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Optimal minimal measurements of mixed states

G. Vidal,* J. I. Latorre, P. Pascual, and R. Tarrach
Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
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The optimal and minimal measuring strategy is obtained for a two-state system prepared in a mixed state
with a probability given by any isotropica priori distribution. We explicitly construct the specific optimal and
minimal generalized measurements, which turn out to be independent of thea priori probability distribution,
obtaining the best guesses for the unknown state as well as a closed expression for the maximal mean-average
fidelity. We do this for up to three copies of the unknown state in a way that leads to the generalization to any
number of copies, which we then present and prove.@S1050-2947~99!06206-X#

PACS number~s!: 03.67.2a
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I. INTRODUCTION

A measurement allows us to extract only a small amo
of the information needed to specify a quantum state. If
preparing device produces several identical copies of the
known state, then measurements allow us to extract m
information, although only in the limit of infinitely many
copies do we acquire complete knowledge of the unkno
quantum state. Performing an optimal measurement, the
that extracts the maximal possible amount of informat
about the state, and among these a minimal measuremen
one with the minimal number of outcomes, is always a p
ority, especially if the process leading to the state is rare
costly. It is also the broad subject of this paper.

There are two aspects that significantly quantify the di
culty of the problem. One of them is the dimension of t
Hilbert space that corresponds to the physical system we
considering. We will take the lowest one, two. The second
thea priori probability distribution function of the unknown
state. If the state is known to be pure, the problem has b
solved@1–3#. The average, mean fidelity of the optimal me
surements performed onN copies of a pure state is@1#

F̄max
(N) ~pure!5

N11

N12
~1.1!

and the minimal measurements correspond, forN51 –5, to
@3#

nmin
(N) ~pure!52,4,6,10,12 ~1.2!

outcomes. The aim of this paper is to solve this probl
when we enlarge thea priori probability distribution func-
tion to include mixed states: more specifically, when o
assumes that it is isotropic and otherwise arbitrary,
known.

On the other hand, the difficult and heavily discussed
sue about which is the abolutely unbiased probability dis
bution in the space of density matrices is not settled an
might even not have an unbiased solution. In any case
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unbiased distribution will be isotropic in the three
dimensional Poincare´ sphere covered by the Bloch vecto
that parametrizes the unknown density matrix and thus
results will be valid for any author’s preferred candidate
an unbiased probability distribution. We will not discuss th
issue further.

Let us now outline the strategy defining optimal minim
measurements. We consider the simplest possible quan
system, a two-state system. It might be the spin of an e
tron, the polarization of a photon, an atom at very low te
peratures so that only the two lowest hyperfine states ma
a linearly trapped ion for which only the ground and the fi
excited vibrational states are important, etc. This state is
scribed by a 232 density matrix

r~bW !5
1

2
~ I 1bW •sW !5

11b

2
ub̂&^b̂u1

12b

2
u2b̂&^2b̂u,

b[ubW u<1, ~1.3!

wherebW is the Bloch vector andub̂& andu2b̂& are the eigen-
states ofr(bW ). These density matrices are prepared acco
ing to a known, isotropic,a priori probability distribution
function given by

f ~b!>0, 4pE
0

1

db b2f ~b!51. ~1.4!

Let us point out here that all our results are independ
of the specific integration measure we have chosen in
~1.4!. This is because in all our expressions the integrat
measuredbb2 and the distribution functionf (b) always go
together and one can thus redefine the latter so as to ab
any change in the former.

We will analyze the generalized measurements perform
on the state corresponding toN copies of r(bW ), that is,
r(bW ) ^ N, and determine which ones are optimal. There
two aspects to an optimal measurement: which are the p
tive operators correlated to the different outcomes and wh
are the guesses that one makes, given an outcome, abou
unknown state~which we shall callr̃ i). Optimal measure-
ments have to answer both questions by demanding tha
126 ©1999 The American Physical Society
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PRA 60 127OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES
guesses on average lead to the highest fidelity estimatio
r(bW ), after averaging over the known probability distributio
function f (b). We will then determine which of these opt
mal measurements are minimal, i.e., have the minimal n
ber of outcomes. For more than one copyN.1, measure-
ments may be collective and thus may involve entanglem
We will have something to say also about the relation
tween optimality and entanglement. The role of cloning
part of an optimal measurement will also be studied. We w
also show that for more than two copies optimal measu
ments that are minimal are not complete, i.e., they invo
positive operators with rank larger than one~and yet are
optimal!.

These are the main issues that will be presented foN
51 –3 copies in Secs. II–IV. In Sec. V we present and pro
our general results for anyN. Section VI briefly recollects
our findings and conclusions.

