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Validity of the shape-independent approximation for Bose-Einstein condensates
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The validity of the shape-independent approximation is studied for three trapped atoms. By comparing the
total ground-state energy calculated using pseudopotentials in the Hartree-Fock approximation to the exact
ground-state energy, the shape-independent approximation is shown to agree quantitatively only in the low-
density limit. It is also shown using configuration interaction that a Difafunction is not suitable as a
replacement for the two-body interaction in exact theofi£2050-2947®9)01208-1
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[. INTRODUCTION the Schrdinger equatiomust not be solved exacthya point
made below in several contexts. The ground-state energy cal-
The calculation of observables for current dilute atomicculated using configuration interaction, for instance, does not
Bose-Einstein condensatiofBEC) experiments is greatly converge. We interpret this failure as a reflection of the
simplified by the disparity in the length scales of the atomicpathological singularity of the three-dimensional Dirac
interactions and the trapping potential. Theave scattering function when used directly as a potential in the Sdimger
length ag. characterizes the scale of atom-atom interactiongquation.
and has a typical magnitude in the vicinity of 10-100 a.u. for The shape-independent approximation amounts to replac-
alkali-metal atoms. The trap length scale is approximatelyng the atom-atom interaction potential bysdunction—the
the classical turning point of a single atom in the lowestpseudopotential—whose strength is chosen so that the two-
oscillator state, and is typically on the order of a few micronsbody scattering wave function is “reproduced asymptoti-
in present experiments. The de Broglie wavelength associally” in some sense. For the very-low-energy collisions tak-
ated with atomic motion in the nodeless condensate grounihg place in the condensate, the coefficient of sheinction
state is thus three to four orders of magnitude larger than this simply proportional to the-wave scattering length. Cor-
interaction length scale. The atom-atom interaction potentialections for higher energies and higher partial waves can also
is consequently well-described in the shape-independent appe made[2,3]. The swave pseudopotential approximation
proximation (SIA), also referred to as the pseudopotentialcan be viewed loosely as a replacement of the physical atom-
approximation. In using just thewave scattering length, it atom interaction by a hard sphere whose radius equals the
is also assumed that since the average interparticle spacingdsattering length. One of the first instances in which the
much larger tharag, the effects of other particles can be shape-independent approximation was employed in this
neglected in obtaining the effective two-body interaction.spirit was in a 1935 article by Fern]. He introduced(in
The criterion for the validity of this assumption in the homo- effecy the contact potential and used it to obtain a simple
geneous case is typically written ag3.<1, wheren is the ~ formula for the energy levels of a Rydberg atom in the pres-
number density. This same condition has been applied tgnce of a neutral perturbing rare-gas atom. In the context of
trapped atoms, taking to be some characteristic number @ weakly interacting gas, the pseudopotential was first used
density in the trap. The precise nature of these assumptiod® Huang[2] to derive the low-lying energy spectrum for
for trapped gases was recently explored in detail bybosons in the perturbative limit.
Proukakiset al. [1] using many-body perturbation theory. A road map of the present study is as follows. Section Il
They obtained the validity condition for harmonically details the various theoretical approaches used in this work,
trapped atomsp4whlag/m<fo. namely the hyperspherical, Hartree-Fock, and configuration
In this paper, we develop an approach complementary téteraction approaches. Section Ill compares the ground-state
that of Proukakiset al. We compare the Hartree-Fock solu- energies obtained in each approximation and discusses the
tion to a nearly exact solution of the Schinger equation implications for the use of the pseudopotential in BEC
for three atoms in a trap. We compare the total energy of théheory. We also present numerical evidence for the failure of
ground state in the two approaches over a broad range #fie¢ pseudopotential as an “exact” interaction potential by
trapping frequencies. As the frequency is varied, the densitgocumenting the divergence of the ground-state energy
dependence of the SIA can be studied while keeping th&ithin the configuration interaction approach. Section IV
number of atoms fixed. In fact, since mean-field theory desummarizes our conclusions based on these results.
pends only on the combinatioNag./w, One can imagine
that in some sense the number of atoms in the mean-field
equation is being varied instead of the frequency. We will
also demonstrate that the pseudopotential should be used di- There are two general approaches to solving the many-
rectly in the Hamiltonian only with the understanding that body Schrdinger equation: treating the particles collectively
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and treating the particles independently. Currently, for two- [Hemt le+ H,,2+ Viol(p1,p2) W =E ¥,

and three-electron systems, the former approach—the Hyl-

leraas expansion in particular—provides the most accuratgnq jndividual oscillator Hamiltonians in these coordinates
bound-state energies available. Another collective coordinatg,

approach, the hyperspherical coordinate method, has proven

useful in describing multiple excitations in two- and three- 52 1

electron systems, in describing weakly bound systems such How=— mVéM+EMw2X2,

as the helium trimer, and in describing the two-electron con-

tinuum in double ionization. For more than a few particles,

; ; 2
however, such approaches become intractable and the sim- _ AT 2 2 2
P . . . Hy=— 55—V, t5u0%7,
plifying independent-particle approximation must be made. 1 2uy P12
The successes of this approach are also well known and
range from atomic structure to the current application to a K2 5 ) 2
system of trapped bosonic atoms. Configuration interaction Hp,=— Z—MVp2+§M2w P2,

(Cl) is one way to include correlations beyond the
independent-particle approximation. For the ground state Qf ., v =3m u1=m/2, and u,=2m/3. The interaction

three particles, all of these methods remain of manageabl\(;tot(pl,pz) is the pairwise sum of two-body interactions

size. We_brieﬂ_y dgscribe _the hyperspherical, Hart.ree-Fo_c rom Eq. (1) and depends only on the internal coordinates.
and configuration interaction approaches and their speciak s center-of-mass motion can thus be separated from the

ization to the trapped boson problem in the next three S€Ghternal  motion by writing the wave function as

tions. W (X,p1,p2) = ¢(X) ¥(py1.p2). The equation for the motion

of the center of mass is then simply the harmonic-oscillator
A. Adiabatic hyperspherical method equation

