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Application of the time-dependent local density approximation to optical activity
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Graduate School of Science and Technology, Niigata University, Niigata 950-21, Japan
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As part of a general study of the time-dependent local density approximation~TDLDA !, we report here
calculations of optical activity of chiral molecules, taking as examples methyloxirane and C76. The theory
automatically satisfies sum rules and the Kramers-Kronig relation between circular dichroism and optical
rotatory power. It reproduces the absorption strengths of the strong states quite well and qualitatively describes
the chiroptical properties; quantitatively, the predictions of the circular dichroism of the lowest states are a
factor of 2–4 too high. In the chiral fullerene C76 the TDLDA provides a consistent description of the optical
absorption spectrum, the circular dichroism spectrum, and the optical rotatory power, except for an overall shift
of the theoretical spectrum.@S1050-2947~99!07607-6#

PACS number~s!: 33.55.Ad
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I. INTRODUCTION

The time-dependent local density approximati
~TDLDA ! as well as the time-dependent Hartree-Fock the
has been applied to the optical absorption of atomic
molecular systems with considerable success@1–14#. Here
we want to see how well the TDLDA method does on a m
subtle aspect of the optical response, the optical activity
chiral molecules. Calculation of circular dichroism and es
cially optical rotatory power is more challenging because
operators that must be evaluated are more sensitive to
approximations on the wave function than the electric dip
in the usual formerW.

The theory can be derived from a variational principle

dE dt ^CuH2 i\
]

]t
uC&50. ~1!

Here C is restricted to be a Slater determinant of sing
electron wave functionsc i , C5A) ic i . The corresponding
static variational principle is the usual energy minimizati
principle from which one derives the Hartree-Fock equ
tions. The Kohn-Sham equations of the LDA theory are o
tained in the same way, using the LDA energy function
instead of̂ CuHuC& in Eq. ~1!. The derived TDLDA equa-
tions of motion are given by

2
\2¹2

2m
c i1Vionc i1e2E dr8

n~r 8!

ur 2r u
c i1Vxc@n~r !#c i

5 i\
]

]t
c i , ~2!

wheren(r )5( i uc i(r )u2 is the electron density. TheVxc is
the exchange-correlation potential, related to the exchan
correlation energyvxc by Vex5dvxc /dn.
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Several general remarks can be made here. Practitio
of the density-functional theory often claim justification fo
the Kohn-Sham equations based on formal existence th
rems. Theorems can also be proven for the time-depen
case@15#, but our own partiality to the theory is based o
more pragmatic considerations. First, if the time depende
is slow, the TDLDA should be as good as the static the
because the motion would be adiabatic and governed by
same Hamiltonian. Second, integrals of the response o
frequency obey sum rules, and these are satisfied in princ
by the small-amplitude TDLDA. Since the sum rules a
most sensitive to the high frequency behavior, we see
the TDLDA is good at both extremes, and therefore prom
ing for describing the middle ground.

There are of course intrinsic limitations in the TDLD
theory. It describes the system by a single Slater determin
which can be expressed in a particle-hole basis as a part
hole operator on the ground state. We thus do not expect
be useful for strongly correlated systems, which do not h
a single Slater determinant dominating the wave functi
Even if the ground state is well described by a single c
figuration, the description of the excitation by a single Sla
determinant does not contain the degrees of freedom ne
sary to describe excitations that have a more complex c
acter than single-electron excitations. Not only will the e
perimental spectrum be more complex due to mixing
states of different particle-hole character, but the coupling
vibrations will broaden the transitions on an energy reso
tion scale of a few tenths of an eV. However, even thou
the TDLDA only includes single-electron degrees of fre
dom, it is far superior to the static single-electron theo
because it includes dynamic screening effects. The dyna
screening arises directly from the time dependence of
mean field potential. It shifts transition strength up out of t
lowest particle-hole excitations into a higher frequen
range, of course preserving the sum rule. This can be a
large effect; in the case of C76 considered below, the strengt
of the lowest excitations is reduced by an order of mag
tude.
1271 ©1999 The American Physical Society



