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We show how the inclusive rate of decay of an atomic system by absorption of any nNrabphotons can
be calculated atth order of perturbation theory without employing the final-statntinuum wave function.
We give a computationally useful formula which involves only the response function for a system perturbed by
absorption ofN photons. In the case of a two-electron system, the contributions to the inclusive rate from
individual channels can be separated using projection operg&#6850-29479)08007-3

PACS numbd(s): 32.80.Wr, 32.90ta

[. INTRODUCTION be the interaction of the atomic system with an oscillating
monochromatic electric field of amplitude and frequency
In this paper we show how the rate for multiphoton decayw. If the system is initially in a state with enerdy, repre-
of an atomic system can be calculated, within the frameworlsented by ¢), its response to the absorptionMfphotons is
of perturbation theory, without employing the final-state described by
(continuum wave function, a feature which may be particu- )
larly useful when systems with two or more electrons are |om)=Ga(Em+inV.ildn-1), M=1, 2
considered. We give a computationally tractable formula for 1. .
the inclusive rate fomN-photon decay aiNth order which Wh?reGa(E):(E_Ha) " is the resolvent for th9 Hamil-
involves only the response function for a system perturbe(.rjon'an Ha that governs _the unperturbed atomic system,
by absorption ofN photons. There is no restrictidm prin- where(we use atomic units hereafjer
ciple) on the number of electrons. As a simple test, we pro- E.—E.+Meo 3)
vide numerical results for two-photon ionization of hydrogen Mo ’

by circularly polarized light. In the casd=2 we demon- and wherey is positive but infinitesimal. The use of the
strate explicitly the equivalence of the formula presentedesponse function permits the replacement of the exact final-
here to another formula that is directly related to the outgostate wave function by its asymptotic form in the matrix
ing photoelectron flux through a large hypersphere. We makglement for the transition rate. This is achieved by using
use of this equivalance to develop a modified formula, appliG,(E,,~i %) =G,(Ey+i7) to shift the resolvenG,(Ey
cable to a two-electron system, for the contributions to the—j ;) that is imbedded in the final-state bra to the ket side of
inclusiveN-photon rate from individual atomic channels; this the matrix element, where it acts ah, |y _1) and hence
may facilitate, in particular, the calculation lfphoton rates  yjelds theM-photon response vector. This simplification is
for double escape from a two-electron system.  gjgnificant because, in contrast to the final-state wave func-
In reformulating perturbation theory we have in mind tion, which satisfies shomogeneousiifferential equation
two-electron systems and processes in which both electrorgﬁjbject tostandingwave asymptotic boundary conditions,

actively participate, i.e., either partial breakup accompanieghe response function satisfiesiahomogeneousifferential
by excitation of the residual one-electron system, or comgquation,

plete breakup. All three interactions — of the electrons with

the atomic nucleus and with each other — play a significant (Em+in—Hu|om)=Vi|dm-1), (4)

role. In view of this, and the fact that the final-stdt®n-

tinuum) wave function is rich in structure, especially if both subject tooutgoingwave asymptotic boundary conditions.

electrons escape, the task of accurately calculating the decdjne boundary conditions on the response function are almost

rate is a challenge. Nevertheless, there is no dearth of interelétvial to incorporate — in principle, one has merely to add

in the problem[1], and over the past few years significant i 77 to the real energy of the system — since the inhomoge-

progress has been made in the treatment of partial breakupeous termV. |¢y_1), satisfies outgoing-wave boundary

with simultaneous excitation by absorption of of or  conditions (damped by the bound state M=1) and it

more[3—9] photons, as well as complete breakap—15 by  drives theM-photon response function. Moreover, the ab-

one photon, but complete breakup by more than one photosence of ingoing waves in the boundary conditions allows

remains an outstanding problem. the response function to be accurately represented on a set of
The difficulty posed by the final-state wave function cancomplex basis functions that have only outgoing-wave char-

be mitigated significantly by a shift of emphasis to theacter, a basis that in practice guarantees the correct boundary

initial-state channel, which can be realized through the introconditions even without the inclusion of.

