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Evaporation and cluster abundance spectra
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Statistical fragmentation can give valuable information on the internal structure of clusters due to the strong
dependence of the evaporation rate on the activation energy for the process. In particular, the abundances in an
ensemble of hot clusters will reflect the relative stabilities of the individual species. We derive the relation
between evaporative activation energies and relative abundances for large clusters. Quantitative criteria for the
applicability of the theory are derived and the analytical results are compared with numerical simulations.
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INTRODUCTION The collection of hot clusters moves down to the line of final
temperatures at which the abundances are probed at a certain
One of the goals of cluster research is to unravel the entime, defined by the time scale in the experimental setup
ergetics of clusters. In particular, the homologous series ofised to measure the abundances. The sampling time can, for
clusters of the same material have attracted much interest. Bxample, be the time for mass separation in a simple time-
these series, the stability often shows characteristic variatior@-flight mass spectrometer. Each cluster size will capture an
with size. These stability variations are almost always maniamount of the hot ensemble according to the shape of the
festations of an underlying shell structure, whether quantafinal-temperature curve. The solution of the problem consists
[1—4] or geometrica[5—7] in nature. Both such periodicities N tracing a unit mass interval at the final temperature back
and variations in b|nd|ng energies in genera| can be effeci.nto the initial temperature distribution. The final time abun-
tively probed by evaporative processes. The usefulness éfance reflects the size of the area of the crosshatched initial
evaporation derives from the Strong dependence of the ra@Stribution in F|g 1 covered by this unit mass interval trace.
constant on the activation energy of the process. Under This tracing procedure is easily performed for small clus-
proper experimental conditions abundances reflect evaporéers [16]. For large clusters complications arise. The most
tion rates in an unambiguous way. Hence, variations in aburimportant is the determination of the final-temperature curve
dances will reflect variations in activation energy with clus-itself. For both small and large clusters the curve is in prin-
ter size. Activation energies, on the other hand, are simplgiple determined by the separation energies of all the cluster
the differential b|nd|ng energie$eparati0n or dissociation sizes that are encountered during the decayS from the initial
energiepof the clusters provided the transition state is trivial 10 the final size. For small clusters, only the last separation
[8]. It is thus in principle possible to transform abundanceenergy in this sequence is relevant and this fact facilitates the
spectra into curves for separation energies vs size. The proBhalysis of evaporative processes enormously. This is not so
|em of re'ating b|nd|ng energies to abundances or evaporé.or Iarge CIUSterS. An indication that the Situation iS more
tion probabilities has been addressed previously in a numbéemplicated for large clusters is the fact that the width of the
of papers, either dealing with small clusters or by solving itfinal energy distribution for a large size cluster is larger than
through numerical calculations of cooling ratgk2—14.  the separation enerdyl7]. This implies that the final tem-
Some of the elements of the present analysis were also préerature is determined by a finite range of evaporations and
sented in15]. not just the last one. This in turn means that a given final
The relation between abundances and binding energid®ass will receive contributions from a broad range of initial
has, however, not been known previously, for clusters larger
than about 100 atoms. In this work we present the solution of _
the problem in approximate and simple but still accurate =
terms. The problem can be stated as follows: Given a collec-
tion of free, hot clusters with an abundance distribution
which at time zero is smooth and broad, what is the resulting
abundance pattern at a later time if separation energies vary
with cluster size? The main motivation for this work is to be final temperature
able to invert abundance spectra to obtain the separation en-
ergies. Hence the solution must be simple and easily appli-
cable in the interpretation of the type of experiments de- F|G. 1. The principle of the experiments described in the text.
scribed in, for examplg3,6,9-11. The initially hot collection of cluster§A) moves down to the more
Figure 1 illustrates the key ingredients of the problem.or less well defined final temperature cur® during the cooling
They are(1) a collection of initially hot clusters, an(®) a  time. The time increases monotonically but highly nonlinearly
line representing the final temperatures for each cluster sizelong the trajectories from to B.

