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Energy and angular distributions of detached electrons in a solvable model of ion-atom collision
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Electron energy and angular distributions are computed for a model of atom–negative-ion collisions. In this
model, electron-atom interactions are represented by zero-range potentials in an approximation where two
identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for
the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high veloc-
ity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary
encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway
between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single
broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into
two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the
ungerade distribution at low and intermediate velocities.@S1050-2947~99!05408-6#

PACS number~s!: 34.80.Dp, 34.20.Mq, 34.10.1x, 34.50.Fa
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I. INTRODUCTION

Electron energy and angular distributions have long b
used to probe the dynamics of ion-atom collisions. At hi
energy, where Born-type approximations are applica
fairly complete theories of single-electron ionization ha
emerged@1#. Three features dominate the spectrum in t
region, namely, the binary encounter peak, the continu
capture cusp, and the direct ionization cusp. The binary
counter peak occurs for all systems and the cusps are c
acteristic of the Coulomb interaction which produces ak
singularity in the Galilean invariant cross section@2#. All
three features are described quantitatively by the continu
distorted-wave–eikonal initial state theory, for examp
@3,4#. This and related theories associate a specific me
nism with a specific physical feature. The binary encoun
ridge is associated with quasifree scattering of project
with target atoms and the continuum capture cusp wit
transfer of electrons from the target to unbound states of
projectile.

Alternatively, the situation is much less clear at low v
locity. Four mechanisms for ionization have been identifi
namely, the top-of-barrier mechanism@5–7#, the superpro-
motion mechanism@8#, a ‘‘radial decoupling’’ mechanism
analogous to the well-known ‘‘rotational coupling’’ mech
nism @9#, and real promotion to the continuum@10#. The
latter process occurs only for multielectron systems such
negative-ion collisions with neutral atoms. A comple
theory of the top-of-barrier distribution has been develop
@11#, the advanced adiabatic theory has given expression
the fast electron portion of the superpromotion and real p
motion distributions@10#, and there is no theory of the radia
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decoupling electron distribution. Models of ionization at lo
energies when an adiabatic level is promoted through a se
of avoided crossings have been solved@12,13#. These models
show that ionization occurs at low velocity and have serv
to guide later developments.

Because of the lack of a generally valid theory, it is n
possible to associate a specific feature of the electron di
bution with a specific mechanism. Although there have be
many attempts to do this for the top-of-barrier mechanis
no real consensus has emerged. Finally, none of these t
ries are able to connect with high-velocity distribution
Rather, the advanced adiabatic theory employs approxim
solutions in the limitv˜0 while the high-velocity theories
employ approximate solutions in the opposite limit 1/v˜0,
but no universal expression holds at all velocities. Th
have also been attempts at exactab initio simulations of the
electron distributions, but these are still in the developm
stage@14#.

In order to make progress in this area, we conside
nontrivial model of ion-atom collisions, namely, the tw
zero-range potential~ZRP! model at zero impact paramete
where the atomic species move along classical trajecto
R(t). This model has been solved exactly in both one a
three dimensions@15–18# hence it gives a universal ampl
tude valid for allv. The corresponding electron distribution
for low impact velocities have been given in the literatu
however, the distributions at high velocities have not. T
purpose of this manuscript is to study the high-velocity d
tributions for this model and to examine their connecti
with the low-energy features. While it is highly simplifie
and lacks both super-promotion and top-of-barrier mec
nisms, the model does predict ionization at low energy.
we will show, it exhibits the three high-energy featur
known from ion-atom collisions. It also exhibits features
low energy that will be discussed in terms of the advanc
adiabatic theory. Finally, the steps used to solve the ex
model closely parallel those used in the Sturmian@19# and

rs-
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PRA 60 1141ENERGY AND ANGULAR DISTRIBUTIONS OF . . .
advanced adiabatic@10# formulations of ion-atom collisions
This theory enables one to see how adiabatic eigenst
generally considered appropriate at low relative ion veloc
also describe high-velocity features.

Transformation to an accelerated reference frame wh
both the target and projectile are stationary is a first step
formulating a Galilean invariant theory of ion-atom col
sions@20#, and is a key step in solving the ZRP model@17#.
The ZRP model provides a valuable illustration of this tra
formation. Most important for the theory of electron dist
butions is the appearance of a factor exp@2ir2Ṙ(t)/2R(t)#
that is common to both the general theory of ion-atom co
sions and the exact solution of the ZRP. Conventional
proaches typically omit such a factor, thus it is useful
show an exact solution where it is known to occur. T
transformation to the accelerated frame employs the sc
electron coordinateq5r /R(t) and a ‘‘scaled’’ time dt
5dt/R(r )2. This representation has been extensively d
cussed in the literature thus it will be taken as the start
point for the analysis presented here.

It is possible to interpret the exact solution of the ZR
model in terms of a Sturmian function@21# of the type used
in the outgoing wave Sturmian theory of ion-atom collisio
@20#. For general ion-atom collisions an infinite set of Stu
mian functions represent an alternative to the more stan
Born-Oppenheimer adiabatic basis set. In contrast to
adiabatic set, the Sturmian set naturally incorporates ion
tion channels@19#. Indeed, the ZRP model has only one Stu
mian function yet it describes ionization. We show that t
exact solution can be written in terms of one Sturmian eig
value and the associated Sturmian function. The wave fu
tion in the ZRP model therefore has the same form as
one-Sturmian approximation for proton–hydrogen-atom c
lisions. For this reason the ZRP model provides a useful
of approximate solutions relevant to ion-atom collisions.
this connection it has been noted that another widely u
nontrivial model, the Demkov-Osherov@13# multicrossing
model, is also solved in terms of one Sturmian function@22#.

With an exact solution it is possible to study the conn
tion between low- and high-velocity features. We find th
the binary encounter peak disappears at low velocity w
the direct and continuum capture peaks centered at elec
velocitiesk5vT andk5vP , wherevT andvP are target and
projectile velocities, respectively, merge to form one pe
centered midway between target and projectile at low re
tive velocity. This is most noticeable for the gerade (g) sym-
metry. For the ungerade (u) symmetry, there must be a nod
at the midpoint, thus this distribution shows two peaks w
separated from each other and not associated with the ta
and projectile.

