undetermined constantc(a). A consis-
tency or continuity condition obtained by evaluatingc(r ) in
the limit r˜a determines this ‘‘constant’’ to be the solutio
of

c~a!5
eik0•a

12V0G0~a,a!
.

The divergent nature ofG0(a,a) might appear to suggest tha
the only possible solution of the integral equation in thr
dimensions~more generally, in two or more dimensions! is
obtained forc(a)50. In fact, this does not solve the proble
in a satisfactory manner, because that choice leads toc(r )
5eik0•r, which does not obey the requirementc(a)50, im-
plying that this is not a consistent solution to the problem
:
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