ng
i
T
-

le
u
o

al
nd
n
a

sm

u
e
p

m
b

ex
ian
r

ol

u
l-
th
te
-
le

o

i-

he

l is

cal

h

al

zed

or

or
cu-
y

nd
t
lly

1272 PRA 60K. YABANA AND G. F. BERTSCH
While the TDLDA has been proved useful for describi
the electric dipolar response, its effectiveness dealing w
the magnetic response has not been as well explored.
TDLDA is derived by optimizing a wave-function con
structed from~time-dependent! single-particle wave func-
tions, so its domain of validity should be all one-partic
observables, including the magnetic current operator. We
a wave-function language, but the actual object of the the
is the single-particle density matrixn(r ,r 8).

In our implementation of TDLDA@8#, we represent the
electron wave function on a uniform spatial grid. The re
time evolution of the wave function is directly calculated a
the response functions are calculated by the time-freque
Fourier transformation. The method respects sum rules
the Kramers-Kronig relation between the circular dichroi
and optical rotatory power. Since the grid representation
bias-free with respect to electromagnetic gauge, it is not s
ject to the gauge difficulties encountered when the spac
the wave function is constructed from an atomic orbital re
resentation.

Optical activity has been a challenging problem for co
putational chemistry, but there has been considera
progress in recent years. For example, Carnellet al. @16#
present a good description of the circular dichroism of
cited states ofR-methyloxirane using a standard Gauss
representation of the wave function. The optical rotato
power is a much more difficult observable, since the wh
spectrum contributes. Only very recently haveab initio cal-
culations been reported for this property@17,18#.

After presenting our calculational method, we report o
exploratory study on optical activities of two chiral mo
ecules:R-methyloxirane, a simple 10-atom molecule wi
known chiroptical properties up to the first few excited sta
@16,19,20#, and C76, a fullerene with very large optical rota
tory power and significant circular dichroism in the visib
and uv@21#.

II. FORMALISM

A. Some definitions

Polarization of a chiral molecule in an applied electr
magnetic field is expressed using two coefficientsa andb as
@22#

pW 5aEW 2
b

c

]BW

]t
. ~3!

Here a is the usual polarizability and is given microscop
cally as

a~E!5e2(
n

S 1

En02E2 id
1

1

En01E1 id D
3

1

3
^F0u(

i
rW i uFn&

2, ~4!

whereFn andEn are the eigenvector and eigenvalue of t
nth eigenstate of the many-body HamiltonianH, HFn
5EnFn , andEn05En2E0. The d is an infinitesimal posi-
tive quantity. Employing the oscillator strength
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\2

1

3
^F0u(

i
rW i uFn&

2, ~5!

we define the optical absorption strength whose integra
normalized to the active electron number,

S~E!5(
n

d~E2En0! f n . ~6!

It is related to the imaginary part of the polarizability,

S~E!5
2mE

\2e2

Im a~E!

p
. ~7!

The basic quantity which characterizes the chiropti
transition is the rotational strength defined by@23#

Rn52
e2\

2mc
^F0u(

i
rW i uFn&•^Fnu(

i
rW3¹W uF0&. ~8!

We define the complex rotational strength function,

R~E!5(
n

S 1

En02E2 id
2

1

En01E1 id DRn . ~9!

The b function in Eq. ~3! is related toR(E) by b(E)
5(\c/3E)R(E). We will also use the rotational strengt
function R(E) defined by

R~E!5(
n

d~E2En0!Rn5
ImR~E!

p
. ~10!

As is seen below, the optical rotatory power is proportion
to the real part ofb(E), and the circular dichroism toR(E).
They are related to each other by Moscowitz’s generali
Kramers-Kronig relation@24#.

