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Fluctuations, time-correlation functions, and geometric phase
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The adiabatic approximation usually applies to a collection of lighter partithes “fast” system and
heavier particlegthe “slow” system), where the geometric phase naturally appears. With the help of the
recently introduced gauge potential in the context of adiabatic Berry phase for open paths, we establish a
fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change
(of the “slow” system) to the time integral of the quantum correlation function between the projection
operator and force operator acting on the “fast” system. By taking a cue from linear response theory we relate
the quantum fluctuation in the generator to the generalized susceptibility. The relation between the open-path
geometric phase, diagonal elements of the quantum metric tensor, and the force-force correlation function are
provided and the classical limit of the fluctuation-correlation theorem is discUsSEa50-29479)08107-X

PACS numbdss): 03.65.Bz, 03.65.Ca, 42.50.Lc

Fluctuations in a generic observable are inherent to alangle for open paths and studied its semiclassical and clas-
guantum systems that cannot be brought to zero, even igical limits. Most important and natural context, where adia-
principle, unless the system is prepared in an eigenstate ®@ticity holds is the system comprising of collection of elec-
the observable. In many-body systems the nature and tHEons (the “fast” system and nuclei(the “slow™ system.
interrelation of quantum fluctuation and statistical fluctuation1€7€, one applies the Born-OppenheiniBO) approxima-
(which comes from time-correlation functionis a topic of tion [9] to solve the slow motion by integrating out the fast

reat interest. Given a composite system, the quantum flu¢iegrees of the system. Incidentally, the gauge potefmiaaw
tguation in an observable of Z subsygtem may d?ive the othe alled the Berry potentiaivas first highlighted by Meafl0]

o o : s a leading-order correction to usual BO approximation
subsystem towards equilibrium, and this information can beprior to Berry’s observation. Recently, it has been shown by

obtained by studying the time-correlation function of theggy a0y Robbing11] that there are higher order correc-
later subsystem. One can describe the effect of coupling bgg,ng 15 the usual BO force called geometric magnetism and
tween the “slow” and the “fast” system by studying the geterministic friction in a classical setting and half-classical
time-correlation function between different operators perti-setting. In a fully quantum mechanical settingyhen the
nent to subsystems. Here, we use the concept of adiabatiderlying system is chaolithe origin of damping of col-
geometric phase to bring out an important connection betective excitations in a finite Fermi system has been studied
tween the quantum fluctuation and time-correlation functiorpy Jain and Pat[12]. The interest in adiabatic geometric
of some observables of the “fast” system. phase is still continuing, can be seen from recent papers by
In the context of adiabatic theorem, Berry discovered theale Polavieja and Sgvist[13] and the generalization of adia-
geometric phasgl] as an extra phase shift acquired by thebatic approximation to relativistic situations by Mostafaza-
wave function during cyclic variations of external param-deh[14].
eters. Realizing its importance, this concept was further gen- In this paper, we show that the quantum fluctuation in the
eralized to nonadiabatic situations by Aharonov and Anangenerator of the unitary operat@which induces the param-
dan [2]. The Berry phase concept for noncyclic andeter changeis directly related to the time integral of the
nonunitary situations was generalized by Samuel and Bharguantum correlation function between the projection opera-
dari[3] using geodesic closure rules. The present author hasr and the force operator of the “fast” system. Further,
given a connection-form for noncyclic evolution of an arbi- invoking the ideas of linear response theory one can show
trary quantum systerf¥] without explicitly closing the open that this quantum fluctuation is related to the generalized
path by a geodesic. Further, we have generalized the geometusceptibility. This fluctuation can be represented in terms of
ric phase to the case of noncyclic, nonunitary, and nonthe diagonal elements of the quantum metric tensor, which in
Schralinger evolutiong5] of quantum systems. Although turn is related to the force-force correlation function. We
the geometric phase can appear in a quite general cdext provide a new expression for the adiabatic geometric phase
purely related to the geometry of the Hilbert spg¢e most  when the slow coordinates undergo a noncyclic change.
of the application of the geometric phase theory deals withAlso, we discuss the classical limit of the fluctuation-
systems undergoing adiabatic evolutions. In the literaturegorrelation theorem when the classical counterpart of the fast
the adiabatic Berry phase and its applications have been reaotion is both chaotic and integrable. The formal develop-
stricted to closed path evolutions. Therefore, 8¢ have  ments presented in this paper will have important applica-
developed a theory of adiabatic Berry phase and Hannagions in the areas such as nuclear physics and condensed
matter physics and open up new avenues for studying clas-
sical limit of generalized quantum one-form for chaotic sys-
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Let us consider a composite, many-body systésiow”