temperature

number of atoms
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masses, even in the case where the initial-temperature distnd abundances will be averages over a wide distribution of
bution is ad function. The derivation of the proper averaging energies. Consequently, many of the finer details in the for-
procedure for this problem constitutes the main calculationaiulation of the rate constants will be averaged out and dis-
content of this work. appear from the final formulas. The situation is analogous to
In this pictorial formulation of the problem it is also clear kinetic gas theory which can be developed without detailed
that a significant admixture of dimer evaporation will causeknowledge of the structure of gas molecules. Nevertheless,
severe complications for the solution. When both dimer andn order not to antagonize readers unnecessarily, we begin by
monomer evaporation is present, the backpropagation of thestablishing some useful facts about evaporative rate con-
final-temperature curve into the initial distribution will in stants for clusters. Some of the results in this section can be
principle depend on all the dimer-monomer branching ratiofound in[12,27-30Q.
encountered on the way from initial to final configuration. A convenient formulation of unimolecular reactions for
The fact that these branching ratios are temperature depenlusters is found in the Weisskopf expression, originally de-
dent only adds to the complications. The weight of the dimeweloped for nuclear reactions but well suited for clusters also.
channel can be judged from tabulated dimer-monomer vapdt reads(for atomic monomens[31]
ratios which also represent the branching ratios of the two
evaporative channels for large clusters. The only elements of guo(e)e py_1(E—Dy—€)
the first three groups that have any measurable vapor pres- k(e)de= w253 (E) de
sure from the dimers are the alkali metals Li, Na, K, Cs, and PN
Rb[18]. The dimer/monomer vapor pressure ratio is in thesgor the evaporation of a monomer from clustémith inter-
cases at or below 210°% at the relevant temperatures pa| energyE through a process with activation enemy;. g
which, as we will see below, is about of the enthalpy s the monomer statistical weight, i.e., the spin degeneracy,
of vaporization [Py;,/P(650K)=1.9x10"% Pcs/  the reduced mass of the channel, in practice very close to the
Pc{300K)=1.9x 10>, for exampld. Thus only one in 500 monomer masspy(E) the level density of clusteN, and e
(Li) or 50 000(Cs) evaporations will be dimer loss. We will the kinetic energy in the c.m. systemis the atomic capture
therefore exclude dimer evaporation from the analysis. Weross section for the inverse process.
will, however, include cases where the monomer has internal Sincee is only a very small part of the total energy, we
degrees of freedom, such as the benzene dafd9f but can use standard procedures and expand the logarithm of
without going into all the details. pn-1 to first order ine:
We will also leave out a discussion of the effects of ra-
diative cooling on the abundance spectra although thermal K= fEiDNk(E)dE
radiation influences evaporation rates and thereby also abun- 0
dance spectrg20]. Radiative cooling is important relative to
evaporative cooling mainly for fullerenes and refractory met- gu JE*DN ~dTag pn-1(E—Dy)
als at long times where also thermionic emission may be " 253 o oe)ee T onE)
present{21-24. The precise time scale is material depen-
dent and must be determined by experiment in each casghere the(daughter temperaturél 4 is defined as usual:
This work includes tests to check whether radiation or other
complications voiding the derived relations are present or _,_dIn[py-1(E=Dy)]
not. To = dE )
The paper is structured as follows. We begin with a brief
review of the “evaporative ensemble” theory developed by(kg=1). The cross sectionr may be energy dependent as
Gspann, Klots, and othef25,26, applicable to small clus- indicated. If not simply a geometric cross section
ters, and derive the abundance spectrum in this limit. Next
we address the question of the decay rate in the large cluster o=oy=m(ry+r1)2=mr(N— 1)+ 1%~ 7riN?"
approximation and derive a scaled equation for the temporal (4)
development of this quantity. The solution of this scaled
equation serves as the basis for treating variations in separ
tion energies perturbatively. Then decay rates are related to
abundances. This gives the desired result. The validity of the o= UN( 1
analytical work will be demonstrated by numerical calcula-
tions.

@

2

gne expects a cross section of the type

B V(rN))

®

€

where V(ry) is the potential at the capture radius of the
cluster. Alternatively the cross section may arise from a
RATE CONSTANTS purely point particle attractive potential,

A treatment of evaporative processes requires that we o€, (6)
have established the basics in the form of an expression for
the rate constant. Naively we must specify the rate constawherea=— 3, or possibly a hybrid type of two of these. In
with as much precision as we want for the results. If thisany case the cross section is multiplied witand integrated
were really the case, it would cause serious complications fawith the Boltzmann factor. This leaves us with a temperature
a general and easily applicable solution of the problemdependence that amounts to a power law with a small power
Luckily it is not the case. The reason is that observable ratesr possibly a sum of two such terms. A reverse activation
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barrier would be reflected in a threshold value for the crossvith a self-explanatory definition of ,,. Using the average
section with respect te or equivalently as a renormalization of the two temperatured,= (T,,+ T4)/2, the logarithmic de-
of the dissociation energy which would be the sum of therivative can be approximated as

adiabatic separation energies and the reverse activation bar-

rier. We expect that dissociation energies and separation en- dIn[ pn(E—Dy)/pn(E) ] 1 1

ergies are identical, at least for most metal and the noble gas dE s Dn/2C, T+Dy/2C,
clusters. The question can in principle be settled by measur-

ing the e distribution. To be specific we will in the following Dy (1 ( Dy )3)

T C,T? 2C,T

take the geometric cross sectior = 7t 2N%° for our large =
The rate constant with the geometric cross section is (13

T

clusters.

guon_, pn-1(E—Dy) where we have used

w253 % pn(E)

kn(E,Dy) = (7)

Dy 1
szT(E—DN)wT(E—DNIZ)—TC—, (14
The ratio of level densitiespy_1(E—Dy)/pn(E), can be v
expressed in terms of the level density of cluster $izby
the approximate relation, using the Debye temperaiige