The difference of the complex indices of refraction f
left and right circularly polarized light is proportional toR in
dilute media; the relation is

nL2nR5
8pN1

3
R~E!, ~11!

whereN1 is the number of molecules per unit volume. F
comparison with experiment, the common measure of cir
lar dichroism is the decadic extinction coefficient, given b

De5
4p

lcmC loge10
Im~nL2nR!, ~12!

whereC is the concentration of molecules in moles/liter a
the subscript on the wavelengthl is a reminder to express i
in centimeters. The optical rotatory power is conventiona
reported as

@a#5180°
10

Cgmlcm
Re~nL2nR!, ~13!

whereCgm is the concentration of molecules in gm/cm3.
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PRA 60 1273APPLICATION OF THE TIME-DEPENDENT LOCAL . . .
B. Real-time TDLDA

We first rewrite the above strength functions as time
tegrations. We employ the time-dependent wave funct
C(t)5exp@2iHt/\#C(0) with the initial wave function att
50 given byC(0)5exp@ik(izi#F0, wherek is a small wave
number. In the linear response, the time-dependent pola
ability is proportional to the dipole matrix element,z(t)
5^C(t)u( izi uC(t)&. The frequency-dependent polarizabili
in thez direction is then obtained as the time-frequency F
rier transformation ofz(t),

az~E!5
e2

k E0

`dt

\
ei (E1 id)t/\z~ t !. ~14!

The polarizabilitya(E) is given by the orientational aver
age,a5(ax1ay1az)/3.

Similarly, we denote the angular momentum expectat
value asLz(t)5^C(t)u2 i (rW3¹)zuC(t)&. To linear order in
k, we may express it as

Lz~ t !522k(
n

cosS En0t

\ D ^F0u(
i

zi uFn&

3^Fnu( ~rW i3¹W i !zuF0&. ~15!

The complex rotatory strength functionR(E) is expressed as

Rz~E!5
e2\

2mc

i

kE0

`dt

\
e(E1 id)t/\Lz~ t !

5
e2\

2mc (
n

S 1

En02E2 id
2

1

En01E1 id D
3^F0u(

i
zi uFn&^Fnu(

i
~rW3¹W !zuF0&. ~16!

R(E) of Eq. ~9! is the sum over three directions,R5Rx
1Ry1Rz .

To apply the TDLDA, we prepare the initial single ele
tron orbitals asc i(0)5exp@ikz#fi , where f i is the static
Kohn-Sham orbitals in the ground state. Thec i(t) is ob-
tained by intgrating the time-dependent equation, Eq.~2!.
n(rW,t)5( i uc(rW,t)u2. The time-dependent dipole mome
may be evaluated asz(t)5( i^c i uzuc i& and the similar ex-
pression forLz(t). The strength functions are then evaluat
with Eqs.~14! and ~16!.

C. Sum rules

According to the TRK sum rule, the integral ofS(E) is
equal to the number of active electronsN. This sum rule is
respected by the TDLDA. It also appears in the short ti
behavior ofz(t) as

z~ t !5N
\k

m
t ~ t small!. ~17!

For the rotational strength, we define energy-weighted su
as
-
n

iz-

-

n

e

s

R(n)5E
0

`

dE EnR~E!. ~18!

It is known thatR(n) for n<4 vanishes identically in the
exact dynamics@23,25–27#. The vanishing ofR(0) in the
time-dependent Hartree-Fock theory was first noticed
@28#. The short time behavior ofL(t)5Lx(t)1Ly(t)
1Lz(t) is related toR(n) as

e2\

2mc
L~ t !52kH R(0)2

R(2)

2! S t

\ D 2

1
R(4)

4! S t

\ D 4

2
R(6)

6! S t

\ D 6

1•••J . ~19!

Here we note thatL(t) is an even function oft as seen in Eq.
~15!. SinceR(n)50 for n<4, we see thatL(t) behaves ast6

for small time.Li(t) ( i 5x,y,z) behave ast2 at small t and
the cancelation up tot4 order occurs after summing up thre
directions. In the TDLDA dynamics, we confirmed that
least t0 and t2 coefficients ofL(t), namelyR(0) and R(2),
vanish identically.

D. Numerical details

The TDLDA uses the same Kohn-Sham Hamiltonian as
used in ordinary static LDA calculations. As is common
condensed matter theory, we use pseudopotentials tha
clude the effects ofK-shell electrons rather than these ele
trons explicitly. The pseudopotentials are calculated by
prescriptions of Refs.@29# and @30#. We employ the simple
exchange-correlation term proposed in Refs.@31,32#. There
are improved terms now in use@34,33#, but it was not
deemed important for our application.