+ “fast” ) and denote the “slow” and “fast” variables by P,(R)= [(n(R(0))|Vn(R))
n 2
(R,P) and ,p), respectively. The Hamiltonian of the total 2|(n(R(0))In(R))|
system can be written as X(n(R)|=[n(R)){Vn(R)))In(R(0)))]. (8)
P2 2 P2
H(r,p,R,P)= er ;—m+V(r,R):h(r,p,R)+ M The open-path adiabatic geometric phase is gauge invari-

ant even if the nuclear coordinates do not come back to their
original value. Because underl&1) gauge transformation

of the fast eigenfunctiom(R)) is changed t@'“(®|n(R)),
whereasA,(R) andP,(R) transform as

D

whereh(r,p,R)=P?/2M + p?/2m. Usually, one first solves

for the fast Hamiltoniarh(r,p,R) for a fixed coordinate of
the slow variableR. The eigenvalue equation reads as
An(R)=An(R)=Va(R), Py(R)—P,(R)=Va(R),

h(R)|n(R))=en(R)|N(R)), ) €)

where|n(R)) ande,(R) are the eigenstate and eigenvalue ofand therefore the whole expression is gauge compensated.
the fast system that depends parametrically on the slow vari- Let us focus our attention on the generalized gauge poten-
ableR. The wave function of the composite system is tial Q,(R). In what follows, we express it in terms of the
guantum fluctuation in some observable of the slow system.
B On defining a Hermitian operatd8 through the relation
\P(r,R)—; $a(R) Yn(1,R), 3 |IVn(R))=iB|n(R)), we can express the potentR|(R) as

with ¢,(r,R)=(r|n(R)) and ¢,(R) is the slow eigenfunc- 1[(n(R(0))|BIn(R)) (n(R)|B|n(R(0)))
tion. When we integrate over the fast degrees of freedom, the Pa(R)=— 2 (nRO)[n(R)) + (N(R)[N(R(0))) |’
effective Hamiltonian for the slow system contains a gauge 1
potential A,(R), whose flux gives the geometric phase.
Thus, the effective Hamiltonian is given p9,10]

Using the fac{16] that the action of any Hermitian operator
1 O on some statdW) can be written afO|V)=(O)|V)
Heri==— (P—A,(R)2)+ €,(R), (4 +AO|V,), where (O) is the average andAO
2M =J((0%—(0)?) is the uncertainty in the operat@, re-

. _ . spectively. The statgV | ) belongs to the orthogonal comple-
where Ap(R)=i(n(R)|Vn(R)) is the Berry potential. The | ant subspace of the Hilbert space, such {Naf¥, )=0.

presence of gauge potential leads to observable effects like@,, the adiabatic eigenstate and the operBtowe have
shift in quantum numbers and level splittintp]. If we con-

sider the time evolution of fast system, then during the cyclic
change of the slow coordinate the wave function of the fast
system acquires a geometric phase given by

B[n(R))=—~An(R)[n(R))+ABIn (R)). (11

where (n(R)|B|n(R))=—A,. With the help of the above

. equation, the potentid,,(R) can be expressed as
¥n(C) =i ﬁ(n(R)an(R))-dR: fﬁcAn(R%dR- )

(n(R(0))[n, (R))
(n(R(0))In(R))

Pa(R)=As(R) =R )AB. (12

However, there could be situations where the slow coor-
dinates need not undergo a cyclic variation. It has been
shown by the authof8] that when the parameters are adia-
batically changed along an arbitrary curl/e then the geo-
metric phase is given by the line integral of a generalizecﬁ
gauge potentiaf) ,(R),

This shows that the Berry potential is just a part of the
auge potentiaP,(R). Hence, the generalized potential can
e expressed in terms of the fluctuation in the operBtas