An interesting feature emerges when comparing distri
tions at high and low velocity. One can compute electr
distributions for initial conditions corresponding to the ele
tron localized around the targetT, or localized around the
projectileP. We call these initial conditions ‘‘atomic’’ initial
conditions. Alternatively, one can compute electron distrib
tions corresponding to eitherg or u symmetries. We call
these initial conditions ‘‘molecular’’ initial conditions. A
high velocities the ‘‘atomic’’ initial conditions give smoot
distributions showing only target, projectile, and binary e
counter peaks. Distributions corresponding to ‘‘molecula
es,
,
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initial conditions employ coherent superpositions of t
‘‘atomic’’ amplitudes. These superpositions of smooth a
plitudes produce oscillating distributions owing to interfe
ence. Thus, at high velocities the distributions are smooth
the atomic representation, but show interference effects
the molecular representation.

The situation is exactly reversed at low ion velocitie
Here the molecular states ofg andu symmetry separate dy
namically. In this case the electron distributions are smo
for molecular initial conditions but show interference osc
lations for atomic initial conditions. We will show that thes
interference effects give rise to the classical Fermi accel
tion peaks@18#. At intermediate velocities, not reported her
where the target and projectile peaks just begin to sepa
no initial conditions are preferred and interference effe
appear for all initial conditions.

It is not known if these features persist for real ion-ato
collisions, however, it would appear that the qualitative fe
tures should be present. Atomic initial conditions certain
give smooth distributions in the high-velocity CDW-EIS a
proximation, while molecular initial conditions should sho
interference effects owing to rapidly varying phase factors
complete theory for low velocities has not yet emerged,
though the interference oscillations have been computed
the top-of-barrier electrons. It has been proposed that s
interference is the origin of some oscillations observed
perimentally. Alternatively, with molecular initial condi
tions, interference betweeng andu amplitudes is absent.

Expressions for low-velocity electron distributions ha
been derived in the advanced adiabatic approximation@10#.
These analytic expressions are compared with the exact
tributions. At low ion velocities, the approximate expressio
reproduce the exact distributions fairly well for all electro
velocities in the case ofu initial conditions, but fail for theg
initial conditions. An alternative approximate distribution
derived for theg case by expanding the Sturmian eigenva
about its first zero. The approximate Sturmiang distribution
agrees well with the exact distributions in the low-veloc
limit.

The plan of the manuscript is as follows. The exact so
tions of the ZRP models are reviewed in Sec. II and
solutions are interpreted in terms of the Sturmian theory
ion-atom collisions. In Sec. III, the exact solutions are us
to compute electron distributions at high, low, and interm
diate electron velocities. The oscillatory structure of the d
tributions is noted and discussed. Section IV discusses
distributions given by the advanced adiabatic approximati
This approximation is found to be quite accurate for theu
boundary conditions. Essentially, if the adiabatic poten
curve enters the continuum at nonzero, positive values oR,
the formulas of the advanced adiabatic approximation
quite accurate at low velocity. This happens for theu sym-
metry but for theg symmetry, promotion occurs at negativ
values ofR. In this case, the advanced adiabatic approxim
tion fails, but an alternative, closely related, formula wor
fairly well. Finally, the distributions at high velocity ar
shown to follow from an expansion of the Sturmian eige
value about its first zero. Approximate expressions in go
agreement with the computed cross sections are obtaine



-
h
s

te

ad
.

bu
a

n
ifi

an
ga

e

en

-
n-

or
ym-

tion

liar

o
ion
ined

ve

an
for

rgy

1142 PRA 60J. H. MACEK, S. YU. OVCHINNIKOV, AND E. A. SOLOV’EV
II. REVIEW OF STURMIAN THEORY FOR TWO
ZERO-RANGE POTENTIALS

We consider two identical ZRPs (Z15Z25Z/2) charac-
terized by the binding energyE52Z1

2/2 of an attached elec
tron. The ZRPs follow classical straight-line trajectories. T
Schrödinger equation for this system in scaled coordinate
@17,23#

F i
]

]t
2H0~q!Gw~t,q!50, ~2.1!

where

H0~q!52
1

2
¹q

21V0~q!. ~2.2!

In the scaled space the Galilean invariant solution is rela
to the solution of the time-dependent Schro¨dinger equation
in the usual space by the transformation@23#, C(t,r )
5R23/2exp@(ir2/2R)(dR/dt)#w(t,q). The function w~t,q!
satisfies the following boundary conditions at the ZRPs:

]@w~t,q!uq6 ẑ/2u#
]q

2Z1R̃~t!@w~t,q!uq6 ẑ/2u#U
uq7 ẑ/2u50

50,

~2.3!

where

R̃~t!52
1

vt
, 2`,t<0. ~2.4!

The boundary conditions specify the ZRPs, while the
ditional potentialV0(q) has been included for generality
This potential is usually absent for head-on collisions,
includes rotational coupling and harmonic oscillator terms
nonzero impact parameters@23#. Even for head-on collisions
it is instructive to retain theq-dependent potential eve
though such a potential has no immediate physical sign
cance. For future reference it should be noted that pl
waves in (r ,t) space are proportional to Feynman’s propa
tor in ~q,t! space.

Wave functions and ionization amplitudes for the mod
with V0(q)50 have been obtained earlier@15,17#. Here we
will interpret these quantities in terms of the Sturmian eig
values and eigenfunctions of the model.

Sturmian functions are solutions of the equation

@H0~q!2v#Sn~v;q!50, ~2.5!

with outgoing wave boundary conditions

]Sn~v;q!

]q
2 iA2vSn~v;q!˜0 as q˜` ~2.6!

and with boundary conditions at the ZRPs

]@Sn~v;q!uq6 ẑ/2u#
]q

2Z1rn~v!@Sn~v;q!uq6 ẑ/2u#U
uq7 ẑ/2u50

50, ~2.7!
e
is

d

-

t
t

-
e
-

l

-

wherern(v) is the Sturmian eigenvalue. Notice thatrn(v)
multiplies the strengthZ1 of the potential. Since the eigen
value is the coefficient of the potential, we follow the sta
dard usage in the physics literature and refer torn(v) as the
Sturmian eigenvalue.

There are only two Sturmian functions for two ZRPs. F
identical ZRPs the functions have gerade and ungerade s
metry so thatn56. The Sturmian functions are

S6~v;q!52Ap

Z1
G6~v;q,ẑ/2!, ~2.8!

where

G6~v;q,q8!5
1

2
@G~v;q,q8!6G~v;q,2q8!#. ~2.9!

