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Application of the time-dependent local density approximation to optical activity
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As part of a general study of the time-dependent local density approxim@DhDA ), we report here
calculations of optical activity of chiral molecules, taking as examples methyloxirane andT@e theory
automatically satisfies sum rules and the Kramers-Kronig relation between circular dichroism and optical
rotatory power. It reproduces the absorption strengths of the strong states quite well and qualitatively describes
the chiroptical properties; quantitatively, the predictions of the circular dichroism of the lowest states are a
factor of 2—4 too high. In the chiral fullerene,§&xthe TDLDA provides a consistent description of the optical
absorption spectrum, the circular dichroism spectrum, and the optical rotatory power, except for an overall shift
of the theoretical spectruthS1050-294{@9)07607-9

PACS numbes): 33.55.Ad

[. INTRODUCTION Several general remarks can be made here. Practitioners
of the density-functional theory often claim justification for
The time-dependent local density approximationthe Kohn-Sham equations based on formal existence theo-
(TDLDA) as well as the time-dependent Hartree-Fock theoryems. Theorems can also be proven for the time-dependent
has been applied to the optical absorption of atomic an@ase[15], but our own partiality to the theory is based on
molecular systems with considerable succeiss14. Here  more pragmatic considerations. First, if the time dependence
we want to see how well the TDLDA method does on a mores sjow, the TDLDA should be as good as the static theory
subtle aspect of the optical response, the optical activity ofecause the motion would be adiabatic and governed by the
chiral molecules. Calculation of circular dichroism and espexame Hamiltonian. Second, integrals of the response over
cially optical rotatory power is more challenging because thgeqyency obey sum rules, and these are satisfied in principle
operators that must be evaluated are more sensitive to ”lﬁ/ the small-amplitude TDLDA. Since the sum rules are
approximations on*the wave function than the electric dipolemost sensitive to the high frequency behavior, we see that
in the usual former. _ o o the TDLDA is good at both extremes, and therefore promis-
The theory can be derived from a variational principle, ing for describing the middle ground.
There are of course intrinsic limitations in the TDLDA
Jd . . .
5f dt(W¥|H— iﬁﬁ|\p>:0_ ) theory. It describes the system by a single Slater determinant
which can be expressed in a particle-hole basis as a particle-
hole operator on the ground state. We thus do not expect it to
be useful for strongly correlated systems, which do not have
a single Slater determinant dominating the wave function.
Even if the ground state is well described by a single con-

Here V¥ is restricted to be a Slater determinant of single-
electron wave functiong; , ¥ = All;¢; . The corresponding

static variational principle is the usual energy minimization
principle from which one derives the Hartree-Fock equa-

tions. The Kohn-Sham equations of the LDA theory are obfiguration, the description of the excitation by a single Slater

tained in the same way, using the LDA energy functionajdeterminant c_loes nqt cpntain the degrees of freedom neces-
instead of W|H|¥) in Eq. (1). The derived TDLDA equa- Sary to describe excitations that have a more complex char-
tions of motion are given by acter than single-electron excitations. Not only will the ex-
perimental spectrum be more complex due to mixing of
72V? ) ,n(r’) states of different particle-hole character, but the coupling to
~om Vit Vindite J dr W'/’iJrvxc[n(r)]wi vibrations will broaden the transitions on an energy resolu-
tion scale of a few tenths of an eV. However, even though
=iﬁi¢/x- @) the T[_)L_DA only inc_ludes single-e_lectron degrees of free-
atm’ dom, it is far superior to the static single-electron theory
because it includes dynamic screening effects. The dynamic
wheren(r)=3|¢i(r)|? is the electron density. Th¥,. is  screening arises directly from the time dependence of the
the exchange-correlation potential, related to the exchangenean field potential. It shifts transition strength up out of the
correlation energy . by Ve, =dv,./dn. lowest particle-hole excitations into a higher frequency
range, of course preserving the sum rule. This can be a very
large effect; in the case of/gconsidered below, the strength
*Electronic address: yabana@nt.sc.niigata-u.ac.jp of the lowest excitations is reduced by an order of magni-
TElectronic address: bertsch@phys.washington.edu tude.
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While the TDLDA has been proved useful for describing 2mE, 1 R
the electric dipolar response, its effectiveness dealing with fo= 5 §<<I>O|E ri| @2, (5)
the magnetic response has not been as well explored. The h !