(n(R(0)In, (R))
yn(r)=iJr<xn<R)|Vxn(R>>~dR= Jrﬂn<R)~dR, ®) Qn<R>=Re( <n(R(0))|,,f(R)> )AB- (13

where|x,(R)) is a “reference-eigenstate” introduced by the This shows that the open-path geometric phase acquired by

author, defined from the instantaneous eigenstate dake fast eigenstate is related to the integral of the fluctuation

| xa(R))=(n(R)[n(R(0)))/|{n(R)[n(RO))IN(R)).  The in the operatoi.

generalized gauge potential is related to the Berry potential On the other hand, the generalized gauge potential can

as also be expressed as a time-correlation function. To arrive at
this, we relate it to the matrix elements of product of projec-

QL (R)=AL(R)—Py(R), (7) tion operators and force operatfthe force operator is

—Vh(R)]. Let us first introduce a complete set of eigen-

whereP,(R) is a new gauge potential, given by states in the expression f&,(R). Then we obtain
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Pn(R)=—Im(n(R)|Vn(R))
S (n(R(0))m(R)) (M(R)|Vh|n(R))
mzn (N(R(0)[N(R)) (en(R)—€n(R)) ’
(14

where we have used the equalitg|Vm)=(n|Vh|m)/(e,
—€m) for m#n. Since A,=—Im(n(R)|Vn(R)), we can
write the generalized vector potential as

1
Q,(R)=
R [(n(R(0))|n(R))|?

(N(R)|PA(R(0))Pn(R)VhIn(R))
xim 2 (ex(R)—en(R) '

(19
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which is an almost periodic function, only {fe,} forms a
complex sequence whereupon the convergence of such sums
have to be treated nicelfl8]. Thus, we arrive at our first
result

1 * j—
- ﬁfo dtQ(t)=\AB, (20

where the convergence factor is left implicit.

To provide a physical meaning for the fluctuation in op-
eratorB we consider a family of Hamiltonians(R) which
are unitarily related to a unparametrised Hamiltortaji 9],
ie.,

h(R)=U(R)HU(R)". (21

Then one can define the generators of the unitary operator

U(R) asg(R)=iZVU(R)U(R)'. These unitary operators

whereP,(R(0)) andP(R) are instantaneous projection op- U(R) not necessarily constitute a group and provide a con-

erators corresponding to the eigenstat®R(0))) and

nection between the parameter dependent eigenpe$)

Im(R)), respectively. By comparing the two expressionsand parameter-independent ba$iy as defined through

(13) and(15) for the gauge potential we obtain

ImZ

m#n

(n(R)|Pn(R(0))Pr(R)Vh|n(R))
(en(R) - em(R))

=Re((n(R(0))[n, (R)}{n(R)[n(R(0))))AB.

(16)

In(R))=U(R)|n). Thus the generator of the paramegeis
nothing but the operator #B. Therefore, the quantitB is
related to the fluctuation in the generator of the parameter
dependent unitary operator. It is worth recalling that the
usual Berry potential represents the average of the generator
whereas the generalized gauge potential represents the fluc-
tuation in the generator. Thus, EQO) relates the time inte-

Further, we simplify the left hand side of the above expresgral of a quantum correlation function of the fast system to
sion using an integral representation of the energy denomthe quantum fluctuation of the generator of the unitary op-

nator, viz.

—ept/i].
Therefore, we have

Uen—em)=1/m1m__ [5 dte 'sin (e,

1 o t
i “SIm Y, si e )—
7 lim Jo dt e ®Im sn-{(en em)h

s—0 m#n

X{(n(R)|Pn(R(0))P,(R)Vh|n(R))
=)\(R)AB, (17)

where \(R)=Re(n(R(0))|n, (R)(n(R)In(R(0)))) is a

erator, which is the central result of our paper. This may be
called afluctuation-correlation theorenmanalogous to the
fluctuation-dissipation theorem in statistical mechanics.
Another meaning can be favored for the above expres-
sion. Note that the quantum correlation functiQft) de-
fined above is actually a difference of two symmetrized time-
correlation functions, i.e.Q(t)=Cag(—1t)—Cga(t), where
Cas(t)=3(n|(A_B+BA_)[n) and Cga(t)=3(n[(AB
+ B A)|n). Appealing to linear response theory of adiabatic
many-body quantum systef#0] we can define a generalized
susceptibility in terms of the Laplace transform of the sym-
metrized time-correlation function, which is given by