There are many numerical methods to solve the equat
of TDLDA. Ours uses a Cartesian coordinate space mes
represent the electron wave functions@35#, and the time evo-
lution is calculated directly@8,9,36#. There are only four im-
portant numerical parameters in this approach: the m
spacing, the number of mesh points, the time step in the t
integration algorithm, and the total length of time that
integrated. We have previously found that the carbon m
ecules can be well treated using a mesh spacing of 0.
@9,36#. We find that 0.25 Å is necessary for methyloxirane
represent accurately the orbitals around oxygen. We take
spatial volume to be a sphere of radius 8 Å both for methy-
loxirane and C76 presented below. The total number of me
points, defining the size of the vector space, is ab
4pR3/(3Dx3);80 000 (140 000) for a mesh size of 0.3
~0.25 Å!.

The algorithm for the time evolution is quite stable
long as the time stepDt satisfiesDt,\/uHu, where uHu is
the maximum eigenvalue of the Hamiltonian. This is main
dependent on the mesh size. ForDx50.3 Å, we find that
Dt50.002\/eV is adequate. We integrate the equation
motion for a length of timeT560\/eV for C76 (50\/eV for
methyloxirane!. Then individual states can be resolved
their energy separation satisfiesDE.2p\/T;0.1 eV.

Our numerical implementation, namely a grid represen
tion of the wave function and the time-frequency Four
transformation for the response calculation, has several
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1274 PRA 60K. YABANA AND G. F. BERTSCH
vantages over the usual approach using basis functions
tered at the ions. They include the following.

~i! The full spectrum of the wide energy region may
calculated at once and it respects sum rules. The nonloc
of the pseudopotential may cause a violation of the sum r
but the effect is small in the present systems.

~ii ! Since the circular dichroismR(E) and the optical ro-
tatory power, real part ofb(E), are calculated as a Fourie
transformation of the single functionL(t), the Kramers-
Kronig relation is automatically satisfied.

~iii ! The gauge independence of the results is satisfie
high accuracy. Employing the commutation relati

@H,( i rW i #52\2/m( i¹W i , there are alternative expressio
for optical transitions with a gradient operator instead o
coordinate. For the rotational strength, for example,

Rn52
e2\3

2m2cEn0

^F0u(
i

¹W i uFn&^Fnu(
i

rW i3¹W i uF0&.

~20!

The strength function with this expression may be calcula
with an initial wave functionc i(0)5exp@id¹z#fi with small
displacement parameterd. Since the grid representation o
the wave function does not have any preference for the ga
condition, our method gives almost identical results for
coordinate and gradient expressions of dipole matrix e
ments.

III. R-METHYLOXIRANE

The geometry ofR-methyloxirane is shown in Fig. 1. W
use the same nuclear distances as in Ref.@16#. We show in
Fig. 2 the results of the static calculation for the orbital e
ergies. We find a lowest unoccupied molecular orb
~LUMO! 6.0 eV above the highest occupied molecular
bital ~HOMO!, and a triplet of unoccupied states 0.5 e
higher. In our calculation the lowest unoccupied orbit
have a diffuse, Rydberg-like character,s wave for the lower
andp wave for the upper, as in previous calculations@16,37#.
The HOMO is localized in the vicinity of the oxygen atom
and the measured absorption strength seen at 7.1 and 7
is attributed to the excitation of a HOMO electron to t
diffuse states. In the TDLDA, the excitation energy com
out close to the orbital difference energies, except
strongly collective states. Indeed we find in the TDLDA ca
culation that the excitations are within 0.1 eV of the HOMO
LUMO energy and the energy difference for the next st
above the LUMO. This is 1 eV less than the experimen
values. It is known that the LDA energy functional that w
use is subject to overbinding excitations close to the ion

FIG. 1. View of R-methyloxirane with hydrogen on the chira
carbon in the back~and not seen!. The chirality isR because the
three other bonds are arranged clockwise in the sequence: O, C3 ,
and CH2.
n-

ity
e,

to

a

le

ge
e
-

-
l
-

s

eV

s
r

e
l

-

tion threshold. There are improved energy functions that r
tify this problem@38#, but for this work we judged the erro
not important.