In these expressions,~1! is used for the gerade state,~2! for
the ungerade state, andG(v;q,q8) is the Green function for
H0 . The corresponding Sturmian eigenvalues are

r6~v!52
1

Z1
lim

q˜ ẑ/2
F2ApZ1S6~v;q!2

1

uq2 ẑ/2uG .
~2.10!

We normalize the Sturmians according to the usual condi
@21#

E Sn~v;q!Sn~v;q!d3q52
drn~v!

dv
. ~2.11!

The Sturmian basis relates closely to the more fami
adiabatic basis, which obtains whenrn(v) is replaced by the
coordinateR and Eq.~2.10! is solved forv(R). Then the
adiabatic energy eigenvaluesEn(R) are given by

En~R!5
vn~R!

R2 . ~2.12!

At the physical valuesrn(v)5R the Sturmians are equal t
the adiabatic eigenfunctions up to an overall normalizat
constant. In effect, the adiabatic eigenvalues are obta
from the functionv~r! inverse tor~v!. Because the inverse
function may have many branches it is possible to ha
many adiabatic eigenvaluesE(R) for realR. This is why one
Sturmian may suffice to write the exact solution, whereas
infinite number of adiabatic basis functions are needed
the same purpose.

When the functionG(v;q,q8) is the free-particle Green
function

G~v;q,q8!5
1

2p

exp~ iA2vuq2q8u!
uq2q8u

, ~2.13!

the Sturmian eigenvaluesr6(v) can be written explicitly as

r6~v!52
1

Z1
@ iA2v6exp~ iA2v!#. ~2.14!

This set of Sturmian functions is used to compute the ene
and angular distributions reported in Sec. IV.
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Since the states of different symmetry do not interact,
can consider separately the solutions of Eq.~2.1! with differ-
ent symmetry. We seek solutions using the Fourier transf

w~t,q!5
1

A22p i
E

2`

`

dv exp~2 ivt!x~v,q!,

~2.15!

wherex~v,q! satisfies the equation

@H0~q!2v#x~v,q!50 ~2.16!

and boundary conditions at the ZRPs

i
]

]v H ]

]q
@x~v,q!uq6 ẑ/2u#J

2
Z1

v
@x~v,q!uq6 ẑ/2u#U

uq7 ẑ/2u50

50. ~2.17!

The wave functionx i(v,q) that corresponds to the initia
bound state continuum state is written in the form

x i~v,q!5Sn~v;q!Bn
i ~v! ~2.18!

and the wave functionxk(v,q) that corresponds to the fina
continuum state in the form

xk~v,q!5
1

A2pv3/2
Gn~v;k/v,q!1Sn~v;q!Bn

k~v!,

~2.19!

wheren56.
Using Eqs.~2.17! and~2.7! one easily finds equations fo

the coefficientsBn
i (v) andBn

k(v):

i
]

]v
@Bn

i ~v!rn~v!#1
1

v
Bn

i ~v!50 ~2.20!

and

i
]

]v
@Bn

k~v!rn~v!#1
1

v
Bn

k~v!52
1

A2pv3/2

]Sn~v,k/v !

]v
.

~2.21!

The solutions of these equations are

Bn
i ~v!5

1

Av

Dn~v!

rn~v!
dn i ~2.22!

and

Bn
k~v!5

1

A2pv3/2

Dn~v!

rn~v!
E

2`

v

dv8
]Sn~v8,k/v !

]v8
Dn

21~v8!,

~2.23!

where

Dn~v!5expF i

v E0

v dv8

rn~v8!G . ~2.24!
e

m

The integration constants have been chosen so that the
w i(t,q), wk(t,q) is orthonormal.

The transition amplitudes to the continuum are given
the standard formula

Tk,i5E w i
out~t,q!wk

in~t,q!d3q

5
i

2p E
2`

`

dvE
2`

`

dv8e2 i (v2v8)t

3E x i
out~v8,q!xk

in~v,q!d3q. ~2.25!

This expression is computed explicitly in terms of Sturmi
eigenvalues and eigenfunctions in Appendix A. There
obtain

Tk,i5
i

A2pv
E

0

`

dvH ]Sn~v;k/v !

]v
Dn~v!@12Tn~v!#

2
]Sn* ~v;k/v !

]v
@Dn~v!2Tn~0!Dn* ~v!#J , ~2.26!

where

Tn~v!52
i

v
1

Dn
2~v!

E
v

`

dv8
rn~v8!2rn* ~v8!

rn
2~v8!

Dn
2~v8!.

~2.27!

Equation~2.26! is the main result of this section. It is eas
to evaluate numerically since it expresses the transition
plitude in terms of Sturiman eigenvalues and eigenfuncti
at realv. These quantities are connected to the more fami
adiabatic eigenvalues and eigenfunctions through Eq.~2.12!.
Using this connection formula it is possible to change va
ables fromv to r in Eq. ~2.26!, provided the adiabatic func
tion is interpreted in the sense articulated by Demkov@24#.

With this change of variables three features emerge. F
Dn

21(v) is found to be proportional to the adiabatic pha
factor exp@2 (i/v)*r(0)

r En(r8)dr8#. Secondly the Sturmian
function is replaced by the adiabatic function. Finally, t
limits of integration arer~0! andr~v!. In general, both limits
are complex, thus the ionization amplitude is then expres
as an integral along some contour in the complexr plane of
an integrand involving the adiabatic functionF(R;q) and
the adiabatic phase factor. This shows that adiabatic fu
tions and eigenvalues are relevant even at high velocity p
vided these quantities are taken at complex values of
coordinater5R, and provided the adiabatic wave function
are expressed in scaled coordinates. In this sense, adia
functions are universally applicable even in the absence
small mass ratio or other such adiabatic parameter. Furt
more, these functions enter into the theory in much the sa
way that they do in the hidden crossing theory, namely, th
values at complexR are used to compute transitions betwe
states.

The electron distributions are given in the Galilean inva
ant form
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d3P

dk3 5uTk, iu2. ~2.28!

Integrating Eq.~2.28! over all impact parameters woul
give the Galilean invariant cross section. Because we
working only at an impact parameter equal to zero, we qu
only the differential probability. The total ionization prob
ability Pion at zero impact parameter is obtained by integr
ing Eq. ~2.28! over all electron momenta. Alternatively, un
tarity gives

Pion512uTn~0!u2. ~2.29!

This equation has been used to check the numerical calc
tions reported in Sec. III.