II. N51

Let us start with one single copy ofr, N51, and use this
example to present some of the systematics of our appro
We will first perform a generalized measurement@4# on r(bW )
with n outcomes, given by the operator sum decomposit

(
i 51

n

(
j

Ai j
† Ai j [(

i 51

n

ci
2r i5I , r i5r i

†>0, Trr i51,

~2.1!

which implies

(
i 51

n

ci
252, (

i 51

n

ci
2sW i50, ~2.2!

wheresW i is the Bloch vector ofr i . If the outcomei is ob-
tained, which happens with probability

ci
2Tr@r~bW !r i #5ci

2 1

2
~11bW •si

W !, ~2.3!

one proposesr̃ i as a guess for the unknown stater(bW ). The
fidelity, i.e., the measure of the goodness for a propo
guess, is quantified by@5#

F~r,r̃ i ![~TrAr1/2r̃ ir
1/2!25

1

2
~11bW •rW i1A12b2A12r i

2!,

~2.4!

whererW i is the Bloch vector ofr̃ i . Thus the fidelity averaged
over all outcomes is

F (N51)~r![
1

4 (
i 51

n

ci
2~11bW •sW i !~11bW •rW i1A12b2A12r i

2!,

~2.5!

where the superscript reminds us that we are dealing w
only one copy. From here the mean fidelity, i.e., the fide
averaged over all unknown statesr(bW ) weighed with the
known probability distribution functionf (b), is readily ob-
tained
of

-

t.
-
s
ll
-

e

e

ch.

d

th

F̄ (N51)[E dVE
0

1

db b2f ~b!F (N51)~r!

5pE
0

1

db b2f ~b!(
i 51

n

ci
2

3S 11
b2

3
sW i•rW i1A12b2A12r i

2D . ~2.6!

With the notation

I a[4pE
o

1

db b2f ~b!S 12b2

4 D a

, I 051 ~2.7!

~note thatI a24I a11>0), the average fidelity reads

F̄ (N51)5
1

4 (
i 51

n

ci
2S 11

1

3
~124I 1!sW i•rW i12I 1/2A12r i

2D .

~2.8!

We now have to settle which is the best guess for
unknown initial state based on the result of our measu
ment, which is the proposedr̃ i that leads to the highest mea
fidelity. Let us first dispose of the case 4I 151, which corre-
sponds only tof (b)5(1/4pb2)lime→0d(b2e), e.0. It im-
plies a vanishing Bloch vector and thusr(bW )5 1

2 I , the com-
pletely random state. Since the unknown state is necess
the completely random state, the state is known without p
forming any measurement whatsoever. We will thus alwa
assume 4I 1,1 and only use 4I 151 as a check of our re
sults. Then from Eq.~2.8! maximization implies that the bes
guess corresponds to

rW i5
~124I 1!sW i

A36I 1/2
2 1~124I 1!2si

2
. ~2.9!

Notice thatr̃ iÞr i , but r̃ i is a known function ofr i , as
its coefficients depend only functionally onf (b). As f (b) is
known, Eq.~2.9! determines the optimal guess in terms
r i . Substituting one obtains

maxrW i
F̄ (N51)[F̄m

(N51)5
1

4 (
i 51

n

ci
2

3S 11
1

3
A36I 1/2

2 1~124I 1!2si
2D .

~2.10!

We now have to determine the best measuring strategy,
one that leads to the largest possible fidelity. It is obviou
given by si51, i.e., by outcomes associated with rank-o
projectors, and gives

maxsW i
F̄m

(N51)5F̄max
(N51)5

1

2 S 11
1

3
A36I 1/2

2 1~124I 1!2D .

~2.11!

This is our result for one single copy of the physical syst
in stater(bW ) with a priori probability distributionf (b).
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Notice that we have found that optimal measurements
quire necessarily an operator sum decomposition in term
rank-one projectors. It is of course obvious that one can
ways perform an optimal measurement with rank-one pro
tors. Suppose, for instance, that we have some optimal
erator sum decomposition with one operator of rank two,
r i . Then from its spectral decomposition

r i5pi ur i1&^r i1u1~12pi !ur i2&^r i2u ~2.12!

and from Eq.~2.3!

ci
2Tr@r~bW !r i #5ci

2piTr@r~bW !ur i1&^r i1u#

1ci
2~12pi !Tr@r~bW !ur i2&^r i2u#,

~2.13!

it is clear that taking as the guess forr for both outcomes
associated withur i1& andur i2& preciselyr̃ i , one can trader i
for its two rank-one eigenprojectors, having thus a meas
ment with only rank-one projectors. This result can be tri
ally generalized toN copies and is of course well known@6#.
We will use it without further comments in obtainingF̄max

(N) ,
but it does not allow us to analyze optimal measureme
that are minimal, which will need a separate treatement.

In the case we are considering here,N51, the outcomes
are necessarily associated with rank-one operators and
from Eq.~2.2!, a minimal optimal measurement requires tw
outcomesnmin

(N51)52. This corresponds to a standard v
Neumann measurement, which is a result unique forN51.
For N.1 optimal measurements are generalized meas
ments.

A limit of interest corresponds to considering pure stat
which is obtained by takingf (b)5(1/4pb2)limb0→1d(b

2b0), b0,1. It follows thatF̄max
(N51)(pure)5 2

3 , which is the

known result given in Eq.~1.1!. Notice that in this caser̃ i
5r i and thus the guess is precisely the pure state co
sponding to the projector, while we have found that
mixed states the guessr̃ i is a mixed state, different, thoug
related, to the pure state corresponding to the projector.
is a different feature of optimal measurements. The t
guesses correspond to two points in the interior of the P
carésphere and symmetric with respect to its center. In
other extreme, discussed after Eq.~2.8!, when one knows
that r(bW ) is the completely random state, we obta
F̄max

(N51)(random)51, as it should.

