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The optimal and minimal measuring strategy is obtained for a two-state system prepared in a mixed state
with a probability given by any isotropia priori distribution. We explicitly construct the specific optimal and
minimal generalized measurements, which turn out to be independent afgheri probability distribution,
obtaining the best guesses for the unknown state as well as a closed expression for the maximal mean-average
fidelity. We do this for up to three copies of the unknown state in a way that leads to the generalization to any
number of copies, which we then present and pr¢84050-29409)06206-X|

PACS numbd(s): 03.67—a

I. INTRODUCTION unbiased distribution will be isotropic in the three-
dimensional Poincarsphere covered by the Bloch vector
A measurement allows us to extract only a small amounthat parametrizes the unknown density matrix and thus our
of the information needed to specify a quantum state. If ouresults will be valid for any author’s preferred candidate for
preparing device produces several identical copies of the uran unbiased probability distribution. We will not discuss this
known state, then measurements allow us to extract morissue further.
information, although only in the limit of infinitely many Let us now outline the strategy defining optimal minimal
copies do we acquire complete knowledge of the unknownmeasurements. We consider the simplest possible gquantum
guantum state. Performing an optimal measurement, the orgystem, a two-state system. It might be the spin of an elec-
that extracts the maximal possible amount of informationtron, the polarization of a photon, an atom at very low tem-
about the state, and among these a minimal measurement, theratures so that only the two lowest hyperfine states matter,
one with the minimal number of outcomes, is always a pri-a linearly trapped ion for which only the ground and the first
ority, especially if the process leading to the state is rare oexcited vibrational states are important, etc. This state is de-
costly. It is also the broad subject of this paper. scribed by a X2 density matrix
There are two aspects that significantly quantify the diffi-
culty of the problem. One of them is the dimension of the
Hilbert space that corresponds to the physical system we are
considering. We will take the lowest one, two. The second is
the a priori probability distribution function of the unknown b=|b|<1, (1.3
state. If the state is known to be pure, the problem has been

solved[1-3]. The average, mean fidelity of the optimal mea-\yhereb is the Bloch vector antb) and|—b) are the eigen-

surements performed dd copies of a pure state [4] states ofp(B). These density matrices are prepared accord-
ing to a known, isotropica priori probability distribution

R 1 . s 1+b . . 1-b . "
p(0)=5(I+b-0)=——[b)(b[+ ——[-b)(~b],

N+1

EWN) = - function given b
Faxpure NT2 (1.1 g y
1
and the minimal measurements correspond,Nerl—5, to f(b)=0, 47TJ0 db b*f(b)=1. (1.4
(3]
Let us point out here that all our results are independent
n™ (pure =2,4,6,10,12 (1.2 us point ou ur resu Incep

of the specific integration measure we have chosen in Eq.
(1.4). This is because in all our expressions the integration
Mneasuredbl? and the distribution functiori(b) always go

v_vhen we enlarge.tha priori probability d|_st'r|but|on func- together and one can thus redefine the latter so as to absorb
tion to include mixed states: more specifically, when one

o : . . any change in the former.
ak‘rslzsvrr?es that it is isotropic and otherwise arbitrary, but We will analyze the generalized measurements performed
On the other hand, the difficult and heavily discussed is®n_the state corresponding & copies of p(b), that is,
sue about which is the abolutely unbiased probability distri-2(b)®", and determine which ones are optimal. There are
bution in the space of density matrices is not settled and W0 aspects to an optimal measurement: which are the posi-
might even not have an unbiased solution. In any case alive operators correlated to the different outcomes and which
are the guesses that one makes, given an outcome, about the

unknown statewhich we shall calip;). Optimal measure-
*Electronic address: guifre@ecm.ub.es ments have to answer both questions by demanding that the
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guesses on average lead to the highest fidelity estimation of

p(b), after averaging over the known probability distribution

function f(b). We will then determine which of these opti-

mal measurements are minimal, i.e., have the minimal num- 1 n 5

ber of outcomes. For more than one cdgy 1, measure- ZWJO db bzf(b)iZl Ci

ments may be collective and thus may involve entanglement.

We will have something to say also about the relation be- b2, .

tween optimality and entanglement. The role of cloning as X| 1+ s+ Vl—bz\/l_riz)- (2.9

part of an optimal measurement will also be studied. We will

also show that for more than two copies optimal measureyyith the notation

ments that are minimal are not complete, i.e., they involve

positive operators with rank larger than ofend yet are 1

optimal. IaE47TJ' db b*f(b)
These are the main issues that will be presented\for °

=1-3 copies in Secs. lI-IV. In Sec. V we present and ProV&note thatl ,— 41

our general results for ani. Section VI briefly recollects “

our findings and conclusions.