The adiabatic hyperspherical method has been explained
in detail in several previous work&—8]. Here, we outline Hem@nim(X) = Enenim(X).
the method and the necessary modifications for three identi- . s .
cal, interacting particles in an isotropic harmonic trappingThe energy eigenvalues akg=(n+3) 7w, and the eigen-

potential. states are the isotropic oscillator solutions.
The Schidinger equation in laboratory frame coordinates ~ Defining mass-weighted, body-frame hyperspherical co-
(rq,r,,r3) is given by ordinateg5] as
3 ﬁz 2 1 2.2 : R2_ 2+f2 O<R<
;1 — 5 Vi S ma’r] +i2<j V() [W=EV¥, (1) =p1t 3Pz, 0= ,
assuming the particles interacta the two-body potential 2 ps T
V(r). In this equationm s the mass of the particles aadis tang = ﬁ oy O<¢<7.

the frequency of the trap. In principle, for three interacting
atoms there are also pure three-body terms due to the com-
posite nature of the atoms. The lowest such term appearin%nd
in perturbation theory was found by Axilrod and Tell&]
(see also Refl10]) and is essentially the three-body analog cosf= P P2 0<g<
of the van der Waal's interaction. This Axilrod-Teller inter- P1p2 2
action depends on the hyperradius Rs® asymptotically, o ) _ o
however, so we neglect it here and in the Hartree-Fock equdbe Schrdinger equation for the internal motion is
tions.

Equation(1) can be transformed to the coordinates of the h? &2
center of masX plus Jacobi coordinates; and p, for the 24 9R? ¥R, ¢.0)= (R, ¢,0),
internal motion: )

1
+§WZR2+ Hag

X = §(r1+r2+r3), whereH 4 is the adiabatic Hamiltonian

2

1
2_
A 2

1 2 +Vt0t(R!¢! 0)
p1=To—ry, p2=r3—§(r2+r1). 2uR

. . . .. Inthe body-frame coordinates, the grand angular momentum
The advantage of Jacobi coordinates is that they maintain t%erator Ag is given by g g

simple form of the kinetic energy operator, while also decou-
pling the center of mass and the relative motion in the case 2
. L . J 1 J [ . J
of a harmonic(or vanishing external field. In terms of A2=— — _ _(Smg_)_
(X,p1,p,), the Schrdinger equation is thus written > sirf ¢ cog ¢sing 90 a0
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Note that the wave functiogy(R, ¢,6) is rescaled by the DroppingW,,(R) from Eq. (4) gives the useful result that
factor R¥?sin ¢ cos¢ in order to eliminate first derivatives the energy obtained is a lower bound to the exact ground-

from the kinetic energy operator. state energy14]. This corresponds to the familiar Born-
In the adiabatic approaclR is treated as a fixed param- Oppenheimer approximation. The energy calculated varia-
eter, and the equation tionally, however, is often much closer to the actual energy
than is the lower bound.
Had R, 0) P (R; ¢, 0)=U (R)P (R; ¢, 0) € As a “realistic” interaction potential in Eq(1), we have

solved for the adiabatic potentials,(R) and channel func- chosen the Morse potentigl5,16,

tions @ (R; ¢, 0). The hyperradius is symmetric under all
permutations of particles so that all of the identical particle
symmetry must be accounted for in the channel functions.
For spin-polarized indistinguishable bosor, must be The constant®, «, andr, are chosen to set the dissocia-
completely symmetric under all permutations. tion limit, width of the potential well, and location of the
We solve Eq(3) using basis splinell1]. Since the basis well minimum, respectively. The only significant difference
splines are localized, the resultant matrix, while lafgethe ~ from a real neutral atom-atom interaction is the absence of
order of thousandsis Sparse_typica”y fewer than 20% of van der Waal’sr_e tail. This poses no serious dlfflCU'ty
the entries are nonzero. These large sparse matrices can $i8ce both can be considered short-range interactions for the
diagonalized on workstations by using theack package Purposes of g-wave scattering calculations and since we
(publicly available on the world wide wefL2]) which is  consider physics that is controlled essentially by only the
based upon a variant of the Lanczos algoritfib8]. This  scattering length. We have fixed the constamtandr, in
combination of techniques provides an efficient means téhe Morse potential to be=0.35 a.u.*andr,=11.65a.u.,
calculate the lowest eigenvalues and eigenvectors of thwhich approximate the RbRDb triplet interaction potential
adiabatic equation, Eq3). [17]. The constanD has been left free to vary in order to
An exact solution to the Schdinger equation can be con- generate different scattering lengths.

structed by expansion into the adiabatic channel functions: ~The large difference in length scales that makes the
pseudopotential so useful in mean-field calculations leads to

B ) difficulties in an exact calculation such as the hyperspherical
‘/’(R’¢’0)_§V: F(R)®,(R¢,0), approach. For example, the classical turning point is at ap-
proximately 17 700 a.u. in an isotropic trap with a frequency
which after substitution into Eq2) becomes a set of coupled of 133 Hz. It is both difficult and unnecessary to calculate
hyperradial equations for thEé,(R) that can be solved nu- the potential curves numerically to such a large distance. The
merically. The channels are coupled through the dependeudlfficulty lies in the fact that the two-body interaction region
of ®, onR. Neglecting the coupling between different chan-in the (¢,6) plane shrinks roughly aR~* so that the nu-
nels, however, leads to a simple and useful set of singlenerical solution of the adiabatic eigenvalue equation be-
channel equations: comes increasingly intensive numerically Bsincreases.
But, for the hyperradial potential that correlates to three free

V(r)=De " To(g~al~T0)—2), (5

n? d? _— _ atoms atR—oo, the asymptotic form of the potential for
T2 gre | 2M REAU,+W,, |Fun=EwnFon, short range two-body interactions is knofi8] to be
4 ,
15 a a
where Ug(R)— & 5°+'B ..
8uR?> R*® R*
hZ 2
W,,(R)=— m ®.,(R) IR? P,(R)). for finite ag. and positive constants and 8. Thus, the po-

tentials can be fitted at some reasonably asymptotic distance

The quantum numbers andn label the channel and energy (400-500 a.u. for these examplesnd extrapolated to dis-
eigenstate within a channel, respectively. Equatiénis a  tances on the trap scale.