III. N52

We will now study the situation in which two copies o
the unknown stater(bW ) are available, i.e., we have the sta
r(bW ) ^ r(bW ). As we shall see, collective measurements
pear here.

Notice that by defining the exchange operatorV by

Vuw& ^ uc&5uc& ^ uw&, V5V†5V21, ~3.1!

we have the exchange invariance

V~r ^ r!V5r ^ r. ~3.2!
e-
of
l-
c-
p-
y
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-
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e-
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We will consider generalized measurements for which o
comes correspond to rank-one projectors, as our purp
now is to build an optimal measurement. Thus the opera
sum decomposition will be written as

(
i 51

n

ci
2uc i&^c i u5I , uc i&PC2

^ C2. ~3.3!

Given one decomposition, one can obtain other decomp
tions as follows. First, obviously,

(
i 51

n

ci
2Vuc i&^c i uV5I . ~3.4!

Then, introducing the eigenstates ofV built from uc i& and
Vuc i&,

uc i&6[
1

A2A16^c i uVuc i&
~ uc i&6Vuc i&), ~3.5!

and, as

uc i&^c i u1Vuc i&^c i uV5~11^c i uVuc i&!uc i&11^c i u

1~12^c i uVuc i&!uc i&22^c i u,

~3.6!

we have another decomposition

1

2 (
i 51

n

ci
2@~11^c i uVuc i&!uc i&11^c i u

1~12^c i uVuc i&!uc i&22^c i u#5I . ~3.7!

If the decomposition~3.3! corresponds to an optimal mea
surement, so does Eq.~3.7! just recalling Eq.~3.2! and using
the same guesses. Furthermore, as the probability of thei th
outcome is the sum of the probabilities of thei 1 and i 2

outcomes of the decomposition of Eq.~3.7!,

ci
2^c i ur ^ ruc i&5

ci
2

2
~11^c i uVuc i&! 1^c i ur ^ ruc i&1

1
ci

2

2
~12^c i uVuc i&!2^c i ur ^ ruc i&2 ,

~3.8!

it is enough to associate again the same guess with thi 1

and i 2 outcomes to make the measurement of Eq.~3.7! op-
timal too. Thus optimal measurements can always be
tained by projecting on eigenstates ofV.

An equivalent way of presenting these results, which w
be more convenient forN.2, is based on the identity

V5SW 22I ~3.9!

relating the exchange operator with the square of the t
spin operator

SW [
1

2
~sW ^ I 1I ^ sW !. ~3.10!
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Equation~3.2! now reads

@SW 2,r ^ r#50 ~3.11!

and our previous results allow us to write Eq.~3.3! as

us&^su1 (
i 51

n21

ci
2ut i&^t i u5I , ~3.12!

where us& is the singlet or antisymmetric state andut i& are
triplet or symmetric states. This is an important result.
states that decomposing the Hilbert space of the two copiA

andB into a direct sum of eigenspaces ofSW 2,

H (N52)[HA^HB5E0% E1 , ~3.13!

whereEs corresponds to the eigenvalues(s11) of SW 2, it is
enough to find optimal measurements in each of the s
eigenspaces for obtaining an optimal measurement in
whole space. The generalization of this result toN.2 will
be essential. It will then also be convenient to use both s
and exchange invariances simultaneously.

We are ready to resume our general strategy for perfo
ing optimal measurements. First, the probability that the o
come corresponds to the singlet state is

^sur ^ rus&5
12b2

4
. ~3.14!

For the triplet states we have found it convenient to use
Hilbert-Schmidt parametrization

ut i&^t i u5
1

4
@ I ^ I 1 tW i•sW ^ I 1I ^ tW i•sW 1 t̂ i•sW ^ t̂ i•sW

1A12t i
2~ ûi•sW ^ ûi•sW 2 v̂ i•sW ^ v̂ i•sW !#,

~3.15!

where t̂ i , ûi , and v̂ i are n21 triads of orthonormalized
vectors. Notice thattW i is the Bloch vector of the reduce
density matrix

TrAut i&^t i u5TrBut i&^t i u5
1

2
~ I 1 tW i•sW ![r i , ~3.16!

where we use subscriptsA and B to earmark the Hilbert
space over which the trace is performed. Furthermore, f
Eq. ~3.12! we have

(
i 51

n21

ci
253, (

i 51

n21

ci
2tW i50, ~3.17!

and further restrictions onûi , v̂ i , and t̂ i that will not be
needed here. The probability that the outcome correspond
ut i& is
t

in
e

in

-
t-

e

m

to

ci
2^t i ur ^ rut i&5

ci
2

4
$112bW • tW i1~bW • t̂ i !

2

1A12t i
2@~bW •ûi !

22~bW • v̂ i !
2#%.

~3.18!

Once outcomei is obtained one proposesr̃ i as a guess of the
unknown stater(bW ). From Eq.~2.4! one obtains for the fi-
delity averaged over outcomes

F (N52)~r!5
1

8
~12b2!~11bW •rWn1A12b2A12r n

2!

1
1

8 (
i 51

n21

ci
2$112bW • tW i1~bW • t̂ i !

2

1A12t i
2@~bW •ûi !