EN:1>EJ dQJoldb bt (b)FN=1(p)

1-b?\«

«+1=0), the average fidelity reads

1 n
FN=1_2 % 2
i=1

1 - -
1+ 5(1_4|1)Si'ri+2|1/2\ l—l’i )

. N=1 (2.9
Let us start with one single copy pf N=1, and use this
example to present some of the systematics of our approac

We will first perform a generalized measuremptiton p(5)

with n outcomes, given by the operator sum decomposition

h. We now have to settle which is the best guess for the
unknown initial state based on the result of our measure-

ment, which is the proposgg that leads to the highest mean
fidelity. Let us first dispose of the casé 41, which corre-
n n sponds only td (b) = (1/47b?)lim,_,8(b—¢€), €>0. It im-

>SS Ata =D cZp=1 =ot=0  Tro=1 : i Y

e PN T Cipi=l, pi=pi=L, rpi=1, plies a vanishing Bloch vector and thpéb)=31, the com-

e - (2.  Pletely random state. Since the unknown state is necessarily

’ the completely random state, the state is known without per-

which implies forming any measurement whatsoever. We will thus always
assume <1 and only use ¥,=1 as a check of our re-

oo sults. Then from Eq(2.8) maximization implies that the best
.21 cf=2, 21 c’s=0, (2.2 guess corresponds to
i= i=
- . 1-4ly)s;
wheres; is the Bloch vector op; . If the outcomei is ob- = 2( VS, = (2.9
tained, which happens with probability V361%,+ (1-41,)%s,
. 1 - Notice thatp;# p;, butp; is a known function ofp;, as
2 _ A2 o i i i i
ciTrlp(b)pi]=ci5(1+b-s)), (2.3 jts coefficients depend only functionally diib). As f(b) is

known, Eq.(2.9 determines the optimal guess in terms of

one proposep; as a guess for the unknown staigh). The  pi. Substituting one obtains
fidelity, i.e., the measure of the goodness for a proposed
guess, is quantified byb]

- 1 ..
F(p,pi)=(Trvp¥%p;p*? 2=§(1+b- ri+v1—b%J1-rd),

(2.9

n

max FIN=U=FN=1=" % ¢2
' 4=

[

1
x| 1+ 5\/36I 2o+ (1—41,)%s?].

Wherefi is the Bloch vector of; . Thus the fidelity averaged (2.10

over all outcomes is We now have to determine the best measuring strategy, the
one that leads to the largest possible fidelity. It is obviously

10 .. L . B . .
F(N=1) )= = C2(1+b-5)(1+b-r+VI-b2\1—r?), given bys;=1, i.e., by outcomes associated with rank-one
(P) 4 ;1 il e ! ) projectors, and gives
29 1/ 1
where the superscript reminds us that we are dealing with ma)giE(mN=l):E(mNa=xl):§ 1+ 5\/36| 1ot (1-417)?].
only one copy. From here the mean fidelity, i.e., the fidelity (2.1

averaged over all unknown state¢b) weighed with the o . _
known probability distribution functiorf(b), is readily ob- ~ This is our result for one single copy of the physical system
tained in statep(b) with a priori probability distributionf (b).
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Notice that we have found that optimal measurements rewe will consider generalized measurements for which out-
quire necessarily an operator sum decomposition in terms afomes correspond to rank-one projectors, as our purpose
rank-one projectors. It is of course obvious that one can alnow is to build an optimal measurement. Thus the operator
ways perform an optimal measurement with rank-one projecsum decomposition will be written as
tors. Suppose, for instance, that we have some optimal op-
erator sum decomposition with one operator of rank two, say
pi - Then from its spectral decomposition

n

> ElyXwil=1, |y)yeC?oC2 3.3

=1

pi=Pilpin)(pial + (1=pp)lpi2)pi2l (212 Gijven one decomposition, one can obtain other decomposi-
and from Eq.(2.3) tions as follows. First, obviously,

n

¢t p(b)pi]=c?piTrLp(0) | pin)(pial] > V|| V=1. (3.9

i=1
+ci(1=p)Tp(D)|pi2)(pial],
' ' 2)\Piz Then, introducing the eigenstates ¥fbuilt from |;) and
(213 V),

it is clear that taking as the guess forfor both outcomes

associated withp;;) and|p;,) preciselyp;, one can trade; |h) = ! (| = V), (3.5
for its two rank-one eigenprojectors, having thus a measure- \/§V1i<¢i|V| i)
ment with only rank-one projectors. This result can be trivi-
ally generalized toN copies and is of course well knows]. ~ 2nd. as
We will use it without further comments in obtaini@gx, L) (] + V] )W |V =L+ (i Vi) | ) + (bl
but it does not allow us to analyze optimal measurements
that are minimal, which will need a separate treatement. (A= (HIVIgD ) - (il
In the case we are considering heles 1, the outcomes (3.6)
are necessarily associated with rank-one operators and thus,
from Eq.(2.2), a minimal optimal measurement requires twowe have another decomposition
outcomesn{~1=2. This corresponds to a standard von .
Neumann measurement, which is a result uniqueNer1. 1 2
For N>1 optimal measurements are generalized measure- > ;1 ciL(L+(lVIw) ) + (Wil
ments.
A limit of interest corresponds to considering pure states, + (A=) - (ill=1. 3.7

which is obtained by takingf(b)=(1/47b?)lim,__,8(b i .