one-dimensional radial Schiimger equation with an effec-

tive hyperradial potential ,(R)+W,,(R) that determines B. Hartree-Fock approximation

the three-body spectrum in the adiabatic approximation. It ) o

can be showii14] that the ground-state energy obtained by With the Hartrge-Fock approx'lmatlpn, one seeks the best
solving Eq.(4) is an upper bound to the true ground_statelndepe_ndent-par_tlcle wave function given the occupancy of
energy. This can be simply understood from the fact that thi§2ch single-particle orbital. In the present case, we concen-
approach is formally equivalent to applying the Rayleigh-trate on the ground state of a system of bosames, the state

Ritz variational principle, using a trial wave function of the N Which all particles occupy the lowest orbitalthough
form more general states can be considered. Considerable freedom

exists in the choice of a single-particle basis set. This flex-

iﬂtyn(R,d’-9):Fpn(R)‘by(R;¢-9)- ibility is used to derive an equation that determines those
single-particle states which variationally minimize the total

The variational principle then guarantees that the energy thusnergy. In other words, the Hamiltonian is approximately
obtained is an upper bound to the true ground-state energgiagonalized, including as much of the interparticle interac-



1454 B.D. ESRY AND CHRIS H. GREENE PRA 60

tions as is possible given that the trial wave function is con-Taking the variation ofE with respect toyy gives, after
strained to independent-particle form. some algebra,

The Hartree-Fock equation can be derived from either
first- or second-quantized formalisms. Each provides sepaéEE'F (Siho|Holho)  (N—=1) (Sihoiho+ thoSibo| V| thoiho)

rate and useful insights. The first-quantized derivation pro-— N~ — Yol 2 2
vides a simple picture that can be easily understood in terms Vol v (ol Y)

of basic quantum mechanics. The second-quantized deriva- ESF (N=1) (ool Vo) | ( Stbol tho)
tion, on the other hand, provides greater insight into the IN T2 > | .
physics included in the trial wave function. Both approaches, (ol o) (ol o)

of course, yield identical results. . - N : .
We present the first-quantized derivation here and refef _arbitrary variations sy , the stationary condition

the interested reader to REL9] for a second-quantized deri- 9o =0 Subject to( ol o) =1 is satisfied when

vation. In many respects, the derivation presented here par- _

allels the derivation of the Hartree-Fock equations for fermi- [Ho(r)+ Vue(r) 1¢o(r) = goiho(r), 8

ons (see Cowarj20], for example. The ansatz for the total | here the mean fielt e is given by

ground-state wave functioh in the independent-particle ap-

proximation is

VHF(r):(N_l)f A3 g (r)V(r=r') go(r’). (9
D(ry, ... In)=do(ry) - ho(rn), (6)

h he sinal icl bi be d ined For a small number of atoms, the factdr-1 is critical for
\_?vhere the smgfe-rﬁ)artlce ofr itaks, are _to'l el eternrgne comparisons with number-conserving solutions. Using the
e spin part of the wave function is similarly a product of g5 qarq factor ofNg present in the Gross-Pitaevskii treat-

the spin kets for each atom and otherwise does not enter tqﬁent[Zl—za will lead to orderN-1 differences as found in
calculation. The equation fap, results from an application ot >4 The ei in E . fi
of the variational principle to the Hamiltonian ef.[24]. The eigenenergy, in Eq. (8) is defined as

N ' Ep'  (N-1)
802W+T<¢0¢/0|V|¢0¢/0> (10
H=2; Ho(r)+ 2, V(ri=r)). (7)
and is just the ground-state orbital energy.
In this expression, the one-particle operaity(r) includes Interestingly,e, obeys Koopmans theoref@5] as do the
the trapping potential and is given by orbital energies for fermions. The statement of Koopmans
theorem applicable to a system of bosons is that the orbital
h2 , 1L, energy represents the difference between the Hartree-Fock
Ho(r)=— 5,V + s mo™? ground-state energy fdx particles andN—1 particles pro-

vided the difference between the ground-state orbitalNor

The analogy to atomic structure calculations can be seen %f:rtlcles and the ground-state orbital fdr-1 orbitals can

this point if the trapping potential is replaced by the electron-"€ Néglected. In the limiN>1, the latter approximation is

nucleus Coulomb interaction. The two-particle operatorphy_Si_C‘aIIy reas_onable given _the ordér * effect of a single
V(x,—X;) in Eq.(7) is the particle-particle interaction. In the additional particle on the orbital. In fact, Koopmans theorem

case of neutral trapped atoms, it is a typical diatom interachc’lds qwte.well fOT asbfew as 1(.) pgrtlhclesK. From the re]lbove
tion potential, while in atomic structure calculations, it is just Statement, it can also be recognized that Koopmans theorem

the electronic Coulomb repulsion is essentially a statement of the definition of the chemical
For the trial wave function in. Eq(6), the expectation potential encountered in the Gross-Pitaevskii equation. From
value of the HamiltoniaiEq. (7)] is ' Eq. (10), the total energy for a system bF particles can be

written as
ESF:N<¢/O|HO|¢/O> N N(N—-1) <lﬁol/f0|V|'lfo¢0>. e N(N—1)
(Yol o) 2 (ol tho)? Eo" = N(¢olHol tho) + ——— (ool V| hotho)-
The one-particle matrix element is The energy difference between a system Wtharticles and
one withN—1 is thus
<t/fo|Ho|¢o>=J d3r g5 (r) Ho(r) ¢ho(r), ENF(N)—EFF(N-1)

= (ol Ho| tho) + (N—1 Vv = .
and the two-particle matrix element involves a double inte- (ol Hol o) +( HdovolVIdodo) =20
gral over the coordinates of two particles Thus, Koopmans theorem is also satisfied by bosons.