22~bW • v̂ i !
2#%

3~11bW •rW i1A12b2A12r i
2!. ~3.19!

The mean fidelity is obtained after averaging over the s
space with the probability distribution function and reads

F̄ (N52)5
1

2
~ I 112I 3/2A12r n

2!1
1

6 (
i 51

n21

ci
2S 12I 11

1

2
~1

24I 1! tW i•rW i12~ I 1/22I 3/2!A12r i
2D . ~3.20!

From here the best guesses are readily obtained

r n50 ~3.21a!

@except for f (b)5(1/4p)d(b21) when r n is not deter-
mined#

rW i5
124I 1

A16~ I 1/22I 3/2!
21~124I 1!2t i

2
tW i , i 51, . . . ,n21.

~3.21b!

As before, forN51, againr̃ iÞr i is a function ofr i , in fact
a mixture ofr i , and the completely random state. Substit
ing the best guesses, we obtain

F̄m
(N52)5

1

2
I 11I 3/21

1

6 (
i 51

n21

ci
2

3S 12I 11
1

2
A16~ I 1/22I 3/2!

21~124I 1!2t i
2D .

~3.22!

The best measurement strategy is obtained fort i51, so that
r i is a pure state andut i& is a product state, without entangle
ment. This is a reasonable result sincer ^ r has neither en-
tanglement nor classical correlations, so it would be surp
ing that projecting on entangled states would lead to
optimal measuring strategy. Notice also that this result of
entanglement, which we will reencounter later forN.2, is
independent off (b). In fact, once the specification of th
operator sum decomposition does not depend onf (b), it has
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130 PRA 60G. VIDAL, J. I. LATORRE, P. PASCUAL, AND R. TARRACH
to correspond to an optimal measurement strategy valid
pure states. However, this is known@1,2# to precisely require
product states. For the singlet, which is a maximally e
tangled state, there are no alternatives and thus the prev
argument is irrelevant. The final result is

F̄max
(N52)5

1

2
1I 3/21

1

4
A16~ I 1/22I 3/2!

21~124I 1!2.

~3.23!

This final result reproduces the known limits. Indeed,
pure state result of Eq.~1.1! is readily obtained from Eq
~3.23! when f (b)5(1/4p)d(b21). Also for the completely
random stateF̄max

(2) (random)51. One can also check from

the comparison of (F̄max
( i ) 2 1

2 )2 for i 51 and 2 that, as it
should,

F̄max
(N52)>F̄max

(N51) . ~3.24!

Let us now analyze optimal measurements that are m
mal. With the constraints we have been using for obtain
optimal measurements, i.e., an operator sum decompos
in terms of rank-one symmetric or antisymmetric projecto
the minimaln is 5. This is because in the three-dimension
symmetric~triplet! space a resolution of the identity in term
of symmetric product states needs four of them@3#, which
together with the singlet makes five. When the unkno
state is known to be pure, the outcome corresponding to
singlet never happens and one can do with just four pro
tors. Let us now prove that one cannot do with less.

Suppose we have an optimal measurement such that
of the rank-one projectors of its operator sum decomposi
uc&^cu, with associated best guessr̃, is neither symmetric
nor antisymmetric. Obviously the best guess associated
Vuc&^cuV is alsor̃. One can then build, following the argu
ments of Eqs.~3.5!–~3.8!, an optimal measurement wit
uc&1 1^cu anduc&2 2^cu with associated best guessesr̃ for
both of them. However, this is impossible, as we saw that
best guess associated with the antisymmetric state is
completely random state, while the one associated with
symmetric state has a nonvanishing Bloch vector@see Eq.
~3.21b!# and thus the best guesses cannot be equal.

The very same reasoning forbids an optimal measurem
with an operator sum decomposition for which one of t
operators has rank larger than one, as the associated ran
projectors that appear in its spectral decomposition will h
necessarily different best guesses. The upshot of all th
that for N52 minimal optimal measurements correspond
operator sum decompositions of rank-one symmetric or
tisymmetric projectors and thus have five outcomesnmin

(N52)

55. We will see that forN.2 the result that minimal mea
surements correspond to rank-one projectors does not h
Notice that the five guesses are situated with one at the
ter of the Poincare´ sphere and the other four on a concent
shell in its interior forming a regular tetrahedron.

A related question to which we turn briefly is wheth
circumstances exist for which von Neumann measurem
can be minimal and optimal. AsC2

^ C2 is of dimension 4, a
von Neumann measurement has four outcomes. We h
seen that optimal measurements with four outcomes e
or
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only when we know that the unknown state is pure. T
question then is if the four triplet states, which are certai
not orthogonal, can be made orthogonal by adding them
herently to the singlet state. Notice that these states wo
not have a well-defined symmetry, but our previous pro
that such states cannot be part of an optimal measurem
fails precisely only for pure states, as then@cf. Eq. ~3.21a!#
r n is arbitrary. It is thus a legitimate question. Its answer
‘‘yes’’ for N52 @1#. The answer forN.2 is not known.