—IN-1) ) o If the decomposition3.3) corresponds to an optimal mea-
—Dog), bo<1.ltfollows thatFp,,~'(pure)=3, whichis the g, rement, so does E€B.7) just recalling Eq(3.2) and using
known result given in Eq(1.1). Notice that in this caseg; the same guesses. Furthermore, as the probability dftlhe
=p; and thus the guess is precisely the pure state corresutcome is the sum of the probabilities of the andi_
sponding to the projector, while we have found that foroutcomes of the decomposition of E&.7),
mixed states the guegs is a mixed state, different, though )
related, to the pure state corresponding to the projector. This 2, N _ _ _ _
is a different feature of optimal measurements. The two ci{ilp@plds) 2(1+<¢"|V|¢'>) (Wilp@pl g+
guesses correspond to two points in the interior of the Poin- )
caresphere and symmetric with respect to its center. In the S . A .
other extreme, discussed after H8.8), when one knows * 2 A=Chl VD) (silpe pl di) -

that p(5) is the completely random state, we obtain (3.9
FN=D(random)=1, as it should.

max . . . L
it is enough to associate again the same guess witli the

andi_ outcomes to make the measurement of Bq7) op-
timal too. Thus optimal measurements can always be ob-
We will now study the situation in which two copies of tained by projecting on eigenstates\af

the unknown statg(b) are available, i.e., we have the state An equivalent way of presenting these results, which will

p(B)®p(b). As we shall see, collective measurements apP€ more convenient fdi>2, is based on the identity

pear here.

. N=2

_Q2_
Notice that by defining the exchange operaioby V=S-I (3.9
Vv _ v=Vvi=y-1 1 rel_ating the exchange operator with the square of the total
leyelv)=l)ele), . @3 spin operator
we have the exchange invariance 1
V(p&p)V=p&p. (3.2 EE(O'®|+|®O'). (3.10
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Equation(3.2) now reads , c? R
Ci<Ti|P®p|Ti>:Z{1+2b'ti+(b‘ti)2
[, p®p]=0 (3.1 R .
+1-t7(b-U))%—(b-0j)?]}.
and our previous results allow us to write £§.3) as (3.19
n-1

5 Once outcomé is obtained one proposes as a guess of the
o) (ol + ;1 cilmi)(n[=1, (312 ynknown statep(b). From Eq.(2.4) one obtains for the fi-
delity averaged over outcomes

where|o) is the singlet or antisymmetric state ahl) are ~ 1 .. ,
triplet or symmetric states. This is an important result. It F(N_Z)(p)=g(l—bz)(l+b~rn+ V1-b%1-r7)
states that decomposing the Hilbert space of the two cdpies

andB into a direct sum of eigenspacesf%%‘, 1 Coa s

+= > cH1+2b-t;+(b-1;)?

8i=1
HN"D=H, 0 Hg=Eo®E;, (3.13 B o

+ V1=t (B- U= (b-v)?]}
whereE, corresponds to the eigenvalggs+1) of &, it is - > T 3
enough to find optimal measurements in each of the spin X(1+Db-1i+y1=-b"V1-r(). (3.19
eigenspaces for obtaining an optimal measurement in th
whole space. The generalization of this resuliND 2 will
be essential. It will then also be convenient to use both spin
and exchange invariances simultaneously. 1"t 1

We are ready to resume our general strategy for perform- F(N= 2)——(I 1+ 2l g1 - 7)+ c,z( 1-1+ (1

ing optimal measurements. First, the probability that the out- i= 2
come corresponds to the singlet state is

Phe mean fidelity is obtained after averaging over the state
space with the probability distribution function and reads

—4|l)ﬂ-Fi+2(|1,2—|3,2)\/1—ri2). (3.20

1— 2
(olps ploy="-. (314

From here the best guesses are readily obtained

For the triplet states we have found it convenient to use the =0 (3.213

Hilbert-Schmidt parametrization [except for f(b)=(1/47)S8(b—1) whenr, is not deter-

1 mined|
|’Ti><7'i|=Z[|®|+ti'0'®|+|®ti'0'+t t R 1 4|1 |
A e e e A r= JI60 a2t (14l th., i=1,...n-1.
+ 1=t 00U - 0—0- 0®0;- 0) ], 6(1 12— l32)*+( 1)