TDLDA is derived by optimizing a wave-function con- ) ) ) ) )
structed from (time-dependentsingle-particle wave func- W€ def_lne the optlcal_ absorption strength whose integral is
tions, so its domain of validity should be all one-particle "ormalized to the active electron number,
observables, including the magnetic current operator. We use
a wave-function language, but the actual object of the theory S(E)=2, S(E—En)fy,. (6)
is the single-particle density matrix(r,r"). n
In our implementation of TDLDA8], we represent the
electron wave function on a uniform spatial grid. The real-It is related to the imaginary part of the polarizability,
time evolution of the wave function is directly calculated and
the response functions are calculated by the time-frequency 2mE Im a(E)
Fourier transformation. The method respects sum rules and S(E)= 5202w @
the Kramers-Kronig relation between the circular dichroism

and optical rotatory power. Since the grid representation is The basic quantity which characterizes the chiroptical

bias-free with respect to electromagnetic gauge, it is not subyansition is the rotational strength defined 23]
ject to the gauge difficulties encountered when the space of

the wave function is constructed from an atomic orbital rep- 2t
resentation. Rn=

Optical activity has been a challenging problem for com-
putational chemistry, but there has been considerabl
progress in recent years. For example, Care¢ll. [16]
present a good description of the circular dichroism of ex- 1
cited states oR-methyloxirane using a standard Gaussian R(E)zz =
representation of the wave function. The optical rotatory n nd
power is a much more difficult observable, since the whole o )
spectrum contributes. Only very recently hakeinitio cal-  11€ B _function in Eq. (3) is related toR(E) by B(E)
culations been reported for this propefty,18. =(ﬁ9/3E)R(E). We will also use the rotational strength

After presenting our calculational method, we report ourfunction R(E) defined by
exploratory study on optical activities of two chiral mol-
ecules:R-methyloxirane, a simple 10-atom molecule with _ _ :ImR(E)

meth . . : R(E)=2, S(E—En)R, : (10

known chiroptical properties up to the first few excited states n
[16,19,2Q, and Gg, a fullerene with very large optical rota-
tory power and significant circular dichroism in the visible As is seen below, the optical rotatory power is proportional
and uv[21]. to the real part of3(E), and the circular dichroism tR(E).
They are related to each other by Moscowitz’'s generalized
Kramers-Kronig relatior24].

The difference of the complex indices of refraction for
A. Some definitions left and right circularly polarized light is proportional 1 in
dilute media; the relation is

_2_mc<q)°|2i Filcbn>'<q>n|2i rxXV|®ep). (8)

fve define the complex rotational strength function,

—E—i8 Ep+tE+id Ro- O

II. FORMALISM

Polarization of a chiral molecule in an applied electro-
magnetic field is expressed using two coefficiemtand 8 as

87N
[22] n_—ng= 3 1R(E)1 (11)
. . poB . .
p=aE— T (3  whereN; is the number of molecules per unit volume. For

comparison with experiment, the common measure of circu-

: - S ) . lar dichroism is the decadic extinction coefficient, given by
Here « is the usual polarizability and is given microscopi-

cally as e A | 12
a(E)=e?>, —+ . _ _ _ _
n \EnomE—id EptE+is whereC is the concentration of molecules in moles/liter and
1 the subscript on the wavelengthis a reminder to express it
><—<<Do|2 F‘|CD )2 (4) in centimeters. The optical rotatory power is conventionally
3 oo reported as
where®, andE,, are the eigenvector and eigenvalue of the _ o _
nth eigenstate of the many-body Hamiltonidh, H®, [«]=180 CgmxcmRe(nL NR), (13