Let us briefly return to the situation in which we had o
copy ~Sec. II! and let us clone it with a state-independe
universal quantum cloner@7–11#. The conditions of strong
@12# symmetry and isotropy of a universal 1-to-2 quantu
cloner imply

r~bW !→rc
(2)[

1

4
@ I ^ I 1h~bW •sW ^ I 1I ^ bW •sW !1t i j s i ^ s j #,

t i j 5t j i , ~3.25!

whereh is the shrinking factor andt i j depends only on the
vectorbW and the invariant tensord i j . Linearity, which origi-
nates in state independence, and the absence of mea
ments in optimal cloning@13# forbid the quadratic depen
dence onbi , so that eventuallyt i j 5td i j . It is also linearity
that allows us to clone straightforwardly forN51 a mixed
state by just mixing statistically the clones of the pure sta
that realize the mixed state. The values of the real parame
h andt have to be such thatrc

(2) is a density matrix, i.e., such
that its eigenvalues

1

4
~162bh1t !,

1

4
~11t !,

1

4
~123t ! ~3.26!

lie between 0 and 1. Of course measuring onrc
(2) will allow

us to learn the most aboutbW for the largesth possible. This
is precisely what optimal cloning does:h5 2

3 and thust5 1
3 .

We can now perform an optimal measurement on the opti
clonerc

(2) , following closely the study of theN52 case, as
Vrc

(2)V5rc
(2) . From the results

^surc
(2)us&50, ~3.27a!

^t i urc
(2)ut i&5

1

3
~11bW • tW i !, ~3.27b!

the expression equivalent to Eq.~3.19!, after dropping an
irrelevant part, is

Fc
(2)~r!5

1

6 (
i 51

n21

ci
2~11bW • tW i !~11bW •rW i1A12b2A12r i

2!.

~3.28!

This expression, together with Eq.~3.17!, is identical to Eq.
~2.5! when Eq.~2.2! is recalled. We thus recover the result
Eq. ~2.11!. In words, optimal cloning can be part of an op
mal measurement. As a by-product we have checked
indeedrc

(2) , with t5 1
3 and h5 2

3 , is the optimal clone of

r(bW ).
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Notice also the result shown in Eq.~3.27a!: The optimally
cloned state exists in the triplet space. This is not surpris
as the singlet space cannot carry any information about
original cloned state.

IV. N53

Consider now three copies of the unknown stater ^ r
^ r. Let us recall its exchange invariances

@VAC ,r ^ r ^ r#5@VBC ,r ^ r ^ r#50, ~4.1!

whereA, B, andC are the subindices labeling the copies th
are exchanged, and its spin invariances

@SW 2,r ^ r ^ r#5@SW AB
2 ,r ^ r ^ r#50, ~4.2!

where the partial and total spin operators are

SW AB[
1

2
~sW ^ I ^ I 1I ^ sW ^ I !, SW [SW AB1

1

2
I ^ I ^ sW .

~4.3!

The first equality of Eq.~4.2! is obvious if one convinces
oneself first that

r ^ r ^ r5p3~SW •bW !, ~4.4!

wherepN(x) is a polynomial inx of degreeN. The second
equality of Eq.~4.2! follows then immediately. With the ad
equate generalizations in going fromN52 to N53, it can be
seen that in order to obtain optimal measurements i
enough to consider operator sum decompositions whose
ments are of rank one and project on states that are sim
neous eigenstates ofSW 2 and SW AB

2 . Moreover, these state

should again be eigenstates ofSW •n̂ for somen̂ with maximal
eigenvalue. Using the notationus,sAB ,n̂&, this leads immedi-
ately to the following states in terms of which the optim
operator sum decomposition can be built:

U32 ,1,n̂L 5un̂&un̂&un̂&, ~4.5a!

U12 ,0,n̂L 5us&un̂&, ~4.5b!

U12 ,1,n̂L 5
1

A3
~VAC2VBC!us&un̂&. ~4.5c!

The first state also corresponds to the completely symme
representation of the permutation group generated by the
change operators and the other two correspond to the
dimensional mixed symmetry representation of the sa
group. We may recall from Ref.@3# that six states of the type
of Eq. ~4.5a! a pointing into the six directions of the vertice
of a regular octahedron resolve the identity in the fo
dimensional maximal spin spaces5 3

2 . Therefore, we obtain
the optimal operator sum decomposition
g,
e

t

is
le-
ta-

l

ic
x-
o-
e

-

2

3 (
i 51

6

~ un̂i&^n̂i u! ^ 31us&^su ^ un̂&^n̂u1us&^su ^ u2n̂&^2n̂u

1
1

3
~VAC2VBC!us&^su ^ un̂&^n̂u~VAC2VBC!

1
1

3
~VAC2VBC!us&^su ^ u2n̂&^2n̂u~VAC2VBC!5I .

~4.6!

This result recalls the decomposition into eigenspa
Es,sAB

of SW 2 andSW AB
2 ,

H (N53)[HA^HB^HC5E3/2,1% E1/2,0% E1/2,1 ~4.7!

and that under permutationsE1/2,0 can be transformed into
E1/2,1. @Let us note here that the correctness of Eq.~4.6! has
been confirmed by a brute-force assumption-free comp
tion that we performed in the early stages of this wor#
Because of the isotropy of the probability distributionf (b)
we just need to compute the probabilities

^n̂u^n̂u^n̂ur ^ r ^ run̂&un̂&un̂&5^n̂urun̂&35
1

8
~11bW •n̂!3,

~4.8a!

