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Evaporation and cluster abundance spectra

Klavs Hansen1 and Ulrich Näher2
1Institut of Physics and Astronomy, Ny Munkegade, DK-8000 Aarhus C, Denmark

2Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
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Statistical fragmentation can give valuable information on the internal structure of clusters due to the strong
dependence of the evaporation rate on the activation energy for the process. In particular, the abundances in an
ensemble of hot clusters will reflect the relative stabilities of the individual species. We derive the relation
between evaporative activation energies and relative abundances for large clusters. Quantitative criteria for the
applicability of the theory are derived and the analytical results are compared with numerical simulations.
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PACS number~s!: 36.40.Qv, 36.40.2c, 36.20.Kd
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INTRODUCTION

One of the goals of cluster research is to unravel the
ergetics of clusters. In particular, the homologous series
clusters of the same material have attracted much interes
these series, the stability often shows characteristic variat
with size. These stability variations are almost always ma
festations of an underlying shell structure, whether qua
@1–4# or geometrical@5–7# in nature. Both such periodicitie
and variations in binding energies in general can be ef
tively probed by evaporative processes. The usefulnes
evaporation derives from the strong dependence of the
constant on the activation energy of the process. Un
proper experimental conditions abundances reflect evap
tion rates in an unambiguous way. Hence, variations in ab
dances will reflect variations in activation energy with clu
ter size. Activation energies, on the other hand, are sim
the differential binding energies~separation or dissociatio
energies! of the clusters provided the transition state is triv
@8#. It is thus in principle possible to transform abundan
spectra into curves for separation energies vs size. The p
lem of relating binding energies to abundances or evap
tion probabilities has been addressed previously in a num
of papers, either dealing with small clusters or by solving
through numerical calculations of cooling rates@12–14#.
Some of the elements of the present analysis were also
sented in@15#.

The relation between abundances and binding ener
has, however, not been known previously, for clusters lar
than about 100 atoms. In this work we present the solutio
the problem in approximate and simple but still accur
terms. The problem can be stated as follows: Given a col
tion of free, hot clusters with an abundance distributi
which at time zero is smooth and broad, what is the resul
abundance pattern at a later time if separation energies
with cluster size? The main motivation for this work is to
able to invert abundance spectra to obtain the separation
ergies. Hence the solution must be simple and easily ap
cable in the interpretation of the type of experiments
scribed in, for example,@3,6,9–11#.

Figure 1 illustrates the key ingredients of the proble
They are~1! a collection of initially hot clusters, and~2! a
line representing the final temperatures for each cluster s
PRA 601050-2947/99/60~2!/1240~11!/$15.00
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The collection of hot clusters moves down to the line of fin
temperatures at which the abundances are probed at a ce
time, defined by the time scale in the experimental se
used to measure the abundances. The sampling time can
example, be the time for mass separation in a simple tim
of-flight mass spectrometer. Each cluster size will capture
amount of the hot ensemble according to the shape of
final-temperature curve. The solution of the problem cons
in tracing a unit mass interval at the final temperature b
into the initial temperature distribution. The final time abu
dance reflects the size of the area of the crosshatched in
distribution in Fig. 1 covered by this unit mass interval trac

This tracing procedure is easily performed for small clu
ters @16#. For large clusters complications arise. The m
important is the determination of the final-temperature cu
itself. For both small and large clusters the curve is in pr
ciple determined by the separation energies of all the clu
sizes that are encountered during the decays from the in
to the final size. For small clusters, only the last separa
energy in this sequence is relevant and this fact facilitates
analysis of evaporative processes enormously. This is no
for large clusters. An indication that the situation is mo
complicated for large clusters is the fact that the width of
final energy distribution for a large size cluster is larger th
the separation energy@17#. This implies that the final tem-
perature is determined by a finite range of evaporations
not just the last one. This in turn means that a given fi
mass will receive contributions from a broad range of init

FIG. 1. The principle of the experiments described in the te
The initially hot collection of clusters~A! moves down to the more
or less well defined final temperature curve~B! during the cooling
time. The time increases monotonically but highly nonlinea
along the trajectories fromA to B.
1240 ©1999 The American Physical Society
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PRA 60 1241EVAPORATION AND CLUSTER ABUNDANCE SPECTRA
masses, even in the case where the initial-temperature d
bution is ad function. The derivation of the proper averagin
procedure for this problem constitutes the main calculatio
content of this work.

In this pictorial formulation of the problem it is also clea
that a significant admixture of dimer evaporation will cau
severe complications for the solution. When both dimer a
monomer evaporation is present, the backpropagation of
final-temperature curve into the initial distribution will i
principle depend on all the dimer-monomer branching ra
encountered on the way from initial to final configuratio
The fact that these branching ratios are temperature de
dent only adds to the complications. The weight of the dim
channel can be judged from tabulated dimer-monomer va
ratios which also represent the branching ratios of the
evaporative channels for large clusters. The only element
the first three groups that have any measurable vapor p
sure from the dimers are the alkali metals Li, Na, K, Cs, a
Rb @18#. The dimer/monomer vapor pressure ratio is in the
cases at or below 231023 at the relevant temperature
which, as we will see below, is about130 of the enthalpy
of vaporization @PLi2

/PLi(650 K)51.931023, PCs2
/

PCs(300 K)51.931025, for example#. Thus only one in 500
~Li ! or 50 000~Cs! evaporations will be dimer loss. We wi
therefore exclude dimer evaporation from the analysis.
will, however, include cases where the monomer has inte
degrees of freedom, such as the benzene data of@19#, but
without going into all the details.