<¢0¢0|V|¢0¢0>:J dsrf d3r’w3(r) %c(r;) C. Configuration interaction
A further connection to standard atomic structure methods
XV(r—=r") o(r) go(r'). can be made through an application of configuration interac-



PRA 60 VALIDITY OF THE SHAPE-INDEPENDENT ... 1455

tion methodg20] to the system of bosonsee Ref[24]). state has zero total orbital angular momentunand thus
The term “configuration” in this context means a given set zero total angular momentum projectibhy . While the con-
of occupation numberfn;} corresponding to a set of single- figurations are not themselves eigenstates of total angular
particle orbitals{;(x)}. Configuration interaction, then, is momentum, only those that have componentd ef0 and
the variational approach in which the trial wave function isM; =0 are included. Similarly, only even total parity con-
expanded on a complete basis of many-body wavdigurations are included in the expansion. The maximum
functions—or configurations—including the ground statesingle-particle angular momentum and energy can also be
and singly to multiply excited configurations. Since this is avaried independently of these requirements and each
complete many-body basis, the exact, time-independengther—a facility that we take advantage of in the present
many-body energy eigenstates can in principle be calculatedtudies.
In practice, of course, the expansion must be limited to a Our second criterion is based upon the structure of the
finite number of basis functions. Hamiltonian matrix. To simplify the visualization of the
For three bosons, the configuration interaction wave funcHamiltonian matrix, we can partition it into submatrices ac-
tion consists of the ground state, singly excited states, doublgording to the states that the submatrix couples. The ground
excited states, and triply excited states. This can be writtestate will be labeled with &, singly excited states with &
explicitly as doubly excited states with B, and triply excited states with
aT. Explicitly,
P)=ag|ng=3)+ a,|ng=2,
%) =aglng=3)+ 3, alno=21,) e Hee Hew Her
i 2 b ;|I’] :11p1’> H= HSG HSS HSD HST
b PP TR Hpc Hps Hop Hor
Hre Hrs Hmp Hyp
+ 2 Cpp/p//|n0:0,lp,lpr,1pu ,
p.p’.p"#0 Since only two-body interactions are included, the submatri-

where the notation Jindicates that thepth single-particle ~ ¢€SHor andHrg are zero. Also, since we use the single-
orbital is occupied by one boson, i.e1,=1. This wave partlcle basis deflrjed by the ground-stgte Hartree_-Fogk equa-
function is thus the most general completely symmetricion, the submatricesics and Hsg vanish by Brillouin’s
three-body wave function. Upon truncation, the variationalth&orem. The Hamiltonian is thus

principle for the total energy yields the matrix eigenvalue

problem Hece O Hgp O
0O H H H
H\PV:EV\PV’ H= sS sb ST . (12)
HDG HDS HDD HDT
where ¥, is the vector of expansion coefficients. To effi- 0 Hys Hip Hyr

ciently diagonalize the Hamiltonian matrid, only those
configurations that contribute most should be included, sinc
the number of configurations can be quite large even fo
three atoms. Haugset and Haugerud, for instance, obtain
matrices up to order 80 000 for a few tens of particles in ong,
and two dimensions.

The first step in choosing the most efficient configuration
basis is to adopt the best single-particle basis. One near o
timal single-particle basis is obtained by solving

%he selection of configurations is greatly simplified by the
fact that we are only interested in the ground-state energy.
amination of Eq(12) shows that the contribution of triple
citations to the ground-state energy enters first at fourth
order(in a Rayleigh-Ritz perturbation scheme, for instance
Because we will consider systems in which the deviation
Fom noninteracting is minor, triple excitations can be
neglected—a huge reduction in the number of configura-
tions. A typical case is shown in Table I. Eliminating triple
R =& R excitations in this calculation reduced the matrix size by
ni— Enltnt more than a factor of 7. Numerical checks confirm that triple
(1D excitations affect the ground-state energy only beyond the
level of accuracy that interests us here. For the parameters of
where the angular part of the orbital is just a spherical harTable I, for instance, the total ground-state energy calculated
monic, Y,n(6,¢). The mean-field term lifts the degeneracy with triple excitations is 4.536 4568w and with only up to
in I, but the degeneracy ifm remains. For @,I,m) double excitations included 4.536 45614». Single excita-
=(0,0,0), Eq.(11) is just the Hartree-Fock equation for the tions could have similarly been excluded from the calcula-
ground-state orbital, while for all othen(l,m) it is a linear tion since they also enter first at fourth order for the ground-
equation with an effective potential that includes the mearstate energy, but the resulting reduction in the number of
field. To reduce the number of configurations, we use threeonfigurations would normally be less than 18&e Table)l
criteria based upon the orbital properties determined by EgNote that while the decoupling of single excitations from the
(12). ground state depends on the single-particle basis, the decou-
Ouir first criterion for inclusion of a given configuration is pling of triple excitations depends only on the fact that two-
based upon its symmetry. We expect that the exact groundody excitations are included. For other single-particle bases,

Af d® 104D 1 24y
2mgrz gmez 2T TV
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TABLE I. The number of singly, doubly, and triply excited ergy and the square of the expansion coefficient obtained
configurations for threé’Rb atoms ih a 1 kHzisotropic trap. The  from a full calculation. So, recalling that only up to double
scattering length is taken to be 100 a.u. The total orbital angulagxcitations are allowed, this difference is just the difference
momentum is zero and the total parity is even. Osiyaves are  in the orbital energies of the two excited particles. For ex-
allowed for the orbital wave functions, and excitation energies up toample, if a configuration consists of orbitd[,0,0, (4,0,0,
300t w are included. The orbitals were calculated within a sphericaly (10,0,0, then the relevant energy difference dse
box of radius S/A/ma. =|e4 0—#10 4. The parameters used for Fig. 1 are the same
as for Table | except that triple excitations are excluded. It is

Number of Number of evident from the figure that most configurations with large
excitations configurations Ae contribute very little to the total energy. It is also evident
0 1 that if we are only interested in obtaining four to five digits
1 37 of the total ground-state energy, then we can exclude from
2 544 the calculation all of those configurations havingAz
3 4511 greater than about 7. When the maximum allowed con-
figuration energy is large as in the figure, this translates into
Total 5093 a large reduction in the number of configurations—almost a

factor of 2 for the parameters of the figure, or from 582 to
313. The total energy calculated after the reduction is