duction of theM-photon response vectft6,4,11. Let Going one step further, if the atomic system has only two
_ _ electrons, the final-state wave function can be eliminated al-
V(t)=FV, e '+ FV_g'*t (1)  together by introducing projection operators that project onto
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the channel subspaces. This device, which is discussed imhere the sum is over all channels in which one of the elec-
more detail in Sec. IV, has been used in calculations of crossons remaindound

sections for both double photoionization and electron-impact A few more words about the role ofy, and the related
ionization [17,18. In this paper we develop further the issue of whether or ndt, is Hermitian, may be helpful. We

theory discussed in Reff17]. can treatH, as Hermitian in a matrix elemerfb|H,|a) if
We adopt the dipole approximation and use the “veloc-AH,=(b|(HI—H_,)|a)  vanishes, where (b|H]|a)
ity” gauge; thus if € is the unit polarization vectory,  =[(a|H./b)]*. Now AH, is a volume integral, oveD di-

=& pl(20w) andV_=¢*-p/(2w), wherep is the total ca- mensions say, but we can use Green’s theorem to Wiitg
nonical momentum operator of the electrons. The rate foRS an integral over the surface of & 1)-dimensional hy-
N-photon decay aNth order of perturbation theory is pro- Persphere whose radiuR say, approaches infinity. How-
portional toF2N. Factoring out the strength of the field, we €Ver,7 approaches zero, and we have the choice of either
write the inclusive rate as2NT'y,. The main results of this letting 7 become zero before lettirflgbecome infinite, ofii)

paper are as follows. We show that letting R become infinite before letting become zero. In the
context of the breakup of a bound system, the functions that
Iy=—21m(py_1|VIOLGL(En+i7)ONV. | dn-1), representa) and|b) in position space vanish exponentially,

(5) as exp-yR) when R—, where y is positive and either
finite (for closed channelsor infinitesimal, proportional toy
where Oy is in general non-Hermitian and is a product of (for open channejs Hence if choice(ii) is made, the inte-
N—1 operators, defined as grand of the surface integral vanishes on the hypersurface
. andAH,=0. For this choicéH , is Hermitian, but terms i
Em+in—Ha cannot be dropped automatically in an expression that was
En—En derived using the Hermiticity oH,; one must first check
that all terms that are multiplied by do indeed vanish as
SinceOy commutes withG,(E), we can use Eq2) to re-  »—0, and sometimes they do not. The following example

On=IIy_4

(6)

write Eq.(5) as illustrates the point. We can reexpress Ef.for N=1 as
I'y=—2Im{¢y_4| V! Ol On| dn). (7 Ti==21m(¢o|VL|p1) 9
Note thatl"y is the sum over all open atomic channels, and _ —21m ¢>0|VLG;(E1+i M (Ex—in—Hy)|d1) (10)

that there is no restriction on the number of electrons within

the system. If the system contains two electrons, denoted by )

1 and 2, we can separate the contributions to the decay rate =~ 2 IM(¢1|(E1—in—H,)[$1), 11
from individual channels by inserting projection operators ) )

that project onto the channel subspaces. Consider the chaniépere we useds,(E;—i»)(E;—i7—Ha)=1 and G,(E,
in which, afterN-photon absorption, one of the electrons, say— i 7)=G4(E1+i7) in the second step and E¢) in the
electron 2, escapes while the other electron, i.e., electron fhird step. Now we can write-2 Im(¢,|(E;—H,)| 1) as

remainsboundin a state of the residual one-electron systemi{¢1|(Hi—H,)|¢1) which vanishes if we make choicé),

characterized by the set of quantum numbersWe intro-  in which case we arrive at the rather simple looking result
duce the operatoP,, which projects onto the subspace in
which electron 1 is in stater. Since the bound states of a Ty =27(¢a| ¢1). (12

hydrogenic system are known in closed forBy, can be

constructed in closed form. Writing the partial rate for However,(¢,| 1) is infinite in the limit —0, such that —

single-electron emission in channelasF?\T',, , and de-  see footnotd19] for more details — the right-hand side of

noting by Ny the minimum number of photons which the Eq. (12), rather than vanishing, approachEs. Note that

system must absorb to decay, we show for the das@ that ~ while Eq. (12) is correct, it is not especially useful for the

if Wy, denotes the interaction between the two electrons purpose of computation. On the other hand, if chdiges
made in this example, the right-hand side of EtR) van-