We will also leave out a discussion of the effects of
diative cooling on the abundance spectra although ther
radiation influences evaporation rates and thereby also a
dance spectra@20#. Radiative cooling is important relative t
evaporative cooling mainly for fullerenes and refractory m
als at long times where also thermionic emission may
present@21–24#. The precise time scale is material depe
dent and must be determined by experiment in each c
This work includes tests to check whether radiation or ot
complications voiding the derived relations are present
not.

The paper is structured as follows. We begin with a br
review of the ‘‘evaporative ensemble’’ theory developed
Gspann, Klots, and others@25,26#, applicable to small clus-
ters, and derive the abundance spectrum in this limit. N
we address the question of the decay rate in the large clu
approximation and derive a scaled equation for the temp
development of this quantity. The solution of this scal
equation serves as the basis for treating variations in sep
tion energies perturbatively. Then decay rates are relate
abundances. This gives the desired result. The validity of
analytical work will be demonstrated by numerical calcu
tions.

RATE CONSTANTS

A treatment of evaporative processes requires that
have established the basics in the form of an expression
the rate constant. Naively we must specify the rate cons
with as much precision as we want for the results. If t
were really the case, it would cause serious complications
a general and easily applicable solution of the proble
Luckily it is not the case. The reason is that observable ra
tri-
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and abundances will be averages over a wide distribution
energies. Consequently, many of the finer details in the
mulation of the rate constants will be averaged out and
appear from the final formulas. The situation is analogous
kinetic gas theory which can be developed without detai
knowledge of the structure of gas molecules. Neverthel
in order not to antagonize readers unnecessarily, we begi
establishing some useful facts about evaporative rate c
stants for clusters. Some of the results in this section can
found in @12,27–30#.

A convenient formulation of unimolecular reactions f
clusters is found in the Weisskopf expression, originally d
veloped for nuclear reactions but well suited for clusters a
It reads~for atomic monomers! @31#

k~e!de5
gms~e!e

p2\3

rN21~E2DN2e!

rN~E!
de ~1!

for the evaporation of a monomer from clusterN with inter-
nal energyE through a process with activation energyDN . g
is the monomer statistical weight, i.e., the spin degeneracm
the reduced mass of the channel, in practice very close to
monomer mass,rN(E) the level density of clusterN, ande
the kinetic energy in the c.m. system.s is the atomic capture
cross section for the inverse process.

Sincee is only a very small part of the total energy, w
can use standard procedures and expand the logarithm
rN21 to first order ine :

k5E
0

E2DN
k~e!de

5
gm

p2\3 E0

E2DN
s~e!ee2e/Tdde

rN21~E2DN!

rN~E!
, ~2!

where the~daughter! temperatureTd is defined as usual:

Td
215

d ln@rN21~E2DN!#

dE
~3!

(kB51). The cross sections may be energy dependent a
indicated. If not simply a geometric cross section

s5sN5p~r N1r 1!25pr 1
2@~N21!1/311#2'pr 1

2N2/3

~4!

one expects a cross section of the type

s5sNS 12
V~r N!

e D , ~5!

where V(r N) is the potential at the capture radius of th
cluster. Alternatively the cross section may arise from
purely point particle attractive potential,

s}ea, ~6!

wherea>2 1
2 , or possibly a hybrid type of two of these. I

any case the cross section is multiplied withe and integrated
with the Boltzmann factor. This leaves us with a temperat
dependence that amounts to a power law with a small po
or possibly a sum of two such terms. A reverse activat
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1242 PRA 60KLAVS HANSEN AND ULRICH NÄHER
barrier would be reflected in a threshold value for the cr
section with respect toe or equivalently as a renormalizatio
of the dissociation energy which would be the sum of
adiabatic separation energies and the reverse activation
rier. We expect that dissociation energies and separation
ergies are identical, at least for most metal and the noble
clusters. The question can in principle be settled by mea
ing thee distribution. To be specific we will in the following
take the geometric cross sectionsN5pr s

2N2/3 for our large
clusters.

The rate constant with the geometric cross section is

kN~E,DN!5
gmsN

p2\3
Td

2 rN21~E2DN!

rN~E!
. ~7!

The ratio of level densities,rN21(E2DN)/rN(E), can be
expressed in terms of the level density of cluster sizeN by
the approximate relation, using the Debye temperatureTD
5\vD ,

rN21~E2DN!S Td

TD
D 3

'rN~E2DN!. ~8!

To the extent thatTD /\ represents an average of the vibr
tional frequencies in the cluster, the approximation is asym
totically exact in the harmonic oscillator approximation
the high temperature limit for largeN. Since this is the limit
we are interested in, we will adopt the approximation. Hen

kN~E,DN!5
gmsN

p2\3

TD
3

Td

rN~E2DN!

rN~E!
. ~9!

The quantityv8[gmr 1
2TD

2 /p\3 has dimension of frequency
We can then write the rate constant in the simpler form

kN~E,DN!5v8N2/3
TD

Td

rN~E2DN!

rN~E!
. ~10!

