
PHYSICAL REVIEW A AUGUST 1999VOLUME 60, NUMBER 2
Perturbation theory for multiphoton ionization without knowledge
of the final-state wave function

Robin Shakeshaft
Physics Department, University of Southern California at Los Angeles, Los Angeles, California 90089-0484

~Received 5 October 1998; revised manuscript received 1 March 1999!

We show how the inclusive rate of decay of an atomic system by absorption of any numberN of photons can
be calculated atNth order of perturbation theory without employing the final-state~continuum! wave function.
We give a computationally useful formula which involves only the response function for a system perturbed by
absorption ofN photons. In the case of a two-electron system, the contributions to the inclusive rate from
individual channels can be separated using projection operators.@S1050-2947~99!08007-5#

PACS number~s!: 32.80.Wr, 32.90.1a
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I. INTRODUCTION

In this paper we show how the rate for multiphoton dec
of an atomic system can be calculated, within the framew
of perturbation theory, without employing the final-sta
~continuum! wave function, a feature which may be partic
larly useful when systems with two or more electrons
considered. We give a computationally tractable formula
the inclusive rate forN-photon decay atNth order which
involves only the response function for a system pertur
by absorption ofN photons. There is no restriction~in prin-
ciple! on the number of electrons. As a simple test, we p
vide numerical results for two-photon ionization of hydrog
by circularly polarized light. In the caseN52 we demon-
strate explicitly the equivalence of the formula presen
here to another formula that is directly related to the out
ing photoelectron flux through a large hypersphere. We m
use of this equivalance to develop a modified formula, ap
cable to a two-electron system, for the contributions to
inclusiveN-photon rate from individual atomic channels; th
may facilitate, in particular, the calculation ofN-photon rates
for double escape from a two-electron system.

In reformulating perturbation theory we have in min
two-electron systems and processes in which both elect
actively participate, i.e., either partial breakup accompan
by excitation of the residual one-electron system, or co
plete breakup. All three interactions — of the electrons w
the atomic nucleus and with each other — play a signific
role. In view of this, and the fact that the final-state~con-
tinuum! wave function is rich in structure, especially if bo
electrons escape, the task of accurately calculating the d
rate is a challenge. Nevertheless, there is no dearth of inte
in the problem@1#, and over the past few years significa
progress has been made in the treatment of partial brea
with simultaneous excitation by absorption of one@2# or
more@3–9# photons, as well as complete breakup@10–15# by
one photon, but complete breakup by more than one pho
remains an outstanding problem.

The difficulty posed by the final-state wave function c
be mitigated significantly by a shift of emphasis to t
initial-state channel, which can be realized through the in
duction of theM-photon response vector@16,4,11#. Let

V~ t !5FV1e2 ivt1FV2eivt ~1!
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be the interaction of the atomic system with an oscillati
monochromatic electric field of amplitudeF and frequency
v. If the system is initially in a state with energyE0 repre-
sented byuf0&, its response to the absorption ofM photons is
described by

ufM&5Ga~EM1 ih!V1ufM21&, M>1, ~2!

where Ga(E)5(E2Ha)21 is the resolvent for the Hamil-
tonian Ha that governs the unperturbed atomic syste
where~we use atomic units hereafter!

EM5E01Mv, ~3!

and whereh is positive but infinitesimal. The use of th
response function permits the replacement of the exact fi
state wave function by its asymptotic form in the matr
element for the transition rate. This is achieved by us
Ga(EM2 ih)†5Ga(EM1 ih) to shift the resolventGa(EM
2 ih) that is imbedded in the final-state bra to the ket side
the matrix element, where it acts onV1ufM21& and hence
yields theM-photon response vector. This simplification
significant because, in contrast to the final-state wave fu
tion, which satisfies ahomogeneousdifferential equation
subject tostanding-wave asymptotic boundary condition
the response function satisfies aninhomogeneousdifferential
equation,

~EM1 ih2Ha!ufM&5V1ufM21&, ~4!

subject tooutgoing-wave asymptotic boundary condition
The boundary conditions on the response function are alm
trivial to incorporate — in principle, one has merely to ad
ih to the real energy of the system — since the inhomo
neous term,V1ufM21&, satisfies outgoing-wave boundar
conditions ~damped by the bound state ifM51) and it
drives theM-photon response function. Moreover, the a
sence of ingoing waves in the boundary conditions allo
the response function to be accurately represented on a s
complex basis functions that have only outgoing-wave ch
acter, a basis that in practice guarantees the correct boun
conditions even without the inclusion ofih.