:fL(DD,

and analogously foff,,. An important point concerning the
temperatureT is that for constant heat capacitg,T/dE
=1/C,. The heat capacity needs only be constant over a
IAE temperature interval oby/2C, , a requirement easily met
le(E—DN)(T—) ~pn(E—Dy). (8)  for large clusters.
b It is also easy to express the rate constant in ternib. of

To the extent thaT /% represents an average of the vibra- By expanding the logarithm of the level density aroufd
—Dy\/2 one gets

tional frequencies in the cluster, the approximation is asymp-

totically exact in the harmonic oscillator approximation in Dy dinp)
. . . . . . . . n

the high temperature limit for largd. Since this is the limit p(E—Dy)=p(E— DN/2)exp< _“N P

we are interested in, we will adopt the approximation. Hence 2 dE
guoy Tp py(E—Dy) D d?In(p)
kn(E.DnN) =5 =+ 9 TR
7?h% Ta  pn(E) dE
The quantityw’=gur{Tp/7#° has dimension of frequency. N N
. . : ~p(E—Dp/2)exp — 5=———| (19
We can then write the rate constant in the simpler form 2T 8T?C,

.To Pu(E-Dy)

Ta  pn(E)
_ Dy dIn(p) D} d®In(p)
For sodium, for example, whergy=2,u=23amu,Tp p(E)=p(E—Dy/2)ex > 4B 8 ;T
=0.013 eV, and;=4.0ay, the value ofw’ is 4xX10"°s™ . dE

kn(E,Dy) = ' N? (19 and

For monomer evaporation from diamond witly =0.16 eV D D2
andr,;=1.6ay, ' =1x10's! (geometrical cross section ~p(E— DN/Z)exp< _N__TN (16)
value. 2T 8T1%C,
As we will see below, the value of; does not change
much during experimental time scales and the change iifhe ratio of the two reduces to
Tp /T4 can be neglected without significant loss of precision.
Hence we have the prototype expression for a rate constant p(E—Dy)
(With ©=w'Tp/T): ToE) O DN/ (17
ky(E,D )=wNz/3PN(E_DN) (11) This approximation is essentially the so-called “finite heat
NV PN pn(E) bath method” of Klots. It is particularly well suited for large

cluster since the relative error is a factor on the order of 1
Rate constants in this form can be approximated even-exp(—D3/T?12C2)~—D3/(T312C2) which is very small
more. We will later need the derivative of the rate constanygs we will see.

with respect to energy. For this purpose we calculate the The final result for the rate constant is the simple expres-
logarithmic derivative of the ratio of level densities: sion

=T 12

dE Ty T

din[pn(E-Dn)/pn(E)] 1 1
[on( n/pn(E)] kN=wN2/3eXF{—%)- (18
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We note that the expression implies that the rate constants A,;Dy=Dp;1—Dy- (23

can be parametrized by a single quantity with dimension

energy,Dy . As discussed 129,32, this energy need not

refer to the transition between mother and daughter clustergor details on the distribution beyond the square box ap-
in their ground states. Rather it must represent a proPer'}Sroximation, see, e.g[33].) The derived formula of course

defined free energy. assumes thal ,,y iS Nnon-negative as calculated. That will
normally be the case, except for the very smallest clusters.
THE SMALL CLUSTER LIMIT Furthermore, we have ignored the kinetic energy carried

The special features of a theory based on statistical decag@ay by the fragment. The most important effect of includ-
arise from the fact that under usual experimental conditioné"d it will be a change in the absolute energy scale by a few
the observation time is many orders of magnitude larger thafercent. We will ignore it also in the following.

1/w. In practice the experimental time scale often has a lower Some remarks on this smallresult are appropriate since
limit given by the time it takes to accelerate ions and sepathey also apply to the results derived for large clusters. First
rate them in an electric field. This time is typically severalit should be noted that it is only possible to find local varia-
hundred ns. This indicates a very low value™D. As a tions in separation energy by this method. The relation is
consequence of this and the strong temperature dependenaely a proportionality which is obvious for dimensional rea-
of the rate constant there is a rather well defined upper limisons. The constant of proportionality is related to the density
for the temperature of small clusters. This limit can be foundof the initial, high temperature size distributiGre., regionA
simply by equating the rate constdato the inverse cooling in Fig. 1). Hence the constant of proportionality will change

time t. This yields smoothly across the envelope of the distribution from zero
through a maximum and back to zero again at the size where

TN = D ' (19) the envelope of the distribution vanishes again. As a conse-

7 In(N?3tw) quence it is only possible to apply the formula to abundance

variations that occur over a size range which is small com-
For clusters initially at a sufficiently high temperature, pared to the total width of the size distribution.
there is also a well defined lower limit for the temperature. If  Fyrthermore, we see that the abundances are not deter-
the clusters have undergone at least one evaporation, thgined by the total cluster free energy, as would be the case
only way a cold cluster of siz& can be produced is by o 4 sjtyation with clusters in equilibrium with a heat bath.
evaporation from a warmer cluster of side 1. For the case gither will the differential binding energgwhich is essen-
of_sm.all c_:lus.ters, the effecuvg lOW?St temperature of a Cerfially the separation energyletermine the abundance spec-
tain siz€ IS given by the effective h|ghest temperature of thetrum. This would have been the situation if the clusters were
preceeding size by energy conservation: in contact with a heat bath but otherwise free aq34].
D Rather, the energy contettemperaturgof a specific cluster
Tininn= TmaxN-+1— % (200  size is determined by the temperature of the precissor
v the decay chain. This is the reason the first difference of the