For sodium, for example, whereg52,m523 amu,TD
50.013 eV, andr 154.0a0 , the value ofv8 is 431015s21.
For monomer evaporation from diamond withTD50.16 eV
and r 151.6a0 , v85131017s21 ~geometrical cross sectio
value!.

As we will see below, the value ofTd does not change
much during experimental time scales and the change
TD /Td can be neglected without significant loss of precisio
Hence we have the prototype expression for a rate cons
~with v5v8TD /Td):

kN~E,DN!5vN2/3
rN~E2DN!

rN~E!
. ~11!

Rate constants in this form can be approximated e
more. We will later need the derivative of the rate const
with respect to energy. For this purpose we calculate
logarithmic derivative of the ratio of level densities:

d ln@rN~E2DN!/rN~E!#

dE
5

1

Td
2

1

Tm
, ~12!
s
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with a self-explanatory definition ofTm . Using the average
of the two temperatures,T5(Tm1Td)/2, the logarithmic de-
rivative can be approximated as

d ln@rN~E2DN!/rN~E!#

dE
5

1

T2DN/2Cv
2

1

T1DN/2Cv

5
DN

CvT2
1OX1

T S DN

2CvTD 3C,
~13!

where we have used

Td5T~E2DN!'T~E2DN/2!2
DN

2

1

Cv
, ~14!

and analogously forTm . An important point concerning the
temperatureT is that for constant heat capacity,dT/dE
51/Cv . The heat capacity needs only be constant ove
temperature interval ofDN/2Cv , a requirement easily me
for large clusters.

It is also easy to express the rate constant in terms oT.
By expanding the logarithm of the level density aroundE
2DN/2 one gets

r~E2DN!5r~E2DN/2!expS 2
DN

2

d ln~r!

dE

1
DN

2

8

d2 ln~r!

dE2
1¯ D

'r~E2DN/2!expS 2
DN

2T
2

DN
2

8T2Cv
D ~15!

and

r~E!5r~E2DN/2!expS DN

2

d ln~r!

dE
1

DN
2

8

d2 ln~r!

dE2
1¯ D

'r~E2DN/2!expS DN

2T
2

DN
2

8T2Cv
D . ~16!

The ratio of the two reduces to

r~E2DN!

r~E!
'exp~2DN /T!. ~17!

This approximation is essentially the so-called ‘‘finite he
bath method’’ of Klots. It is particularly well suited for larg
cluster since the relative error is a factor on the order o
2exp(2DN

3/T312Cv
2)'2DN

3 /(T312Cv
2) which is very small

as we will see.
The final result for the rate constant is the simple expr

sion

kN5vN2/3expS 2
DN

T D . ~18!
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We note that the expression implies that the rate const
can be parametrized by a single quantity with dimens
energy,DN . As discussed in@29,32#, this energy need no
refer to the transition between mother and daughter clus
in their ground states. Rather it must represent a prop
defined free energy.

THE SMALL CLUSTER LIMIT

The special features of a theory based on statistical de
arise from the fact that under usual experimental conditi
the observation time is many orders of magnitude larger t
1/v. In practice the experimental time scale often has a lo
limit given by the time it takes to accelerate ions and se
rate them in an electric field. This time is typically seve
hundred ns. This indicates a very low value ofT/D. As a
consequence of this and the strong temperature depend
of the rate constant there is a rather well defined upper l
for the temperature of small clusters. This limit can be fou
simply by equating the rate constantk to the inverse cooling
time t. This yields

Tmax,N5
DN

ln~N2/3tv!
. ~19!

For clusters initially at a sufficiently high temperatur
there is also a well defined lower limit for the temperature
the clusters have undergone at least one evaporation
only way a cold cluster of sizeN can be produced is by
evaporation from a warmer cluster of sizeN11. For the case
of small clusters, the effective lowest temperature of a c
tain size is given by the effective highest temperature of
preceeding size by energy conservation:

Tmin,N5Tmax,N112
DN11

Cv
. ~20!

The lower limit on the cluster temperature reflects that it
not possible to produce clusters any colder through evap
tion because the rate for these processes would be muc
small to be observed. This result of course relies crucially
the assumption that all clusters have evaporated at leas
atom. The expression Eq.~20! abuses the simple Arrhenius
like rate constant derived above for big clusters. More re
istic formulas give surprisingly similar results and we w
therefore just continue as if Eq.~18! applies for small clus-
ters also. If the initial distribution is sufficiently smooth, th
interval between these two extremes will be populated w
equal density. Then the temperature distribution is pra
cally a square box and abundancesI N can be approximated
by

I N}Tmax,N2Tmin,N.
DN11

Cv
2

1

ln~N2/3tv!
D1DN ~21!

or

I N}DN112
Cv

ln~N2/3tv!
D1DN , ~22!

where we have defined the first difference as
ts
n

rs
ly

ay
s
n
r
-

l

nce
it
d

f
the

r-
e

s
a-
too
n
ne

l-

h
i-

D1DN[DN112DN . ~23!

~For details on the distribution beyond the square box
proximation, see, e.g.,@33#.! The derived formula of course
assumes thatTmin,N is non-negative as calculated. That w
normally be the case, except for the very smallest clust
Furthermore, we have ignored the kinetic energy carr
away by the fragment. The most important effect of inclu
ing it will be a change in the absolute energy scale by a f
percent. We will ignore it also in the following.