(3.21bh
(3.15 ~

As before, forN=1, againp; # p; is a function ofp; , in fact
d @ mixture ofp;, and the completely random state. Substitut-

wheret;, U;, ando; are n—1 triads of orthonormalize
ing the best guesses, we obtain

vectors. Notice thafi is the Bloch vector of the reduced
density matrix 1 n—1
N=2 2
A ):§|1+|3/2+g 2
i=1

1 .
TrA|Ti><Ti|=TfB|Ti><Ti|:§(|+ti'U)EPi, (3.16

1
X[ =1y SVI6(l o 15 *+ (1= A1)t

where we use subscripts and B to earmark the Hilbert (3.22
space over which the trace is performed. Furthermore, from ’
Eq. (3.12 we have The best measurement strategy is obtained;ferl, so that

pi is a pure state and;) is a product state, without entangle-
- - . ment. This is a reasonable result sinoep has neither en-
E Ci2=3, 2 .2t (3.17 tanglement nor classical correlations, so it would be surpris-
=1 - ing that projecting on entangled states would lead to an
o A optimal measuring strategy. Notice also that this result of no
and further restrictions om;, v;, andt; that will not be entanglement, which we will reencounter later for-2, is
needed here. The probability that the outcome corresponds todependent off(b). In fact, once the specification of the
|7,) is operator sum decomposition does not depend(t), it has
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to correspond to an optimal measurement strategy valid foonly when we know that the unknown state is pure. The
pure states. However, this is knowh 2] to precisely require question then is if the four triplet states, which are certainly
product states. For the singlet, which is a maximally en-not orthogonal, can be made orthogonal by adding them co-
tangled state, there are no alternatives and thus the previobgrently to the singlet state. Notice that these states would
argument is irrelevant. The final result is not have a well-defined symmetry, but our previous proof
that such states cannot be part of an optimal measurement
fails precisely only for pure states, as thef. Eq. (3.213]
r, is arbitrary. It is thus a legitimate question. Its answer is
(3.23 “yes” for N=2 [1]. The answer foN>2 is not known.
Let us briefly return to the situation in which we had one
This final result reproduces the known limits. Indeed, thecopy (Sec. I) and let us clone it with a state-independent
pure state result of Eql.1) is readily obtained from Eg. universal quantum clondi7—11]. The conditions of strong
(3.23 whenf(b)=(1/47)8(b—1). Also for the completely [12] symmetry and isotropy of a universal 1-to-2 quantum
random stateF(2) (random)=1. One can also check from cloner imply
the comparison ofﬁ(n')ax—%)z for i=1 and 2 that, as it

should b -1 h- o b o
) p(b)—p¢ =Z[I®I+77(b-0'®|+I®b~0')+tij(7i®a'j],

_n 1 1
Fla)=5 +lanpt V16810~ 1307+ (1—411)%,

ol

max = F (3.2 ti=t (3.29
ij 7 i :

Let us now analyze optimal measurements that are mini- . o
mal. With the constraints we have been using for obtaining/h€re 7 is the shrinking factor and; depends only on the
optimal measurements, i.e., an operator sum decompositioféctorb and the invariant tensof; . Linearity, which origi-
in terms of rank-one symmetric or antisymmetric projectorsnates in state independence, and the absence of measure-
the minimaln is 5. This is because in the three-dimensionalments in optimal cloning13] forbid the quadratic depen-
symmetric(triplet) space a resolution of the identity in terms dence orb;, so that eventually;; =tg;; . It is also linearity
of symmetric product states needs four of thEgh which that allows us to clone straightforwardly fdf=1 a mixed
together with the singlet makes five. When the unknowrstate by just mixing statistically the clones of the pure states
state is known to be pure, the outcome corresponding to thihat realize the mixed state. The values of the real parameters
singlet never happens and one can do with just four projecy andt have to be such tha{? is a density matrix, i.e., such
tors. Let us now prove that one cannot do with less. that its eigenvalues

Suppose we have an optimal measurement such that one
of the rank-one projectors of its operator sum decomposition

| ) (|, with associated best gueps is neither symmetric
nor antisymmetric. Obviously the best guess associated with

V)|V is alsop. One can then build, following the argu- lie between 0 and 1. Of course measuringpéﬁ will allow
ments of Egs.(3.5—(3.8), an optimal measurement with us to learn the most abobtfor the largesty possible. This
[#), (¢] and|)_ _(y| with associated best guesgefor  Is precisely what optimal cloning doeg=% and thust=1%.
both of them. However, this is impossible, as we saw that th&Ve can now perform an optimal measurement on the optimal
best guess associated with the antisymmetric state is traionep!?, following closely the study of thél=2 case, as
completely random state, while the one associated with th&/p{®?V=p{?). From the results
symmetric state has a nonvanishing Bloch veds®e Eq.
(3.21B] and thus the best guesses cannot be equal. (o]p®|a)=0, (3.273