The lower limit on the cluster temperature reflects that it isseparatlon energy 1s relevant in determining the ab_undance
pectrum. This fact is a property of the ensemble, i.e., free

not possible to produce clusters any colder through evapora;

tion because the rate for these processes would be much tg!)usters without any energy _exchange with t_he environment
except the one connected with the evaporative cooling.

small to be observed. This result of course relies crucially on In Eq. (22) the prefactor of the difference term is quite
the assumption that all clusters have evaporated at least one o V?/.e will not po into a discussion of the relative ?na )
atom. The expression EO) abuses the simple Arrhenius- ge. 9 9

like rate constant derived above for big clusters. More real-n'tUde of the two terms in the equation when applied to

istic formulas give surprisingly similar results and we will speqlflc systems. Suffice it to point out that for clu§ters dis-
therefore just continue as if E¢18) applies for small clus- playln.g shell structure the second term often dominates the
ters also. If the initial distribution is sufficiently smooth, the Y2riations in the first term by a large factor. It can also be

interval between these two extremes will be populated witSeen from Eq(22) that the structure in the abundance spectra

equal density. Then the temperature distribution is practi!S only weakly time dependent. Taken at face value, the larg-

callv a sauare box and abundandescan be approximated est structure is actually observed for short times, an observa-
y asq R PP tion which was also made if1.3]. This result is rather sur-

by prising since one would intuitively expect stability patterns
to be manifested more strongly the lower the temperature. In

ADy (2D reality the picture is not so clear. Short times and hence high

v In(N*%tw) temperatures will tend to smear out the structure in the sepa-

ration energies themselvéfor the case of fermionic shell

or structure, see, e.g.35—-37) and the resulting amplitude in

the abundance spectrum will be a combination of the two

effects.

Finally we note that from Eq(19) and Eq.(21) it is
simple to derive a mean decay constant. With a natural defi-
where we have defined the first difference as nition, the value for size-independent separation energies is

_Dnia
I Nochax,N_Tmin,N_ C

|N°‘DN+1_mA1DN- (22)
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dT/dt C dom and carries thermal excitation energy away in addition
kn=-— T mij = 2/; 5 t~ L. (24)  to the separation energy. The correction is of otlg€,, /C,,
max— Imin  [IN(N““ot)] relative to the leading terms on the right-hand side of Eq.

. L ) ) (26). For sufficiently small variations in separation energy
This expression is similar to the one we will derive for large yith size. the dominating change By, is given by the first
clusters. term on the right-hand side of E(6). If we ignore the last

term and denotd,, ky, and Ty pertaining to the special
ENSEMBLE RATE CONSTANTS FOR LARGE CLUSTERS solution forDy=D by B, k andT, respectively, the equation

The simple derivation of the preceding section dependeclj)ecomes

crucially on the existence of a highest energy, or tempera- dB 1 (D)Z
= Bk

dt C,

T (27)

ture, in the ensemble, E4L9). But as we have shown pre-
viously, the assumption of a sharp upper limit on the energy
distribution is not valid for clusters that contain more than ag,
few hundred vibrational degrees of freedphT]. The reason

is that for big enough clusters, the change in temperature 5 5

caused by one evaporation is so small that two consecutive 4, ~ B(InB)%, (28)
rate constants do not differ much. Clusters at an initial en-

ergy E may end up being observed as cluster $izel, N,  where the reduced time is defined as
N—1,N—2, or as some other size at the sampling time. This

width in the number of evaporated atoms is equivalent to a _ wtN?®
width in the final cluster energy since each evaporation re- = C,
moves one dissociation energy. And since the width of the

energy distribution of the small clusters is on the order ofThe equation can be solved to give the asymptotic series
one dissociation energysee Eq.(20)], the smearing in en-

ergy becomes important for all cluster sizes for which sev- 1 B iJr

eral evaporations have to be considered. Quantitatively, the B(InB)2 InB ~ (InB)2
limit of validity of Klots’s theory was found to be the size

In the relevant limit where—InB>1, this can be approxi-
mated by

(29

+--- =T+To. (30)

1(D\2
NK—§(?) =200-300, (25
1 1

where, to be specific, we us€, =3N—6~3N. Above this B (InB)? -
limit it is a poor approximation to assume that two consecu-
tive rate constants are vastly different. Rather a theory musthere 7, is the left-hand side of Eq30) evaluated at=0
be based on the opposite approach; that they are almof38]. The condition that the clusters are initially very hot can
equal. be stated quantitatively a@B8(0)>B(7). The translation of

Since the width of the temperature distribution is quitethis inequality into a condition on temperature was discussed
narrow for large clusters, we can approximate the distribuin [17] and found to impose a surprisingly mild requirement
tion by its mean value. Both the rate constant and the temen the initial temperature. Assuming this requirement is in-
perature for a specific sizd can at a given time be repre- deed fulfilled, 7, will be close to zero and the expression
sented by a single valué&y and Ty . In general this decay reduces to
constant is size dependent since the separation energies are
size dependent. An important partial goal is to find this size (InB)?B=7"" (32
dependence in terms of variations of the separation energie
In order to do this we will first find the decay rates for the
case of size-independent separation energies. That solution c
will then serve as the starting point for a perturbative expan- - v
sion in the variations. (InB)?