Some remarks on this smallN result are appropriate sinc
they also apply to the results derived for large clusters. F
it should be noted that it is only possible to find local var
tions in separation energy by this method. The relation
only a proportionality which is obvious for dimensional re
sons. The constant of proportionality is related to the den
of the initial, high temperature size distribution~i.e., regionA
in Fig. 1!. Hence the constant of proportionality will chang
smoothly across the envelope of the distribution from z
through a maximum and back to zero again at the size wh
the envelope of the distribution vanishes again. As a con
quence it is only possible to apply the formula to abunda
variations that occur over a size range which is small co
pared to the total width of the size distribution.

Furthermore, we see that the abundances are not d
mined by the total cluster free energy, as would be the c
for a situation with clusters in equilibrium with a heat bat
Neither will the differential binding energy~which is essen-
tially the separation energy! determine the abundance spe
trum. This would have been the situation if the clusters w
in contact with a heat bath but otherwise free as in@34#.
Rather, the energy content~temperature! of a specific cluster
size is determined by the temperature of the precursor~s! in
the decay chain. This is the reason the first difference of
separation energy is relevant in determining the abunda
spectrum. This fact is a property of the ensemble, i.e., f
clusters without any energy exchange with the environm
except the one connected with the evaporative cooling.

In Eq. ~22! the prefactor of the difference term is qui
large. We will not go into a discussion of the relative ma
nitude of the two terms in the equation when applied
specific systems. Suffice it to point out that for clusters d
playing shell structure the second term often dominates
variations in the first term by a large factor. It can also
seen from Eq.~22! that the structure in the abundance spec
is only weakly time dependent. Taken at face value, the la
est structure is actually observed for short times, an obse
tion which was also made in@13#. This result is rather sur-
prising since one would intuitively expect stability patter
to be manifested more strongly the lower the temperature
reality the picture is not so clear. Short times and hence h
temperatures will tend to smear out the structure in the se
ration energies themselves~for the case of fermionic shel
structure, see, e.g.,@35–37#! and the resulting amplitude in
the abundance spectrum will be a combination of the t
effects.

Finally we note that from Eq.~19! and Eq. ~21! it is
simple to derive a mean decay constant. With a natural d
nition, the value for size-independent separation energie
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kN[2
dTmax/dt

Tmax2Tmin
5

Cv

@ ln~N2/3vt !#2
t21. ~24!

This expression is similar to the one we will derive for lar
clusters.

ENSEMBLE RATE CONSTANTS FOR LARGE CLUSTERS

The simple derivation of the preceding section depen
crucially on the existence of a highest energy, or tempe
ture, in the ensemble, Eq.~19!. But as we have shown pre
viously, the assumption of a sharp upper limit on the ene
distribution is not valid for clusters that contain more than
few hundred vibrational degrees of freedom@17#. The reason
is that for big enough clusters, the change in tempera
caused by one evaporation is so small that two consecu
rate constants do not differ much. Clusters at an initial
ergy E may end up being observed as cluster sizeN11, N,
N21,N22, or as some other size at the sampling time. T
width in the number of evaporated atoms is equivalent t
width in the final cluster energy since each evaporation
moves one dissociation energy. And since the width of
energy distribution of the small clusters is on the order
one dissociation energy@see Eq.~20!#, the smearing in en-
ergy becomes important for all cluster sizes for which s
eral evaporations have to be considered. Quantitatively,
limit of validity of Klots’s theory was found to be the size

Nk5
1

3 S D

T D 2

.200– 300, ~25!

where, to be specific, we usedCv53N26'3N. Above this
limit it is a poor approximation to assume that two conse
tive rate constants are vastly different. Rather a theory m
be based on the opposite approach; that they are alm
equal.

Since the width of the temperature distribution is qu
narrow for large clusters, we can approximate the distri
tion by its mean value. Both the rate constant and the t
perature for a specific sizeN can at a given time be repre
sented by a single value,kN and TN . In general this decay
constant is size dependent since the separation energie
size dependent. An important partial goal is to find this s
dependence in terms of variations of the separation ener
In order to do this we will first find the decay rates for th
case of size-independent separation energies. That sol
will then serve as the starting point for a perturbative exp
sion in the variations.

Consider the temporal development of the decay cons
for a given cluster as it evaporates atoms. Since the clus
are large we can approximate finite differences by deri
tives and vice versa. Then the Boltzmann factorBN
[exp(2DN /TN) develops according to

dBN

dt
5BN

DN

TN
2

DN

Cv
~2kN!2

D1DN

TN
BN~2kN!, ~26!

where we have useddTN /dN5DN /Cv , dN/dt52kN , and
D1 is defined as in Eq.~23!. This differential equation holds
also when the monomeric unit has internal degrees of f
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dom and carries thermal excitation energy away in addit
to the separation energy. The correction is of orderD1Cv /Cv
relative to the leading terms on the right-hand side of E
~26!. For sufficiently small variations in separation ener
with size, the dominating change inBN is given by the first
term on the right-hand side of Eq.~26!. If we ignore the last
term and denoteBN , kN , and TN pertaining to the specia
solution forDN5D by B, k, andT, respectively, the equation
becomes

dB

dt
52

1

Cv
S D

T D 2

Bk ~27!

or

dB

dt
52B2~ ln B!2, ~28!

where the reduced time is defined as

t[
vtN2/3

Cv
. ~29!