. o . . 4.536 456 44 w, which is identical to the energy before the
however, triple excitations typically contribute a larger frac- reduction

tion to the ground-state energy even though they still enter In order to test the convergence of the expansion with

first at fourth order. . : ; 4
. o . .. _,_respect to the maximum configuration energy, it is necessary
Our third criterion involves the energies of the orbitals be abl includ hiah fi :
making up a given configuration. The expansion includes alfq e able to Include very-hig ~energy con iguratigeser-
) gies up to several hundréddw). Given that the spectrum of

states consistent with the above criteria up to a given cong

figuration energy. The configuration energy is just the expecI-Eq' (11) is roughly similar to that of a harmonic oscillator,

tation value of the Hamiltonian for a particular configuration,giiqréurgr?:rr of isstatfg r(‘)?tcigﬁ;?% t?hl:trrgnaercomg_lﬁitse iitmubpe:O
in other words the diagonal element of Ed2). As in Eq. gy 1S prop 9y-

(10), the configuration energy is not simply the sum of thequ|ckly becomes unmanageable, and a further reduction

energies of the orbitals comprising the configuration, but in-mUSt be sought. Our solution, since we are interested only in

; . . the ground state at this point, is to solve for the single-
cludes corrections for double counting of two-body interac-__" . s 7
particle states within a box that is just large enough to con-

tion energies. N_everth_eless, the_orblta_ll energies prove to betgin the ground-state orbital. The energy spectrum with this
useful guide for including a configuration. We show in Fig. 1

the contribution of each configuration to the total energy ofboundary condition quickly switches from the oscillatorlike

the ground state of the three-particle system as a function &near dependence of the .orb|tal energy on the principle
uantum numben to a boxlike quadratic dependence. The

the difference in orbital energies. The ground orbital enerqu ) .
. . . - ’number of states necessary to obtain a complete set of single-
is excluded from the difference, and a configuration’s contri-__ . . : :

e . . particle states up to a given energy over this restricted space
bution is measured by the product of the configuration en; . .

thus scales like the square root of that energy. Numerical

tests for the modest maximal configuration energies attain-

107 = T T able without the box show that the ground-state energy is

unaffected by the box boundary condition.

Ill. RESULTS AND DISCUSSION

Use of the pseudopotential based on the kn®samave
. atom-atom scattering length reproduces the two-body scat-
tering wave function at large atomic separations. This is a
physically intuitive approach, but it can also be viewed from
the rather different and more mathematical perspective of
many-body perturbation theory. In this language, a many-
body problem is written in terms of some independent-
particle basis and the interactions accounted for in a pertur-
0 w0 200 300 bation expansion. Each term of the expansion can then be
Ae (units of v) represented diagrammatically. The general goal of this ap-
FIG. 1. The diagonal contribution of each configuration to theProach is to include as many of these diagrams as possible in
total energy for threé’Rb atoms i a 1 kHzisotropic trap. The & given calculation. Several techniques have been devised, in
product of the configuration enerds; and the square of the con- fact, to include particular classes of diagrams to infinite order
figuration interaction expansion coefficientas a function ofAe. N the interaction. The Hartree-Fock and random-phase ap-
The dotted line at\e = 75hv indicates the cutoff used in the calcu- Proximations are two such techniques which sum different
lations. The basis parameters are as in Table | except that only up ©asses of diagrams to all orders. For two-body interactions
double excitations were included. with a very strongly repulsive core, however, an additional

10° | %

|c/E, (units of Av)

—_
S
S
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4.50

class of diagrams must be taken into account. These dia- 430 y -
grams represent repeated two-body interactions and corre- @
spond to the usual Born series in scattering theory. In the T45L N 1 a2
first Born approximation, the-wave scattering length is = AN Ty
2 ‘o Z
il SN 5
= 3 o 4005
M 0 =
ag= zf d3r V(r), gm I i o] g
27h c B \ K
g 150 | Z 6 ] \\- 3.75£
where w is the reduced mass and(r) is the two-body in- EEN 00 01 02 03 250

teraction. Summing the Born series within the many-body  **¢ 0 20 3000 o1 0z 03

perturbation theory expansion essentially amounts to replac- v (MHz) v (MHz)

ing the first. Born scattering length ab(?ve by the §Cattering FIG. 2. Comparison of the total ground-state energy calculated

length obtained in a two-body scattering calculation. NOt€sing the Hartree-Fock and adiabatic hyperspherical approxima-

that such a replacement is valid only in the low-density limit. jjons for the negative scattering lengttes as.= — 10 a.u. andb)

It is this process that has led others in this field to simplya = —100 a.u. as a function of trapping frequency. The dashed line

write the two-body interaction in the Hamiltonian in the form with circles corresponds to the pseudopotential Hartree-Fock result

of a Fermi contact potentialFor a full development specifi- and the two solid lines to the lower and upper bounds provided by

cally for trapped gases, see Proukakisal. [1].) A more  the hyperspherical analysis. The insets expand the energy scale to

general effective interaction theory has been developed biclude the result of the Hartree-Fock approximation with Morse

Brueckner and others to handle strongly repulsive two-bodywo-body interactiongdotted line with squares

interactions including the effects of the mean figk$—2§.

One way to see the importance of these considerations is A. Ground-state energies

to examine the mean-field term from the Hartree-Fock equa-  gince the pseudopotential approximation is valid only in

tion, Eqg.(8). The orblt_alzpo(r) varies slowly on the scale pf the low-density limit, i_e_nagc<1 orndmhias/m<h o, we

V(r) (s-wave scattering wherebyVyg(r) can be approxi- - ghoyid expect to see deviations from the exact result as the

mately rewritten as density is increased. Accordingly, we document these devia-
tions in Figs. 2 and 3. The total ground-state energy as a
function of trap frequency is shown for four caseg~

VHF(r)~(N—1)|¢0(r)|2f d3r’ V(r—r") —100 a.u.,—10 a.u., 10 a.u., and 100 a.u. In each case, the
lower and upper bounds determined from the hyperspherical

hag approach are indicated by thick solid lines and the Hartree-
Z(N—l)T|l//o(r)|2- Fock with pseudopotential result is indicated by a dashed

line. The scattering lengths used in the Hartree-Fock calcu-

lation corresponded to the exact scattering leraythcalcu-
Because of the large repulsive coreViir), ag is a large lated for the Morse potentials used in the hyperspherical cal-
positive number regardless of the other details of the potenculation. The precise values of the scattering lengths are
tial. It is this result that leads to the rather counterintuitive
conclusion that using a realistic two-body potential in the
Hartree-Fock equation yields a much poorer approximation 500 r
than using as-function potential. Thus, it is not onlgonve-
nientto make the shape-independent approximation but ac-
tually essentialin order to obtain quantitatively correct re-
sults. <