I'yn=—4 IM( pn—1|VT P1,0L0n dn) ishes, buf ¢,|(H]—H_)| #1) does not vanish. In general, if
N VAN |2 we make choicéi) the integrand of the surface integral does
5 2 ( w ) not vanish on the hypersurface. Nevertheless, as long as the
M=N, | (N—M)! integrand oscillates aR is varied, such that the average

value of the surface integrdlH, (averaged over many pe-
X (bl (VN MIP L, iW](VON M dy). (8)  riods of oscillation vanishes, we can treat, as Hermitian.
However, if the integrand does not vanish, and is not oscil-
We conjecture that Eq8) also applies foN>2. Note that |atory — which is the case fofe|(HI—Hy)|p1) — we
the commutatof P,, ,iW,,] is Hermitian sinceP,, is Her-  ~gnnot treat,, as Hermitian.

mitian andiW, is anti-Hermitian. The rate for double es- 1o summarize, in deciding whether to take the lirRit

cape is —o or p—0 first, there is na priori reason to prefer one
choice over the other, but in general these limits do not com-
FZN( Ty=> T ) mute, and the expression that results from a particular choice
N a,N | . . .
a,bd may obtain only for that choice. In this paper we make
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choice(i), i.e., we letp—0 first, but we often let» remain  wheref . is the amplitudgwhich does not depend ar)

on display as an important reminder of the asymptoticfor real absorption ol photons and virtual absorption of

boundary conditions. M —L photons, where by “virtual” absorption we are refer-
In the next section we derive E¢p), and in Sec. Ill we ring to the absorption of photons byfi@e electron moving

discuss an application of this formula to the determination othrough the radiation field At large values ofr the photo-

the inclusive rate for two-photon ionization of hydrogen by electron is more or less free of the force exerted by the re-

circularly polarized light. In Sec. IV we derive E) for the  sidual ion, but the radiation field is still present. A free elec-

caseN=2. We conclude this Introduction by remarking once tron cannot truly absorb photons, i.e., it cannot permanently

again that we use the velocity gauge; it is only in this gaugeetain any energy that it absorbs from the radiation field, but

that Egs.(5), (7), and(8) hold whenN>N,. it can absorb energy over times much shorter than the cycle
time 27/ w; this energy is returned to the field before the
Il. INCLUSIVE RATE cycle is completg.If L=Ng, we have, at least for the ground

) state of the residual ion and possibly for some excited states
To prove Eq.(5) we start from Fermi's golden rule gen- 450, Rek, ,>0. For such channels the terméfft«'/r is not

eralized to the inclusive rate foi-photon absorption: square-integrablén the limit — 0) since it does not vanish
sufficiently rapidly asr increases. Hencéx|V | ¢y) is not
Iy=27), p(kNa)f dQ o (kna) Vil dn- 1), square-integrable foM=N,. More importantly, the inte-

grand of the matrix elementy,(K)|V,|¢n_1) has a
13 nonoscillatory component which does not vanishr ate

where|y,(ky,)) represents an electron that escapes into thd/"e€nk=Ki,.

solid angledQ) with momentumky,, leaving the residual ion To proceed, we observe that

in a state labeled by. Also, p(k) is the density-of-states

factor, and the sum over is over all open channels and may (Em—Ha) | ¥a(kna)) = (Em—En)| #a(Kna))s
include an integral over some of the continuum states of the

residual ion. We havék,, .| =Ky, where

kMa: V2(EM_ea+i77)v (14)