The equation can be solved to give the asymptotic serie

1

B~ ln B!2 S 12
2

ln B
1

6

~ ln B!2
1¯ D 5t1t0 . ~30!

In the relevant limit where2 ln B@1, this can be approxi-
mated by

1

B

1

~ ln B!2
5t1t0 , ~31!

wheret0 is the left-hand side of Eq.~30! evaluated att50
@38#. The condition that the clusters are initially very hot c
be stated quantitatively asB(0)@B(t). The translation of
this inequality into a condition on temperature was discus
in @17# and found to impose a surprisingly mild requireme
on the initial temperature. Assuming this requirement is
deed fulfilled,t0 will be close to zero and the expressio
reduces to

~ ln B!2B5t21. ~32!

From this follows immediately the prediction that

k5
Cv

~ ln B!2
t21, ~33!

which was also derived in@17# with different means. As a
first approximation, (lnB)2 can often be set equal t
@ ln(vtN2/3/Cv)#2. This defines

Nk5
N~ ln B!2

Cv
~34!

in a slightly more general sense than in@17#.
The next step is to add size dependence to the separ

energies. The effect on rate constants can be calculate
retaining the difference term of theDN’s in Eq. ~26!. Rewrit-
ing the equation in terms of the scaled timet it reads



b

-
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dBN

dt
52BN

2 ~ ln BN!22BN
2 ln BN Cv

D1DN

DN
. ~35!

Varying separation energies are most efficiently handled
introducing the functionHN :

BN5B/HN . ~36!

Substituting this into Eq.~35! and assuming thatu ln Bu
@uln HNu as well asu ln Bu@1, yields an equation for the tem
poral development ofHN :

dHN

d ln t
52~HN21!1

D1DN

DN

Cv

ln B~t!
. ~37!

This is easily solved to give

HN2152E ln t

d ln t8
t

t8

D1DN8
DN8

Cv8

ln B8
. ~38!

Sinced ln t5dN/Cv(ln B)2, Eq. ~38! can be transformed into
ro
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HN2152EN

dN8
t8

t

D1DN8
DN8

ln B8. ~39!

With the linear expansion

ln t85 ln t1
N82N

Cv
~ ln B!2 ~40!

and neglecting theN dependence of lnB8 this yields

HN215 ln BEN

dN8
D1DN8
DN8

expS N2N8

Cv
~ ln B!2D ~41!

or, in the discrete version,

HN511 ln B (
N85N

N0 D1DN8
DN8

expS N2N8

Cv
~ ln B!2D . ~42!

(N0 is the initial size of the cluster.! The expression forkN
then becomes
kN5
k

11 ln B (
N85N

N0

~D1DN8 /DN8!exp$@~N2N8!/Cv#~ ln B!2%

. ~43!
n of
f the
rtur-
nge
ns
za-

us

few
this
by
ion
afe
an a
d

The result can be understood as follows: The change f
the unperturbed value ofk into kN is induced by a source
term of the form2D1DN /TN. ln BD1DN /DN ; a change in
the separation energy will change the separation ene
temperature ratio away from the solution given byk. A posi-
tive value ofD1DN , e.g., will lower the value ofHN and
increase the decay constant (lnB is negative!. With this
higher rate, the cluster will cool faster. This faster cooli
acts as a negative feedback and provides an efficient fo
ing mechanism for the rate constant to bring it back to
universal attractive curve, given by the functionk. It takes,
however, a finite number of evaporative cooling steps to
turn to the universal curve. This number is given
Cv /( ln B)25N/Nk'N/300. All changes of the separation e
ergy within that size interval will influence the value ofkN .
Thus, to obtain a fully developed evaporative spectrum,
number of evaporated atoms must be larger thanN/Nk . As
discussed below this limit is not just a necessary condition
is also sufficient. The requirement is the same as the
previously mentioned for the unperturbed solution forB, i.e.,
an initial temperature which is about 10–20% above the
nal. In the following we will assume that this ‘‘evaporativ
equilibrium’’ is reached and just stress that the assump
has to be verified in an experimental situation.

The expression forHN can quite often be approximate
further. When the variations inDN are sufficiently smooth,
which is often the case for large clusters, the derivative f
tor can be set to a constant in the summation. Then the s
mation simply gives the factorN/Nk5Cv /( ln B)2 and the
function reduces to
m
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HN511
D1DN

DN

Cv

ln B
~44!

and thus

kN5
k

11~D1DN /DN!~Cv / ln B!
. ~45!

All these results are based on a perturbative expansio
the equation that determines the temporal development o
rate constant. This treatment breaks down when the pe
bations are large, i.e., when dissociation energies cha
abruptly. When this happens, two different approximatio
used in the present derivation can fail. One is the lineari
tion

FexpS D1DN

TN
D21G˜ D1DN

TN
~46!

