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Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions
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Electron energy and angular distributions are computed for a model of atom—negative-ion collisions. In this
model, electron-atom interactions are represented by zero-range potentials in an approximation where two
identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for
the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high veloc-
ity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary
encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway
between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single
broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into
two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the
ungerade distribution at low and intermediate velociti&4.050-2947®9)05408-9

PACS numbes): 34.80.Dp, 34.20.Mq, 34.16x, 34.50.Fa

[. INTRODUCTION decoupling electron distribution. Models of ionization at low
energies when an adiabatic level is promoted through a series
Electron energy and angular distributions have long bee®f avoided crossings have been soly&8,13. These models

energy, where Born-type approximations are applicablel© guide later developments. . L
gy ype app bp Because of the lack of a generally valid theory, it is not

fairly complete theories of single-electron ionization have ; : 2 o
emerged[1]. Three features dominate the spectrum in thispos_smle_to associate a speC|f_|c feature of the electron distri-
' ution with a specific mechanism. Although there have been

o, Tl e i Sncoutr P, 10 SOy st o co s for e opof barer mechana
' ’ "o real consensus has emerged. Finally, none of these theo-
coun@er_ peak occurs for aI_I systems and_ the cusps are Che}riés are able to connect with high-velocity distributions.
acteristic of the Coulomb interaction which produces la 1/ pather, the advanced adiabatic theory employs approximate
singularity in the Galilean invariant cross sectiftl. Al so|ytions in the limitv—0 while the high-velocity theories
three features are described quantitatively by the continuurgmpjoy approximate solutions in the opposite limiv-440,
distorted-wave—eikonal initial state theory, for examplepyt no universal expression holds at all velocities. There
[3,4]. This and related theories associate a specific mechgrave also been attempts at exabtinitio simulations of the
nism with a specific physical feature. The binary encounteglectron distributions, but these are still in the development
ridge is associated with quasifree scattering of projectilestage[14].
with target atoms and the continuum capture cusp with a In order to make progress in this area, we consider a
transfer of electrons from the target to unbound states of thaontrivial model of ion-atom collisions, namely, the two
projectile. zero-range potentidZRP) model at zero impact parameter
Alternatively, the situation is much less clear at low ve-where the atomic species move along classical trajectories
locity. Four mechanisms for ionization have been identifiedR(t). This model has been solved exactly in both one and
namely, the top-of-barrier mechanisif—7], the superpro- three dimension§15—-18 hence it gives a universal ampli-
motion mechanisni8], a “radial decoupling” mechanism tude valid for allv. The corresponding electron distributions
analogous to the well-known “rotational coupling” mecha- for low impact velocities have been given in the literature,
nism [9], and real promotion to the continuufd0]. The  however, the distributions at high velocities have not. The
latter process occurs only for multielectron systems such asurpose of this manuscript is to study the high-velocity dis-
negative-ion collisions with neutral atoms. A completetributions for this model and to examine their connection
theory of the top-of-barrier distribution has been developedvith the low-energy features. While it is highly simplified
[11], the advanced adiabatic theory has given expressions feind lacks both super-promotion and top-of-barrier mecha-
the fast electron portion of the superpromotion and real pronisms, the model does predict ionization at low energy. As
motion distributiong 10], and there is no theory of the radial we will show, it exhibits the three high-energy features
known from ion-atom collisions. It also exhibits features at
low energy that will be discussed in terms of the advanced
*Permanent address: loffe Physical Technical Institute, St. Petergdiabatic theory. Finally, the steps used to solve the exact
burg, Russia. model closely parallel those used in the Sturmiiaé] and
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advanced adiabatid 0] formulations of ion-atom collisions. initial conditions employ coherent superpositions of the
This theory enables one to see how adiabatic eigenstate&tomic” amplitudes. These superpositions of smooth am-
generally considered appropriate at low relative ion velocity plitudes produce oscillating distributions owing to interfer-
also describe high-velocity features. ence. Thus, at high velocities the distributions are smooth in
Transformation to an accelerated reference frame wherghe atomic representation, but show interference effects in
both the target and projectile are stationary is a first step ithe molecular representation.
formulating a Galilean invariant theory of ion-atom colli-  The sjtuation is exactly reversed at low ion velocities.
sions[20], and is a key step in solving the ZRP mofi&¥].  Here the molecular states gfandu symmetry separate dy-
The ZRP model provides a valuable illustration of this transyamically. In this case the electron distributions are smooth
formation. Most important for the theory of electron distri- ¢r molecular initial conditions but show interference oscil-

butions is the appearance of a factor [expR(t)/2R(t)] lations for atomic initial conditions. We will show that these
that is common to both the general theory of ion-atom colli-interference effects give rise to the classical Fermi accelera-
sions and the exact solution of the ZRP. Conventional aption peakq18]. At intermediate velocities, not reported here,
proaches typically omit such a factor, thus it is useful to\yhere the target and projectile peaks just begin to separate

show an exact solution where it is known to occur. Then, jnitial conditions are preferred and interference effects
transformation to the accelerated frame employs the Scal%pear for all initial conditions.

electron coordinateq=r/R(t) and a ‘“scaled” timedr

—dtR(N2. Thi tation has b tensively di It is not known if these features persist for real ion-atom
N (r_) : IS representation has been extensively CISt isions, however, it would appear that the qualitative fea-
cussed in the literature thus it will be taken as the starti

) . "Jures should be present. Atomic initial conditions certainly
point for the analysis presented here. . T . . .