The next property we examine is related to the elec
dipole matrix element, namely the oscillator strengthf asso-
ciated with the transition. The optical absorption strength
shown in Fig. 3. The total strength up to 100 eV excitation
f 522.4, which is 93% of the sum rule for the 24 activ
electrons. Notice the lowest two peaks, centered at 6.0
6.5 eV. These are the states in which we are interested. T
oscillator strengths are given in Table I. We see that
states are both weak, less than a tenth of a unit. The effe
the time-dependent treatment is to lower the strengths
30–50 %. This is the well-known screening effect associa
with virtual transitions of more deeply bound orbitals. W
find that the computed transition strengths are within a fac
of 2 of the measured ones. Typically, the TDLDA do
somewhat better than this, but most of the experience

FIG. 2. Static LDA orbitals in methyloxirane.

FIG. 3. Optical absorption strength of methyloxirane in the e
ergy region 0–50 eV.
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TABLE I. Transitions inR-methyloxirane.

Level TDLDA LDA ~free! Other theory Experiment
Ref. @16# Ref. @19# Ref. @16# Ref. @19#

1 E ~eV! 6.0 5.97 6.25~7.12! 6.40 7.07 7.12
f 0.012 0.021 0.0004a 0.025

R (31040 cgs! 223.0 210.4 26.43 22.66a,b 212.56 211.8b

2-4 Ē ~eV! 6.5 6.55 6.95 7.3 7.70 7.75

S f 0.044 0.069 0.0012a 0.062
SR (31040 cgs! 23.0 29.9 7.93 2.24a,b 6.98 10.8b

aCalculation with coordinate expression of dipole moment.
bNegative of value forS-methyloxirane.
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been with transitions carrying at least a tenth of a unit
oscillator strength. The original theoretical calculation ga
very poor transition strengths@19#, off by more than an orde
of magnitude. Unfortunately, the more recent study@16# did
not include theoretical transition strengths.

We numerically confirmed that our method gives alm
identical results with coordinate and gradient expression
dipole matrix elements, as we remarked in the preced
section. However, exceptionally, the oscillator strength
the very weak features discussed above suffers substa
dependence on the expression. With a gradient formula
the transition matrix elements, strengths of both first a
second transitions are larger by about a factor 2 than
coordinate expression. Since the gradient formula emp
sizes high-momentum components more heavily, we th
the results with coordinate matrix elements may be m
reliable for low transitions, and we quote them in Table I

We now turn to the chiroptical response. Figure 4 sho
the short-time behavior ofLx(t) and the sum of the thre
Cartesian componentsL(t)5( iL i(t). An initial perturbation
of k50.001 Å21 is employed. To within numerical preci
sion, Lx(t) ~solid line! grows with time ast2, as discussed
below Eq.~20!. The same is true for the other two comp
nents,Ly and Lz . This shows that the numerical algorith

FIG. 4. Short-time chiroptical response ofR-methyloxirane. The
solid line isLx(t), dashed line is( iL i(t).
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or
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respects the first sum rule. The combined responseL(t)
~dashed lines! shows an extreme cancelation at short tim
as required by the additional sum rules. However, our
merical accuracy does not allow us to determine the orde
the power behavior. The evolution ofL(t) for larger times is
shown in Fig. 5. Physically, the TDLDA breaks down at lon
times because of coupling to other degrees of freedom
typical width associated with such couplings is of the ord
of a tenth of an eV, implying that the responses damp out
a time scale ofT'10\/eV. We note that the TDLDA algo-
rithm itself is very stable, and allows us to integrate to mu
larger times and obtain very sharp theoretical spectra.