when the finite difference is substituted by the continuo
derivative to arrive at Eq.~26!. The validity of the simple
expressions is then limited to cases whereuD1DN /TNu!1,
i.e., where the change in separation energy is less than a
percent for each mass unit. Should a situation arise when
limit is exceeded, the solution can be improved simply
avoiding the above linearization. The results of this sect
prevail with the obvious substitutions. In any case one is s
if relative changes in neighboring abundances are less th
factor of N/Nk which can be seen from the results foun
below.
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The other limit of the theory arises when the value
D1DN /DN is positive and large. We see from Eq.~44! that
the approximate treatment requires thatHN should not ap-
proach zero. In other words, the approximation is valid
D1DN /DN<2 ln B/Cv . The physical situation which render
this inequality invalid is a decrease in separation energy w
each evaporation which is large enough to compensate
the decrease in temperature. In the picture where abunda
are determined by a projection of the initial distribution on
the final temperature, this corresponds to a complete s
owing of certain cluster sizes by some precursor in the de
chain. This limitation is also present in the small clus
limit. It is equivalent to the requirement thatTmin,N is posi-
tive as calculated. Although the limitations outlined he
may be exceeded~for examples see@39,40#!, these cases ar
still so rare that they are best treated on an individual ba

In order to illustrate the analytical results, we have sim
lated a series of decay chains by Monte Carlo calculations
Fig. 2 we compare the analytical and the simulated value
k for constant separation energies. Figure 3 shows two
amples of calculated and simulated rate constants for s
dependent separation energies.

RATE CONSTANTS AND ABUNDANCES

In order to relate the rate constants derived above to ab
dances, we will first establish the corresponding relation
a single decay chain. This greatly simplifies the probl
since in a specific decay chain the initial temperature
hence all decay rates are fixed, provided we ignore the
chastic nature of the small kinetic energy carried by the fr
ment. The only stochastic element in a decay chain is t
the time at which the evaporations in the chain occur. C
sider the simultaneous distribution of decay times in a ch
starting at sizeN0 :

P~ tN ,tN11 ,...,tN0
!)

j 5N

N0

dtj5 )
j 5N

N0

kje
2kj t jdtj . ~47!

Here t j is the time since clusterj was produced by evapora
tion from size j 11. The probability that sizeN decays into

FIG. 2. The rate constant~in s21! for constant separation ene
gies andv51015 s21, t51025 s. Notice the almost linear behavio
The slightly fluctuating curve is the outcome of a MC simulatio
The analytical curve is calculated using Eq.~30! with t050. It also
includes a correction due to the decrease in the number of deg
of freedom at each evaporation. It is treated perturbatively, yield
HN5113/ln B. In applications, Eq.~32! will normally be sufficient
since only the logarithm of the Boltzmann factor is needed. T
last approximation was adhered to in Figs. 4–6. The curves con
no fitted parameters.
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size N21 at time t is the integral of this distribution with
respect to all the intermediate lifetimes with the restricti
that these are positive and sum up tot:

kNI N5E
0

`

dS (
j 5N

N0

t j2t D )
j 5N

N0

kje
2kj t jdtj . ~48!

Expressing thed function as the Fourier transform of 1,

d~ t !5
1

2p E
2`

`

e2 iktdk, ~49!

the integrations of the individual decays decouple and
easily performed to give

kNI N5
1

2p E
2`

`

dk eikt )
j 5N

N0 kj

kj1 ik
. ~50!

The product under the integral sign is the Fourier transfo
of the desired probability. It has the nice property that
factors into functions that depend only on the individual d
cay constants. The integral can be calculated by the me
of residues and the result is useful for numerical simulatio
as an alternative to Monte Carlo simulations:

kNI N5 (
j 5N

N0

kje
2kj t)

nÞ j

kn

kn2kj
. ~51!

.

es
g

s
in

FIG. 3. Average rate constants for size-dependent separa
energies~in s21!. The slightly fluctuating curve is the result of MC
simulations. The other is the prediction of Eq.~43!. Also included
are the separation energies used in the calculations. Both fig
show clearly the importance of the difference term in Eq.~43!. The
transient effect of a nonzero difference term is also clearly visib
The curves contain no fitted parameters.
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A few examples of numerical simulations using this formu
can be found in@15#. By a saddle point expansion of th
integrand of Eq.~50! and an evaluation of the higher ord
terms, it is possible to obtain the result in@17# of a normal
distribution in time for the productkNI N also for the case o
D1DNÞ0.

To understand the behavior of Eq.~50! consider the ef-
fective range ofk values in the integrand. Since the cluste
are large, there will beN/Nk similar rate constants appearin
in the product under the integral sign. Hence for values ok
larger than typically (Nk /N)1/2kN the integrand will be sup-
pressed. Consequently the ratiok/kN can be considered
small quantity when integrating. This can be used to evalu
the derivative ofI N with respect tokN :

]I N

]kN
5

1

2pkN
E

2`

`

dk eiktS )
j 5N

N0 kj

kj1 ik D 1

kN1 ik
. ~52!

Expanding the last term in the integrand,

1

kN1 ik
5

1

kN
2

ik

kN
2

2
k2

kN
3
¯ , ~53!

yields the equation

]I N

]kN
5

I N

kN
2

1

kN
2

]I N

]t
1OXS Nk

N D 3/2C. ~54!

The second term is of orderNk /N for a single decay chain
But when decay chains are summed to an ensemble the v
reduces significantly due to a cancellation of the derivat
term. By the order-of-magnitude estimate

]I N

]t
'kN

]I N

]N
~55!

and the observation thatkN only varies by

skN
'sE

dkN

dE
' S Nk

N D 1/2

kN , ~56!

one sees that the ensemble average of the time deriv
term is zero to leading order inANk /N;

(
N

1

kN
2

]I N

]t
'(

N

1

kN

]I N

]N
50. ~57!