It is possible to interpret the exact solution of the ZRPI'V€ smooth distributions in the high-velocity CDW-EIS ap-
model in terms of a Sturmian functid@1] of the type used _proxmanon, while molgcular mmal cond_mons should show
in the outgoing wave Sturmian theory of ion-atom Cc)"isionsmterference effects owing to ra}pldly varying phase factors. A
[20]. For general ion-atom collisions an infinite set of Stur-COMPIete theory for low velocities has not yet emerged, al-
mian functions represent an alternative to the more standaffough the interference oscillations have been computed for
Born-Oppenheimer adiabatic basis set. In contrast to thée top-of-barrier electrons. It has been proposed that such
adiabatic set, the Sturmian set naturally incorporates ionizdhterference is the origin of some oscillations observed ex-
tion channel$19]. Indeed, the ZRP model has only one Stur- perimentally. Alternatively, with molecular initial condi-
mian function yet it describes ionization. We show that thetions, interference betweepandu amplitudes is absent.
exact solution can be written in terms of one Sturmian eigen- Expressions for low-velocity electron distributions have
value and the associated Sturmian function. The wave fundseen derived in the advanced adiabatic approximdtl@
tion in the ZRP model therefore has the same form as th&hese analytic expressions are compared with the exact dis-
one-Sturmian approximation for proton—hydrogen-atom col+ributions. At low ion velocities, the approximate expressions
lisions. For this reason the ZRP model provides a useful teseproduce the exact distributions fairly well for all electron
of approximate solutions relevant to ion-atom collisions. Invelocities in the case af initial conditions, but fail for they
this connection it has been noted that another widely usegitial conditions. An alternative approximate distribution is
nontrivial model, the Demkov-Osherdi3] multicrossing  gerived for they case by expanding the Sturmian eigenvalue

model, is also solved in terms of one Sturmian funcfiB?l.  apqyt its first zero. The approximate Sturmiaudistribution
With an exact solution it is possible to study the connec-,

. ) X ) agrees well with the exact distributions in the low-velocity
tion between low- and high-velocity features. We find thatIirnit
the b_mary encounter peak disappears at low velocity while The plan of the manuscript is as follows. The exact solu-
the direct and continuum capture peaks centered at electrqlrg)nS of the ZRP models are reviewed in Sec. Il and the
velocitiesk=v; andk=vp, wherev; andvp are target and . . . -

o o : solutions are interpreted in terms of the Sturmian theory of
projectile velocities, respectively, merge to form one peak

centered midway between target and projectile at low relaion-atom collisions. In Sec. Ill, the exact solutions are used

tive velocity. This is most noticeable for the geradg Gym- tq compute electrori .distributions.at high, low, and interm_e—
metry. For the ungerader) symmetry, there must be a node dllate.elect_ron velocities. '_I'he oscillatory _structurg of the dis-
at the midpoint, thus this distribution shows two peaks welltfiPutions is noted and discussed. Section IV discusses the
separated from each other and not associated with the targ@itributions given by the advanced adiabatic approximation.
and projectile. This approximation is found to be quite accurate for the
An interesting feature emerges when Comparing distribubouﬂdary conditions. Essentia”y, if the adiabatic potential
tions at high and low velocity. One can compute electroncurve enters the continuum at nonzero, positive values, of
distributions for initial conditions corresponding to the elec-the formulas of the advanced adiabatic approximation are
tron localized around the targ@t, or localized around the quite accurate at low velocity. This happens for theym-
projectileP. We call these initial conditions “atomic” initial metry but for theg symmetry, promotion occurs at negative
conditions. Alternatively, one can compute electron distribu-values ofR. In this case, the advanced adiabatic approxima-
tions corresponding to eithey or u symmetries. We call tion fails, but an alternative, closely related, formula works
these initial conditions “molecular” initial conditions. At fairly well. Finally, the distributions at high velocity are
high velocities the “atomic” initial conditions give smooth shown to follow from an expansion of the Sturmian eigen-
distributions showing only target, projectile, and binary en-value about its first zero. Approximate expressions in good
counter peaks. Distributions corresponding to “molecular” agreement with the computed cross sections are obtained.
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Il. REVIEW OF STURMIAN THEORY FOR TWO
ZERO-RANGE POTENTIALS

We consider two identical ZRP<Z(=Z,=2/2) charac-
terized by the binding enerdy= —25/2 of an attached elec-
tron. The ZRPs follow classical straight-line trajectories. Th
Schralinger equation for this system in scaled coordinates i
(17,23

d
[ia—T—Ho(q) e(7,0)=0, 2.1
where
1 2
Ho(a) =~ 5 V4+Vo(q). (2.2
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wherep,(w) is the Sturmian eigenvalue. Notice thaf( w)
multiplies the strengttz, of the potential. Since the eigen-
value is the coefficient of the potential, we follow the stan-
dard usage in the physics literature and refep fbw) as the
Sturmian eigenvalue.