with e, the energy of the residual ion. Now manipulation of
the expression on the right-hand side of Ef3) can be
facilitated by releasing the final-state wave function from theTherefore, we can repladel,(Ky.)) by On|#.(Kng)) in
constraint of energy conservation. At first sight it seems posFermi's golden rule, Eq(13). The advantage of doing this
sible to do this by merely introducing&function in energy: becomes apparent after first noting that sinc§)2( (
+k?)exp(kr)/r=—4m&Xx), and since the kinetic energy op-
y=27> J dQ dE S(Ey—e,—E) erator commutes wit,, , the function(x|O\V |m) is a
@ superp(_?(sn:j)n2 of square-lntegrgble terms, Exagl (\)}‘v|v2|c;1 falls
off ase'Le"/r< asr increases. Consequent NVl dm
Xp()Kra(K)V | dn-)P, (15 is square-integrable; an example, for the ddse2, is given
in the next section — see E(R2). Furthermore, we can treat

number of photons which the system must absorb to decayoN as Hermitian(in the limit »—0) within the integrand of

this § function does not restore energy conservation. Thét.he matrix elerlen(%(k”“.)llci'“vﬁ¢|N‘1> smlce, |nfp03|-
reason is as follows. IfN>L=N,, the matrix element lon space( yq(kn,)|x) oscillates for large values afas a

(0, (K) |V |by_y) is infinite whenk=k_, since, as we see standing wave with wave numbé&g, while (x|V ,|dyn_1)

below, the integrand ofthe integral representation )othis oscillates as a sum of outgoing waves with the different

matrix element has a nonoscillatory component which doed/ave numberkNoa, kNo+1va’ -+ Kn-1,, SO that the prod-

not vanish as the photoelectron coordinate tends to infinitytiCt of (#.(Kno)[X) and (x|V.|¢y_1) oscillates for large

consequently, the non-energy-conserving regidhsE,  values  of r.  Therefore, (¢a(Kna)|Vildn-1)

—e,, whereL=Ng,Ng+1, ... N—1, contribute to the in-  ={#%a(Kna)|ONV i |dn-1), and if we make this insertion

tegral overE, despite the presence 6{Ey—e,—E). into Fermi’s golden rule before introducing tl&function,
To explain this divergence further, we consider theonly the energy-conserving regidtrEy contributes. Thus

asymptotic boundary condition satisfied by the responsén place of Eq.(15) we write

function in position space. Letbe the position vector of the

electron that escapes, wittthe radial coordinate. We ignore

the distortion caused by the Coulomb tail, and the possibility PNZZWE f dQ dE S8(Ey—e,—E)p(k)

that the residual ion is in a continuum stétieese are matters @

that are only of peripheral concern herdéf M=N,, we % viof K KOWW
have, forr~c andwithin the velocity gaugg20], (-1l V3 ONl#a(K) ) (k)| ONV [y —0)-
17

and hence that

ON| l/,a(kNa)> = | l//a(kNa)>'

whereE =k?/2. Unfortunately, unlessl=N, (the minimum

eik,_a(r

f oL 16
r ML ( ) We can now use

<X|¢M>~L:EN %
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TABLE I. Convergence of the rate for two-photon ionization of
S(EN—Ha)=2 j dQ dE p(k) H(1s) by circularly polarized light of wavelengths=40 and 70
@ nm vs the numben of terms in a Padsum over the radial basis
X S(En—€,— |¢a(k)><¢a(k)|y (18) functions used in the calculation. The rate is in atomic units, and

has been divided b¥*, whereF is the amplitude of the electric

where we have omitted bound states sifige>0, to write field. The calculations were performed with a complex basis com-
' posed of 30 radial functionsee text, which depend on a complex

FN:27T<¢N—1|V10L5(EN_ Ha)OWV.s | by 1), (19 wave number chosen so thdtx|=0.8 and argc=75° or 60°.

A=40 (nm) A=40 (nm) A=70 (nm) A=70 (nm)

Recalling that
9 n argk=75° argk=60° argk=75° argk=60°

0.08642 0.10039 0.90376 0.51690
—0.09101 —0.13874 —0.50374 1.00855
—0.01774 —0.02812 1.44483 0.53818
where P implies principal value, we substitute fa¥(Ey 0.03741 0.06083 1.88777 2.32939

1
GoEntim=Pz—m—imd(Ey-Ha), (20 .
3
4
—H,) on the right-hand side of Eq19). Noting that the 5 0.02147 0.02616 0.96448 0.79242
6
7
8
9