The resulting approximation of Eq.~55!,

]I N

]kN
'

I N

kN
, ~58!

is solved to give

kNI N5const. ~59!

We emphasize that this result is only applicable for largeN.
It can be interpreted as a steady-state condition for a de
chain but it should be kept in mind that the effective te
perature of thekN’s varies withN.
te

lue
e

ive

ay
-

At this point, the only missing ingredient is to sum dec
chains over all possible initial conditions. We will perform
this summation in analogy to the procedure used in@17# and
similar to the summation in Eq.~57!, that is, by covering the
~N,T! plane densely with decay chains. This summation
trivial apart from a single, minor complication. The comp
cation is related to the density of decay chains that termin
at sizeN. This density is proportional to the separation e
ergy since the slope of the curves in the~N,T! plane is pro-
portional to the separation energy. Similarly, the volume
the initial distribution projected into the final temperature
inversely proportional to the separation energy of the ini
cluster size. Hence

I N}
DN

DN0

. ~60!

The appearance ofDN0
in this expression is an unwel

come feature. It will rarely be known from which sizes th
decay chains originate. We believe, however, that this pr
lem will not be present under realistic experimental con
tions, primarily because the amount of evaporated atoms
be a fairly broad distribution. If this is indeed the case, init
sizes will be averaged over a broad mass interval and he
one can substitute the value ofDN0

with the mean valueD.
Hence

I N}DN . ~61!

In order to test these results numerically, we show in F
4 examples of abundance spectra, calculated using Eq.~64!
derived below, i.e.,I N}DNkN

21 wherekN is determined by
Eq. ~43!.

As we have seen earlier, in order forkN to reach the
evaporative equilibrium value the number of evaporatio
has to be on the order ofN/Nk or bigger. It might be argued
that the number of atoms evaporated needs to exceed
scale over which one wants to determine the structure.
example, probing clusters with shell structure, one mi
suspect that it would be necessary to evaporate at least
shell in order to see the fully developed evaporative patte
This intuition is wrong. Figure 1 provides the answer witho
much further consideration. If the initial and final temper
tures are separated by more evaporations than a few t
N/Nk , the projection onto the final temperature will be i
dependent of the initial temperature. This is demonstrated
the simulations shown in Fig. 5 where we have introduce
separation energy of the slowly varying type. The abunda
spectra were simulated with different initial temperatur
around the theoretical critical value. The results demonst
that the simple reasoning using Fig. 1 is sufficient and t
N/Nk evaporations indeed suffice to reach evaporative e
librium.

DISCUSSION

All the ingredients are now available to express the ab
dances as functions of the separation energies. With the
sults from the preceding section, Eqs.~59! and ~60!:
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FIG. 4. The relative abundances for the data shown in Fig
The diamonds are the MC-simulated results and the line the
lytical result of Eq. ~64!. Only the overall scales have bee
matched.

FIG. 5. The development of evaporative equilibrium with initi
temperature. The separation energy isDN5110.05 sin(2pN/300).
The three spectra result from simulations with initial temperatu
equidistantly spaced:T050.038, 0.044, and 0.050 times the me
separation energy. The amplitude in the spectra increases with
tial temperature. The analytical mean final temperature is 0.037DN

aroundN5100 and 0.0387DN aroundN52000. With the criterion
that the initial and final temperatures should be separated by 1
the critical initial temperature is then around 0.044. We see ind
that the spectrum is almost completely developed at that temp
ture. The number of evaporated atoms is much less than the p
of 300 in the separation energy; atN51000, the number isDN
535 for the initial temperature of 0.050. The linear increase
amplitude with size is also clearly visible. The increase is lin
even though the amplitude factor on the sine factor is constant.
small feature in the spectra at small sizes is an artifact of the s
initial temperature. It disappears with a finite width.
I N}
DN

DN0

1

kN
5

DN

DN0

HN

k
. ~62!

Introducing the expression forHN , leaving out the smooth
function k and assuming thatDN0

can be substituted by a
smooth function ofN as discussed@Eq. ~61!# yields

I N}DNF11 ln B (
N85N

`
D1DN8
DN8

expS N2N8

Cv
~ ln B!2D G .

~63!

For D1DN /DN!1 this expression can to a good approxim
tion be rewritten as

I N}DN1 ln B (
N85N

`

D1DN8 expS N2N8

Cv
~ ln B!2D . ~64!

It is quite instructive to compare this result to the ana
gous result for small clusters, Eq.~22!. Since the physical
situation and thus the mathematical derivation of the ab
dances are different for the two cases of large and sm
cluster, it is surprising that the two results are so similar.
both expressions Eqs.~22! and ~64! the separation energ
appears as one term and the derivative of separation en
with respect to size for the precursors as the second. Fo
large clusters a sum over a range of precursors is requ
whereas for the small ones the last precursor alone is eno
to determine the abundance. The constant of proportiona
is different in the two cases and this difference reflects
completely different approaches to the problem that are n
essary in the two limits. But under certain circumstanc
even this difference vanishes almost completely. These s
ations are the same ones that render Eq.~45! valid. If this is
used also in the formula for the abundances, the above
proximates to

I N}DN111
Cv

ln B
D1DN . ~65!