=E,®,, andE,=E,—E,. The § is an infinitesimal posi-
tive quantity. Employing the oscillator strength whereCp, is the concentration of molecules in gmiem



PRA 60 APPLICATION OF THE TIME-DEPENDENT LOCA ... 1273

B. Real-time TDLDA

m= | ge
We first rewrite the above strength functions as time in- R JO dE E'R(E). (18

tegrations. We employ the time-dependent wave function

W (t) =exd —iHt/A]¥(0) with the initial wave function at It is known thatR(™ for n<4 vanishes identically in the
=0 given byW (0)=ex(ik=z]®,, wherek is a small wave exact dynamicg23,25—27. The vanishing ofR(©® in the
number. In the linear response, the time-dependent polarizime-dependent Hartree-Fock theory was first noticed in
ability is proportional to the dipole matrix elemer#(t)  [28]. The short time behavior ofl(t)=L(t)+L(t)

= (W (1)|2iz]¥(t)). The frequency-dependent polarizability +L,(t) is related toR(™" as

in the z direction is then obtained as the time-frequency Fou-

rier transformation of(t), e’h o RP[t)2 RO [t)4
—L(t)=2k{ RO— ——| | + —|—
2 ot 2mc 2! \h 41\
_ & [TA Erisun
a,(E) ko he z(t). (14 R(6) [ {)\6
“er R T 19

The polarizability «(E) is given by the orientational aver-
age,a=(ay+ay+a,)/3. Here we note thdt (t) is an even function of as seen in Eq.
Similarly, we denote the angular momentum expectatior(15). SinceR(W=0 for n=<4, we see thak (t) behaves at’
value asL,(t) = (¥ (t)| =i (F X V),J¥(t)). To linear order in for small time.L;(t) (i=x,y,z) behave as? at smallt and
k, we may express it as the cancelation up tt* order occurs after summing up three
directions. In the TDLDA dynamics, we confirmed that at

E ol leastt® andt? coefficients ofL(t), namelyR(® and R(?,
L(t)=—2k> COS( 5 )(CDOIZ zi| @) vanish identically.
n |
. D. Numerical details
X(D| 25 (11X Vi) Do). (15

The TDLDA uses the same Kohn-Sham Hamiltonian as is
used in ordinary static LDA calculations. As is common in
condensed matter theory, we use pseudopotentials that in-
&2 i (edt clude the effects oK-shell electrons rather than these elec-
RAE)= —— _f — B+ (4 trons explicitly. The pseudopotentials are calculated by the

‘ 2mckJo h ‘ prescriptions of Refd.29] and[30]. We employ the simple
) exchange-correlation term proposed in Ré&lL,32. There

_¢ h ( 1 _ 1 are improved terms now in usg84,33, but it was not

2mc 5 \Ep—E—ié E,+tE+ié deemed important for our application.

There are many numerical methods to solve the equations
: Or of TDLDA. Ours uses a Cartesian coordinate space mesh to

X@O'Ei z,|<bn)(<bn|2 (rXV)z|®g). (16 represent the electron wave functid$], and the time evo-

lution is calculated directly8,9,36. There are only four im-
R(E) of Eq. (9) is the sum over three direction® =7, portant numerical parameters in this approach: the mesh
+Ry+R;. spacing, the number of mesh points, the time step in the time

To apply the TDLDA, we prepare the initial single elec- integration algorithm, and the total length of time that is
tron orbitals asy;(0)=ex{ikz]¢,, where ¢; is the static integrated. We have previously found that the carbon mol-
Kohn-Sham orbitals in the ground state. Thgt) is ob-  ecules can be well treated using a mesh spacing of 0.3 A
tained by intgrating the time-dependent equation, 8.  [9,36]. We find that 0.25 A is necessary for methyloxirane to
n(r,t)=S;|%(r,1)|2. The time-dependent dipole moment represent accurately the orbitals around oxygen. We take the
may be evaluated a&(t)=3(i|z| ;) and the similar ex- spgual volume to be a sphere of rasli@ A both for methy-
pression forl ,(t). The strength functions are then evaluated/oXirane and G presented below. The total number of mesh