En—Hg,

principal part disappears when the imaginary part is taken, 0.00510 0.00442 0.62710 0.56809
we arrive at Eq(5). To summarize, wheil is equal to the 0.00918 0.00910 0.80332 0.87729
minimum number of photond\Ny, which the system must

: , , 0.01199 0.01032 0.72366 0.77122
absorb to decay, the inclusion €fy is unnecessary. How- 0.01398 0.00865 0.81687 0.83169
ever, if Oy were omitted in the casBl>N;,, non-energy- 10 0.01244 0.01118 0.81641 0.79303
conserving states would play a role and the real absorption oh 0.01240 0.01275 0.80689 0.80754
less tharN (but =N,) photons would yield a spurious con- 12 0'01265 0'01261 0'79981 0'80091
tribution to'y. 13 0.01208 0.01274 0.80366 0.80283
14 0.01214 0.01256 0.80135 0.80091
1. TWO-PHOTON IONIZATION 15 0.01212 0.01208 0.80169 0.80213
In this section we specialize to two-photon decay. For16 0.01213 0.01218 0.80170 0.80209
computational purposes it is convenient to carry through the17 0.01213 0.01212 0.80172 0.80128
19 0.01215 0.01223 0.80173 0.80149
O,V | )= — (L) V, Hall h1) 20 0.01216 0.01212 0.80173 0.80149
21 0.01216 0.01214 0.80173 0.80151
—(Uo)V.(E;—Ha)|¢1). 2D 2 001216 0.01215 0.80175 0.80154
. . . 23 0.01216 0.01215 0.80176 0.80153
The commutatofV, ,H,] involves the interactionyV say, 24 0.01216 0.01215 0.80175 0.80155
of the electrons within the system; we hay¥ ., ,H,] 25 0'01216 0'01215 0.80176 0.80158
=€ (pW)/(20). Using Eq.(4) to replace E1—Ha)[d1) by 556 01217 0.01216 080175  0.80156
V.| o), we obtain 27 0.01216 0.01215 080177  0.80158
oA 2 28 0.01216 0.01215 0.80174 0.80155
OyV.|g1)=—(1120%)€- (PW)| 1) — (Lw) (V1 )?| do)- 29 0.01216 0.01215 0.80173 0.80159
(22) 30 0.01216 0.01215 0.80174 0.80154
In this last formO,V . |¢,) is evidently square-integrable
since in position spacepV) and| ), respectively, fall off + ot )
as an inverse square and as an exponential of the distance. (dn-1|ViO\Ga(En+in)ONV i |dn-1)
We have calculated the rate for two-photon ionization Nmax Nmax
from the ground state of hydrogen, by circularly polarized — E Z T (%K) (23)
light, using Egs(5) and(22). We used the Dalgarno-Lewis n=0 n'—q

method to determingp,) and G,(E,+i7)0,V,|¢1), i.e.,
we solved the inhomogeneous equation&,{H,)| V)
=V.|¢o) and E,—Ha)|¥)=0,V,[¢1) subject to
outgoing-wave boundary conditions. We expressed the /(x* ,«) is a function which depends on boihand «*
equations on a complex basis consisting of the functlon,f;u[‘]’(‘j is therefore nonanalytic ir. The dependence or*

La(2ikr)e'"Y, m(X), whereL ,(x) is a Laguerre polynomial  arises from the complex conjugation of the radial basis func-
and Y,m(x) is a spherical harmonic. The parametemwas tions in the construction of¢y_1|(OyV4)". In view of the
chosen to lie in the upper right quadrant of the complexnonanalyticity of the double sum, one may expect it to con-
plane so that the basis simulates outgoing-wave boundamerge slowly, or perhaps not at all. In fact, when
conditions(the inclusion ofi 7 is unnecessajy After radial N=N, (=2) the double sum converges rapidly; but in this
and angular integration, the matrix element on the right-handaseO\V, | ¢y _1) represents a closed channel, and its radial
side of Eq.(5) becomes a finite double sum of the form part is real, implying that the double sum can be recast in a