Amplitudes for V0„q…50

WhenV0(q)50 the Sturmian eigenvalues are

r6~p!52
2

Z
@ ip6exp~ ip !#, ~2.30!

where p5A2v. The electron distributions with molecula
initial conditions are given by

Tk,i
6 5

i

2vpAZ
FF6S Ukv 1

v̂

2U D6F6S Ukv 2
v̂

2U D G ,
~2.31!

where

F6~k!5E
0

`

dp exp~ ikp!expF2
y6~p!

2 G$12T6~p!%

1E
0

`

dp exp~2 ikp!H expF2
y6~p!

2 G
2T6~0!expF2

@y6~p!#*

2 G J , ~2.32!

y6~p!52 i
2

v E0

p p8dp8

r6~p8!
, ~2.33!

T6~x!52
i

v
exp@y6~x!#E

x

`

dpp
r6~p!2@r6~p!#*

@r6~p!#2

3exp@2y6~p!#. ~2.34!

The subscripti is redundant since the molecular symmetry
denoted by the6 superscript, but because linear combin
tions of the6 amplitudes are used to obtain atomic initi
conditions, it is useful to retain the redundant subscripti .

For the two one-dimensional~1D! ZRP model the same
formulas ~2.31!–~2.34! apply except that@r6(p)#2 in the
denominator of Eq.~2.34! is replaced by2ur6(p)u2, and the
normalization factor in Eq.~2.31! is (i /2)AZ/2p. In both
cases the lower limitr~0! is real but not zero, whiler~`! is
infinite and complex. Thus a contour of integration in t
complexR plane, discussed in the preceding section, st
out on the real axis but must go into the complex plane
re
te

-

la-

-

ts
o

reach the upper limit. Note that for theg state, the contour
starts at negative values ofr, which naturally cannot be iden
tified with physical values ofR.

III. ELECTRON DISTRIBUTIONS

A. Distribution for high velocity

The electron distributions corresponding tog andu states
at a relatively high velocity ofv510 are shown in Figs. 1~a!
and 1~b!. In both cases there are two peaks, one centere
the target and one at the projectile. The two peaks are w
separated from an oval-shaped ridge.

FIG. 1. Electron distributionsv3 d3P/dk3 vs k/v for v
510 a.u. Distributions corresponding to~a! ‘‘gerade’’ and~b! ‘‘un-
gerade’’ symmetry and~c! the distribution corresponding to a
electron initially on the projectile are shown.
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The ridge is seen more clearly in Fig. 1~c! where the
distribution corresponding to ‘‘atomic’’ initial conditions
where the electron is attached to the projectile, is sho
Again, there is a prominent peak centered atk50 corre-
sponding to slow electrons in the target frame, a smaller p
centered atk51 corresponding to slow electrons in the pr
jectile frame, and the binary encounter ridge atuk2vu5v.
These features are similar to those observed in high-en
ion-atom collisions.

Since these features are well understood in terms of h
velocity approximations we anticipate that these features
emerge if the exact formulas of Sec. III are expanded
powers of 1/v and only the lowest nonvanishing terms r
tained. The details of this calculation are given in Appen
B, where we obtain for the functionF6(k) the result

F6~k!'
2Z1

v
z6

Z1 /v1 ik
6

2Z1
2

v2 H 22~k11!@ Im x6~0!22#

@~Z1 /v !21~k11!2#1/2

2
22~k21!@ Im x6~0!12#

@~Z1 /v !21~k21!2#1/2 J , ~3.1!

wherex6(0) andz6 are constants. Their numerical valu
are x1(0)521.132 i0.13, z150.651 i0.38, x2(0)5
2 i0.76, z251.562 i0.52, andb51.

The functionF6(k8) peaks atk850 andk851. Recalling
that the transition amplitudeTk

6 with molecular initial con-
ditions corresponds to a superposition of two terms, one w
k85uk2v/2u and one withk85uk1v/2u, we see that the
peaks withk85uk6 v̂/2u50 correspond to electrons loca
ized near the target and projectile, respectively. Simila
the peak inF6(k8) with k851 accounts for the oval-shape
ridge in Figs. 1~a! and 1~b!.

Linear superpositions of theg and u molecular ampli-
tudes form amplitudes corresponding to electrons on the
getT or projectileP. Because the third term inF6 becomes
independent of theg and u symmetry whenk851, the
atomic transition amplitudes show a ridge centered at
velocity of P or T but not both. This ridge is readily recog
nized as the binary encounter ridge familiar from the the
of high-velocity collisions.

Alternatively, the coefficient of the first term on the rig
hand side of Eq.~3.1! depends explicitly upon the molecula
symmetry. Both peaks corresponding tok85uk2v/2u/v and
k85uk1v/2u/v therefore appear in Fig. 1~c!, although with
unequal magnitudes. The peak neark5v corresponds to di-
rect ionization of the projectile electron while the peak ne
k50 corresponds to continuum electron capture. Both pe
have exactly the shape predicted by Garraboti and B
rachina@25# for electron transfer to continuum states of ne
tral projectiles, namely,

s}
1

Z1
21uk2vu2

. ~3.2!

From this analysis one sees that the ZRP model has a
the qualitative features of ion-atom and atom–negative-
collisions in the high-velocity region. Furthermore, just o
Sturmian function and eigenvaluer~v! gives the exact elec
tron distribution. This holds despite the fact that the St
mian eigenfunction is just the ground state adiabatic eig
n.
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function taken atR5r(v). This example shows that if the
adiabatic functions are interpreted as Sturmian function
appropriate values ofR, which may be complex, they do
describe high-velocity collisions.