Going one step further, if the atomic system has only t
electrons, the final-state wave function can be eliminated
together by introducing projection operators that project o
1280 ©1999 The American Physical Society
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PRA 60 1281PERTURBATION THEORY FOR MULTIPHOTON . . .
the channel subspaces. This device, which is discusse
more detail in Sec. IV, has been used in calculations of cr
sections for both double photoionization and electron-imp
ionization @17,18#. In this paper we develop further th
theory discussed in Ref.@17#.

We adopt the dipole approximation and use the ‘‘velo
ity’’ gauge; thus if ê is the unit polarization vector,V1

5 ê•p/(2v) and V25 ê* •p/(2v), wherep is the total ca-
nonical momentum operator of the electrons. The rate
N-photon decay atNth order of perturbation theory is pro
portional toF2N. Factoring out the strength of the field, w
write the inclusive rate asF2NGN . The main results of this
paper are as follows. We show that

GN522 Im^fN21uV1
† ON

† Ga~EN1 ih!ONV1ufN21&,
~5!

whereON is in general non-Hermitian and is a product
N21 operators, defined as

ON5PM51
N21 S EM1 ih2Ha

EM2EN
D . ~6!

SinceON commutes withGa(E), we can use Eq.~2! to re-
write Eq. ~5! as

GN522 Im^fN21uV1
† ON

† ONufN&. ~7!

Note thatGN is the sum over all open atomic channels, a
that there is no restriction on the number of electrons wit
the system. If the system contains two electrons, denote
1 and 2, we can separate the contributions to the decay
from individual channels by inserting projection operato
that project onto the channel subspaces. Consider the cha
in which, afterN-photon absorption, one of the electrons, s
electron 2, escapes while the other electron, i.e., electro
remainsboundin a state of the residual one-electron syst
characterized by the set of quantum numbersa. We intro-
duce the operatorP1a which projects onto the subspace
which electron 1 is in statea. Since the bound states of
hydrogenic system are known in closed form,P1a can be
constructed in closed form. Writing the partial rate f
single-electron emission in channela as F2NGa,N , and de-
noting by N0 the minimum number of photons which th
system must absorb to decay, we show for the caseN52 that
if W12 denotes the interaction between the two electrons

Ga,N524 Im^fN21uV1
† P1aON

† ONufN&

22 (
M5N0

N S vM2N

~N2M !! D
2

3^fMu~V1
† !N2M@P1a ,iW12#~V1!N2MufM&. ~8!

We conjecture that Eq.~8! also applies forN.2. Note that
the commutator@P1a ,iW12# is Hermitian sinceP1a is Her-
mitian and iW12 is anti-Hermitian. The rate for double es
cape is

F2NS GN2 (
a,bd

Ga,ND ,
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-
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where the sum is over all channels in which one of the el
trons remainsbound.

A few more words about the role ofih, and the related
issue of whether or notHa is Hermitian, may be helpful. We
can treatHa as Hermitian in a matrix element^buHaua& if
DHa[^bu(Ha

†2Ha)ua& vanishes, where ^buHa
†ua&

5@^auHaub&#* . Now DHa is a volume integral, overD di-
mensions say, but we can use Green’s theorem to writeDHa
as an integral over the surface of a (D21)-dimensional hy-
persphere whose radius,R say, approaches infinity. How
ever,h approaches zero, and we have the choice of eithe~i!
letting h become zero before lettingR become infinite, or~ii !
letting R become infinite before lettingh become zero. In the
context of the breakup of a bound system, the functions
representua& andub& in position space vanish exponentiall
as exp(2gR) when R˜`, where g is positive and either
finite ~for closed channels! or infinitesimal, proportional toh
~for open channels!. Hence if choice~ii ! is made, the inte-
grand of the surface integral vanishes on the hypersur
andDHa50. For this choiceHa is Hermitian, but terms inh
cannot be dropped automatically in an expression that
derived using the Hermiticity ofHa ; one must first check
that all terms that are multiplied byh do indeed vanish as
h˜0, and sometimes they do not. The following examp
illustrates the point. We can reexpress Eq.~7! for N51 as

G1522 Im^f0uV1
† uf1& ~9!

