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Fluctuations, time-correlation functions, and geometric phase

Arun Kumar Pati*
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The adiabatic approximation usually applies to a collection of lighter particles~the ‘‘fast’’ system! and
heavier particles~the ‘‘slow’’ system!, where the geometric phase naturally appears. With the help of the
recently introduced gauge potential in the context of adiabatic Berry phase for open paths, we establish a
fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change
~of the ‘‘slow’’ system! to the time integral of the quantum correlation function between the projection
operator and force operator acting on the ‘‘fast’’ system. By taking a cue from linear response theory we relate
the quantum fluctuation in the generator to the generalized susceptibility. The relation between the open-path
geometric phase, diagonal elements of the quantum metric tensor, and the force-force correlation function are
provided and the classical limit of the fluctuation-correlation theorem is discussed.@S1050-2947~99!08107-X#

PACS number~s!: 03.65.Bz, 03.65.Ca, 42.50.Lc
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Fluctuations in a generic observable are inherent to
quantum systems that cannot be brought to zero, eve
principle, unless the system is prepared in an eigenstat
the observable. In many-body systems the nature and
interrelation of quantum fluctuation and statistical fluctuat
~which comes from time-correlation functions! is a topic of
great interest. Given a composite system, the quantum
tuation in an observable of a subsystem may drive the o
subsystem towards equilibrium, and this information can
obtained by studying the time-correlation function of t
later subsystem. One can describe the effect of coupling
tween the ‘‘slow’’ and the ‘‘fast’’ system by studying th
time-correlation function between different operators pe
nent to subsystems. Here, we use the concept of adia
geometric phase to bring out an important connection
tween the quantum fluctuation and time-correlation funct
of some observables of the ‘‘fast’’ system.

In the context of adiabatic theorem, Berry discovered
geometric phase@1# as an extra phase shift acquired by t
wave function during cyclic variations of external param
eters. Realizing its importance, this concept was further g
eralized to nonadiabatic situations by Aharonov and An
dan @2#. The Berry phase concept for noncyclic an
nonunitary situations was generalized by Samuel and Bh
dari @3# using geodesic closure rules. The present author
given a connection-form for noncyclic evolution of an arb
trary quantum system@4# without explicitly closing the open
path by a geodesic. Further, we have generalized the geo
ric phase to the case of noncyclic, nonunitary, and n
Schrödinger evolutions@5# of quantum systems. Althoug
the geometric phase can appear in a quite general contex@6#,
purely related to the geometry of the Hilbert space@7#, most
of the application of the geometric phase theory deals w
systems undergoing adiabatic evolutions. In the literatu
the adiabatic Berry phase and its applications have been
stricted to closed path evolutions. Therefore, we@8# have
developed a theory of adiabatic Berry phase and Han

*Electronic address: akpati@sees.bangor.ac.uk
PRA 601050-2947/99/60~1!/121~5!/$15.00
ll
in
of
he

c-
er
e

e-

-
tic
-

n

e

n-
-

n-
as

et-
-

h
e,
re-

ay

angle for open paths and studied its semiclassical and c
sical limits. Most important and natural context, where ad
baticity holds is the system comprising of collection of ele
trons ~the ‘‘fast’’ system! and nuclei~the ‘‘slow’’ system!.
Here, one applies the Born-Oppenheimer~BO! approxima-
tion @9# to solve the slow motion by integrating out the fa
degrees of the system. Incidentally, the gauge potential~now
called the Berry potential! was first highlighted by Mead@10#
as a leading-order correction to usual BO approximat
prior to Berry’s observation. Recently, it has been shown
Berry and Robbins@11# that there are higher order corre
tions to the usual BO force called geometric magnetism
deterministic friction in a classical setting and half-classi
setting. In a fully quantum mechanical setting,~when the
underlying system is chaotic! the origin of damping of col-
lective excitations in a finite Fermi system has been stud
by Jain and Pati@12#. The interest in adiabatic geometr
phase is still continuing, can be seen from recent papers
de Polavieja and Sjo¨qvist @13# and the generalization of adia
batic approximation to relativistic situations by Mostafaz
deh @14#.