Interestingly, the solution of the Hartree-Fock equation, Barst

using a Morse interaction potential, is not accurate even in
the high-density limit where it might be expected that the 5
structure of the two-body interaction plays a more important
role. The difficulty of the hard core remains, however, and
the simple product form of the wave function is not suffi-  *®6 5 10 15 2 0 5 10 15 2
ciently flexible to account for the correlated exclusion of the v (MHz) v (MHz)

wave function from the hard-core region. Th|s is the analog FIG. 3. Comparison of the total ground-state energy calculated
of the well known cusp problem from atomic and molecular,ing the Hartree-Fock and adiabatic hyperspherical approxima-
structure. The difference here is that instead of reaching gons for the positive scattering lengtte® a..=10 a.u. andb) a..
finite value with a discontinuous first derivative at the two- — 100 a.u. as a function of trapping frequency. The dashed line with
body coalescence points, the wave function is merely Supcircles corresponds to the Hartree-Fock result and the two solid
pressed in the classically forbidden region under the hargnes to the lower and upper bounds provided by the hyperspherical
core of the two-body interaction. So, for instance, many-analysis. The insets expand the energy scale to include the result of
body bound states cannot be obtained using realistic twathe Hartree-Fock approximation with Morse two-body interactions
body interactions in the Hartree-Fock equation. (dotted line with squares
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—98.220 a.u.,—9.9226 a.u., 10.023 a.u., and 99.798 a.u. 200
(corresponding toD=1.74x10"7 a.u., 1.0%10°7 a.u., |
1.18<10 % a.u., and 2.19% 10" a.u., respectively As ex- !
pected, the two approaches yield similar results in the low- 150 H
density (low trap frequency regime, but the Hartree-Fock !
energy is consistently close to the hyperspherical boundsg !
only for age~10 a.u., Fig. 8a). Interestingly, both positive 2 ;o !
scattering length cases are closer to the exact bounds than th& !
negative scattering length cases. The physical origin of this> !
difference can be understood by recalling the relation be- !
tween the phase shift and scattering length—a negative scat !
tering length means that the two-body scattering wave func- :
tion is shifted towards smallerrelative to the noninteracting i
wave function, while a positive scattering length means that 0
the wave function is shifted towards largerThe negative
scattering length wave function thus samples the two-body
potential more than the positive scattering length wave func- FIG. 4. The adiabatic hyperspherical potential curves that cor-
tion. relate to three free atoms for different two-body scattering lengths

It is worth pointing out that the results shown in Figs. 2 (in a.u) as indicated in the figure. The thin solid line midway be-
and 3 will almost certainly change quantitatively for differ- tween theag=10 a.u. anda,c=—10 a.u. curves indicates the non-
ent choices of model potentials. We do not expect that theynteracting hyperspherical potential. Note that the lowest curve in
will change qualitatively, though, provided the model poten-the figure, foras.=—100 a.u., has a well approximately 10 mK
tial is short-ranged. deep at smalR that is not shown.

To illustrate the importance of including the correct two-
body scattering physics, we solve the Hartree-Fock equationwo-body bound states, this is an example of a halo state.
Eq. (8), “directly” using realistic two-body Morse interac- Loosely bound three-body states that exist when no two of
tions as in the adiabatic hyperspherical approximatgee the particles are separately bound are called halo states and
Sec. Il A). This is simplified by the fact that fos-wave or-  are a well-studied phenomenon in nuclear physics. Examina-
bitals the angular integrals in the Hartree-Fock potential camion of the wave function for the three-body bound state
be analytically evaluated. The integrals and the resultingshows that it has a very large spatial extent with a mean
Hartree-Fock equation are given in Appendix A. Thehyperradius on the order of a few hundred atomic units. Even
Hartree-Fock equation is thus reduced to a one-dimensionab, this state is well localized on the scale of the trap since
equation with a nonlocal potential EGA1). Solving this  the classical turning point for the noninteracting oscillator at
equation withD =1.74x 10"’ a.u. gives for three atoms in a the highest frequency considered in Figb)2is still nearly
1 kHz trap a total energy of 4.64%. This choice ofD 4000 a.u. Physically, this state represents a bound trimer
clearly exposes the shortcoming of using a realistic two-bodyhose center of mass obeys a simple harmonic-oscillator
potential because it corresponds to a scattering lemgtiiat  equation. We would thus associate the first excited state with
is negative—a relatively large negative scattering length of the “condensate ground state” in a trap since the majority of
—98.22 a.u., in fact. For a negative scattering length, théts probability density lies beyond the potential barrier.
total energy is expected to be lower than the noninteracting It has recently been emphasized that the pseudopotential
value of 4.% w, rather than larger. At 4.464», the upper approach is not valid if many-body bound states exist in the
bound on the exact energy calculated using the hypersphenproblem when the trap is turned off. Given our labeling of
cal approach is consistent with this expectation. The highethe first excited state as the one relevant for the condensate
energy obtained with the Morse potential is, however, con‘ground state” in a trap, we see from Fig.(l® that the
sistent with the fact that the Born scattering length for thesdHartree-Fock with pseudopotential actually does quite well
parameters is large and positive, 407.5 a.u. The dotted linda the limit of low frequencies even in this case. Thus, the
with square symbols in the insets of Figs. 2 and 3 show mor@nfluence of a many-body bound state does not seem to be a
extensive results of the Hartree-Fock approximation withserious problem for the pseudopotential approximation. This
Morse two-body interactions. As discussed above, the totak reassuring since the true ground state for trapped alkali-
energies are spectacularly bad over the whole range of trapetal gases is a many-body bound state just like the true
frequencies. For the negative scattering length cases shovgmound state in this three-body example. Figure 5 shows the
in Fig. 2, even the qualitative behavior is incorrect. egg  behavior of the total energy of the bound state as a function
=—10 a.u., just as foag=—100 a.u., this failure can be of the trap frequency. When th&% w associated with the
traced back to the fact that the Born scattering length is largeenter-of-mass zero-point energy is taken into account, it is
and positive(255.3 a.u. clear that the state remains a bound three-body state for even