The very same reasoning forbids an optimal measurement
with an operator sum decomposition for which one of the 1 .
operators has rank larger than one, as the associated rank-one (i Ip(cz)l Ti)= §(1+ b-t;), (3.27H
projectors that appear in its spectral decomposition will have
necessarll_y dlﬁgr_ent best_ guesses. The upshot of all this 8o expression equivalent to E¢8.19, after dropping an
that for N=2 minimal optimal measurements correspond to. ;

" ; irrelevant part, is

operator sum decompositions of rank-one symmetric or an-
tisymmetric projectors and thus have five outcomé¥.? 01
=5. We will see that foN>2 the result that minimal mea-  F(2)()=— > cX(1+b-t,)(1+b-ri+ Wﬁ—_r?)
surements correspond to rank-one projectors does not hold. 6 =1

F

1 N 1 1
Z(l_Zb”r]'f't), Z(1+t), Z(l—3t) (3.26

Notice that the five guesses are situated with one at the cen- (3.28
ter of the Poincarsphere and the other four on a concentric_ i . o )
shell in its interior forming a regular tetrahedron. This expression, together with E(.17), is identical to Eq.

circumstances exist for which von Neumann measurementsd- (2.11). In words, optimal cloning can be part of an opti-
can be minimal and optimal. AG2® C2 is of dimension 4, a mal measurement. As a by-product we have checked that
von Neumann measurement has four outcomes. We havedeedp?, with t=3 and »=1%, is the optimal clone of

seen that optimal measurements with four outcomes exigi(b).
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Notice also the result shown in EG.279: The optimally o, & o A .
cloned state exists in the triplet space. This is not surprisingg > (I3 + o) o] @ |ny(n|+|a){a|®| —n){—n|
as the singlet space cannot carry any information about thg '=*
original cloned state.

1 A a
+ =(Vac—V o o|@n{n|(Vac—V
V. N=3 3( AC BC)| >< | | >< |( AC BC)
Consider now three copies of the unknown statep

1 - -
®p. Let us recall its exchange invariances + §(VAC_VBC)|U><U|®|_n><_n|(VAC_VBC): l.

[Vac,p®p®p]=[Vac,p®p®p]=0, 4.1 (4.6
whereA, B, andC are the subindices labeling the copies that| IS result recalls the decomposition into eigenspaces
are exchanged, and its spin invariances Ess,,Of S* andSig,

[S,p2pRp]=[Sag.pR@p@p]=0, 4.2 HMN=Hp\@Hg@Hc=Egp1®E1)p®Eyp1 (4.7)
where the partial and total spin operators are and that under permutatioris,, o can be transformed into

E1/01. [Let us note here that the correctness of &g6) has
R . .. 1 . been confirmed by a brute-force assumption-free computa-
(c@l®l+l®osl), S=Sptslele. tion that we performed in the early stages of this wprk.
4.3 Because of the isotropy of the probability distributibfb)
we just need to compute the probabilities

The first equality of Eq(4.2) is obvious if one convinces
oneself first that

N| -

Sag=

N A A N a A A 1 N
(ARIRlo®p® plA) A7) = (Pl ol ) =5 (1+5-7)°,

p@p@p=p3(S-b), (4.4 (4.89
wherepy(X) is a polynomial inx of degreeN. The second (o|(n|p@pp|a)|n)=(c|p®p|c)(n|p|n)
equality of Eq.(4.2) follows then immediately. With the ad- 5
equate generalizations in going frdi=2 toN= 3, it can be _ 1-b

seen that in order to obtain optimal measurements it is 8 (1+b-n), (4.8

enough to consider operator sum decompositions whose ele-
ments are of rank one and project on states that are simulta-

neous eigenstates @& and S2;. Moreover, these states §<‘7|<ﬁ|(VAC_VBC)p®P®p(VAC_VBC)|0'>|ﬁ>
should again be eigenstates® for somen with maximal X )
eigenvalue. Using the notatigs,s,g,n), this leads immedi- =(al(n|p®p®p|a)|n) (4.80
ately to the following states in terms of which the optimal
operator sum decomposition can be built: where expressiofd.8¢ is obtained from
3 .\ e 1 y
Evlv” =[n)[n)|n), (4.53 §(VA(:_VBC) |o)[n)=1a)|n). (4.9
1 . - Putting all the pieces together, we obtéirom Eq. (2.3
5,0,n>=|o>|n>, (45D Janmer ? dirom £q. (2.3

FIN=3)(p) = %(1—b2)(1+ b-n)