In this paper, we show that the quantum fluctuation in
generator of the unitary operator~which induces the param
eter change! is directly related to the time integral of th
quantum correlation function between the projection ope
tor and the force operator of the ‘‘fast’’ system. Furthe
invoking the ideas of linear response theory one can sh
that this quantum fluctuation is related to the generaliz
susceptibility. This fluctuation can be represented in terms
the diagonal elements of the quantum metric tensor, whic
turn is related to the force-force correlation function. W
provide a new expression for the adiabatic geometric ph
when the slow coordinates undergo a noncyclic chan
Also, we discuss the classical limit of the fluctuatio
correlation theorem when the classical counterpart of the
motion is both chaotic and integrable. The formal develo
ments presented in this paper will have important appli
tions in the areas such as nuclear physics and conde
matter physics and open up new avenues for studying c
sical limit of generalized quantum one-form for chaotic sy
tems.
121 ©1999 The American Physical Society
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122 PRA 60ARUN KUMAR PATI
Let us consider a composite, many-body system~‘‘slow’’
1 ‘‘fast’’ ! and denote the ‘‘slow’’ and ‘‘fast’’ variables by
(R,P) and (r ,p), respectively. The Hamiltonian of the tota
system can be written as

H~r ,p,R,P!5
P2

2M
1

p2

2m
1V~r ,R!5h~r ,p,R!1

P2

2M
,

~1!

whereh(r ,p,R)5P2/2M1p2/2m. Usually, one first solves
for the fast Hamiltonianh(r ,p,R) for a fixed coordinate of
the slow variableR. The eigenvalue equation reads as

h~R!un~R!&5en~R!un~R!&, ~2!

whereun(R)& anden(R) are the eigenstate and eigenvalue
the fast system that depends parametrically on the slow v
ableR. The wave function of the composite system is

C~r ,R!5(
n

fn~R!cn~r ,R!, ~3!

with cn(r ,R)5^r un(R)& and fn(R) is the slow eigenfunc-
tion. When we integrate over the fast degrees of freedom,
effective Hamiltonian for the slow system contains a gau
potential An(R), whose flux gives the geometric phas
Thus, the effective Hamiltonian is given by@9,10#

He f f5
1

2M
„P2\An~R!2

…1en~R!, ~4!

where An(R)5 i ^n(R)u“n(R)& is the Berry potential. The
presence of gauge potential leads to observable effects l
shift in quantum numbers and level splitting@15#. If we con-
sider the time evolution of fast system, then during the cyc
change of the slow coordinate the wave function of the f
system acquires a geometric phase given by

gn~C!5 i R
C
^n~R!u“n~R!&•dR5 R

C
An~R!•dR. ~5!

However, there could be situations where the slow co
dinates need not undergo a cyclic variation. It has b
shown by the author@8# that when the parameters are ad
batically changed along an arbitrary curveG, then the geo-
metric phase is given by the line integral of a generaliz
gauge potentialVn(R),

gn~G!5 i E
G
^xn~R!u“xn~R!&•dR5E

G
Vn~R!•dR, ~6!

whereuxn(R)& is a ‘‘reference-eigenstate’’ introduced by th
author, defined from the instantaneous eigenstate
uxn(R)&5^n(R)un(R(0))&/u^n(R)un„R(0)…&uun(R)&. The
generalized gauge potential is related to the Berry poten
as

Vn~R!5An~R!2Pn~R!, ~7!

wherePn(R) is a new gauge potential, given by
f
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Pn~R!5
i

2u^n„R~0!…un~R!&u2
@^n„R~0!…u“n~R!&

3^n~R!u2un~R!&^“n~R!u!un„R~0!…&]. ~8!

The open-path adiabatic geometric phase is gauge inv
ant even if the nuclear coordinates do not come back to t
original value. Because under aU(1) gauge transformation
of the fast eigenfunctionun(R)& is changed toeia(R)un(R)&,
whereasAn(R) andPn(R) transform as

An~R!→An~R!2“a~R!, Pn~R!→Pn~R!2“a~R!,
~9!

and therefore the whole expression is gauge compensat
Let us focus our attention on the generalized gauge po

tial Vn(R). In what follows, we express it in terms of th
quantum fluctuation in some observable of the slow syst
On defining a Hermitian operatorB through the relation
u“n(R)&5 iBun(R)&, we can express the potentialPn(R) as

Pn~R!52
1

2 F ^n„R~0!…uBun~R!&

^n„R~0!…un~R!&
1

^n~R!uBun„R~0!…&

^n~R!un„R~0!…& G .
~10!