522 Im^f0uV1
† Ga

†~E11 ih!~E12 ih2Ha!uf1& ~10!

522 Im^f1u~E12 ih2Ha!uf1&, ~11!

where we usedGa(E12 ih)(E12 ih2Ha)51 and Ga(E1

2 ih)5Ga
†(E11 ih) in the second step and Eq.~2! in the

third step. Now we can write22 Im^f1u(E12Ha)uf1& as
i ^f1u(Ha

†2Ha)uf1& which vanishes if we make choice~ii !,
in which case we arrive at the rather simple looking resu

G152h^f1uf1&. ~12!

However,^f1uf1& is infinite in the limith˜0, such that —
see footnote@19# for more details — the right-hand side o
Eq. ~12!, rather than vanishing, approachesG1. Note that
while Eq. ~12! is correct, it is not especially useful for th
purpose of computation. On the other hand, if choice~i! is
made in this example, the right-hand side of Eq.~12! van-
ishes, but̂ f1u(Ha

†2Ha)uf1& does not vanish. In general,
we make choice~i! the integrand of the surface integral do
not vanish on the hypersurface. Nevertheless, as long as
integrand oscillates asR is varied, such that the averag
value of the surface integralDHa ~averaged over many pe
riods of oscillation! vanishes, we can treatHa as Hermitian.
However, if the integrand does not vanish, and is not os
latory — which is the case for̂f1u(Ha

†2Ha)uf1& — we
cannot treatHa as Hermitian.

To summarize, in deciding whether to take the limitR
˜` or h˜0 first, there is noa priori reason to prefer one
choice over the other, but in general these limits do not co
mute, and the expression that results from a particular ch
may obtain only for that choice. In this paper we ma
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1282 PRA 60ROBIN SHAKESHAFT
choice~i!, i.e., we leth˜0 first, but we often letih remain
on display as an important reminder of the asympto
boundary conditions.

In the next section we derive Eq.~5!, and in Sec. III we
discuss an application of this formula to the determination
the inclusive rate for two-photon ionization of hydrogen
circularly polarized light. In Sec. IV we derive Eq.~8! for the
caseN52. We conclude this Introduction by remarking on
again that we use the velocity gauge; it is only in this gau
that Eqs.~5!, ~7!, and~8! hold whenN.N0.

II. INCLUSIVE RATE

To prove Eq.~5! we start from Fermi’s golden rule gen
eralized to the inclusive rate forN-photon absorption:

GN52p(
a

r~kNa!E dV z^ca~kNa!uV1ufN21& z2,

~13!

whereuca(kNa)& represents an electron that escapes into
solid angledV with momentumkNa leaving the residual ion
in a state labeled bya. Also, r(k) is the density-of-states
factor, and the sum overa is over all open channels and ma
include an integral over some of the continuum states of
residual ion. We haveukMau5kMa , where

kMa5A2~EM2ea1 ih!, ~14!

with ea the energy of the residual ion. Now manipulation
the expression on the right-hand side of Eq.~13! can be
facilitated by releasing the final-state wave function from
constraint of energy conservation. At first sight it seems p
sible to do this by merely introducing ad function in energy:

GN52p(
a

E dV dE d~EN2ea2E!

3r~k!z^ca~k!uV1ufN21& z2, ~15!

whereE5k2/2. Unfortunately, unlessN5N0 ~the minimum
number of photons which the system must absorb to dec!,
this d function does not restore energy conservation. T
reason is as follows. IfN.L>N0, the matrix element
^ca(k)uV1ufN21& is infinite whenk5kLa since, as we see
below, the integrand of~the integral representation of! this
matrix element has a nonoscillatory component which d
not vanish as the photoelectron coordinate tends to infin
consequently, the non-energy-conserving regionsE'EL
2ea , whereL5N0 ,N011, . . . ,N21, contribute to the in-
tegral overE, despite the presence ofd(EN2ea2E).