Consider the temporal development of the decay constant
for a given cluster as it evaporates atoms. Since the clustek¥hich was also derived if17] with different means. As a
are large we can approximate finite differences by derivafirst approximation, (IB)*> can often be set equal to
tives and vice versa. Then the Boltzmann facBy  LIN(@tN*¥C,)]%. This defines
=exp(—Dy/Ty) develops according to N(InB)2

dBy Dy Dy A,Dy © Gy
ar NT_IZ\‘C_V(_kN)_ T Bn(—ky), (26

+ 70, (31)

l§'rom this follows immediately the prediction that

t~1 (33

(34)

in a slightly more general sense than[itv].

The next step is to add size dependence to the separation
where we have usedTy/dN=Dy/C,,dN/dt=—ky, and energies. The effect on rate constants can be calculated by
A, is defined as in Eq23). This differential equation holds retaining the difference term of tH2y's in Eq. (26). Rewrit-
also when the monomeric unit has internal degrees of freeng the equation in terms of the scaled timé reads
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dBN 2 2 2 AlDN JN , 7', AlDN' ,
W——BN(InBN) —B3InByC, N (35) Hy—1=— dN7 oL InB’. (39
Varying separation energies are most efficiently handled byvith the linear expansion
introducing the functiorH:
By=B/Hy. (36) In7' =In 7+ c (InB)? (40)
\'

Substituting this into Eq.(35 and assuming thatin B|
>|InHy| as well agln B|>1, yields an equation for the tem-
poral development offy:

and neglecting th&l dependence of IB’ this yields

N ADy [N=N'
HN—1=InBJ dN’ ex (InB)?] (41

dinr (MDY 5= s 37) . . .
or, in the discrete version,
This is easily solved to give N
0 AlDN' - ! 2
o1 flmdl .7 ADy Cy - HN:1+InBNZ::N Dy ex c, (InB)“]. (42
N "oy e ¥

(No is the initial size of the clusterThe expression foky
Sinced In =dN/C,(In B)?, Eq. (38) can be transformed into then becomes

k
kn= Ng . (43
1+InB >, (A;Dy /Dy)exp[(N—N")/C,](InB)%}
N’=N
|
The result can be understood as follows: The change from A.Dy C,
the unperturbed value & into ky is induced by a source Hy=1+ Dy InB (44)

term of the form—A;Dy\/Ty=InBA;Dy/Dy; a change in
the separation energy will change the separation energwnd thus
temperature ratio away from the solution givenkoA posi-
tive value of A;Dy, e.g., will lower the value oH, and k
increase the decay constant Bnis negative. With this kN:1+(A Dn/Dy)(Cy/INB) (45)
1Y N N \Y

higher rate, the cluster will cool faster. This faster cooling
acts as a negative feedback and provides an efficient focus- All these results are based on a perturbative expansion of
ing mechanism for the rate constant to bring it back to thehe equation that determines the temporal development of the
universal attractive curve, given by the functiknlt takes, rate constant. This treatment breaks down when the pertur-
however, a finite number of evaporative cooling steps to rebations are large, i.e., when dissociation energies change
turn to the universal curve. This number is given byabruptly. When this happens, two different approximations
C, /(InB)>=N/N,~N/300. All changes of the separation en- used in the present derivation can fail. One is the lineariza-
ergy within that size interval will influence the value k. tion
Thus, to obtain a fully developed evaporative spectrum, the
number of evaporated atoms must be larger tNaN, . As A;Dy
discussed below this limit is not just a necessary condition, it ex TN B
is also sufficient. The requirement is the same as the one
previously mentioned for the unperturbed solutionBoi.e.,  when the finite difference is substituted by the continuous
an initial temperature which is about 10—20% above the fi-derivative to arrive at Eq(26). The validity of the simple
nal. In the following we will assume that this “evaporative expressions is then limited to cases whexgDy /Ty|<1,
equilibrium” is reached and just stress that the assumptioi.e., where the change in separation energy is less than a few
has to be verified in an experimental situation. percent for each mass unit. Should a situation arise when this

The expression foHy can quite often be approximated limit is exceeded, the solution can be improved simply by
further. When the variations iDy are sufficiently smooth, avoiding the above linearization. The results of this section
which is often the case for large clusters, the derivative facprevail with the obvious substitutions. In any case one is safe
tor can be set to a constant in the summation. Then the sunif-relative changes in neighboring abundances are less than a
mation simply gives the factoN/N,=C,/(InB)? and the factor of N/N, which can be seen from the results found
function reduces to below.