Using the fact@16# that the action of any Hermitian operato
O on some stateuC& can be written asOuC&5^O&uC&
1DOuC'&, where ^O& is the average and DO
5A(^O2&2^O&2) is the uncertainty in the operatorO, re-
spectively. The stateuC'& belongs to the orthogonal comple
ment subspace of the Hilbert space, such that^CuC'&50.
For the adiabatic eigenstate and the operatorB, we have

Bun~R!&52An~R!un~R!&1DBun'~R!&. ~11!

where ^n(R)uBun(R)&52An . With the help of the above
equation, the potentialPn(R) can be expressed as

Pn~R!5An~R!2ReS ^n„R~0!…un'~R!&

^n„R~0!…un~R!& DDB. ~12!

This shows that the Berry potential is just a part of t
gauge potentialPn(R). Hence, the generalized potential ca
be expressed in terms of the fluctuation in the operatorB as

Vn~R!5ReS ^n„R~0!…un'~R!&

^n„R~0!…un~R!& DDB. ~13!

This shows that the open-path geometric phase acquire
the fast eigenstate is related to the integral of the fluctua
in the operatorB.

On the other hand, the generalized gauge potential
also be expressed as a time-correlation function. To arriv
this, we relate it to the matrix elements of product of proje
tion operators and force operator@the force operator is
2“h(R)#. Let us first introduce a complete set of eige
states in the expression forPn(R). Then we obtain
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PRA 60 123FLUCTUATIONS, TIME-CORRELATION FUNCTIONS, . . .
Pn~R!52Im^n~R!u“n~R!&

2Im (
mÞn

^n„R~0!…um~R!&

^n„R~0!…un~R!&

^m~R!u“hun~R!&
„en~R!2em~R!…

,

~14!

where we have used the equality^nu“m&5^nu“hum&/(en
2em) for mÞn. Since An52Im^n(R)u“n(R)&, we can
write the generalized vector potential as

Vn~R!5
1

u^n„R~0!…un~R!&u2

3Im (
mÞn

^n~R!uPn„R~0!…Pm~R!“hun~R!&
„en~R!2em~R!…

,

~15!

wherePn„R(0)… andPm(R) are instantaneous projection o
erators corresponding to the eigenstateun„R(0)…& and
um(R)&, respectively. By comparing the two expressio
~13! and ~15! for the gauge potential we obtain

Im (
mÞn

^n~R!uPn„R~0!…Pm~R!“hun~R!&
„en~R!2em~R!…

5Re~^n„R~0!…un'~R!&^n~R!un„R~0!…&!DB. ~16!

Further, we simplify the left hand side of the above expr
sion using an integral representation of the energy deno
nator, viz. 1/(en2em)51/\ lim

s→0
*0

` dt e2st sin@(en

2em)t/\#.
Therefore, we have

1

\
lim
s→0

E
0

`

dt e2stIm (
mÞn

sinF ~en2em!
t

\G
3^n~R!uPn„R~0!…Pm~R!“hun~R!&

5l~R!DB, ~17!

where l(R)5Re(̂ n„R(0)…un'(R)&^n(R)un„R(0)…&) is a
real scale factor. Then define a quantum correlation func
between the instantaneous projection operator and the f
operator as

Q~ t !5
1

2
^nu~A2tB1BA2t!2~ABt1BtA!un&, ~18!

whereA5Pn(0), B5“h andA2t is a time-evolved opera
tor of A ~with t replaced by2t) andBt5(“h) t is the time-
evolved operator of“h at fixedR. A similar quantum cor-
relation function and its various moments have been stud
in a different context@17#, while discussing the quantum
classical discordance for chaotic systems. It can be sh
that the quantum correlation function defined above is p
cisely what we have in the left hand side, i.e.,

Q~ t !522 Im(
mÞn

sinF ~en2em!
t

\G
3^n~R!uPn„R~0!…Pm~R!“hun~R!&, ~19!
-
i-

n
ce

d

n
-

which is an almost periodic function, only if$en% forms a
complex sequence whereupon the convergence of such s
have to be treated nicely@18#. Thus, we arrive at our firs
result

2
1

2\E0

`

dtQ~ t !5lDB, ~20!

where the convergence factor is left implicit.
To provide a physical meaning for the fluctuation in o

eratorB we consider a family of Hamiltoniansh(R) which
are unitarily related to a unparametrised HamiltonianH @19#,
i.e.,

h~R!5U~R!HU~R!†. ~21!