To explain this divergence further, we consider t
asymptotic boundary condition satisfied by the respo
function in position space. Letx be the position vector of the
electron that escapes, withr the radial coordinate. We ignor
the distortion caused by the Coulomb tail, and the possib
that the residual ion is in a continuum state~these are matter
that are only of peripheral concern here!. If M>N0, we
have, forr;` andwithin the velocity gauge@20#,

^xufM&; (
L5N0

M

(
a

eikLar

r
f aML , ~16!
c

f

e

e

e

e
s-

y
e

s
y;

e

y

where f aML is the amplitude~which does not depend onr )
for real absorption ofL photons and virtual absorption o
M2L photons, where by ‘‘virtual’’ absorption we are refe
ring to the absorption of photons by afree electron moving
through the radiation field.~At large values ofr the photo-
electron is more or less free of the force exerted by the
sidual ion, but the radiation field is still present. A free ele
tron cannot truly absorb photons, i.e., it cannot permane
retain any energy that it absorbs from the radiation field,
it can absorb energy over times much shorter than the c
time 2p/v; this energy is returned to the field before th
cycle is complete.! If L>N0, we have, at least for the groun
state of the residual ion and possibly for some excited st
also, RekLa.0. For such channels the term ineikLar /r is not
square-integrable~in the limit h˜0) since it does not vanish
sufficiently rapidly asr increases. HencêxuV1ufM& is not
square-integrable forM>N0. More importantly, the inte-
grand of the matrix element̂ ca(k)uV1ufN21& has a
nonoscillatory component which does not vanish atr;`
whenk5kLa .

To proceed, we observe that

~EM2Ha!uca~kNa!&5~EM2EN!uca~kNa!&,

and hence that

ONuca~kNa!&5uca~kNa!&.

Therefore, we can replaceuca(kNa)& by ONuca(kNa)& in
Fermi’s golden rule, Eq.~13!. The advantage of doing thi
becomes apparent after first noting that since (¹x

2

1k2)exp(ikr)/r524pd(x), and since the kinetic energy op
erator commutes withV1 , the function^xuONV1ufM& is a
superposition of square-integrable terms, each of which f
off as eikLar /r 2 asr increases. Consequently,^xuONV1ufM&
is square-integrable; an example, for the caseN52, is given
in the next section — see Eq.~22!. Furthermore, we can trea
ON as Hermitian~in the limit h˜0) within the integrand of
the matrix element̂ ca(kNa)uONV1ufN21& since, in posi-
tion space,̂ ca(kNa)ux& oscillates for large values ofr as a
standing wave with wave numberkNa while ^xuV1ufN21&
oscillates as a sum of outgoing waves with the differe
wave numberskN0a , kN011,a , . . . ,kN21,a , so that the prod-

uct of ^ca(kNa)ux& and ^xuV1ufN21& oscillates for large
values of r. Therefore, ^ca(kNa)uV1ufN21&
5^ca(kNa)uONV1ufN21&, and if we make this insertion
into Fermi’s golden rule before introducing thed function,
only the energy-conserving regionE'EN contributes. Thus
in place of Eq.~15! we write

GN52p(
a

E dV dE d~EN2ea2E!r~k!

3^fN21uV1
† ON

† uca~k!&^ca~k!uONV1ufN21&.

~17!

We can now use
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d~EN2Ha!5(
a

E dV dE r~k!

3d~EN2ea2E!uca~k!&^ca~k!u, ~18!

where we have omitted bound states sinceEN.0, to write

GN52p^fN21uV1
† ON

† d~EN2Ha!ONV1ufN21&. ~19!

Recalling that

Ga~EN1 ih!5P
1

EN2Ha
2 ipd~EN2Ha!, ~20!

where P implies principal value, we substitute ford(EN
2Ha) on the right-hand side of Eq.~19!. Noting that the
principal part disappears when the imaginary part is tak
we arrive at Eq.~5!. To summarize, whenN is equal to the
minimum number of photons,N0, which the system mus
absorb to decay, the inclusion ofON is unnecessary. How
ever, if ON were omitted in the caseN.N0, non-energy-
conserving states would play a role and the real absorptio
less thanN ~but >N0) photons would yield a spurious con
tribution to GN .

III. TWO-PHOTON IONIZATION

In this section we specialize to two-photon decay. F
computational purposes it is convenient to carry through
operation withO2 in O2V1uf1&. We have

O2V1uf1&52~1/v!@V1 ,Ha#uf1&

2~1/v!V1~E12Ha!uf1&. ~21!

The commutator@V1 ,Ha# involves the interaction,W say,
of the electrons within the system; we have@V1 ,Ha#

5 ê•(pW)/(2v). Using Eq.~4! to replace (E12Ha)uf1& by
V1uf0&, we obtain

O2V1uf1&52~1/2v2!ê•~pW!uf1&2~1/v!~V1!2uf0&.
~22!