We next show the Fourier transform of the chiroptic
response. The circular dichroism spectrum calculated w
Eq. ~16! is shown in Fig. 6. Here we have integratedL to
T550\/eV, including a filter function in the integration to
smooth the peaks. One can see that thes and thep transitions
are clearly resolved, although the threep transitions are not
resolved from each other~as is the experimental case!. Thes
transition has a negative circular dichroism and thep transi-
tion a positive one. Integrating over the peaks, the streng
of the two peaks are20.0014 and10.0014 Å3 eV, respec-
tively. The strengths are commonly quoted in cgs units;
conversion factor is 1 eV Å351.609310236 erg cm3. The

FIG. 5. Chiroptical response ofR-methyloxiraneL(t) for longer
times.
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1276 PRA 60K. YABANA AND G. F. BERTSCH
values in cgs units are given in Table I, compared to exp
ment and previous calculations. We find the signs are c
rectly given, but the values are somewhat too high, b
factor of 2 or 3. The calculation of Ref.@16# gave a result
within the experimental range for thep multiplet but too
small ~by a factor of 2! for thes transition. Thus we find tha
the TDLDA has a somewhat poorer accuracy in this cas

Next we consider the optical rotatory power. It could
calculated as the real part of the Fourier transformation
~16!. In practice, however, we found that the calculation e
ploying the Kramers-Kronig relation to the rotation
strength function,

Reb~E!5
2

3
\cE

0

`

dE8
R~E8!

E822E2
, ~21!

gives a more accurate result, especially at the energy be
the lowest transition. The measurement is available at
sodium D line, 2.1 eV, @a#D5114.65° @37#, which gives
b510.0017 Å4. The calculated value at low energy is ve
sensitive to the number of states included in the sum. Fig
7 shows the calculated value as a function of a cutoff ene
upper bound in the integration in Eq.~22!. The value taking
only the contribution of the lowest transition
20.06. Including more states produces values that fluctu
in sign and magnitude within that range. Including all sta
below 100 eV gives a cancelation by a factor of 60 to yiel
value b520.001 Å4. This has the opposite sign but th
same order of magnitude as the measuredb. Clearly, to get
high relative accuracy with such a strong cancelation is m
demanding than our TDLDA can provide.

IV. C 76

Remarkably, it is possible to separate the chiral partn
of the double-helical fullerene C76 using stereospecific chem
istry @21#. The molecule shows a huge optical rotato
power, @a#D524000°, and a complex circular dichroism
spectrum between 2 and 4 eV excitation@21#. There has been
reported only a semiempirical quantum chemistry calculat
for the optical activity of this molecule@39#.

FIG. 6. R in R-methyloxirane in the interval 0–20 eV.
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We first remark on the geometry of the molecule, whi
has a chiralD2 symmetry @40#. The accepted geometry i
depicted in Ref.@21#; it may be understood as follows. W
start with C60, in which all carbons are on pentagons. Gro
the pentagons into triangles and divide the fullerene in h
keeping two adjacent triangles of pentagons intact in e
half. The ‘‘peel’’ of six pentagons already has a chiral g
ometry dependent on the relative orientation of its two
angles of pentagons. The C76 is constructed by adding 16
carbon atoms between the split halves of the C60. The added
carbon atoms lie entirely on hexagons which form a co
plete band around the fullerene. The inserted band has
geometry of an~8,2! chiral carbon nanotube. The result
then the chiral C76. Our calculations are performed on
right-handed C76, in the sense that the band of hexago
corresponds to a right-handed nanotube. This is the s
convention as used in Ref.@40#, their Fig. 3~d!.

The C76 has 152 occupied spatial orbitals. We show t
orbitals near the Fermi level in Fig. 8. The HOMO-LUMO
gap is only 0.9 eV, and there are many transitions in
optical region. In Fig. 9 we show the optical absorpti
strength function for the range 0–50 eV. Smoothing is ma
with the width of 0.2 eV in the Fourier transformation.
concentration of strength is apparent at 6 eV excitation; th
is a similar peak in graphite and C60 which is associated with
p2p* transitions. The strong, broad peak centered nea
eV is associated withs2s* transitions and is also presen
in C60 @36#. The feature at 13 eV is not present in C60, how-
ever. In the next figure, Fig. 10, we show a magnified vi
of the absorption at low energy. We also compare
TDLDA strength with the single-electron strength, smooth
also by convolution with a Breit-Wigner function of widt
G50.2 eV. The TDLDA has a strong influence on th
strength distribution, decreasing the total strength in the
energy region and concentrating in the 6 eV peak. The
perimental absorption strength@40# ~with arbitrary normal-
ization! is shown as the dashed line. It agrees with t
TDLDA quite well.