^su^n̂ur ^ r ^ rus&un̂&5^sur ^ rus&^n̂urun̂&

5
12b2

8
~11bW •n̂!, ~4.8b!

1

3
^su^n̂u~VAC2VBC!r ^ r ^ r~VAC2VBC!us&un̂&

5^su^n̂ur ^ r ^ rus&un̂& ~4.8c!

where expression~4.8c! is obtained from

1

3
~VAC2VBC!2us&un̂&5us&un̂&. ~4.9!

Putting all the pieces together, we obtain@from Eq. ~2.3!#

F (N53)~r!5
1

4
~12b2!~11bW •n̂!

3~11bW •rWm1A12b2A12r m
2 !

1
1

4
~11bW •n̂!3~11bW •rWs1A12b2A12r s

2!,

~4.10!

where rWm and rWs are the Bloch vectors of the propose
guesses ofr corresponding to the mixed symmetry and co
pletely symmetric projectors, respectively. Angular integ
tion over b̂ leads to
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F̄ (N53)5
1

2
1

1

3
~ I 124I 2!n̂•rWm12I 3/2A12r m

2

1~ I 1/222I 3/2!A12r s
21

1

10
~3214I 118I 2!n̂•rWs ,

~4.11!

from which the optimal guesses are obtained for

rWm5
~ I 124I 2!

A36I 3/2
2 1~ I 124I 2!2

n̂, ~4.12a!

rWs5
3214I 118I 2

A100~ I 1/222I 3/2!
21~3214I 118I 2!2

n̂.

~4.12b!

Substitution into Eq.~4.10! leads to our final result forN
53,

F̄max
(N53)5

1

2
1

1

3
A36I 3/2

2 1~ I 124I 2!2

1
1

10
A100~ I 1/222I 3/2!

21~3214I 118I 2!2.

~4.13!

This result reproduces the pure state result of Eq.~1.1! and
gives 1 for the completely random state, as in previous ca

Let us finally discuss those optimal measurements that
minimal. Up to now we have an optimal measurement w
ten outcomes. Remember that the only possibility of gro
ing together two rank-one projectors of the operator s
decomposition happens when the two different outcom
correspond to the same guess. Now from our results
clear that this happens twice, that is, the guesses corresp
ing to the seventh and ninth terms of Eq.~4.6! are the same
and given by Eq.~4.12a! and the ones corresponding to th
eighth and tenth terms of Eq.~4.6! are also the same an
given by Eq.~4.12a!, but with opposite sign. Thus the min
mal optimal measurement has eight outcomesnmin

(3) 58. The
corresponding positive operatorsON,s,i and guessesrN,s,i for
N53 are@cf. Eq. ~4.6!# six for the spaceE3/2,1,

O3,3/2,i5
2

3
un̂i&^n̂i u ^ 3, r3,3/2,i5

1

2
~ I 1r sn̂i•sW !,

~4.14!

and two for the spaceE1/2,0% E1/2,1,

O3,1/2,15us&^su ^ un̂&^n̂u1
1

3
~VAC2VBC!us&^su ^ un̂&

3^n̂u~VAC2VBC!,

r3,1/2,15
1

2
~ I 1r mn̂•sW !,
s.
re
h
-

s
is
nd-

O3,1/2,25us&^su ^ u2n̂&^2n̂u1
1

3
~VAC2VBC!us&^su ^ u2n̂&

3^2n̂u~VAC2VBC!,

r3,1/2,25
1

2
~ I 2r mn̂•sW !. ~4.15!

Here a minimal optimal measurement has operators
rank two in its decomposition. The Bloch vectors of the co
responding guesses are situated on two concentric shel
the interior of the Poincare´ sphere.

Notice that again the measuring strategy, i.e., Eq.~4.6!, is
independent off (b) and thus determined actually by what
known from@1–3#: For eachs the pure state strategy for 2s
copies is the optimal strategy. This will allow us to prove t
general expression forF̄max

(N) andnmin
(N) for anyN with relative

ease in the next section.

V. GENERAL RESULTS FOR N>3

We will analyze in this section optimal and minimal ge
eralized measurements when a generic numberN of copies
of the unknown state are available. We present here
maximal fidelityF̄max

(N) one can obtain on average by perform
ing such collective measurements overr ^ N, together with
the minimal numbernmin

(N) of outcomes an optimal genera
ized measurement can have. For anyN we provide also a
generalized measurement that is both optimal and minim
Explicit results for the caseN54 are worked out in order to
illustrate the general expressions.

We first display our final, general results

F̄max
(N) 5

1

2
1 (

s5s0

N/2
~2s11!2

N

2
1s11

S N

N

2
1sD Ag1~N,s!21g2~N,s!2,

~5.1!

where

g1~N,s![E dVE
0

1

db b2f ~b!S 12b2

4 D (N11)/22sS 11bz

2 D 2s

,

g2~N,s![E dVE
0

1

db b2f ~b!S 12b2

4 D N/22sS 11bz

2 D 2s bz

2
,

~5.2!

bz is the third component ofbW , ands0 is 0 (1/2) for even
~odd! N. As for nmin

(N) we have found that

nmin
(N) 5 (

s5s0

N/2

nps
(2s) , ~5.3!

where we definenps
(N)[nmin

(N) (pure), nps
(0)[1. For N51 –5

this reads~using @3#!

nmin
(N) 52,5,8,15,20. ~5.4!
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For N.5 the minimalnps
(N) relies on a conjecture proposed

@3# and this is therefore also the case ofnmin
(N) for N.5.