Then one can define the generators of the unitary oper
U(R) as g(R)5 i\“U(R)U(R)†. These unitary operator
U(R) not necessarily constitute a group and provide a c
nection between the parameter dependent eigenbasisun(R)&
and parameter-independent basisun& as defined through
un(R)&5U(R)un&. Thus the generator of the parameterg is
nothing but the operator2\B. Therefore, the quantityDB is
related to the fluctuation in the generator of the parame
dependent unitary operator. It is worth recalling that t
usual Berry potential represents the average of the gene
whereas the generalized gauge potential represents the
tuation in the generator. Thus, Eq.~20! relates the time inte-
gral of a quantum correlation function of the fast system
the quantum fluctuation of the generator of the unitary o
erator, which is the central result of our paper. This may
called a fluctuation-correlation theoremanalogous to the
fluctuation-dissipation theorem in statistical mechanics.

Another meaning can be favored for the above expr
sion. Note that the quantum correlation functionQ(t) de-
fined above is actually a difference of two symmetrized tim
correlation functions, i.e.,Q(t)5CAB(2t)2CBA(t), where
CAB(t)5 1

2 ^nu(A2tB1BA2t)un& and CBA(t)5 1
2 ^nu(ABt

1BtA)un&. Appealing to linear response theory of adiaba
many-body quantum system@20# we can define a generalize
susceptibility in terms of the Laplace transform of the sy
metrized time-correlation function, which is given by

xAB~z!5E
0

`

e2ztCAB~ t !dt. ~22!

With this idea Eq.~20! can be expressed, alternatively as

lim
z→0

@xAB~z!2xBA~z!#522lDP. ~23!

This relates the quantum fluctuation to the susceptibility
the system in the limitz→0, which is statistical in nature.

Next, we express the open-path geometric phase in te
of the quantum metric tensor. The quantum metric tenso
an useful concept for studying the behavior of collective d
grees of freedom of a many-body system. First we show
the uncertainty inBi ,(i 51, . . . ,N) is nothing but the diag-
onal elements of the positive semidefinite quantum me
tensorgi j , wheregi j is given by

gi j 5Rê ] inu] jn&2~ i ^nu] in&!~ i ^nu] jn&!. ~24!
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The physical significance of thegi j is that it defines the
distance@21,22# between any two points along an arbitra
path in the parameter space corresponding to the evolutio
the eigenstate in the Hilbert space. To see, this recall tha
infinitesimal distance function between the adiabatic eig
stateun(R)& and un(R1dR)& is given by

ds25@^] inu] jn&2~ i ^nu] in&!~ i ^nu] jn&!#dRidRj

5Ti j dRidRj5gi j dRidRj , ~25!

where Ti j 5gi j 1 iv i j is the Hermitian quantum geometr
tensor,gi j is the real symmetric tensor, andv i j is real anti-
symmetric tensor. The quantum geometric tensor is m
festly gauge invariant. The antisymmetric tensor field
nothing but the phase two-form that gives the adiabatic Be
phase. The real symmetric tensor gives us the distance
tween the quantum states. But interestingly, the general
vector potential~phase one-form! is related to the diagona
elements of the real symmetric tensor. The diagonal elem
describe the uncertainties because (DBi)

25gii and off-
diagonal elements describe the correlation between the
eratorsBi ’s. With the help of these metric structures we c
recast the geometric phase as

gn~G!5E l

u^n~R!un„R~0!…&u2
Agii ~R!•dRi . ~26!

An immediate interpretation of the above result is that
open-path geometric phase for the ‘‘fast’’ system is the in
gral of the scaled symmetric tensor, during an arbitrary, a
batic evolution of a ‘‘slow’’ quantal system.

Further, the diagonal elements of the real symmetric t
sor can be expressed as a force-force correlation func
which is a very useful quantity in studying its classical lim
when the fast motion is chaotic@17,25#. On writing gii as

gii 5Re(
mÞn

^nu] ihum&^mu] ihun&
~en2em!2 , ~27!

and using the integral representation of the energy term,
(en2em)22521/\2*0

`dtt exp(i(en2em)t/\) we have

gii 52
1

2\2E
0

`

dtt@^nu~] ih! t~] ih!un&1^nu~] ih!~] ih! tun&,

~28!