A;Dy
Tn

(46)
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FIG. 2. The rate constarin s %) for constant separation ener- 8000 o po P pyves oo
gies andw=10's"1,t=10"°s. Notice the almost linear behavior. (@) number of atoms

The slightly fluctuating curve is the outcome of a MC simulation.
The analytical curve is calculated using E80) with 7;=0. It also
includes a correction due to the decrease in the number of degrees 6000
of freedom at each evaporation. It is treated perturbatively, yielding
Hy=1+3/InB. In applications, Eq(32) will normally be sufficient
since only the logarithm of the Boltzmann factor is needed. This
last approximation was adhered to in Figs. 4—6. The curves contain
no fitted parameters.

5000 |-

w00 | 101eV

evaporation rate, k

The other limit of the theory arises when the value of
A,Dy/Dy is positive and large. We see from Ed4) that
the approximate treatment requires tiig should not ap- 3000 . ' L
proach zero. In other words, the approximation is valid for ®) 950 975 toa0 1028 1050
A;Dy/Dy=<-—InB/C,. The physical situation which renders number of atoms
this inequality invalid is a decrease in separation energy with FIG. 3. Average rate constants for size-dependent separation
each evaporation which is large enough to compensate f@nergiesin s™%). The slightly fluctuating curve is the result of MC
the decrease in temperature. In the picture where abundancsigulations. The other is the prediction of Hg3). Also included
are determined by a projection of the initial distribution ontoare the separation energies used in the calculations. Both figures
the final temperature, this corresponds to a complete shadhow clearly the importance of the difference term in &®). The
owing of certain cluster sizes by some precursor in the decalansient effect of a nonzero difference term is also clearly visible.
chain. This limitation is also present in the small clusterThe curves contain no fitted parameters.
limit. It is equivalent to the requirement that,, \ is posi-
tive as calculated. Although the limitations outlined heresize N—1 at timet is the integral of this distribution with
may be exceededor examples sef39,4(), these cases are respect to all the intermediate lifetimes with the restriction
still so rare that they are best treated on an individual basighat these are positive and sum uptto

In order to illustrate the analytical results, we have simu-
lated a series of decay chains by Monte Carlo calculations. In » [ No No ‘

Fig. 2 we compare the analytical and the simulated value of kNIN:j 8 2 ti—t H kje™hdt;. (48)
k for constant separation energies. Figure 3 shows two ex- 0 AN )=

amples of calculated and simulated rate constants for Siz%xpressing the function as the Fourier transform of 1,
dependent separation energies.

I 1.0evV

1 (>
_ —ikt
RATE CONSTANTS AND ABUNDANCES =5—- f e "dk, (49

—o0

In order to relate the rate constants derived above to abun-

dances, we will first establish the corresponding relation fOtIhe integrations of the individual decays decouple and are

a single decay chain. This greatly simplifies the problemeaSin performed to give

since in a specific decay chain the initial temperature and . No |
hence all decay rates are fixed, provided we ignore the sto- Kyl = dk éktH i (50)
chastic nature of the small kinetic energy carried by the frag- 27 ) o j=n kj+ik

ment. The only stochastic element in a decay chain is then

the time at which the evaporations in the chain occur. ConThe product under the integral sign is the Fourier transform

sider the simultaneous distribution of decay times in a chai®f the desired probability. It has the nice property that it

starting at sizeNg: factors into functions that depend only on the individual de-
cay constants. The integral can be calculated by the method

No No e of residues and the result is useful for numerical simulations
P(tn ,IN+1,---INO)HN dth_HN kje “'idt;. (47 as an alternative to Monte Carlo simulations:
= =
: , . . No K,
Heretj is the t_|me since clustqryyas prodgced by evapora- Kyl = 2 kjefkth. AU (51)
tion from sizej + 1. The probability that siz& decays into =N n2j Kn—K;
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A few examples of numerical simulations using this formula At this point, the only missing ingredient is to sum decay
can be found iM15]. By a saddle point expansion of the chains over all possible initial conditions. We will perform
integrand of Eq(50) and an evaluation of the higher order this summation in analogy to the procedure usefllifi and
terms, it is possible to obtain the result[ib7] of a normal  similar to the summation in Eq457), that is, by covering the
distribution in time for the produdtyl also for the case of (N,T) plane densely with decay chains. This summation is
A;D\#0. trivial apart from a single, minor complication. The compli-
To understand the behavior of EO) consider the ef- cation is related to the density of decay chains that terminate
fective range ok values in the integrand. Since the clustersat sizeN. This density is proportional to the separation en-
are large, there will b&l/N, similar rate constants appearing ergy since the slope of the curves in i T) plane is pro-
in the product under the integral sign. Hence for valuek of portional to the separation energy. Similarly, the volume of
larger than typically K, /N)*%y the integrand will be sup- the initial distribution projected into the final temperature is
pressed. Consequently the ratitky can be considered a inversely proportional to the separation energy of the initial
small quantity when integrating. This can be used to evaluateluster size. Hence
the derivative ofl \ with respect tdky:

I 1 Voo g e (60)
e} . . N e ——
Rl f dkét| J] —= — . (52 Dy,
(9kN 27TkN —o j=N kJ+|k kN+|k
Expanding the last term in the integrand, The appearance dDy, in this expression is an unwel-
come feature. It will rarely be known from which sizes the
1 1 ik k2 decay chains originate. We believe, however, that this prob-
kerik ke 2 k_3 ; (53)  lem will not be present under realistic experimental condi-
N NOKN KN tions, primarily because the amount of evaporated atoms will
yields the equation b_e a falrly broad distribution. If this is mdeec_i the case, initial
sizes will be averaged over a broad mass interval and hence
312 one can substitute the value Bf; with the mean valu®.
dny Iy 1 aly ( N, ) o 6
M = a k_ﬁ W + W ( ) ence

The second term is of ordét, /N for a single decay chain. InDy. (61)

But when decay chains are summed to an ensemble the value
reduces significantly due to a cancellation of the derivative In order to test these results numerically, we show in Fig.

term. By the order-of-magnitude estimate 4 examples of abundance spectra, calculated usind62y.
derived below, i.e.],\,ocDNk@1 whereky, is determined by
dn  dln Eq. (43).
gt NoN (59 As we have seen earlier, in order f&g to reach the
evaporative equilibrium value the number of evaporations
and the observation thég, only varies by has to be on the order ®f/N, or bigger. It might be argued
that the number of atoms evaporated needs to exceed any
_dky (N vz scale over which one wants to determine the structure. For
TTIEGE TN W (56 example, probing clusters with shell structure, one might

_ ~suspect that it would be necessary to evaporate at least one
one sees that the ensemble average of the time derivatighell in order to see the fully developed evaporative pattern.

term is zero to leading order igN, /N; This intuition is wrong. Figure 1 provides the answer without
much further consideration. If the initial and final tempera-

1 dly 1 dly tures are separated by more evaporations than a few times
= QW”EN: k_N mzo- (57) N/N, , the projection onto the final temperature will be in-

dependent of the initial temperature. This is demonstrated by
the simulations shown in Fig. 5 where we have introduced a
separation energy of the slowly varying type. The abundance
spectra were simulated with different initial temperatures

The resulting approximation of E55),

al I
aTN% k—N (59 around the theoretical critical value. The results demonstrate
NoOON that the simple reasoning using Fig. 1 is sufficient and that
is solved to give l_\I/NK evaporations indeed suffice to reach evaporative equi-
librium.
kn! = const. (59

. . . . DISCUSSION
We emphasize that this result is only applicable for laxge

It can be interpreted as a steady-state condition for a decay All the ingredients are now available to express the abun-
chain but it should be kept in mind that the effective tem-dances as functions of the separation energies. With the re-
perature of theéky's varies withN. sults from the preceding section, E¢59) and (60):
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—= = (62

Introducing the expression fdfly, leaving out the smooth
function k and assuming thaIDN0 can be substituted by a

smooth function olN as discussefEq. (61)] yields

1.07 eV .
09 | 1Dy

A N—N’
1.0ev Iy*Dy| 1+InB X, exp( (InB)z)
0.8 L ‘ N'=N D Cv

‘
900 950 1000 1050 1100 (63)
(a) number of atoms

abundance

For A;D\/Dy<€1 this expression can to a good approxima-
tion be rewritten as

- N—N’
In<Dy+INB 2, AlDN,exp( (|n|3)2). (64)

11 F N =N CV

abundance

! *e A adaci i daiene by It is quite instructive to compare this result to the analo-
gous result for small clusters, E€R2). Since the physical
1.0eV situation and thus the mathematical derivation of the abun-
dances are different for the two cases of large and small
8 p— 1000 028 T0s0 cluster, it is surprising that the two results are so similar. In
(b) number of atoms both expressions Eq$22) and (64) the separation energy
appears as one term and the derivative of separation energy
FIG. 4. The relative abundances for the data shown in Fig. 3yith respect to size for the precursors as the second. For the
The diamonds are the MC-simulated results and the line the an3arge clusters a sum over a range of precursors is required,
lytical result of Eqg.(64). Only the overall scales have been \ynereas for the small ones the last precursor alone is enough
matched. to determine the abundance. The constant of proportionality
is different in the two cases and this difference reflects the
completely different approaches to the problem that are nec-
essary in the two limits. But under certain circumstances
even this difference vanishes almost completely. These situ-
ations are the same ones that render (§) valid. If this is
used also in the formula for the abundances, the above ap-

0ol 101ev

§ proximates to

]

5 c

g INOCDN+1+ ﬁAlDN' (65)