For some very specifica priori probability distributions
f (b) this number can be reduced. This, though, correspo
only to cases in which there is an accidental degenerac
the proposed guesses, as in the casef (b)5(1/4p)d(b21)
~pure states!.

The optimal and minimal generalized measurements c
sists of the following decomposition of the identity opera
in the spaceH (N)5C2^ N of theN copies in terms of positive
operatorsON,s,i and the corresponding guessesrN,s,i : For
eachse@s0 ,s011, . . . ,N/221,N/2#, our optimal and mini-
mal generalized measurement containsnps

(2s) positive opera-
tors of the form

ON,s,i5cs,i
2 ~2s11!

N

2
1s11

S N

N

2
1sD 1

N!

3 (
VeSN

V~ us&^su ^ (N/2)2s
^ un̂s,i&^n̂s,i u ^ 2s!V†,

~5.5!

whereSN is the group of theN! possible permutations ofN
elements acting on the Hilbert space of theN copies andcs,i

2

is such that

(
s5s0

N/2

(
i 51

nps
(2s)

ON,s,i5I . ~5.6!

The corresponding guesses are

rN,s,i5
1

2
~ I 1r N,sn̂s,i•sW !, ~5.7!

where

r N,s5
g2~N,s!

Ag1~N,s!21g2~N,s!2
. ~5.8!

The nps
(2s) vectors n̂s,i are distributed according to the

counterparts of theN52s case of optimal estimation of pur
states as described in@3# and the coefficientscs,i

2 satisfy

(
i 51

nps
(2s)

cs,i
2 n̂s,i50, (

i 51

nps
(2s)

cs,i
2 52s11. ~5.9!

For s5 1
2 ,1,32 , 5

2 they are independent ofi :cs,i
2 5(2s

11)/nps
(2s) . All these results are essentially unique.

For N54 our results can be explicitly written as
ds
in

n-
r

F̄max
(N54)5

1

2
12I 5/2

1
1

6
A~2211I 1112I 2!2136~ I 1/223I 3/21I 5/2!

2

1
3

4
A~ I 124I 2!2116~ I 3/22I 5/2!

2 ~5.10!

and

nmin
(N54)515. ~5.11!

The positive operator sum decomposition reads

I 5O4,01(
i 51

4

O4,1,i1(
i 51

10

O4,2,i , ~5.12!

where to the rank-two projector

O4,05
1

12 (
VeS4

Vus&^su ^ us&^suV† ~5.13!

corresponds the guess

r4,05
1

2
I ~r 4,050!. ~5.14!

The four rank-three positive operators

O4,1,i5
3

32 (
VeS4

Vus&^su ^ un̂1,i&^n̂1,i u ^ 2V†, i 51, . . . ,4,

~5.15!

have associated guesses

r4,1,i5
1

2
~ I 1r 4,1n̂1,i•sW !,

r 4,15
I 124I 2

A~ I 124I 2!2116~ I 3/22I 5/2!
2

~5.16!

~here then̂1,i are distributed according to a regular tetrah
dron @3#! and the ten rank-one positive operators

O4,2,i5c2,i
2 un̂2,i&^n̂2,i u ^ 4, i 51, . . .,10, ~5.17!

have associated guesses

r4,2,i5
1

2
~ I 1r 4,2n̂2,i•sW !,

r 4,25
~2211I 1112I 2!2

A~2211I 1112I 2!2136~ I 1/223I 3/21I 5/2!
2

~5.18!

~a concrete solution forn̂2,i andc2,i
2 is given in @3#!.

Let us now outline the proof of the above expressio
The proof will be based on a series of results that we h
obtained in the previous sections, which we now put toget
in their generalized version.
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1. Permutation invariance. For any elementV of the per-
mutation group ofN elementsSN ,

@V,r ^ N#50 ; VeSN . ~5.19!

2. Spin invariance. With the following notation for the
composite Hilbert space:

H (N)[HA^HB^ •••HN , ~5.20!

for the corresponding local spin operators

SW A[
1

2
sW ^ I ^ N21,

SW B[
1

2
I ^ sW ^ I ^ N22, ~5.21!

SW N[
1

2
I ^ N21

^ sW

and for the partial and total spin operators

SW (M )[ (
x5A

M

SW x , A,;M,N, SW [SW (N) , ~5.22!

the spin invariances read

@S2W ,r ^ N#5@SW (M )
2 ,r ^ N#5@SW A

2 ,r ^ N#50. ~5.23!

They are an immediate consequence of the relativ
straightforward result

r~bW ! ^ N5pN~SW •bW !, ~5.24!

wherepN(x) is a polynominal of degreeN in x.
3. Direct sum decomposition. Since

@SW 2,SW (M )
2 #5@SW (M )

2 ,SW (L)
2 #50 ; M ,L, ~5.25!

the total Hilbert space can be written as a direct sum

H (N)5 % s,$s(M )%
Es,$s(M )%

, ~5.26!

whereEs,$s(M )%
are the eigenspaces ofSW 2 andSW (M )

2 ,N.;M

.A, with eigenvaluess(s11) and $sM(sM11)% ordered
with decreasingM, respectively. For instance, forN54,

H (N54)5E2,3/2,1 ~s52!