The complex rotatory strength functid®(E) is expressed as

with Egs.(14) and (16). pointgs, defianing the size of the vector space, is about
47R3/(3Ax3)~80000 (140000) for a mesh size of 0.3 A
(0.25 A).
C. Sum rules

The algorithm for the time evolution is quite stable as
According to the TRK sum rule, the integral 8(E) is  long as the time stept satisfiesAt<#/|H|, where|H| is
equal to the number of active electroNs This sum rule is  the maximum eigenvalue of the Hamiltonian. This is mainly

respected by the TDLDA. It also appears in the short timedependent on the mesh size. Fox=0.3 A, we find that

behavior ofz(t) as At=0.00Z/eV is adequate. We integrate the equation of
K motion for a length of tim& =60k/eV for C,5 (50i/eV for
N methyloxirang. Then individual states can be resolved if
(=N m t (t smal). (A7) their energy separation satisfiA&>27A/T~0.1 eV.

Our numerical implementation, namely a grid representa-
For the rotational strength, we define energy-weighted sumson of the wave function and the time-frequency Fourier
as transformation for the response calculation, has several ad-
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0F —_—p J
—_— 8
2 F J
FIG. 1. View of R-methyloxirane with hydrogen on the chiral Methyloxirane
carbon in the backand not seen The chirality isR because the <
three other bonds are arranged clockwise in the sequence: , CH £ 4 r .
and CH. ::n
s
vantages over the usual approach using basis functions cen- 6 F J
tered at the ions. They include the following. —— HOMO
(i) The full spectrum of the wide energy region may be
calculated at once and it respects sum rules. The nonlocality —
of the pseudopotential may cause a violation of the sum rule, 8T ’
but the effect is small in the present systems. _
(i) Since the circular dichroisrR(E) and the optical ro- —

tatory power, real part oB(E), are calculated as a Fourier -10
transformation of the single functioh(t), the Kramers-
Kronig relation is automatically satisfied.

hi (ri]ii) The gauge inde?er)denc?] of the results. Is satislfigd fon threshold. There are improved energy functions that rec-
Igh ~ accuracy. E|:np oying the commutation re atlon'[ify this problem[38], but for this work we judged the error
[H,2iri]=—#4%m3;V,, there are alternative expressions not important.

for optical transitions with a gradient operator instead of @ The next property we examine is related to the electric

FIG. 2. Static LDA orbitals in methyloxirane.

coordinate. For the rotational strength, for example, dipole matrix element, namely the oscillator strenfyisso-
243 ciated with the transition. The optical absorption strength is
__ ¢ > > = shown in Fig. 3. The total strength up to 100 eV excitation is
Rn= 2mzcEno<®0|Ei V'|®“><¢”|Z X Vil®o). f=22.4, which is 93% of the sum rule for the 24 active

(20) electrons. Notice the lowest two peaks, centered at 6.0 and

6.5 eV. These are the states in which we are interested. Their

The strength function with this expression may be calculablescillator strengths are given in Table I. We see that the

with an initial wave functiony;(0)=exdidV,]¢; with small  states are both weak, less than a tenth of a unit. The effect of

displacement parametek Since the grid representation of the time-dependent treatment is to lower the strengths by

the wave function does not have any preference for the gaugg—50 %. This is the well-known screening effect associated
condition, our method gives almost identical results for thewith virtual transitions of more deeply bound orbitals. We
coordinate and gradient expressions of dipole matrix elefind that the computed transition strengths are within a factor
ments. of 2 of the measured ones. Typically, the TDLDA does

somewhat better than this, but most of the experience has

Ill. R-METHYLOXIRANE 5

The geometry oR-methyloxirane is shown in Fig. 1. We
use the same nuclear distances as in Red]. We show in
Fig. 2 the results of the static calculation for the orbital en- methyloxirane
ergies. We find a lowest unoccupied molecular orbital L5 7
(LUMO) 6.0 eV above the highest occupied molecular or-
bital (HOMO), and a triplet of unoccupied states 0.5 eV
higher. In our calculation the lowest unoccupied orbitals
have a diffuse, Rydberg-like charactenvave for the lower
andp wave for the upper, as in previous calculatiph6,37).