B. Distributions for low velocity

The exact electron distributions corresponding tog andu
states at low velocityv'1 are shown in Figs. 2~a! and 2~b!.
For g states, there is just one peak centered atk5v/2 and a
small ridge atk'7 a.u. In comparison with the high-velocit
distributions one notes that the binary encounter peak c

FIG. 2. Electron distributionsv3 d3P/dk3 vs k/v for v
50.1 a.u. Distributions corresponding to~a! ‘‘gerade’’ and~b! ‘‘un-
gerade’’ symmetry and~c! the distribution corresponding to a
electron initially in the projectile are shown. Out of phase oscil
tions correspond to Fermi acceleration.
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pletely disappears and the separateT andP peaks merge into
one peak centered between the target and projectile. The
ation is similar for the ungerade state where now there
node at the midpoint owing to symmetry requirements.
this case there is also no binary encounter peak, and
separate target and projectile peaks have merged into a
with a node exactly midway between target and project
There is also no small ridge at high electron momentum

Figure 2~c! shows the distribution with atomic initial con
ditions. This distribution exhibits the peak at the center
mass velocity seen in Fig. 1~a!, but also shows a series o
interference features. Because theg and u distributions are
smooth, it is apparent that the oscillations in the atomic r
resentation are due to interference between theg andu am-
plitudes. Furthermore, the oscillations in the forward a
backward directions are out of phase since the peaks a
(2n21/2)v in the forward direction and at (2n11/2)v in
the backward direction. Such peaks are attributed classic
to Fermi acceleration where the electron bounces back
forth between the target and the projectile, picking up t
units of velocity with each collision@18#.

To describe theg andu distributions the integrals in Eq
~2.32! may be evaluated in the stationary phase approxi
tion appropriate in the limit asv˜0. For this purpose we
introduce a new functionpn(k) reciprocal to kn(p)
5p/rn(p). If Im pn(k),Repn(k), then the integrals in Eq
~2.26! have stationary phase pointsp5pn(k) and we obtain

uTk,i u2'
1

v Udpn~k!

dk
cn

2~pn~k!,k̂!UexpF2
2

v
Im E

0

k

pn~k8!dk8G ,
~3.3!

wherei 5n andcn(p,k̂) is defined by

Sn~p2/2;q!˜cn~p,q̂!
exp~ ipq!

q
as q˜`. ~3.4!

Equation ~3.3! is equivalent to advanced adiabatic a
proximation defined in Ref.@10#. In that fundamental pape
the expression

uTk,i u25
1

v UdRn~E!

dE
Cn

2~E,k̂!UexpF2
2

v
Im E

0

E

R~E8!dE8G
~3.5!

was derived. HereE5k2/2, R(E) is the function reciproca
to E(R), andCn(E,k̂) is an angular part in the asymptot
limit of the electronic adiabatic wave function;

Fn„R~E!;r …˜Cn~E, r̂ !
exp~ ikr !

r
as r˜`. ~3.6!

The equivalence of the Sturmian and advanced adiab
expressions follows fromR(E)5p(k)/k and the identities

cn„p~k!,k̂…5R~E!1/2S dR

p dpD
1/2

Cn~E,k̂!

5S dR

dED 1/2S dp

dkD
21/2

Cn~E,k̂!. ~3.7!
tu-
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Substitution of these expressions in Eq.~3.3! gives the ad-
vanced adiabatic expression of Eq.~3.5!.

The advanced adiabatic approximation derives from
Sturmian theory via the stationary phase approximation,
should be valid when there are points of stationary phas
the domain of integration. Alternatively, there may be
points of stationary phase in the allowed region. In that c
the advanced adiabatic theory does not give the correct
tribution.

For the u symmetry we find that Impn(k),Repn(k) so
that there is a point of stationary phase in the allowed reg
In this case Eq.~3.3! gives the advanced adiabatic result

uTk,i
2 u25

1

pvk

Z1

Ak21Z1
2 U pn~k!

12 ipn~k!
sin2Fpn~k!cosu

2 GU
3expF2

2

v
Im E

0

k

pn~k8!dk8G . ~3.8!

This expression is compared with the exact result at
angle in Fig. 3~a!. The advanced adiabatic theory is indisti
guishable from the exact distribution on this scale. On a fi
scale~not shown! it is seen that the advanced adiabatic e
pression never deviates by more than 6% from the exac
v50.1. Even for a higher velocity ofv51.0, the disagree-
ment is never greater than 25%. We can conclude that
advanced adiabatic approximation gives a reliableab initio
electron distribution at low velocity in this model when th
conditions for its validity are fulfilled.

Integrating over electron rejection angles gives the el
tron energy distribution. While this distribution is not need
for the results reported here, for completeness express
for the energy distribution are given in Appendix C.

Alternatively, for g states we find Impn(k).Repn(k) and
there is no point of stationary phase in the allowed region
this case the advanced adiabatic approximation

uTk,i
2 u25

Z1

pvk

1

Ak21Z1
2 U pn~k!

12 ipn~k!
cos 2Fpn~k!cosu

2 GU
3expF2

2

v
Im E

0

k

pn~k8!dk8G ~3.9!

is expected to fail. The failure is verified in Fig. 3~b! where
Eq. ~3.9! and the exact results atu50 are compared over a
extended energy range. The distributions disagree by or
of magnitude except neark50.

To obtain an expression valid when there is no point
stationary phase we approximate the Sturmian eigenvalu
an expansion around its first, generally complex, zerop0 ;

rn~p!'a~p/p021!. ~3.10!

The functionF(k) is evaluated with this approximation i
Appendix D. One has
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FIG. 3. Comparison of exact, solid curve, and advanced a
batic, dot-dashed, distributionsv3 d3P/dk3 vs k/v for u50°, v
50.1 a.u. in the center of mass frame. The curves forv50.1 a.u.
are indistinguishable on the scale for theu symmetry in~a! whereas
the exact and advanced adiabatic distributions for theg symmetry
in ~b! differ by orders of magnitude except neark50. The approxi-
mate Sturmian theory of Eq.~3.11!, dashed curve, is seen to be
excellent agreement with the exact distribution over an exten
electron momentum range. In~c!, the distribution corresponding to
an electron initially on the projectile is shown. Out of phase os
lations correspond to Fermi acceleration.
F~k!5@ I 1~k!1I 1~2k!#2@ I 1* ~2k!1I 2~k!#T~0!

1 i ~ Im p0 / j !~p0 /p0* !@ ikI 1~2k!11#,

T~0!52 i ~ Im p0 /p0* !e2 j~2 j !22 j 11G~2 j 21,2j !,
~3.11!

I 1~k!5p0~ ikp01 j !2 j 21 exp~ ikp01 j !G~ j 11,ikp01 j !,

I 2~k!5G21~2 j 21,2j !E
0

`

dx~11x/p0! j

3exp~ jx/p02 ikx!G~2 j 21,2j 12 jx/p0!,

whereG(a,x) is the incomplete gamma function@26#, and
j 5 ip0

2a/v.
The approximate Sturmian expression is found to be

good agreement with exact calculations forv50.1, as shown
by the dashed curve in Fig. 3~b!. This emphasizes that th
advanced adiabatic approximation fails forg symmetry ow-
ing to the lack of a stationary phase pointr(v)5R for
physical values ofR.