The interpretation of Fig. (®) is complicated by the pres- the highest trap frequency. Note that the lower limit on the
ence of a bound three-body state for this choice of potentidbound-state energy remains negative over the entire fre-
parameters, even in the absence of the trap. This state lies quency range plotted and is not shown. The height of the
the inner well of the potential shown as a dotted line in Fig.barrier (see the dotted line in Fig.)4s also indicated in the
4 which has a depth of between 9 and 14 ripper and figure as a long dashed line. For frequencies above about 220
lower bounds, respectivelyIn fact, because there are no kHz, the first excited statghe state shown in Fig.(B)] is
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third atom is nearby during a two-body collision, then the
collision energy is affected by the interaction with that third
= _ atom. When more patrticles are present, of course, more com-
2 3507 7 plicated processes can occur.
S
© 300 1
§ 250 | ] B. Breakdown of the pseudopotential as an exact Hamiltonian
:>5 200 L 1 The Hamiltonian used in calculations for atomic BEC ex-
fg ’ periments has routinely been written as
B 150 + .
g N 4rhla, &
& 100 - H=2 Ho(x)+——— > 8(x—X), (13
<
050 | ' !
0.00 L L leading some to use this as an exact Hamiltonian for the
00 0.1 02 03 many-body system. It has been emphasized previdusly

v (MHz) that this Hamiltonian should not be used for exact calcula-
FIG. 5. Expanded view of Fig.(B) showing also the total en- tions, and we stress it again here. If the above Hamiltonian is
ergy of the three-body state bound in the inner well of the potentiaPplied to a two-particle system, the problem becomes clear.
in Fig. 4. The dashed line with circles corresponds to the HartreeAppendix B shows one way to see the pathological nature of
Fock result and the upper two solid lines to the lower and uppethis form of the interaction potential when used as a model of
bounds provided by the hyperspherical analysis. The thick solid linéhe full Hamiltonian of the system. Even perturbative formu-
indicates the energy of the three-body bound state, and the thilations are not exempt from the pathology, as evidenced by
dashed line indicates the height of the potential bafgee Fig. 4. the fact that one can prove that the energy correction in
second-order perturbation theory diverges for a three-
above the potential barrier. At this point, the identification ofdimensional Diracs-function interaction potential. In a dif-
this state as the one relevant for trapping fails, and, in derent context{29], it has also been shown that divergent
system in which two-body bound states exist, this passaggeries arise when this type of an interaction potential is
over the barrier would correspond to the collapse of the contreated using a partial wave expansion of the multichannel
densate as spin-flipping processes and three-body recomisicattering solution.
nation would destroy the condensate. It is interesting to note The problems with thiss-function potential can also be
that the Hartree-Fock energy is showing no sign of the instaseen from Fig. 6, where we present the outcome of an exten-
bility. In fact, the critical frequency predicted from the sive numerical study of the convergence of a configuration

Hartree-Fock formula interaction calculation based on E(L3) as the “exact”
Hamiltonian. The details of our calculation were described

(N=1) |asd — 0.57497 above in Sec. I C. The results shown are for thféBb
B : atoms n a 1 kHz trap with a scattering length of 100 a.u.

Using all of the basis-set reduction techniques described in
Sec. Il C, we calculated the total ground-state energy as a
function of the maximum orbital energy and maximum an-

too large. . . . - ular momentum per orbital allowed in the configurations.
For the positive scattering length cases, it was SImII""rh'a?'he maximum angular momentum per orbital is fixed at the

hecessary to identify an excited state as the relevant sta dicated value for the eight curves in Figah For instance

instead of the ground state. The reason in these cases was & -3 curve includes orbitals with=0 1. 2. and 3’
T max__ - ’ ’ 1 .

presence of two-body bound states. Here, however, it is thEach of these eight curves converges in the limit of infinite

potential curves n Fig. 4 Wh'Ch. are not the ground statey hital energy, but to a different value. The fully converged
There are lower-lying curves which correlate asymptotlcallyenergy of the ground state would then be the limit of these

with a molecule plus free atom. We are interested in Stategxtrapolated values ds,.—. In Fig. 6b), we show the
ax . . )

which _correlate to three free atoms. Further, the Iower'lyingextrapolated values of each curve in Figa)as a function of
potential curves support three-body bound states. But, as in .. The extrapolation was accomplished by a least-squares

the case of the negative scattering length above, the preseng ing of the form

of many-body bound states does not seem to degrade the

pseudopotential approximation for low frequencies. u
The differences between the Hartree-Fock and hyper- Eo(smaXiImax):EO(malmax)+T-

spherical results at higher densities can be attributed prima- Emax

rily to two effects neglected in the pseudopotential approxi-

mation. The first is the lack of energy dependence in théOnly those portions of the curves af,,=210h v were in-

scattering length. As the trap is made tighter, the mean cokluded in the fitting. The curve in Fig.() is not showing

lision energy is increased, making tleewave scattering any evidence of converging in the limif,— .

length approximation poorer. The second effect neglected in It is clear, then, that thé function is not suitable as an

the pseudopotential approximation is the influence of theexact potential in a three-dimensional system. When ap-

many-body system on the two-body collision. One examplgproximations are made, however, finite results can be ob-

of this influence can be seen in the three-body system. If th&ained. In the present case, each curve in Fig). 6onverges

with 8=+hi/mw is 2 MHz—about an order of magnitude



1460 B.D. ESRY AND CHRIS H. GREENE PRA 60

4.537 - - - - - - - interactions are essentially the two-body terms, Cl can be
thought of as accountingeventually for two-body colli-
sions. But, by writing the coefficient of th& function as the
scattering lengtla., the two-body collisions have been ac-
counted for to infinite ordevia the Born series. When used

4.536

4535 B

§ 4534 1t . with Eg. (13), the Cl approach thus “double counts” the
é effects of two-body interactions.