X (14Tt VIZB2VI=T2)

The first state also corresponds to the completely symmetric } > ~3 SO ey A e}
representation of the permutation group generated by the ex- * 4(1+b N (1+b-re+ y1=b™1-ry),

change operators and the other two correspond to the two-
dimensional mixed symmetry representation of the same
group. We may recall from Ref3] that six states of the type . -
of Eq. (4.5 a pointing into the six directions of the vertices Where ry,, and rs are the Bloch vectors of the proposed
of a regular octahedron resolve the identity in the four-guesses ob corresponding to the mixed symmetry and com-
dimensional maximal spin spaee= 3. Therefore, we obtain ~Pletely symmetric projectors, respectively. Angular integra-
the optimal operator sum decomposition tion overb leads to

1 . 1 o
Ealan>:ﬁ(VAC_VBC)|0>|n>- (4.50

(4.10
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EN=3)_

(I1— A1 )N Tt 2l /112,

w| =

+

N[ =

1 ..
+(lp—2lg)V1-r2+ 1—0(3—14|1+ 8l,)n-rg,
(4.11)

from which the optimal guesses are obtained for

; Ui-4l2) o (4.123
" 362, (1,— 41,7 '
- 3_14Il+8|2 A
= n
* V10Q(I 1 2197+ (3— 141, + 81 )2
(4.128

Substitution into Eq(4.10 leads to our final result foN
:3,

1
Fhmc =5+ \/36I3,2+(I 41,)?

max

i _ 2 _ 2
- 1OJ100(|1,2 213+ (3— 141, +81,)%.
(4.13

This result reproduces the pure state result of @#dl) and

PRA 60

- ~ 1 .
03,1/2,2:|‘7><(T|®|_n><_n|+ §(VAC_VBC)|U><U|®|_n>

X{(=n|(Vac—Vac),

P3,1/2,2:§(| —Iun- ). (4.19

Here a minimal optimal measurement has operators of
rank two in its decomposition. The Bloch vectors of the cor-
responding guesses are situated on two concentric shells in
the interior of the Poincarsphere.

Notice that again the measuring strategy, i.e., @), is
independent of (b) and thus determined actually by what is
known from[1-3]: For eachs the pure state strategy fois2
copies is the optimal strategy. This will allow us to prove the

general expression f&t") andn™ for any N with relative
ease in the next section.

V. GENERAL RESULTS FOR N>3

We will analyze in this section optimal and minimal gen-
eralized measurements when a generic nunibef copies
of the unknown state are available. We present here the

maximal fidelityF{\). one can obtain on average by perform-
ing such collective measurements oyet", together with
the minimal numben{) of outcomes an optimal general-
ized measurement can have. For awywe provide also a
generalized measurement that is both optimal and minimal.
Explicit results for the casB=4 are worked out in order to

gives 1 for the completely random state, as in previous case

Let us finally discuss those optimal measurements that are
minimal. Up to now we have an optimal measurement with
ten outcomes. Remember that the only possibility of group-

ﬁrustrate the general expressions.
We first display our final, general results

ing together two rank-one projectors of the operator sum —ny L N2 (25+1)2
decomposition happens when the two different outcomesFmgx_ 2 N VO1(N,5)?+0,(N,s)?,
correspond to the same guess. Now from our results it is N E+s+1 2

clear that this happens twice, that is, the guesses correspond-

ing to the seventh and ninth terms of E4.6) are the same 5.1
and given by Eq(4.123 and the ones corresponding to the h
eighth and tenth terms of Eq4.6) are also the same and where
given by Eq.(4.123, but with opposite sign. Thus the mini- 1—b2| (D25 1 4 b
mal optimal measurement has eight outcomg#=8. The ¢ (N, S)_f de db b2f b)( ) 7
corresponding positive operatdafy, s ; and guessegy, g ; for 2
N=3 are[cf. Eq.(4.6)] six for the spacé ), ,,
_b2 N/2—s 1+b ZSbZ
2 1 o g2(N,s)= jdﬂj db bzf(b)( ) T) >
03,3/Zj:§|ni><ni|®3= P3,3lzj:§(|+fsni'0), 5.2
(4.19
b, is the third component db, andsy is 0 (1/2) for even
and two for the spacg;; ¢®Ey 1, (odd) N. As for n™ we have found that
N/2
031/21—|0'><0'|®|n><"‘|“L (Vac—Veo)lo)(a|®|n) n\hin= > nézss): (5.3

s=5g

X(n|(Vac—Vac), where we definen(9=n{\)(pure), n{Y=1. For N=1-5

this readqusing [3])

(I+rpn-o), n™ =2 58 15 .20.