Electron velocities ofk'v50.1 a.u. correspond to elec
trons with an energy of 273 meV, which are too slow to
analyzed by conventional electron analyzers. For that rea
interest attaches to the relatively fast electrons withEk
'0.5(10v)2'13 eV. In this case the approximate express
evaluated in Appendix E has the form

F~k!5
i8a

p0v
k24, k@1. ~3.12!

It is important to note that the electron distribution falls o
as a power of electron energyEk , in this case asEk

24 , rather
than with the exponential decrease that obtains in the stat
ary phase approximation.

IV. DISCUSSION

Electron distributions for an exactly solvable model
atom–negative-ion collisions have been computed for b
high and low ion velocities. The exactly solvable model us
zero-range potentials. Such potentials are commonly use
model negative-ion interactions in collisions, although lo
energy is usually emphasized. In this paper, the exact s
tions have been expressed in terms ofg and u Sturmian
functions. Direct ionization cusps, continuum capture cus
and the binary encounter ridge are identified at high veloc
These features are accurately modeled by expanding the
act transition amplitude in inverse powers ofv, as is implicit
in Born-type approximations for real collisions.

Distributions at low velocity exhibit Fermi acceleratio
peaks due to interference betweeng andu amplitudes. Theu
amplitudes are accurately calculated in the advanced a
batic approximation, but theg amplitudes are not. An alter
native approximateg amplitude was derived and found t
agree well with the exact amplitude. The failure of the a
vanced adiabatic approximation forg symmetry was traced
to a lack of a stationary phase point at physical values ofR.
Conversely, the success of this approximation foru symme-
try was traced to the existence of a stationary phase p
r2(v)5R at positive values ofR.
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The general Eq.~2.26! has also been interpreted in th
hidden crossing sense. The exact expressionat all velocities
is given by an integral along some path in the complexR
plane of an integrand involving only Demkov’s general ad
batic functionF(R;q), and eigenvalueE(R). In this sense
one sees that adiabatic functions can be used at all veloc
but they must be taken at complexR. The Sturmian theory
provides a practical means to find the required complex
ues ofR, namely, they are just the values ofr~v! for realv.

The calculations presented here are based upon a s
Sturmian function which is closely related to the comple
set of adiabatic functions through Eq.~3.7!. For real poten-
tials there is a complete, and therefore infinite, set of S
mian functions. Exact calculations employ a sufficient nu
ber of terms for the Sturmian expansion ofx~v,q! to
converge. For the ZRP model presented here as well as
Demkov-Osherov@13# model, one Sturmian function@22#,
gives the exact solution. In the more general case, the
Sturmian wave function is approximate, but the results p
sented here suggest that many qualitative features of the
tached electron distributions emerge in the one-Sturm
approximation. In any event, application of the stationa
phase approximation to the one-Sturmian wave funct
gives the advanced adiabatic approximation, which has b
shown here to be quite reliable at low velocities provided
stationary phase conditions are met.

In summary, high- and low-velocity regions are connec
through a single Sturmian function. Evaluating the amp
tudes by expanding in inverse powers ofv gives the high-
velocity distribution, while evaluating them at low velocit
in the stationary phase approximation gives the advan
adiabatic theory. When there is a point of stationary pha
the low-velocity distribution is quite reliable. This simp
connection between high- and low-velocity regimes is
main contribution of the present manuscript.
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APPENDIX A: TRANSITION AMPLITUDES FOR ZRPs
IN THE STURMIAN REPRESENTATION

1. Transition amplitudes

Transition amplitudes to the continuum are given by@20#

Tk,i5E w i
out~t,q!wk

in~t,q!d3q

5
i

2p E
2`

`

dvE
2`

`

dv8e2 i (v2v8)t

3E x i
out~v8,q!xk

in~v,q!d3q. ~A1!
-

es,

l-

gle

r-
-

he

e-
-
e-
n
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d
-

d
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e
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.
t

n

Substituting Eqs.~2.19! and ~2.18! into Eq. ~A1! gives the
following expression for the transition amplitude:

Tk,i5
i

2p E
2`

`

dv Bn
i ~v!E

2`

`

dv8 e2 i (v2v8)t

3F 1

A2pv3/2E Gn
in~v8;k/v,q!Sn

out~v;q!d3q

1Bn
k~v8!E Sn

in~v8;q!Sn
out~v;q!d3qG , ~A2!

where we have usedSin5(Sout)* andGin5(Gout)* . Taking
into account that the matrix elements

E Sn* ~v8;q!Sn~v;q!d3q52
rn* ~v8!2rn~v!

v82v
5

Rnn~v!

v82v
,

~A3!

E Gn* ~v8;q,q8!Sn~v;q!d3q5
Sn* ~v8;q8!2Sn~v;q8!

v82v

5
Rn

(G)~v;q!

v82v

have first order poles atv5v8 with residuesRnn(v) and
Rn

(G)(v,q) gives

Tk,i5E
0

`

dv Bn
i ~v!F 1

A2pv3/2
Rn

(G)~v;k/v !

1Bn
k~v!Rnn~v!G . ~A4!

Substituting Eqs.~2.22!, ~2.23!, and ~A3! into Eq. ~A4! we
find

Tk,i52
1

A2pv3/2E0

`

dvH Sn~v;k/v !Bn
i ~v!Frn* ~v!

rn~v!

1Tn~v!G2Sn* ~v;k/v !@Bn
i ~v!1Tn~0!Bn

i* ~v!#J ,

~A5!

where

Tn~v!52
i

v
1

Dn
2~v!

E
v

` rn~v8!2rn* ~v8!

rn
2~v8!

Dn
2~v8!dv8.

~A6!

Integrating by parts in Eq.~A5! gives Eq.~2.27! of Sec. II,
namely,

Tk,i5
i

A2pv
E

0

`

dvH ]Sn~v;k/v !

]v
Dn~v!@12Tn~v!#

2
]Sn* ~v;k/v !

]v
@Dn~v!2Tn~0!Dn* ~v!#J . ~A7!
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It is convenient to introduce a new variablep5A2v and
rewrite Eq.~A7! in the form

Tk,i5
i

A2pv
E

0

`

dp
]Sn~p2/2;k/v !

]p

3expF2
yn~p!

v G$12Tn~p!%1E
0

`

dp
]Sn* ~p2/2;k/v !