real scale factor. Then define a quantum correlation function

between the instantaneous projection operator and the force

operator as

1
Q(t)=5(n|(A_B+BA )~ (AB+BA)|n), (18

whereA=P,(0), B=Vh andA_; is a time-evolved opera-

tor of A (with t replaced by—t) andB;=(Vh); is the time-

evolved operator oV h at fixedR. A similar quantum cor-

Xasl(2)= f:e‘ztcABa)dt. 22

With this idea Eq(20) can be expressed, alternatively as

lim[xas(2) — xga(2)]=—2\AP. (23

z—0

This relates the quantum fluctuation to the susceptibility of

relation function and its various moments have been studiethe system in the limiz— 0, which is statistical in nature.

in a different contex{17], while discussing the quantum-

Next, we express the open-path geometric phase in terms

classical discordance for chaotic systems. It can be showaf the quantum metric tensor. The quantum metric tensor is
that the quantum correlation function defined above is prean useful concept for studying the behavior of collective de-

cisely what we have in the left hand side, i.e.,

Q(t)=—21Im>, sir{(en— em)%
m#n

X(n(R)|Py(R(0))P,(R)Vh[n(R)), (19

grees of freedom of a many-body system. First we show that
the uncertainty irB; ,(i=1, ... N) is nothing but the diag-
onal elements of the positive semidefinite quantum metric
tensorg;; , whereg; is given by

gij=Regan|ajn)— (i(n[an))(i(n[a;n)). (24
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The physical significance of thg;; is that it defines the Before concluding this paper, we briefly discuss some is-
distance[21,22 between any two points along an arbitrary sues related to the classical limits of this results. One can
path in the parameter space corresponding to the evolution study the classical limit of the fluctuation-correlation rela-
the eigenstate in the Hilbert space. To see, this recall that thgon, when the fast motion is chaotic. This is important, be-
infinitesimal distance function between the adiabatic eigeneause the quantum fluctuations and correlations of large sys-

state|n(R)) and|n(R+dR)) is given by tems that have classical chaotic manifestations is of great
] ) interest. When the classical counterpart of the fast system is
ds’=[(g;n[d;n)—(i(n|ain))(i(n|o;n))JdRdR, chaotic we assume that the mixing property holds. In this
~T,dRdR =g;;dRdR;, (25) case the quantum expectation values of physical quantities

correspond to the phase space average over the microcanoni-
where T;;=g;;+iv;; is the Hermitian gquantum geometric cal distribution on an invariant energy surfd@3-25, i.e.,
tensor,g;; is the real symmetric tensor, ang is real anti-
symmetric tensor. The quantum geometric tensor is mani-
festly gauge invariant. The antisymmetric tensor field is
nothing but the phase two-form that gives the adiabatic Berry (n[O[n)—(O)e=
phase. The real symmetric tensor gives us the distance be- f d"rd"pS(E—-h(R))
tween the quantum states. But interestingly, the generalized (29)
vector potentiaphase one-forpnis related to the diagonal

elements of the real symmetric tensor. Tr;e diagonal element,g time-evolved operators in the quantum case correspond
describe the uncertainties becaus&B()®=g; and off- 5 the physical quantities at time evolved points on the tra-
diagonal elements describe the correlation between the ORsctory generated by the fast HamiltoniagR). Therefore

eratorsB;’s. With the help of these metric structures we canihe classical analogue of fluctuation-correlation theorem can
recast the geometric phase as be expressed as

derdeO(r,p,R)5(E—h(R))

A
)= V0i (R)-dR;. 26 *
w()= | (nRInROy %R R (20 | aauv=-2muB-@0%e. @0
An immediate interpretation of the above result is that the N N
open-path geometric phase for the “fast” system is the inte-"Vh,ffreN Qc(t)=/d rd"ps(E—h(R))(A_B—BA)/
gral of the scaled symmetric tensor, during an arbitrary, adial d"Td"PS(E—h(R)), is the classical valued correlation
batic evolution of a “slow” quantal system. function and\ ; is the classical valued scale factor. Recently,