wheren andn’ are indices of the Laguerre polynomial, with
Nmax the highest degree included in the basis, and where
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form that involves only sums of terms that are analytiacin ~ SinceE, is real, we can reexpred%,, as
However, whenN>N, i.e., whenN=2 and Ny=1, the

convergence of the double sum is slow; but it can be accel- T 22=2 Rei(o|(E;—Ha) | ), (30)
erated by using Padsummation. We evaluated the inner , +
sum, i.e., the sum over’ on the right-hand side of E(23), =2 Rei(¢1|VL|¢2), (31

directly, but we evaluated the outer sum, overby Pade
summation using Wynn's epsilon algoritH@1]. The rate of

convergence is illustrated in Table | for calculations done . .
with n,=30, |«|=0.8, and arg=75° or 60°.(We made where in the second and third steps we used Ejsand(2).

=2 Rei(¢1| VL Ga(Ex)V | 1), (32)

. ; Writing
no attempt to choose the optimal value rofor rapid con-
vergence. These results for the two-photon rate are in good Ip=2Reilwd) (VI (Eo—H)V,|d), (33
agreementdiscrepancies of less than 1%ith earlier esti-
mates[ 22,23 obtained using other methods. we have

Were we to use the length gauge, in whi¢h=e-x/2,

the commutator [V, ,H,] would be i€ p/2, and
[V, ,Hall#:) would no longer be square-integrable when X (1| VI [02Ga(Ep) +Eo—HIIV .| ¢y).
N>N,. We verified that wheitN=N, (=2) the results for

the two-photon decay rate are the same in the length and (34
velocity gauges; but wheN>No, i.e., whenN=2 andNo  \e now manipulate the expression in square brackets on the
=1, we were unable to achieve convergence in the lengthgni-hand side of Eq(34):

gauge.

TyatTop=2 Rei/w?)

0?Gy(Ep) +Eg—H}
IV. FLUX FORMULA AND PARTIAL RATE

s <ot iy for the cadé—2 the formu =[w’+(Eq~H)(E,~Hy)]Ga(Ey) (35
n this section, we verify for the cadé=2 the formula _ t t

' ’ =[(E;—H)(E1—Hy) + o(Ha— H)IGL(E
Eqg. (8), for the partial rate foN-photon decay of a two- [(2 1T 2 (E1=Ha) + o % 2)1Ga(E2) (36
electron system. We start with an alternative expresgi@h =0 07G4(E2)OzF w(Ha=Ha)Ga(Ey). (37

for the inclusiveN-photon decay rate: It follows that

(_w)M+M'72N

No (N—M)I(N—M")!

I 0+ T 25=2 Rei( 1|V, OIGA(E+i7) O,V | )
+2 Rei/w){p1|VI.(Ha—HD)[#2). (39

T\N-M gt N—M’
X{pul(V3) (Ha=Ha) (V) [fmr). (24 The first term on the right-hand side of E88) is I',. Add-
ing I',.+ 54 results in cancellation of the second term on
the right-hand side of Eq38), establishing the equivalence

N N
My=i > X
M:NO M=

Note the absence of;, and observe thad , is not Hermitian
in this expressior{recall the discussion near the end of the "
Introduction. Equation(24) relates the rate directly to the of Egs.(5) and(24) for N=2.

outgoing photoelectron flux through a large hypersphere, ash The merit .Ofghﬁ ﬂl.JX fofrrr;}ula Iis that it depﬁnds chnIy 0rf1
follows upon applying Green’s theorem to transform from (€ asymptotic behavior of the electrons on the surface of a

volume to surface integral. While E(R4) does not involve :carge lhypersphe_zre. fHen;:he we C?nl |mr:1ec:|ately er'te Ido;/vn a
the final-state wave function, it is not as useful for computa-Orma expression for the partial rate for single-electron

tional purposes as E5); nevertheless, it is formally a use- €Mission in channek from a two-electron system:
ful result. N N
The path that connects the flux formula E2¢) to Eq.(5) =i > >
provides the way to establish the formula, E§), for the ’ M=Ng ' =
partial rate. For simplicity, we demonstrate the equivalence
of Egs. (5) and (24) only in the caseN=2. (We do not X { | (VIONMP (Ha=HDP L (VONM | ),
restrict the number of electron®RuttingN=2 andNy=1 in (39)
Eq. (24) yields four terms:

(_w)M+M'72N

No (N=M)I(N=M")!

where P, is [24] the Hermitian projection operatoP,
Io=ToatTap+ ToctTaq, (25) =P,,+P5,—P1,P>, Which projects onto the union of sub-
spaces in which electron 1 or 2 is in state We can drop

where P.,P>, from P, on the right-hand side of Eq39) since
F2a=i(¢2|(Ha—H;)|d>2), (26) P..P2. projects onto the subspace in which both electrons
arebound a region which does not contribute to the photo-
T o= (i/02){bs| V! (Ha— HDV, | 1), (27)  electron flux. We now write
. Ha=Hq,+ Wy, 40
Pae=— (/o) (s Vi (HaHDI ), (29 2= Mt Wz 40

. where, recall,W,, is the interaction between the electrons
Pag=T%. (29 andH,,=H;+H,, whereH; andH, are the Hamiltonians
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of the one-electron residual systems created by the departure + W P (VON Mgy

of electron 1 or 2, respectively. Note that,, andP,, each ,

commute withH; andH,, and hence withH ,. SinceW;, is & (— MM —2N

Hermitian, we can drop it froni , on the right-hand side of +2'M2N “ (N—=M)I(N—M")!

Eq. (39). We thereby obtain oMEM ' '
I X (Bl (VN MP 1 (Ha= HD(VON ™M 1),

N N (
=i 42
Mg Z: L (N=M)I(N=M")! (42
% VIN-MP. 4P Y(Him HI N (P, +P where in the last step we reinsertétl;, in H,. Note
(Dl (V)T (PratPaa) (Hiz=Hi) (Pao+ Pa) that 2 Red(x|WpPi.lx) can be rewritten as
XV N ™M ) —i{X[[P1a,Wi2l|x)-
PuttingN=2 andNy=1 in Eq. (42) gives

N 2M —2N
2o(N M) ‘2<¢M|(VT)N H(PaatPaa) Poo=lazat ot oot oo, (43
X(EN—H1)(P1at+ Pl (VON M) where
N M
gy oy et T 50=4 Rei{bol(E—Ha) TPyl )
= ’ — | — Y1
Mo e (NZMHN=MES —2i(bo|[P1a,Wisl| ), (44)

X{ | (VIINTM(P o+ Pog) (Hio— Hip) (P1o+ Pay)

STYRLRATIRY 41 T, =4REi/0?){$1|VL(Eg—HD P,V |¢1)— (2i/w?)

X{ |V [P, WislV (45)
We can commuteR,,+P,,) from the left to the right of (@alVi [Py 12Vl 4.
(E—HI,), and from the right to the left ofH{;,—H],), on L + ot
the right-hand side of Eq41). This gives P+ P,,)?2 on T ooc=—(2il0){(¢1|ViP1o(Ha=Ha) o),  (46)
the right and left, respectively, ofE(—HIZ) and Hi, .
—Hl,). Since P5,=P,, and P5,=P,,, we have P, Fopa=T%. (47)

+P,,)°=P;,+P,,+2P;,P,,. As before, we can drop

P,.P,.. This yields an expression that is linear iR,(, We now retrace the steps leading from E2f) to Eq.(38),
+P,,), and(since the electrons are identicdhe separate and find

contributions fromP,, andP,, are equal. It follows that

N oo Lo 2at T aop=4 Rei( 1|V P1,00G(Eo+in) OV | 1)
— H - TA\N-M gt +
Ton 4Re|M§NO (N_M)!2<¢Ml<v+> (En—H1)) +4 Re(i/0){ 1|V P1o(Ha— HD)|6,)
- —2i Pia,W —(2i/w?
Xpla(v+)N M|¢M> <¢2|[ la 12—”¢2> ( w)
N (— )M+ 2N X(p1|VE[P1, WiolV. | b1). (48)
+2i > >
M=No m"#m (N—M)I(N—M")! Adding I' .+ 1T, yields Eq.(8) for N=2.
Xl (VN MP(Hip= HI) (VON ™ s
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