1
P32 5 tnin (5.4
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ForN>5 the minimaln(':) relies on a conjecture proposed in

[3] and this is therefore also the casend}), for N>5.
For some very specifia priori probability distributions

f(b) this number can be reduced. This, though, corresponds
only to cases in which there is an accidental degeneracy in

the proposed guesses, as in the cgdg = (1/47) 5(b—1)
(pure states

The optimal and minimal generalized measurements con-
sists of the following decomposition of the identity operator

OPTIMAL MINIMAL MEASUREMENTS OF MIXED STATES
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a1
Fnlm\lax4):§+2|5/2

1 2 2
+ g\/(z—lll 1F125)+36(1 1)p— 3l 3ot 1 500)

in the spacé{ ™) =C?®N of theN copies in terms of positive and

operatorsOy s; and the corresponding guessggs;: For
eachse[sg,Sp+1, ... N/2—1,N/2], our optimal and mini-
mal generalized measurement contaiffs’ positive opera-
tors of the form

N
(2s+1) 1
ON,s,i:CéiN— E+S m
E+S+l 2

X E V(|0'><0'| 2(N2)=sg, | I:\]S,i><ﬁs,i|®25)VTa
VGSN

(5.9

whereS,y is the group of theN! possible permutations dfl
elements acting on the Hilbert space of theopies and:ii
is such that

(2s)

N2 ngg
> D Onsi=!. (5.6)
s=sg I=1
The corresponding guesses are
1 -~ -
PN,s,i:§(|+rN,sns,i’U)i (5.7
where
N,s
g2(N,s) 5.8

N (NS 2+ Ga(N,S)2

The n% vectorsn; are distributed according to their
counterparts of th&l=2s case of optimal estimation of pure

states as described 8] and the c:oefficientsii satisfy

29 29
ps R ps

> c2ing;=0, > c2=2s+1. (5.9)
=1 7 =1 7

For s=3,1%,3 they are independent ofi:c;;=(2s

+1)/n{ZY . All these results are essentially unique.
For N=4 our results can be explicitly written as

3 2 2
+Z\/(|1_4|2) +16(1 32— 1572) (5.10
n(N=4=15 (5.12)
The positive operator sum decomposition reads
4 10
I:O4'O+i21 O4,lj+i21 Oa i, (5.12
where to the rank-two projector
1 t
Ouo=75 2 Vlo)ol®|o)(alV (5.13
12 VeS,
corresponds the guess
1
pag=51 (ra0=0). (5.19
The four rank-three positive operators
3 N eyt
O4,1j:_ 2 V|0-><0-|®|n1,i><nl,i| \ ’ |:1! v 141
323,
(5.15
have associated guesses
1 -~ -
P4,1j:§(| +raany-0),
1, —4l
L2 (5.16

M41=
V(11— 415)%+ 16(1 31— 151

(here theﬁlvi are distributed according to a regular tetrahe-
dron[3]) and the ten rank-one positive operators

i=1,...,10, (5.19

04,2;‘:Cg,i|ﬁz,i><ﬁ2,i|®4l
have associated guesses
1 -~ -
P4,2j:§(| TN 0),
(2—110,+12,)2

r =
42 (2= 11,1 125) %+ 36(1 15— 3l gt l512)2
(5.18

(a concrete solution fon,; andc3; is given in[3]).

Let us now outline the proof of the above expressions.
The proof will be based on a series of results that we have
obtained in the previous sections, which we now put together
in their generalized version.
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1. Permutation invarianceFor any elemenY of the per-

mutation group olN elementsSy,
[V.p®N]=0 V VeS,. (5.19

2. Spin invariance With the following notation for the
composite Hilbert space:

HMN=H,@Hp® - - - Hy, (5.20
for the corresponding local spin operators
. 1.
_ = ®N—1
SA_ 20'® | y
-1 -
SBEE|®U®|®N*2, (5.22)
. 1 -
S=31"""e0
and for the partial and total spin operators
M
S(M)EXEA S., A<VM<N, S=S,,, (522
the spin invariances read
[Sp°N =[Sy p°N1=[S3.p°M=0.  (5.23
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(5.28

(with N/2—s zeros. There are as many of these equivalent
spaces as the dimension of the irreducible representation of
Sy in a space of total spis,

Es,sf 1/2s—-1,...0,1/2,0

2s+1

+s
2 E+S+1

From this result one can check the dimensional consistency
of expression5.26),

N/2
2N= (2s+1)dy(s), S,=0 or

=. 5.3
s=sp 2 ( 0)

5. Optimal pure state measuring stratedy each of the
reference spaces of the type of E§.28, where any vector
is of the form

|0_>®N/2—s®|¢>’ |lﬂ>=V|(/l>eC2®2$ V4 VESZS’