% E1,3/2,1% E1,1/2,1% E1,1/2,0 ~s51! ~5.27!

% E0,1/2,1% E0,1/2,0 ~s50!.

Of course only those eigenvalues consistent with the s
composition rules appear.

4. Permutation group equivalence. For a givens,N/2 all
the spacesEs,$s(M )%

corresponding to it can be obtained fro
one of them with the help of the elements of the permutat
group. The one that we retain for our proof as referen
space is the one with the maximal number of vanishing p
tial spins,
ly

in

n
e
r-

Es,s21/2,s21, . . .0,1/2,0 ~5.28!

~with N/22s zeros!. There are as many of these equivale
spaces as the dimension of the irreducible representatio
SN in a space of total spins,

dN~s!5S N

N

2
1sD 2s11

N

2
1s11

. ~5.29!

From this result one can check the dimensional consiste
of expression~5.26!,

2N5 (
s5s0

N/2

~2s11!dN~s!, s050 or
1

2
. ~5.30!

5. Optimal pure state measuring strategy. In each of the
reference spaces of the type of Eq.~5.28!, where any vector
is of the form

us& ^ N/22s
^ uc&, uc&5Vuc&PC2^ 2s ; VPS2s ,

~5.31!

the best measuring strategy turns out to be the one co
sponding to 2s copies of an unknown pure state@1–3# and
thus projects onto states of the form

us& ^ N/22s
^ un̂& ^ 2s. ~5.32!

Notice that the singlets act as an identity in the refere
space of Eq.~5.28! and that the states~5.32! are the ones in
Eq. ~5.31! with less entanglement. From here, and recall
Eq. ~5.29!, one readily obtains Eqs.~5.5! and~5.6!. The fact
that the guesses of Eq.~5.7! can be grouped together due
the permutation equivalence and thus have to be made
for the reference space has been taken into account alrea
writing Eq. ~5.5!. Notice that the operators of Eq.~5.5! are of
rank dN(s).

We are now ready to perform the final computation of

F̄max
(N) 5 (

s5s0

N/2

(
i 51

nps
(2s)

E dVE
0

1

db b2f ~b!

3Tr~ON,s,ir
^ N!F~r,rN,s,i !. ~5.33!

From

Tr~ON,s,ir
^ N!5cs,i

2 dN~s!S 12b2

4 D N/22sS 11bW •n̂s,i

2
D 2s

,

~5.34!

which is obtained from Eqs.~4.8a!, ~5.5!, and ~5.29!, Eq.
~5.33! can be written as

F̄max
(N) 5 (

s5s0

N/2

~2s11!dN~s!E dVE
0

1

db b2f ~b!

3S 12b2

4 D N/22sS 11bW •n̂

2
D 2s

1

2

3~11r N,sbW •n̂1A12b2A12r N,s
2 !, ~5.35!
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where we have used Eq.~5.9!, as the contributions corre
sponding to differenti are the same, Eq.~2.4! for the fidelity,
and the subindices ofn̂s,i have been dropped, given the
irrelevance at this stage of the computation. In Eq.~5.35! the
first term gives1

2 and the other two depend onr N,s , which is
fixed by maximization. Choosingn̂ in the direction of thez
axis and with the definitions of Eq.~5.2!, one immediately
obtains Eq.~5.8! and finally our main result Eq.~5.1!. The
result referring to the number of outputs of minimal me
surements, Eq.~5.3!, follows from point 5 above.

VI. CONCLUSIONS

We have built the optimal and minimal measuring str
egy for N copies of an unknown mixed state prepared
cording to a known, isotropic, but otherwise arbitrary pro
ability distribution. The strategy is universal, i.e
independent of the probability distribution. Except for o
single copy, optimal measurements have to be general
measurements. We have obtained a closed expression fo
maximal averaged mean fidelity and the associated mini
number of outcomes. In obtaining these expressions s
interesting windfall results emerged.

~i! Best guesses are not universal. They are pure st
only if the unknown state is known to be pure.

~ii ! Optimal measurements require projecting onto to
spin eigenspaces and within each such subspace onto
h-

c-
-

-
-
-

ed
the
al
e

tes

l
tal

spin eigenstates with maximal total spin component in so
direction. This allows us to relate them with optimal me
surements corresponding to a smaller number of copie
unknown pure states.

~iii ! Optimal measurements that are minimal have, beyo
two copies, outcomes associated with positive operator
rank larger than one and, beyond three copies, fewer
comes than dimensions of the Hilbert space. These opti
measurements are thus incomplete. Completing them is
less.

Our results also set the limits to optimal cloning of mixe
states. The techniques developed here for dealing with co
of mixed states will be useful for solving related problem

Note added. After finishing this work we learned from
Ignacio Cirac that he has done, together with Artur Ekert a
Chiara Macchiavello, somewhat similar work using basica
the same techniques@14#.
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