We next examine the circular dichroism spectrum. Figu
11 shows the rotatory strength function between 0 and

FIG. 7. Optical rotatory power Reb at E52.1 eV as a function
of cutoff energyEmax in the integration of Eq.~22!.



ut
ra
.
e

eV
th
-

. W
ee
nt
-
to
a

g.
in
a
e

ry,
be

d-
we
ith
the
ion
ld be
on

ent
al
re-

is

PRA 60 1277APPLICATION OF THE TIME-DEPENDENT LOCAL . . .
eV. As in the case of methyloxirane, it is irregular witho
any large scale structures. Its integral is zero to an accu
of 0.001 eV Å3. The low energy region is shown in Fig. 12
Here one sees qualitative similarities between theory and
periment@21#. The theoretical sharp negative peak at 1.8
corresponds to an experimental peak at 2.2 eV. Shifting
higher spectra by that amount~0.6 eV!, one sees a correspon
dence between the next positive and negative excursions
note that a similar shift in the excitation energy was also s
in the optical absorption of C60 between the measureme
and the TDLDA calculation@36#. As in the case of methy
loxirane, the theoretical circular dichroism is somewhat
large; the experimental spectrum in Fig. 12 has been resc
by a factor of 4.

Our theoretical optical rotatory power is plotted in Fi
13. The situation here is different from the methyloxirane,
that rotatory power is large in a region where there are
lowed transitions. The measured optical rotatory pow

FIG. 8. Static LDA orbitals in C76 near the Fermi level.

FIG. 9. Optical absorption spectrum of C76 in the range 0–50
eV.
cy

x-

e

e
n

o
led

l-
r,

@a#D524000° at 2.1 eV @21# corresponding tob5

27.3 Å4, is shown as the star. It does not agree with theo
but we should remember that the spectrum needs to
shifted by 0.6 eV to reproduce the circular dichroism. A
justing the theoretical spectrum upward by that amount,
find that it is consistent in sign and order of magnitude w
the measurement. Since the optical rotatory power in
region of allowed transitions changes rapidly as excitat
energy, a measurement of the energy dependence wou
very desirable, and would allow a more rigorous comparis
with the theory.

V. CONCLUDING REMARKS

We have presented an application of the time-depend
local density approximation to the optical activities of chir
molecules. Our method is based on the uniform grid rep

FIG. 10. Optical absorption spectrum of C76 in the range 0–8
eV. The dotted line is the single-electron strength, the solid line
the TDLDA, and the dashed line is the experiment@40#.

FIG. 11. Circular dichroism spectrum of C76.
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sentation of the wave function, real-time solution of t
time-dependent Kohn-Sham equation, and the tim
frequency Fourier transformation to obtain the respo
functions. In this way we can calculate the optical abso
tion, circular dichroism, and the optical rotatory power ov
a wide energy region, respecting sum rules and the Kram
Kronig relation.

We applied our method to two molecules, methyloxira
and C76. For the lowest two transitions of methyloxirane, t
TDLDA reproduces the absorption and circular dichrois
with an accuracy within a factor of 3. The qualitative featu
of the circular dichroism spectrum of C76 is also reproduced
rather well. However, the optical rotatory power is found
be a very sensitive function with strong cancellation. Ev
though we obtained the rotational strength of the full spec

FIG. 12. Circular dichroism spectrum of C76 comparing theory
~solid line! and experiment~dashed line!. The experimental data ar
from Ref. @21# and are with arbitrary normalization.
.

-
e
-
r
rs-

e

n
l

region, it is still difficult to make a quantitative prediction o
optical rotatory power at low energies in our present a
proach.
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FIG. 13. Optical rotatory power of C76, given as Reb in units
of Å4. The star is the measured value from@a#D .
oc.
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