where (] ih) t is the time-evolved operator. Since the geom
ric phase is related to the metric structure, it is also relate
force-force correlation function, where the same compone
of the force operators are involved. However, we cannot
that the geometric phase is related to friction in pure qu
tum mechanics. Because friction in such situations is rela
to the symmetric part of the force-force correlation functi
~where different components of the force operators are
volved!. One can see in@24# that for chaotic quantum sys
tems the phase two-form is related to the antisymmetric
of the force-force correlation function. Since for cyclic ev
lution of the adiabatic parameters our result@8# reduces to
the result of Berry@1#, it is natural to expect that the one
form is in some way related to force-force correlation fun
tion.
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Before concluding this paper, we briefly discuss some
sues related to the classical limits of this results. One
study the classical limit of the fluctuation-correlation rel
tion, when the fast motion is chaotic. This is important, b
cause the quantum fluctuations and correlations of large
tems that have classical chaotic manifestations is of g
interest. When the classical counterpart of the fast syste
chaotic we assume that the mixing property holds. In t
case the quantum expectation values of physical quant
correspond to the phase space average over the microca
cal distribution on an invariant energy surface@23–25#, i.e.,

^nuOun&→^O&E5

E dNrdNpO~r ,p,R!d„E2h~R!…

E dNrdNpd„E2h~R!…

.

~29!

The time-evolved operators in the quantum case corresp
to the physical quantities at time evolved points on the t
jectory generated by the fast Hamiltonianh(R). Therefore,
the classical analogue of fluctuation-correlation theorem
be expressed as

E
0

`

dtQc~ t !522\lc^~B2^B&E!2&E , ~30!

where Qc(t)5*dNrdNpd„E2h(R)…(A2tB2BtA)/
*dNrdNpd„E2h(R)…, is the classical valued correlatio
function andlc is the classical valued scale factor. Recent
it has been shown by Srednicki@26# that the time variation of
the quantum fluctuation in the observable can be interpre
as an appropriate thermal fluctuation in that observable w
the number of degrees of freedomN is large. Therefore, the
fluctuation in the generator of the parameter change can
regarded as a thermal fluctuation in the classical statist
sense. The classical and quantum correlation functions
be useful in studying the various moments@17# and in ana-
lyzing the clash of limits\→0 andt→`, which may shed
some light on the behavior of the geometric phase for c
sical chaotic systems. However, such studies are beyond
scope of this paper. One can remark that when the class
counterpart of the fast system is chaotic, then the mix
property would imply that for long times (t→`) the classi-
cal correlation function vanishes. This in turn implies th
the fluctuation property of the slow system as seen by
‘‘fast’’ system also vanishes. Therefore, to see the statist
fluctuation property of the ‘‘slow’’ system, study of lon
time behavior of the chaotic trajectory is not preferred.

If the classical counterpart of the fast system is integrab
then the quantum expectation values can be replaced by
torus average of the classical valued function over the s
face of constant actionI , i.e.,

^nuOun&→^O& I5
1

~2p!NE dNu O~r ,p,R!

3d„I2I ~r ,p,R!… ~31!

and the fluctuation correlation theorem takes the form
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E
0

`

dtQc~ t !522\lc^~B2^B&E!2& I , ~32!

whereQc(t)51/(2p)N*dNu d„I2I (r ,p,R)…(A2tB2BtA).
Although these discussions pertained to a collection

electrons~‘‘fast’’ ! and nuclei ~‘‘slow’’ !, they are equally
valid in the situations where one can separate the motio
energy scale to two regimes and BO approximation ho
We believe that the results found here will be applicable
other physical context, also. For example, recently, we@12#
provided an explanation of the damping of collective exci
tions in finite-Fermi systems using the concept of adiab
geometric phase and response functions when the syste
fully chaotic. In such systems, the fluctuation and correlat
theorem would be useful in quantifying various collecti
properties of the composite systems.

To summarize this paper, we studied the adiabatic g
metric phase acquired by the ‘‘fast’’ system when t
‘‘slow’’ coordinates undergo a noncyclic variation, withi
A

.

f

or
s.
n

-
ic

is
n

o-

the Born-Openheimer setting. This resulted in the formu
tion of afluctuation-correlation theorem, which says that the
time-integral of the correlation function of the ‘‘fast’’ system
is proportional to the quantum fluctuation of the generator
the parameter change of the ‘‘slow’’ system as measure
the ‘‘fast’’ system. The fluctuation in the corresponding ge
erator can be related to the generalized susceptibility of
‘‘fast’’ system. Invoking the idea of geometric distance fun
tion, we have related the quantum one-form to the diago
elements of the quantum metric tensor. The classical limi
the fluctuation-correlation theorem is discussed when
‘‘fast’’ motion is chaotic and integrable. This work opens u
the possibility of studying the spectral one-formF(e) de-
fined throughF(e)5(nd(e2en)Vn and in answering the
classical limit of quantum one-formVn for chaotic systems
in the future.

I wish to thank Pieter Kok for a careful reading of th
paper.
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