(5.31)

the best measuring strategy turns out to be the one corre-

sponding to 3 copies of an unknown pure staté—3] and

thus projects onto states of the form
|0_>®N/275®|ﬁ>®23_

(5.32

Notice that the singlets act as an identity in the reference

They are an immediate consequence of the relativel)épace of Eq(5.28 and that the state®.32 are the ones in

straightforward result

Eq. (5.31) with less entanglement. From here, and recalling
Eq. (5.29, one readily obtains Eq$5.5 and(5.6). The fact

s ONL . A
p(0)*"=pn(S-b), (524 that the guesses of EEp.7) can be grouped together due to
. . . the permutation equivalence and thus have to be made only
Whg reDF:rNe(c):(t) slzr? gglcy::]mérslﬁ:ooléiiigrebl nx for the reference space has been taken into account already in
' P writing Eq. (5.5). Notice that the operators of E¢p.5) are of
2282 1_rd&2 & q_ rank dy(s).
[S%Sw)1=[Sm) . Spl=0 ¥ ML, (529 We are now ready to perform the final computation of
the total Hilbert space can be written as a direct sum N2 @)
ps 1
N) _ EN) —
H )_GBS»{S(M)}ES’{S(M)}’ (5.26 Fmax s:zso igl fdﬂfo db b (b)
whereEs s} are the eigenspaces 8f and S, N>V M XTr(Opnsip®MF(p,pnsi)- (5.33
>A, with eigenvaluess(s+1) and {sy(sy+1)} ordered From
with decreasingM, respectively. For instance, foN=4,
N=4)_ _ 1-b2\N2-s(1+B.n | >
HOD=Boa1 (s=2) Tr(ON,s,iP®N):C§,idN(S)( 7 ) TSI ,
©E13210E1128E1100 (5=1) (5.27 (5.39
_ which is obtained from Eqsi4.83, (5.5, and (5.29, Eq.
®Bo12:8 o120 (5=0). (5.33 can be written as
Of course only those eigenvalues consistent with the spin N/2 L
Composmon ru.les appear. - - E(n’rl\gx: E (2$+ 1)dN(S)f dﬂf db be(b)
4. Permutation group equivalencior a givens<<N/2 all s=sp 0
the spaceg&s (s .} corresponding to it can be obtained from .
{5 : 1-b2\N2-s( 14+p.n|*°1
one of them with the help of the elements of the permutation > ) -
group. The one that we retain for our proof as reference 4 2 2

space is the one with the maximal number of vanishing par-
tial spins,

X(1+ryb-n+y1-b%J1-r3y, (539
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where we have used E@5.9), as the contributions corre- spin eigenstates with maximal total spin component in some
sponding to different are the same, E@2.4) for the fidelity,  direction. This allows us to relate them with optimal mea-
and the subindices Gﬁs,i have been dropped, given their surements corresponding to a smaller number of copies of
irrelevance at this stage of the computation. In &35 the  unknown pure states.

first term gives; and the other two depend oR s, which is (iii ) Optimal measurements that are minimal have, beyond
fixed by maximization. Choosing in the direction of thez ~ tWo copies, outcomes associated with positive operators of
axis and with the definitions of Ed5.2), one immediately rank larger than one and, beyond three copies, fewer out-
obtains Eq.(5.8) and finally our main result E¢5.1). The  comes than dimensions of the Hilbert space. These optimal
result referring to the number of outputs of minimal mea-measurements are thus incomplete. Completing them is use-

surements, Eq5.3), follows from point 5 above. less.
Our results also set the limits to optimal cloning of mixed
VI. CONCLUSIONS states. The techniques developed here for dealing with copies

of mixed states will be useful for solving related problems.

We have built the optimal and minimal measuring strat-  Note added After finishing this work we learned from
egy for N copies of an unknown mixed state prepared ac{gnacio Cirac that he has done, together with Artur Ekert and
cording to a known, isotropic, but otherwise arbitrary prob-Chiara Macchiavello, somewhat similar work using basically
ability distribution. The strategy is universal, i.e., the same techniqudd4].
independent of the probability distribution. Except for one
single copy, optimal measurements have to be generalized
measurements. We have obtained a closed expression for the ACKNOWLEDGMENTS
maximal averaged mean fidelity and the associated minimal
number of outcomes. In obtaining these expressions some This work was started during the Benasque Center for

interesting windfall results emerged. Physics session. Financial support from CIRYT, under Con-
(i) Best guesses are not universal. They are pure statésact No. AEN98-0431, and CIRIT, under Contract No.
only if the unknown state is known to be pure. 1998SGR-00026, is acknowledged. G.V. acknowledges

(i) Optimal measurements require projecting onto totalCIRIT Grant No. 1997FI-00068PG. R.T. thanks Ignacio
spin eigenspaces and within each such subspace onto tofirac and Peter Zoller for their hospitality in Innsbruck.
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