The HOMO is localized in the vicinity of the oxygen atom,
and the measured absorption strength seen at 7.1 and 7.7 e\
is attributed to the excitation of a HOMO electron to the
diffuse states. In the TDLDA, the excitation energy comes
out close to the orbital difference energies, except for
strongly collective states. Indeed we find in the TDLDA cal- 0 Iyl s s s
culation that the excitations are within 0.1 eV of the HOMO- 0 10 20 30 40 50
LUMO energy and the energy difference for the next state E (V)

above the LUMO. This is 1 eV less than the experimental

values. It is known that the LDA energy functional that we  FIG. 3. Optical absorption strength of methyloxirane in the en-
use is subject to overbinding excitations close to the ionizaergy region 0-50 eV.

S@eVvh

05 1
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TABLE I. Transitions inR-methyloxirane.

Level TDLDA  LDA (free Other theory Experiment

Ref.[16] Ref.[19] Ref.[16] Ref.[19]

1 E (eV) 6.0 5.97 6.267.12 6.40 7.07 7.12

f 0.012 0.021 0.0004 0.025

R (x10%cgy -23.0 -10.4 —-6.43 -266° —-1256 -11.8
2-4 E (eV) 6.5 6.55 6.95 7.3 7.70 7.75

> f 0.044 0.069 0.00F2 0.062

SR (x10%cgy 23.0 29.9 7.93 2.4 6.98 10.8

&Calculation with coordinate expression of dipole moment.
bNegative of value folSmethyloxirane.

been with transitions carrying at least a tenth of a unit ofrespects the first sum rule. The combined respdn&g
oscillator strength. The original theoretical calculation gave(dashed linesshows an extreme cancelation at short times,
very poor transition strengthi49], off by more than an order as required by the additional sum rules. However, our nu-
of magnitude. Unfortunately, the more recent st{itl§] did  merical accuracy does not allow us to determine the order of
not include theoretical transition strengths. the power behavior. The evolution bft) for larger times is
We numerically confirmed that our method gives almostshown in Fig. 5. Physically, the TDLDA breaks down at long
identical results with coordinate and gradient expressions aimes because of coupling to other degrees of freedom. A
dipole matrix elements, as we remarked in the precedingypical width associated with such couplings is of the order
section. However, exceptionally, the oscillator strength ofof a tenth of an eV, implying that the responses damp out on
the very weak features discussed above suffers substantialtime scale off ~10k/eV. We note that the TDLDA algo-
dependence on the expression. With a gradient formula forithm itself is very stable, and allows us to integrate to much
the transition matrix elements, strengths of both first andarger times and obtain very sharp theoretical spectra.
second transitions are larger by about a factor 2 than the We next show the Fourier transform of the chiroptical
coordinate expression. Since the gradient formula emphaesponse. The circular dichroism spectrum calculated with
sizes high-momentum components more heavily, we thinkeq. (16) is shown in Fig. 6. Here we have integratedo
the results with coordinate matrix elements may be mor& =504/eV, including a filter function in the integration to
reliable for low transitions, and we quote them in Table I. smooth the peaks. One can see thaisthad thep transitions
We now turn to the chiroptical response. Figure 4 showsre clearly resolved, although the threéransitions are not
the short-time behavior of,(t) and the sum of the three resolved from each othéas is the experimental cas@hes
Cartesian componentgt) = 2;L;(t). An initial perturbation transition has a negative circular dichroism and pheansi-
of k=0.001 A"! is employed. To within numerical preci- tion a positive one. Integrating over the peaks, the strengths
sion, L(t) (solid line) grows with time agt?, as discussed of the two peaks are-0.0014 and+0.0014 R eV, respec-
below Eq.(20). The same is true for the other two compo- tively. The strengths are commonly quoted in cgs units; the
nents,L, andL,. This shows that the numerical algorithm conversion factor is 1 eV#=1.609<10"% ergcn?. The