]p

3H expF2
yn~p!

v G2Tn~0!expF2
yn* ~p!

v G J , ~A8!

where

yn~p!52 i E
0

p p8dp8

rn~p8!
, ~A9!

Tn~p!52
i

v
expF2yn~p!

v G E
p

`

dp8p8
rn~p8!2rn* ~p8!

rn
2~p8!

3expF2
2yn~p8!

v G . ~A10!

2. Total ionization probability

The probability of recapture from the continuum is

Prec5uTn~0!u2, ~A11!

and is computed using

Ti ,i5E w i
out~t,q!w i

in~t,q!d3q

52
i

v E0

`

dv
rn~v!2rn* ~v!

rn
2~v!

1

Dn
2~v!

5Tn~0!.

~A12!

The total ionization probability is

Pion512uTn~0!u252 ReQn~0!2@ Im Qn~0!#2,
~A13!

where

Qn~p!512Tn~p!52 i
2

v
expF2yn~p!

v G E
p

`

dp8p8
Rern~p8!

rn
2~p8!

3expF2
2yn~p8!

v G . ~A14!

APPENDIX B: TRANSITION AMPLITUDES
AT HIGH ENERGY

The spectrum of electrons for fast collisions contains t
main features: cusps and binary encounter peaks. These
tures are determined by the behavior of Sturmian eigen
uesrn(p) at largep@1.

Sturmian eigenvalues in the limitp˜` are given by

rn~p!;2
n

Z1
@ ip1bn~ ip !s exp~ ip !#, ~B1!
o
ea-
l-

whereZ1 , n, andb are some constants. The correspond
potential energy curves in the limitR˜` are @27#

En~R!;2
Z1

2

2n2 F112bS Z1R

n D s21

expS 2
Z1R

n D G .
~B2!

Equation~B1! is used in Eq.~2.32! written in the form

Fn~k!5E
0

`

exp~ ikp!expF2
yn~p!

v GQn~p!dp

1E
0

`

exp~2 ikp!H expF2
yn~p!

v G
2expF2

yn* ~p!

v G J dp

1Qn~0!E
0

`

exp~2 ikp!expF2
yn* ~p!

v Gdp.

~B3!

Introducing the scaled velocityv̄5vn/Z1 , a new function

xn~p!52 lim
e˜0

E
p

`S v
v̄

ip8

rn~p8!
11Dexp~2ep8!dp8,

~B4!

for which

yn~p!5~v/ v̄ !@p2xn~p!1xn~0!#, ~B5!

and using asymptotic expressions forxn(p) and Qn(p) as
p˜`,

xn~p!;2bps21i s exp~ ip !,
~B6!

Qn~p!;2 i
2b

v̄
ps21 ReF i s exp~ ip !

2/v̄2 i G ,
gives, fors.0, the result

Fn~k!'
Qn~0!exp@2xn* ~0!/ v̄#12i Im$exp@2xn~0!/ v̄#%

1/v̄1 ik

1
2b

v̄
ds21

dks21 H Re$exp@2xn~0!/ v̄#%

1/v̄1 i ~k11!

1
Re$exp@2xn~0!/ v̄#%

1/v̄1 i ~k21!

1
exp@2xn~0!/ v̄#

~11 i2/v̄ !@1/v̄2 i ~k11!#

1
exp@2xn~0!/ v̄#

~12 i2/v̄ !@1/v̄2 i ~k21!#J . ~B7!

For s50, which corresponds to two 3D ZRPs, we find
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Fn~k!'
Qn~0!exp@2xn* ~0!/ v̄#12i Im$exp@2xn~0!/ v̄#%

1/v̄1 ik

2 i
2b

v̄ H exp@2xn~0!/ v̄#

11 i2/v̄ F1/v̄1 i ~k* 11!

1/v̄2 i ~k11! G1/2

2
exp@2xn~0!/ v̄#

12 i2/v̄ F1/v̄1 i ~k* 21!

1/v̄2 i ~k21! G1/2

1Re$exp@2xn~0!/ v̄#%F1/v̄2 i ~k* 11!

1/v̄1 i ~k11! G1/2

2Re$exp@2xn~0!/ v̄#%F1/v̄2 i ~k* 21!

1/v̄1 i ~k21! G1/2J . ~B8!

Equation~B8! shows thatFn(k) has singularities at five
points, namely,k52 i / v̄ and k5616 i / v̄ for any v̄. For
fast collisionsv̄@1 we find

Fn~k!'
2

v̄
zn

1/v̄1 ik
1

2bn

v̄2 H 22~k11!@ Im xn~0!22#

@~1/v̄ !21~k11!2#1/2

2
22~k21!@ Im xn~0!12#

@~1/v̄ !21~k21!2#1/2 J , ~B9!

where

zn5
Q~0!v

2
2 i Im xn~0!

52
2v
v̄

lim
e˜0

E
0

`

dp p
Rern~p!Im rn~p!

rn~p!urn
2~p!u

exp~2ep!.

~B10!

For two 3D ZRPs bn561, x1(0)521.132 i0.13, z1

50.651 i0.38, and x2(0)52 i0.76, z251.562 i0.52. In
the case of two 1D ZRPs we havezn50, since xn(0)
5 iQn(0)v̄/2, and there are no cusp electrons.

APPENDIX C: ENERGY DISTRIBUTIONS

The energy distribution is

P~E!5kE uTk,i u2 dk̂

5
k

v Udpn~k!

dk
cn

2
„pn~k!…U

3expF2
2

v
Im E

0

k

pn~k8!dk8G
5

k

v UdRn~E!

dE
Cn

2~E!U
3expF2

2

v
Im E

0

E

R~E8!dE8G , ~C1!

where

uCn
2~E!u5E uCn~E,k̂!u2 dk̂,
ucn
2
„pn~k!…u5E ucn

2
„pn~k!,k̂…u2 dk̂. ~C2!

This result differs from Ref.@10# by the definition of
C(E). There C(E) was incorrectly defined asCn(E)
5*Cn(E,k̂)dk̂. UsuallyC(E) is not known, and an approxi
mation based upon the Demkov-Osherov model is used
that model @13,12# S(E;r )5AdR(E)/dEFn„R(E);r … is a
Sturmian function andRn(E) is a Sturmian eigenvalue, the
uCn

2(E)u is found by comparing

E Sn* ~E8;q!Sn~E;q!d3q52
rn* ~E8!2rn~E!