In this last formO2V1uf1& is evidently square-integrabl
since in position space (pW) and uf0&, respectively, fall off
as an inverse square and as an exponential of the distan

We have calculated the rate for two-photon ionizati
from the ground state of hydrogen, by circularly polariz
light, using Eqs.~5! and ~22!. We used the Dalgarno-Lewi
method to determineuf1& and Ga(E21 ih)O2V1uf1&, i.e.,
we solved the inhomogeneous equations (E12Ha)uC&
5V1uf0& and (E22Ha)uC&5O2V1uf1& subject to
outgoing-wave boundary conditions. We expressed th
equations on a complex basis consisting of the functi
Ln(2ikr )eikrYlm( x̂), whereLn(x) is a Laguerre polynomia
and Ylm( x̂) is a spherical harmonic. The parameterk was
chosen to lie in the upper right quadrant of the comp
plane so that the basis simulates outgoing-wave boun
conditions~the inclusion ofih is unnecessary!. After radial
and angular integration, the matrix element on the right-h
side of Eq.~5! becomes a finite double sum of the form
n,

of

r
e

e.

se
s

x
ry

d

^fN21uV1
† ON

† Ga~EN1 ih!ONV1ufN21&

5 (
n50

nmax

(
n850

nmax

Tnn8~k* ,k!, ~23!

wheren andn8 are indices of the Laguerre polynomial, wit
nmax the highest degree included in the basis, and wh
Tnn8(k* ,k) is a function which depends on bothk andk* ,
and is therefore nonanalytic ink. The dependence onk*
arises from the complex conjugation of the radial basis fu
tions in the construction of̂fN21u(ONV1)†. In view of the
nonanalyticity of the double sum, one may expect it to co
verge slowly, or perhaps not at all. In fact, whe
N5N0 (52) the double sum converges rapidly; but in th
caseONV1ufN21& represents a closed channel, and its rad
part is real, implying that the double sum can be recast i

TABLE I. Convergence of the rate for two-photon ionization
H(1s) by circularly polarized light of wavelengthsl540 and 70
nm vs the numbern of terms in a Pade´ sum over the radial basis
functions used in the calculation. The rate is in atomic units, a
has been divided byF4, whereF is the amplitude of the electric
field. The calculations were performed with a complex basis co
posed of 30 radial functions~see text!, which depend on a complex
wave numberk chosen so thatuku50.8 and argk575° or 60°.

l540 (nm) l540 (nm) l570 (nm) l570 (nm)
n argk575° argk560° argk575° argk560°

1 0.08642 0.10039 0.90376 0.51690
2 20.09101 20.13874 20.50374 1.00855
3 20.01774 20.02812 1.44483 0.53818
4 0.03741 0.06083 1.88777 2.32939
5 0.02147 0.02616 0.96448 0.79242
6 0.00510 0.00442 0.62710 0.56809
7 0.00918 0.00910 0.80332 0.87729
8 0.01199 0.01032 0.72366 0.77122
9 0.01398 0.00865 0.81687 0.83169

10 0.01244 0.01118 0.81641 0.79303
11 0.01240 0.01275 0.80689 0.80754
12 0.01265 0.01261 0.79981 0.80091
13 0.01208 0.01274 0.80366 0.80283
14 0.01214 0.01256 0.80135 0.80091
15 0.01212 0.01208 0.80169 0.80213
16 0.01213 0.01218 0.80170 0.80209
17 0.01213 0.01212 0.80172 0.80128
18 0.01216 0.01209 0.80173 0.80168
19 0.01215 0.01223 0.80173 0.80149
20 0.01216 0.01212 0.80173 0.80149
21 0.01216 0.01214 0.80173 0.80151
22 0.01216 0.01215 0.80175 0.80154
23 0.01216 0.01215 0.80176 0.80153
24 0.01216 0.01215 0.80175 0.80155
25 0.01216 0.01215 0.80176 0.80158
26 0.01217 0.01216 0.80175 0.80156
27 0.01216 0.01215 0.80177 0.80158
28 0.01216 0.01215 0.80174 0.80155
29 0.01216 0.01215 0.80173 0.80159
30 0.01216 0.01215 0.80174 0.80154
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1284 PRA 60ROBIN SHAKESHAFT
form that involves only sums of terms that are analytic ink.
However, whenN.N0, i.e., whenN52 and N051, the
convergence of the double sum is slow; but it can be ac
erated by using Pade´ summation. We evaluated the inn
sum, i.e., the sum overn8 on the right-hand side of Eq.~23!,
directly, but we evaluated the outer sum, overn, by Pade´
summation using Wynn’s epsilon algorithm@21#. The rate of
convergence is illustrated in Table I for calculations do
with nmax530, uku50.8, and argk575° or 60°.~We made
no attempt to choose the optimal value ofk for rapid con-
vergence.! These results for the two-photon rate are in go
agreement~discrepancies of less than 1%! with earlier esti-
mates@22,23# obtained using other methods.