T T T 0.002 T T T T
R-methyloxirane
R-methyloxirane ﬂ
0.001 1
~ ~ 0 M w H
-0.001 r
1 1 1 _0'002 1 1 1 1
0 0.05 0.1 0.15 0.2 0 2 4 6 8 10
th eV th (V™)
FIG. 4. Short-time chiroptical responseRimethyloxirane. The FIG. 5. Chiroptical response & methyloxiraneL(t) for longer

solid line isL,(t), dashed line i€;L;(t). times.
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0.02 . — . - - - -
R-methyloxirane 0.06 .
D spectrum .
0.04 - R-methyloxirane |
0.01 | |
0.02 | 1
‘E/ 0 g ot N
&
-0.02 1
-0.01 .
-0.04 :
-0.02 : - - 006 T . . . . 1
0 > c IOV 15 20 0 10 20 30 40 50
V) Eax (V)

FIG. 6. Rin R-methyloxirane in the interval 0—20 eV. . .
y FIG. 7. Optical rotatory power R@ atE=2.1 eV as a function

values in cgs units are given in Table |, compared to experi9 f cutoff energyEna, in the integration of Eq(22).

ment and previous calculations. We find the signs are cor-

! : We first remark on the geometry of the molecule, which
rectly given, but the values are somewhat too high, by

_ %has a chiralD, symmetry[40]. The accepted geometry is
factor of 2 or 3. The calculation of Ref16] gave a result depicted in Ref[21]; it may be understood as follows. We

within the experimental range for the multiplet but 00 g4 \with G, in which all carbons are on pentagons. Group
small (by a factor of 2 for thes transition. Thus we find that o pentagons into triangles and divide the fullerene in half

the TDLDA has a somewhat poorer accuracy in this case. yaening two adjacent triangles of pentagons intact in each
Next we consider the optical rotatory power. It could bep ¢ The “peel” of six pentagons already has a chiral ge-

calculated as the real part of the Fourier transformation Eoometry dependent on the relative orientation of its two tri-

(16)._In practice, however, we found.that the calculatio_n €M-angles of pentagons. The,Cis constructed by adding 16
ploying the Kramers-Kronig relation to the rotational

. carbon atoms between the split halves of thg.0he added
strength function, carbon atoms lie entirely on hexagons which form a com-
plete band around the fullerene. The inserted band has the
21) geometry of an(8,2) chiral carbon nanotube. The result is
then the chiral €. Our calculations are performed on a
right-handed G, in the sense that the band of hexagons
gives a more accurate result, especially at the energy belogorresponds to a right-handed nanotube. This is the same
the lowest transition. The measurement is available at theonvention as used in R€#0], their Fig. 3d).
sodiumD line, 2.1 eV,[a]p= +14.65° [37], which gives The Gg has 152 occupied spatial orbitals. We show the
B=+0.0017 A. The calculated value at low energy is very orbitals near the Fermi level in Fig. 8. The HOMO-LUMO
sensitive to the number of states included in the sum. Figurgap is only 0.9 eV, and there are many transitions in the
7 shows the calculated value as a function of a cutoff energygptical region. In Fig. 9 we show the optical absorption
upper bound in the integration in E(R2). The value taking strength function for the range 0—-50 eV. Smoothing is made
only the contribution of the lowest transition is with the width of 0.2 eV in the Fourier transformation. A
—0.06. Including more states produces values that fluctuateoncentration of strength is apparent at 6 eV excitation; there
in sign and magnitude within that range. Including all stategs a similar peak in graphite ands@wvhich is associated with
below 100 eV gives a cancelation by a factor of 60 to yield am— 7* transitions. The strong, broad peak centered near 20
value B=—0.001 A" This has the opposite sign but the eV is associated witlr—¢* transitions and is also present
same order of magnitude as the measyseclearly, to get in Cg [36]. The feature at 13 eV is not present igoChow-
high relative accuracy with such a strong cancelation is morever. In the next figure, Fig. 10, we show a magnified view
demanding than our TDLDA can provide. of the absorption at low energy. We also compare the
TDLDA strength with the single-electron strength, smoothed
also by convolution with a Breit-Wigner function of width
I'=0.2 eV. The TDLDA has a strong influence on the
Remarkably, it is possible to separate the chiral partnerstrength distribution, decreasing the total strength in the low
of the double-helical fullerenefgusing stereospecific chem- energy region and concentrating in the 6 eV peak. The ex-
istry [21]. The molecule shows a huge optical rotatory perimental absorption strengf#Q] (with arbitrary normal-
power, [a]p=—4000°, and a complex circular dichroism ization) is shown as the dashed line. It agrees with the
spectrum between 2 and 4 eV excitat[@1]. There has been TDLDA quite well.
reported only a semiempirical quantum chemistry calculation We next examine the circular dichroism spectrum. Figure
for the optical activity of this moleculE39]. 11 shows the rotatory strength function between 0 and 50