The only difference between this expression and the one for
o e am o a0 v000 1200 100 small clusters, Eq(22), is the denominator in the second
number of atoms term, and for values oN close toN,, i.e., where the two
limits change guard, the two denominatorsdN®®) and
FIG. 5. The development of evaporative equilibrium with initial _ |4y B are in fact identical. For smalleX the difference
temperature. The separation energyig= 1+ 0.05 sin(2rN/300). between these two denominators is approximatelj/N()
The three spectra result from simulations with initial temperatures, 1., considering the magnitude of the term itself is an ac-
equidistantly spacedr,=0.038, 0.044, and 0.050 times the mean oo io16 correction. This smooth interpolation between large
separation energy. The amplitude in the spectra increases with Ik d small is also seen in the rate constants in Fig. 2. The

tial temperature. The analytical mean final temperature is 0D372 larae N expression is seen to fit the average rate to the ver
aroundN=100 and 0.0383,, aroundN=2000. With the criterion &9 P 9 y
008 mallest sizes.

that the initial and final temperatures should be separated by 1 /S hen in the si . hat the desired Lo
the critical initial temperature is then around 0.044. We see indeed We are then in the situation that the desired expression is

that the spectrum is almost completely developed at that temperdD€ Same in the small and in the large size limit. We have not
ture. The number of evaporated atoms is much less than the perigdfived any results for the intermediate size range. Although
of 300 in the separation energy; ht=1000, the number iaN  Mathematically speaking one can imagine infinitely many

=35 for the initial temperature of 0.050. The linear increase ininterpolations between the two limits, physical reason sug-
amplitude with size is also clearly visible. The increase is lineardests the simple choice that the relation which holds for both
even though the amplitude factor on the sine factor is constant. Thrge and small clusters should also hold for intermediate
small feature in the spectra at small sizes is an artifact of the sharpizes. This reasonable hypothesis has held in numerical
initial temperature. It disappears with a finite width. simulations so far.
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The results in Eqs(63)—(65) differ from the relation
which was introduced if41] between binding energies and
abundances and which was used in several papers on elec-
tronic shell structure. Abundances were assumed propor-
tional to the rate constants which were evaluated at a size-
independent temperature. This unfounded hypothesis was
unfortunately assisted by a remarkable coincidence of abun-
dances and theoretically calculated dissociation energies. As
shown here the agreement is fortuitous.

The type of experiments for which the present theory is . .
developed, i.e., a sudden excitation followed by a delayed 09 po 1000 050 T100
sampling, is by no means the only one where evaporative (a) number of atoms
equilibrium can be used as a diagnostic technique. Alterna-
tive to instantaneous heating and subsequent cooling, one
can heat the cluster beam continuously and monitor the
steady-state abundances. Without going into details, we will
just state that the abundance-separation energy relation in
this situation is quite similar to the instantaneous heating
case. This is most easily seen by following the destiny of a
single cluster as it absorbs photons and evaporates atoms. In
addition to separation energies, the abundances will then de-
pend on the(possible size-dependgnphoton absorption
cross sectionry;

-
o
a

1.03

separation energy

1.005

separation energy

0.995 - L .
950 975 1000 1025 1050

\

1 C
|Noca_— DN+1+ﬁA1DN _ (66) (b) number of atoms
N FIG. 6. The separation energiéa eV) as calculated from Eq.

The cooling time that determindsvia Eq.(32) is here sim- (63) in the text. The line is the input curve for the MC simulations

ply the average time between evaporations. also shown in Figs. 3 and 4. The outputs of the simulations were
inverted to find the separation energigsamonds$. No fitting pa-

rameters were used to find the inverted curve. The overall scale,

CONCLUSION however, was fixed arbitrarily.

We will conclude this work by demonstrating that the e dissociation energies can be integrated to give the shell
formulas derived here not only predict abundance spectra b"télgnergies 9 9 9

that they can actually be applied to solve the inversion prob- The theory presented here is applicable only if the clusters

lem. Using the simulations that have already illustrated th%ave certain properties: Decay should be restricted to evapo-
validity of the partial solutions, we have inverted the abun- .. | prop ' y . ) P
tion of a single type of fragment with no competing decay

dance spectra to yleld_ the relative separation energies. Tr{;‘%annels presentthermionic emission, radiative cooling
results are shown in Fig. 6. The dissociation energy should be constant, excluding, e
The results presented in this work show that evaporativ gy i 9. €9.,

spectra can be used to extract valuaiiantitativeinforma- $he case of evaporatively freezing clusters. These conditions
tion about the energetics of clusters. The theory is universaion be ghecked by a variety of measurements pf ensemble
in the sense that if the relatively mild conditions imposedevaporatlon rates and abundqnc_e spectra vs time and the
during the derivation are fulfilled, it will be valid irrespective amount and the method of excitation of the clusters.

of the choice of cluster material and the underlying physical
reason for the variations in binding energy. If the dissocia-
tion energies extracted from experimental spectra, i.e., the This work was supported by the Danish National Re-

thermal activation energies, are identical to the adiabatic difsearch Foundation through the research center ACAP. Dis-
ferences in free energies of the mother and daughter clustersiissions with T. Dssing are gratefully acknowledged.
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