Were we to use the length gauge, in whichV15 ê•x/2,
the commutator @V1 ,Ha# would be i ê•p/2, and
@V1 ,Ha#uf1& would no longer be square-integrable wh
N.N0. We verified that whenN5N0 (52) the results for
the two-photon decay rate are the same in the length
velocity gauges; but whenN.N0, i.e., whenN52 andN0
51, we were unable to achieve convergence in the len
gauge.

IV. FLUX FORMULA AND PARTIAL RATE

In this section, we verify for the caseN52 the formula,
Eq. ~8!, for the partial rate forN-photon decay of a two-
electron system. We start with an alternative expression@17#
for the inclusiveN-photon decay rate:

GN5 i (
M5N0

N

(
M85N0

N
~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2M~Ha2Ha

†!~V1!N2M8ufM8&. ~24!

Note the absence ofih, and observe thatHa is not Hermitian
in this expression~recall the discussion near the end of t
Introduction!. Equation~24! relates the rate directly to th
outgoing photoelectron flux through a large hypersphere
follows upon applying Green’s theorem to transform fro
volume to surface integral. While Eq.~24! does not involve
the final-state wave function, it is not as useful for compu
tional purposes as Eq.~5!; nevertheless, it is formally a use
ful result.

The path that connects the flux formula Eq.~24! to Eq.~5!
provides the way to establish the formula, Eq.~8!, for the
partial rate. For simplicity, we demonstrate the equivale
of Eqs. ~5! and ~24! only in the caseN52. ~We do not
restrict the number of electrons.! PuttingN52 andN051 in
Eq. ~24! yields four terms:

G25G2a1G2b1G2c1G2d , ~25!

where

G2a5 i ^f2u~Ha2Ha
†!uf2&, ~26!

G2b5~ i /v2!^f1uV1
† ~Ha2Ha

†!V1uf1&, ~27!

G2c52~ i /v!^f1uV1
† ~Ha2Ha

†!uf2&, ~28!

G2d5G2c* . ~29!
l-

e

d

nd

th

as

-

e

SinceE2 is real, we can reexpressG2a as

G2a52 Rei ^f2u~E22Ha!†uf2&, ~30!

52 Rei ^f1uV1
† uf2&, ~31!

52 Rei ^f1uV1
† Ga~E2!V1uf1&, ~32!

where in the second and third steps we used Eqs.~4! and~2!.
Writing

G2b52 Re~ i /v2!^f1uV1
† ~E02Ha

†!V1uf1&, ~33!

we have

G2a1G2b52 Re~ i /v2!

3^f1uV1
† @v2Ga~E2!1E02Ha

†#V1uf1&.

~34!

We now manipulate the expression in square brackets on
right-hand side of Eq.~34!:

v2Ga~E2!1E02Ha
†

5@v21~E02Ha
†!~E22Ha!#Ga~E2! ~35!

5@~E12Ha
†!~E12Ha!1v~Ha2Ha

†!#Ga~E2! ~36!

5v2O2
†Ga~E2!O21v~Ha2Ha

†!Ga~E2!. ~37!

It follows that

G2a1G2b52 Rei ^f1uV1
† O2

†Ga~E21 ih!O2V1uf1&

12 Re~ i /v!^f1uV1
† ~Ha2Ha

†!uf2&. ~38!

The first term on the right-hand side of Eq.~38! is G2. Add-
ing G2c1G2d results in cancellation of the second term
the right-hand side of Eq.~38!, establishing the equivalenc
of Eqs.~5! and ~24! for N52.