Further, the diagonal elements of the real symmetric tenif has been shown by Srednidid6] that the time variation of
sor can be expressed as a force-force correlation functiofiie quantum fluctuation in the observable can be interpreted
which is a very useful quantity in studying its classical limit & an appropriate thermal fluctuation in that observable when

when the fast motion is chaotjd7,25. On writing g;; as the number of degrees of freeddwis large. Therefore, the
fluctuation in the generator of the parameter change can be
(n|a;h|m)(m|a;h|n}) regarded as a thermal fluctuation in the classical statistical
gii:Rengn (€n— €m)? ’ (27 sense. The classical and quantum correlation functions can

be useful in studying the various momept¥] and in ana-
and using the integral representation of the energy term, vidyzing the clash of limitsi—0 andt— o, which may shed
(en— €m) 2= — 1/h2[5dtt expl(e,— en)t//i) we have some light on the behavior of the geometric phase for clas-
sical chaotic systems. However, such studies are beyond the
1 (= scope of this paper. One can remark that when the classical
giF‘ﬁfo dtt[{n[(dih).(dih)[n) +(n[(aih)(dih){n), counterpart of the fast system is chaotic, then the mixing
(29) property would imply that for long timest-{ ) the classi-
cal correlation function vanishes. This in turn implies that
where @;h), is the time-evolved operator. Since the geomet-the fluctuation property of the slow system as seen by the
ric phase is related to the metric structure, it is also related tofast” system also vanishes. Therefore, to see the statistical
force-force correlation function, where the same componentBuctuation property of the “slow” system, study of long
of the force operators are involved. However, we cannot sajime behavior of the chaotic trajectory is not preferred.
that the geometric phase is related to friction in pure quan- [f the classical counterpart of the fast system is integrable,
tum mechanics. Because friction in such situations is relatethen the quantum expectation values can be replaced by the
to the symmetric part of the force-force correlation functiontorus average of the classical valued function over the sur-
(where different components of the force operators are inface of constant actioh i.e.,
volved). One can see ifi24] that for chaotic quantum sys-

tems the phase two-form is related to the antisymmetric part 1 N

of the force-force correlation function. Since for cyclic evo- <n|O|n)—><O>,=(zT)Nf d”0 O(r.p.R)

lution of the adiabatic parameters our reddt reduces to

the result of Berny{1], it is natural to expect that the one- X 8(1=1(r,p,R)) (3D

form is in some way related to force-force correlation func-
tion. and the fluctuation correlation theorem takes the form
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o ) the Born-Openheimer setting. This resulted in the formula-
jo dtQc(t) = —2aN((B—(B)e)), (32 tion of afluctuation-correlation theorepwhich says that the
time-integral of the correlation function of the “fast” system

whereQ(t)=1/(27)NfdVe 8(—1(r,p,R))(A_B—B,A). is proportional to the quantum fluctuation of the generator of

Although these discussions pertained to a collection othe parameter change of the “slow” system as measured in
electrons(“fast” ) and nuclei(“slow” ), they are equally the “fast” system. The fluctuation in the corresponding gen-
valid in the situations where one can separate the motion g#rator can be related to the generalized susceptibility of the
energy scale to two regimes and BO approximation holds'fast” system. Invoking the idea of geometric distance func-
We believe that the results found here will be applicable intion, we have related the quantum one-form to the diagonal
other physical context, also. For example, recently[6#  elements of the quantum metric tensor. The classical limit of
provided an explanation of the damping of collective excita-the fluctuation-correlation theorem is discussed when the
tions in finite-Fermi systems using the concept of adiabati¢fast” motion is chaotic and integrable. This work opens up
geometric phase and response functions when the systemtie possibility of studying the spectral one-fofi{e) de-
fully chaotic. In such systems, the fluctuation and correlatiorfined throughF(e) =X,6(e—€,){}, and in answering the
theorem would be useful in quantifying various collective classical limit of quantum one-forf), for chaotic systems
properties of the composite systems. in the future.

To summarize this paper, we studied the adiabatic geo-
metric phase acquired by the “fast” system when the | wish to thank Pieter Kok for a careful reading of the
“slow” coordinates undergo a noncyclic variation, within paper.
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