The only difference between this expression and the one
small clusters, Eq.~22!, is the denominator in the secon
term, and for values ofN close toNk , i.e., where the two
limits change guard, the two denominators ln(vtN2/3) and
2 ln B, are in fact identical. For smallerN the difference
between these two denominators is approximately ln(N/Nk)
which considering the magnitude of the term itself is an
ceptable correction. This smooth interpolation between la
and small is also seen in the rate constants in Fig. 2.
largeN expression is seen to fit the average rate to the v
smallest sizes.

We are then in the situation that the desired expressio
the same in the small and in the large size limit. We have
derived any results for the intermediate size range. Althou
mathematically speaking one can imagine infinitely ma
interpolations between the two limits, physical reason s
gests the simple choice that the relation which holds for b
large and small clusters should also hold for intermedi
sizes. This reasonable hypothesis has held in nume
simulations so far.

.
a-

s

ni-

%,
d

ra-
iod

r
he
rp



d
el
po
iz
w
u
.

i
ye
tiv
n
o
th
w
n
in
f
s
d

e
b

ob
th
n
T

tiv

rs
ed
e
ca
ia
th
di
te

hell

ters
po-

ay

.g.,
ions

ble
the

e-
Dis-

s
ere

ale,

PRA 60 1249EVAPORATION AND CLUSTER ABUNDANCE SPECTRA
The results in Eqs.~63!–~65! differ from the relation
which was introduced in@41# between binding energies an
abundances and which was used in several papers on
tronic shell structure. Abundances were assumed pro
tional to the rate constants which were evaluated at a s
independent temperature. This unfounded hypothesis
unfortunately assisted by a remarkable coincidence of ab
dances and theoretically calculated dissociation energies
shown here the agreement is fortuitous.

The type of experiments for which the present theory
developed, i.e., a sudden excitation followed by a dela
sampling, is by no means the only one where evapora
equilibrium can be used as a diagnostic technique. Alter
tive to instantaneous heating and subsequent cooling,
can heat the cluster beam continuously and monitor
steady-state abundances. Without going into details, we
just state that the abundance-separation energy relatio
this situation is quite similar to the instantaneous heat
case. This is most easily seen by following the destiny o
single cluster as it absorbs photons and evaporates atom
addition to separation energies, the abundances will then
pend on the~possible size-dependent! photon absorption
cross sectionsN ;

I N}
1

sN
S DN111

Cv

ln B
D1DND . ~66!

The cooling time that determinesB via Eq. ~32! is here sim-
ply the average time between evaporations.

CONCLUSION

We will conclude this work by demonstrating that th
formulas derived here not only predict abundance spectra
that they can actually be applied to solve the inversion pr
lem. Using the simulations that have already illustrated
validity of the partial solutions, we have inverted the abu
dance spectra to yield the relative separation energies.
results are shown in Fig. 6.

The results presented in this work show that evapora
spectra can be used to extract valuablequantitativeinforma-
tion about the energetics of clusters. The theory is unive
in the sense that if the relatively mild conditions impos
during the derivation are fulfilled, it will be valid irrespectiv
of the choice of cluster material and the underlying physi
reason for the variations in binding energy. If the dissoc
tion energies extracted from experimental spectra, i.e.,
thermal activation energies, are identical to the adiabatic
ferences in free energies of the mother and daughter clus
rs,
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the dissociation energies can be integrated to give the s
energies.

The theory presented here is applicable only if the clus
have certain properties: Decay should be restricted to eva
ration of a single type of fragment with no competing dec
channels present~thermionic emission, radiative cooling!.
The dissociation energy should be constant, excluding, e
the case of evaporatively freezing clusters. These condit
can be checked by a variety of measurements of ensem
evaporation rates and abundance spectra vs time and
amount and the method of excitation of the clusters.
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FIG. 6. The separation energies~in eV! as calculated from Eq.
~63! in the text. The line is the input curve for the MC simulation
also shown in Figs. 3 and 4. The outputs of the simulations w
inverted to find the separation energies~diamonds!. No fitting pa-
rameters were used to find the inverted curve. The overall sc
however, was fixed arbitrarily.
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@33# C. Bréchignac, Ph. Cahuzac, J. Leygnier, and J. Weiner

Chem. Phys.90, 1492~1989!.
@34# F. Chandezon, P. M. Hansen, C. Ristori, J. Pedersen, J. W

ergaard, and S. Bjo”rnholm, Chem. Phys. Lett.277, 450~1997!.
@35# A. Bohr and B. R. Mottelson,Nuclear Structure II~Benjamin,

New York, 1975!.
@36# M. Brack, O. Genzken, and K. Hansen, Z. Phys. D21, 65

~1991!.
@37# O. Genzken and M. Brack, Phys. Rev. Lett.67, 3286~1991!.
@38# Formally this derivation breaks down at temperatures lar

than one-third of the separation energy~in the harmonic ap-
proximation!. We will not deal with such situations.

@39# K. Hansen, H. Hohmann, R. Mu¨ller, and E. E. B. Campbell, J
Chem. Phys.105, 6088~1996!.

@40# K. Hansen, H. Hohmann, R. Mu¨ller, and E. E. B. Campbell, Z.
Phys. D40, 361 ~1997!.

@41# S. Bjo”rnholm, J. Borggreen, O. Echt, K. Hansen, J. Peders
and H. D. Rasmussen, Z. Phys. D19, 47 ~1991!.