The merit of the flux formula is that it depends only o
the asymptotic behavior of the electrons on the surface
large hypersphere. Hence we can immediately write dow
formal expression for the partial rate for single-electr
emission in channela from a two-electron system:

Ga,N5 i (
M5N0

N

(
M85N0

N
~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2MPa~Ha2Ha

†!Pa~V1!N2M8ufM8&,

~39!

where Pa is @24# the Hermitian projection operatorPa
5P1a1P2a2P1aP2a which projects onto the union of sub
spaces in which electron 1 or 2 is in statea. We can drop
P1aP2a from Pa on the right-hand side of Eq.~39! since
P1aP2a projects onto the subspace in which both electro
arebound, a region which does not contribute to the phot
electron flux. We now write

Ha[H121W12, ~40!

where, recall,W12 is the interaction between the electro
and H125H11H2, whereH1 and H2 are the Hamiltonians
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of the one-electron residual systems created by the depa
of electron 1 or 2, respectively. Note thatP1a andP2a each
commute withH1 andH2, and hence withH12. SinceW12 is
Hermitian, we can drop it fromHa on the right-hand side o
Eq. ~39!. We thereby obtain

Ga,N5 i (
M5N0

N

(
M85N0

N
~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2M~P1a1P2a!~H122H12

† !~P1a1P2a!

3~V1!N2M8ufM8&

52 Rei (
M5N0

N
v2M22N

~N2M !! 2
^fMu~V1

† !N2M~P1a1P2a!

3~EN2H12
† !~P1a1P2a!~V1!N2MufM&

1 i (
M5N0

N

(
M8ÞM

~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2M~P1a1P2a!~H122H12

† !~P1a1P2a!

3~V1!N2M8ufM8&. ~41!

We can commute (P1a1P2a) from the left to the right of
(E2H12

† ), and from the right to the left of (H122H12
† ), on

the right-hand side of Eq.~41!. This gives (P1a1P2a)2 on
the right and left, respectively, of (E2H12

† ) and (H12

2H12
† ). Since P1a

2 5P1a and P2a
2 5P2a , we have (P1a

1P2a)25P1a1P2a12P1aP2a . As before, we can drop
P1aP2a . This yields an expression that is linear in (P1a
1P2a), and ~since the electrons are identical! the separate
contributions fromP1a andP2a are equal. It follows that

Ga,N54 Rei (
M5N0

N
v2M22N

~N2M !! 2
^fMu~V1

† !N2M~EN2H12
† !

3P1a~V1!N2MufM&

12i (
M5N0

N

(
M8ÞM

~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2MP1a~H122H12

† !~V1!N2M8ufM8&

54 Rei (
M5N0

N
~v!2M22N

~N2M !! 2
^fMu~V1

† !N2M@~EN2Ha
†!
to
en
-

hy
ure 1W12#P1a~V1!N2MufM&

12i (
M5N0

N

(
M8ÞM

~2v!M1M822N

~N2M !! ~N2M 8!!

3^fMu~V1
† !N2MP1a~Ha2Ha

†!~V1!N2M8ufM8&,

~42!

where in the last step we reinsertedW12 in Ha . Note
that 2 Rei ^xuW12P1aux& can be rewritten as
2 i ^xu@P1a ,W12#ux&.

PuttingN52 andN051 in Eq. ~42! gives

Ga,25Ga,2a1Ga,2b1Ga,2c1Ga,2d , ~43!

where

Ga,2a54 Rei ^f2u~E22Ha!†P1auf2&

22i ^f2u@P1a ,W12#uf2&, ~44!

Ga,2b54 Re~ i /v2!^f1uV1
† ~E02Ha

†!P1aV1uf1&2~2i /v2!

3^f1uV1
† @P1a ,W12#V1uf1&, ~45!

Ga,2c52~2i /v!^f1uV1
† P1a~Ha2Ha

†!uf2&, ~46!

Ga,2d5G2c* . ~47!

We now retrace the steps leading from Eq.~25! to Eq. ~38!,
and find

Ga,2a1Ga,2b54 Rei ^f1uV1
† P1aO2

†Ga~E21 ih!O2V1uf1&

14 Re~ i /v!^f1uV1
† P1a~Ha2Ha

†!uf2&

22i ^f2u@P1a ,W12#uf2&2~2i /v2!

3^f1uV1
† @P1a ,W12#V1uf1&. ~48!

Adding G2c1G2d yields Eq.~8! for N52.
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