R(E")

2 %
ReB(E)= §ﬁcfo dE’m,

IV. Cg
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FIG. 10. Optical absorption spectrum ofn the range 0—8
eV. The dotted line is the single-electron strength, the solid line is
the TDLDA, and the dashed line is the experimpt].

FIG. 8. Static LDA orbitals in & near the Fermi level.

eV. As in the case of methyloxirane, it is irregular without

any large scale structures. Its integral is zero to an accuracy .

of 0.001 eV &. The low energy region is shown in Fig. 12. [@Jo=—4000° at 2.1 eV[21] corresponding top=

Here one sees qualitative similarities between theory and ex= 7-3 A, is shown as the star. It does not agree with theory,

periment[21]. The theoretical sharp negative peak at 1.8 evbut we should remember that the spectrum needs to be

corresponds to an experimental peak at 2.2 eV. Shifting thghifted by 0.6 eV to reproduce the circular dichroism. Ad-

higher spectra by that amoufft6 eV), one sees a correspon- justing the theoretical spectrum upward by that amount, we

dence between the next positive and negative excursions. Wid that it is consistent in sign and order of magnitude with

note that a similar shift in the excitation energy was also seefhe measurement. Since the optical rotatory power in the

in the optical absorption of & between the measurement region of allowed transitions changes rapidly as excitation

and the TDLDA calculatio36]. As in the case of methy- €nergy, a measurement of the energy dependence would be

loxirane, the theoretical circular dichroism is somewhat toovery desirable, and would allow a more rigorous comparison

large; the experimental spectrum in Fig. 12 has been rescaléith the theory.

by a factor of 4.

Our th_eore_tical optipal rotatory power is plotted_in Fig. V. CONCLUDING REMARKS

13. The situation here is different from the methyloxirane, in

that rotatory power is large in a region where there are al- We have presented an application of the time-dependent

lowed transitions. The measured optical rotatory power]ocal density approximation to the optical activities of chiral
molecules. Our method is based on the uniform grid repre-
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FIG. 9. Optical absorption spectrum of,{in the range 0-50
ev. FIG. 11. Circular dichroism spectrum of,£
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FIG. 12. Circular dichroism spectrum of;§£comparing theory FIG. 13. Optical rotatory power of £, given as Re in units

(solid line) and experimentdashed ling The experimental data are of A*. The star is the measured value from] .

from Ref.[21] and are with arbitrary normalization.
region, it is still difficult to make a quantitative prediction of

. . . . optical rotatory power at low energies in our present ap-
sentation of the wave function, real-time solution of thep?oach yp 9 P P

time-dependent Kohn-Sham equation, and the time-
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