4.533 1rF E
ysn 1t ; IV. SUMMARY

4B 1 ® ) While it is not straightforward to extrapolate the above

results for three atoms to the general caséNaitoms, the
h T T T T e resu!ts d_ocument a breakdown in the pseqdopotentlal ap-
e, (units of 4v) l proximation that should occur when the density grows large.
We have shown that such a breakdown definitely occurs in
FIG. 6. Convergence of the configuration interaction expansiorthe three-body case. And, if the dependence of the Hartree-
for three 8Rb atoms i a 1 kHzisotropic trap. Each curve ife) Fock solutions on the CombinatidNaSC\/Z is considered,
shows the convergence of the total ground-state energy as a funghen the breakdown frequencies presented here might trans-
tion of the maximum orbital energy for various values gf.. The  |ate into a semiquantitative estimate of the critical number
extrapolation of these curves tgy,,—c yields the points inb).  for condensates with more atoms. We have also shown the
The error in the extrapolation is roughly the size of the symbols inag it of using the pseudopotential as if it constitutes an “ex-
(©). act Hamiltonian.” In particular, the three-dimensional
_ o o ) function causes the ground-state energy to diverge as the
nicely to some value whety,y is fixed. Similarly, if the  nymper of basis functions is increased. For the one-
ground-state energy is plotted as a functioh @ with emax  dimensional case studied by Haugsstal, these diver-
fixed, the curves each converge. gences are absent, and a well behaved exact solution is pos-
Some authors, including Huang and Tommag8d] and  sjple. Already in their two-dimensional study, however,

Demkov and Ostrovskii31], have bypassed thé-function  gjvergences can be expected as the expansions approach
pathologies by changing the interactify into the follow-  completeness.

ing form:

4.530
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boundary condition near every coalescence point in configu-

. . APPENDIX A: HARTREE-FOCK
ration space:

WITH MORSE INTERACTIONS

’ﬂ(ri_ri)r:’r. C”(|r+r_alc)’ At first thought, a direct solution of the Hartree-Fock
i~ i1 s equation, Eq(8), with no approximation fok/(r) in Eq. (9)

with C;; an arbitrary normalization constant. In practice, thigWould seem to be an improvement over the seemingly severe
boundary condition cannot be readily imposed when utilizing2PProximationV(r)— y5(r) with y some strength param-
the independent-particle many-body trial wave functions thaft€r- The Morse potential Ed5) is ideal for testing this
are convenient for the description of the ground state an(H)roposltlon_ since the m_ean—fleld mteracuon integral can be
excited states of a Bose-Einstein condensate. The boundafg"formed in part analytically. The(r) is assumed to have
condition constraint could be applied to solutions written inth€ form
the Jastrow form, however, which includes=r;—r; as an

i
explicit coordinate in the wave function. But this form ap- )= Rog(1)Yaq( 8,6) = Roo(r)
pears to be useful only for calculations of the condensate $ood 1) = Roo(r) Yool 0, ¢) = \/E .

ground state. In any event, we do not view the methods of
Refs.[30,3]] as providing a solution which can bypass the
S-function pathologies documented above and in Appendix
B, except possibly for Jastrow-type descriptions of the
ground sFate. _ o _ VHF(r):(N_l)f dr'r'2|Reg(r )2
Even if we could ignore thej-function interaction pa-

thologies, the configuration interaction approach has a sec-

ond problem. The point of ClI is to account for interactions The angular integrals iW,(r) can be evaluated analytically
not already diagonalized by the basis set. Since the residuédr the Morse potential Eq5). The result is

The mean-field term in Eq9) is explicitly written as

dQ’ Vv(|r—r’|)
4 ho
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D (= |R0(r’)|2 APPENDIX B: 6-FUNCTION PATHOLOGY
\Y; (r)=(N—1)—J r'2dr’' ————
a”Jo r-r< The pathology of a Dirad-function potential can be dis-
1 cerned from the following analysis. Consider the scattering
% §{F(2a,r0;r>—r<)—F(2a,r0;r>+r<)} of a single Schrdinger particle from the potential

V(r)=V,d(r—a),
—{F(aroir=—ro)=F(aroir=+r)l, (A yith a some fixed point in space. If we denote the three-
dimensional outgoing-wave free-particle Green’s function by
where Go(r",r’)~e”“’*r"/|r—r’|, then the integral form of the
) — a—aly—b) Schralinger equation for a scattering state that represents an
Flaby)=e (1+ay). incident particle with wave vectd, is

In this expression;~. (r.) indicate that the largeismalle)

of r andr’ is to be used. Equatiof8) can now be readily w(r)=e”‘0'r+f d3r ' Go(r,r YV(r')(r').
solved numerically. Its solution for a trap frequency on the

order of 100 Hz, however, is identic@lithin the precision
of our calculationsto the solution of the I;|artr1ee-Fock equa-
tion with the approximationV(r)~4xA°m~ ~agd(r) be- — aikger

cause of the disparity in length scales. The first Born ap- Yr) =€+ VoGo(r.a)¥(a),

proximation to the scattering length for a Morse potential isiy terms of an as-yet-undetermined consta(a). A consis-

For the s-function potential, this can be solved, giving

given by tency or continuity condition obtained by evaluatiggr) in
the limit r—a determines this “constant” to be the solution
T w2
ag= e“'o(e*0—-16).
B 4f aoa’ ei k0~a
With all quantities on the right-hand side in SI unigs, will w(a)= 1-V,Gy(aa)’

be in atomic units.

From Eg.(A2), it is clear that using a realistic potential The divergent nature @&y(a,a) might appear to suggest that
directly in the Hartree-Fock equations will give quantita- the only possible solution of the integral equation in three
tively poor results sinceg is monotonic as a function d. dimensions(more generally, in two or more dimensigrs
The physical scattering length, on the other hand, shows abtained fory(a) =0. In fact, this does not solve the problem
tangentlike pole structure. The shortcoming is especially eviin a satisfactory manner, because that choice leads(td
dent for negative scattering lengths sinag will remain  =e'%o", which does not obey the requiremefta) =0, im-
positive even in this case. plying that this is not a consistent solution to the problem.
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