E82E
~C3!

and

E Sn* ~E8;r !Sn~E;r !d3r˜FdRn~E!

dE G * uCn~E, r̂ !u2 dr̂

A2E82A2E

as E8˜E. ~C4!

One finds

uCn
2~E!u5FdRn~E!

dE G21 2 ImRn~E!

A2E
. ~C5!

In our theory,S(E;r ) is not a Sturmian function, rathe
S(p,q) is, therefore, using the same arguments, we find

ucn
2
„pn~k!…u'

Im rn„p~k!…

p~k!
5

2 Im p~k!

kp~k!
,

if Im p~k!!Rep~k!. ~C6!

With this expression, we obtain

P~E!'
2 Im pn~k!

v Udpn~k!

dk

1

pn~k!
U

3expF2
2

v
Im E

0

k

pn~k8!dk8G
'

2 ImRn~E!

v U11
2E

Rn~E!

dRn~E!

dE U
3expF2

2

v
Im E

0

E

R~E8!dE8G . ~C7!

Our result Eq.~C7! for P(E) differs from Eq.~C5! by the
second term inside the absolute value sign. In some reg
of the spectrum the second term is significant and should
retained.

For the u state of two 3D ZRPs we find that Repn(k)
.uIm pn(k)u.0 for all k.0. Then the adiabatic expression

uTk,i u25
1

pvk

Z1

Ak21Z1
2 U pn~k!

12 ipn~k!
sin2Fpn~k!cosu

2 GU
3expF2

2

v
Im E

0

k

pn~k8!dk8G ~C8!
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accurately describes the spectrum fork.v andv,1.
The energy distribution, obtained by integrating ov

angles, is

P~E!5
2

v
Z1

Ak21Z1
2 U pn~k!

12 ipn~k! Fsinh~ Im pn!

Im pn

2
sin~Repn!

Repn
GUexpF2

2

v
Im E

0

k

pn~k8!dk8G
'

2

v
Z1

Ak21Z1
2 U pn

3~k!

12 ipn~k! S 12
sinpn

pn
DU

3expF2
2

v
Im E

0

k

pn~k8!dk8G . ~C9!

For slow electronsk!1 we can use the approximatio
pn(k)'k/Z1 , then

P~E!'
k3

3vZ1
2 . ~C10!

For fast electronsk@1, the alternative approximation,

pn~k!'
k

Z11k/k0
2 , ~C11!

where k0
2'1.3371 i0.318 is determined from the equatio

ik0
25exp(ik0

2), gives

E
0

k

pn~k8!dk85k0k2k0
2Z1 ln@11k/~k0

2Z1!# ~C12!

and

P~E!'
2Z1

vk
U k0

12 ik0
S 12

sink0

k0
D S k0Z1

k D i2k0
2Z1 /vU

3expS 2
2

v
Im k0kD . ~C13!

APPENDIX D: TRANSITION AMPLITUDES
AT LOW ENERGY

For g states we approximate the Sturmian eigenval
rn(p) by an expansion around their first zero,

rn~p!'a~p/p021!, ~D1!

and obtain

Tk,i
6 5

1

2vpAZ
FF6S Ukv 1

v̂

2U D6F6S Ukv 2
v̂

2U D G , ~D2!

where
r

s

F~k!5@ I 1~k!1I 1~2k!#2@ I 1* ~2k!1I 2~k!#T~0!

1 i ~ Im p0 / j !~p0 /p0* !@ ik I 1~2k!11#,

T~0!52 i ~ Im p0 /p0* !e2 j~2 j !22 j 11G~2 j 21,2j !,
~D3!

I 1~k!5p0~ ikp01 j !2 j 21 exp~ ikp01 j !G~ j 11,ikp01 j !,

I 2~k!5G21~2 j 21,2j !E
0

`

dx~11x/p0!2 j

3exp~ jx/p01 ikx!G~2 j 21,2j 12 jx/p0!,

with j 5 ip0
2a/v. For fast electronsk@1 at all velocities we

find

F~k!5
i8a

p0v
k24. ~D4!

For slow collisionsv!1 we also have

T~0!52 i
Im p0

2 jp0*
SAip

v
p02

4

3D . ~D5!

APPENDIX E: FAST ELECTRONS

This part of the electron spectrum is determined by
behavior of Sturmian eigenvaluern(p) at small p!1. We
will consider two cases, namely,rn(p)˜RcÞ0 as p˜0,
associated with ionization via promotion to the continuu
and rn(p)˜0 as p˜0, associated with ionization via de
coupling. In the case of promotion to the continuum we wr
Sturmian eigenvalues in the limitp˜0 as

rn~p!5RcF11 (
s51

k11

asp
2s1 ibp2k11G1O~p2k13!,

~E1!

whereRc , as , andb are some constants. The correspond
potential energy curves have the form

En~R!52
1

2Rc
3a1

F ~Rc2R!1 ibRcS Rc2R

a1Rc
D G

1O~Rc2R!k11 ~E2!

for kÞ0 and

En~R!52
~Rc2R!2

2Rc
3b2 1O~Rc2R!3 ~E3!

for k50. We obtain

Fn~k!' i
8b~s11!~2s11!!

Rcvk2s14 . ~E4!

For theg state of two 3D ZRPs we haves50, Rc52Z/2,
andb52 so that

Tk,i'
32

pZ3/2v2k4 . ~E5!
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For theu state of two 3D ZRPs we haves51, Rc5Z/2, and
b51/6, thus Eq.~E4! gives

Tk,i' i
~2s14!Fn~k!

2vpAZk
cosq5

96

pZ3/2v2k7 cosq. ~E6!

For decoupling we write Sturmian eigenvalues in the lim
p˜0 as

rn~p!52
inp

Z F11 (
s51

k11

as~np!2s1 ib~np!2k11G
1O~p2k13!, ~E7!

whereZ, n, as , andb are some constants. The correspon
ing potential energy curves in the limitR˜0 have the form
s

t

-

En~R!52
Z2

2n2 F11 (
s51

k11

as8~ZR!2s1~21!k2b~ZR!2k11G
1O~R2k13!. ~E8!

We find

Fn~k!' i
8b~s11!~2s11!!

v2k2s14 ~E9!

for s.0 and

Fn~k!' i
8b

v2k4 1
8b2

vk4 ~E10!

for s50.
v,

h
nd
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