€ There are only two Sturmian functions for two ZRPs. For
Ydentical ZRPs the functions have gerade and ungerade sym-

metry so thatv=*. The Sturmian functions are
a
S:(w;q)=2\/z—Gi(w;q,2/2), (2.9
1

where

1
Gi(w;q,q’)=E[G(w;q,q’)iG(w:q,—q’)]- (2.9

In the scaled space the Galilean invariant solution is relateth these expressionét) is used for the gerade state;) for

to the solution of the time-dependent Sdafirger equation
in the usual space by the transformati¢a3], W (t,r)
=R %2ex{d(ir?2R)(dR/dt)]e(7,q). The function ¢(7,q)
satisfies the following boundary conditions at the ZRPs:

L o(7,q)|qx2/2[]

. ~ZiR(7)e(7,0)|a+2/2]] =0,
q lq=2/2|=0
(2.3
where
~ 1
R(r)=——, —o0o<7=<0. (2.9
VT

the ungerade state, a® w;q,q") is the Green function for
Hy. The corresponding Sturmian eigenvalues are

p+(w)=— i lim | 2J7Z,S+(w;q)—

la—2/2||
(2.10

We normalize the Sturmians according to the usual condition
[21]

dp,(w)

do (2.1)

f S/(@;0)S,(w;q)d%q=—

The Sturmian basis relates closely to the more familiar

The boundary conditions specify the ZRPs, while the ad-adiabatic basis, which obtains whep(w) is replaced by the

ditional potentialVy(q) has been included for generality.

coordinateR and Eq.(2.10 is solved forw(R). Then the

This potential is usually absent for head-on collisions, butdiabatic energy eigenvalués(R) are given by
includes rotational coupling and harmonic oscillator terms at

nonzero impact parametdia3]. Even for head-on collisions
it is instructive to retain theg-dependent potential even

o,(R)
R? -

E.(R)

(2.12

though such a potential has no immediate physical signifi- . _
cance. For future reference it should be noted that planét the physical valueg,(w)=R the Sturmians are equal to
waves in (,t) space are proportional to Feynman’s propagaihe adiabatic eigenfunctions up to an overall normalization

tor in (q,7) space.

constant. In effect, the adiabatic eigenvalues are obtained

Wave functions and ionization amplitudes for the modelfrom the functionw(p) inverse top(w). Because the inverse

with V,(q) =0 have been obtained earligk5,17. Here we

function may have many branches it is possible to have

will interpret these quantities in terms of the Sturmian eigen-many adiabatic eigenvalu&R) for realR. This is why one

values and eigenfunctions of the model.
Sturmian functions are solutions of the equation

[Ho(a@) —@]S,(w;0)=0, (2.5
with outgoing wave boundary conditions

0S,(w;

%—i\/&usv(w;q)—»o asqo» (2.6
and with boundary conditions at the ZRPs
d[S,(w;0)|q*+2/2[] .

3 —Z1p,(0)[S,(w;0)[q=2/2[]

q |[qF2/2|=0
=0, (2.7

Sturmian may suffice to write the exact solution, whereas an
infinite number of adiabatic basis functions are needed for
the same purpose.

When the functionG(w;q,q’) is the free-particle Green
function

1 expiv2w|g-q'|)
la—a’|

G(w;0,9")= : (2.13

21

the Sturmian eigenvalugs. (w) can be written explicitly as

1
p(@)=—7i Vo*expi2w)]. (214

This set of Sturmian functions is used to compute the energy
and angular distributions reported in Sec. IV.
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Since the states of different symmetry do not interact, weThe integration constants have been chosen so that the set
can consider separately the solutions of £j1) with differ- ¢i(7,9), ¢k(7,q) is orthonormal.
ent symmetry. We seek solutions using the Fourier transform The transition amplitudes to the continuum are given by
the standard formula

olrQ)= =~ J dw exp(—iw7) x(@,q), |
i (215) Tk,i:J QD:DUt(Tvq)QDLn(T!q)d3q
where y(w,q) satisfies the equation - dwf do' e i(@—a")7
[Ho(q) —@]x(w,q)=0 (2.16
and boundary conditions at the ZRPs f Mo’ ,q)x(w,q)d%. (2.29
J
—[X(w,q)|qi2/2|]} This expression is computed explicitly in terms of Sturmian
eigenvalues and eigenfunctions in Appendix A. There we
Z, obtain
- xealexz2] =0, (217
lq72/2/=0 . S (w k/v) 1T
The wave functiony;(w,q) that corresponds to the initial ki o D (0)[1=T,(w)]
bound state continuum state is written in the form
, dS (w;klv) .
Xi(,9)=S,(w;q)B () (2.18 T e D@~ T, 0D} ()]}, (2.26
and the wave functiony,(w,q) that corresponds to the final
continuum state in the form where
1 i1 p0')=py (o)
= —=—3;Gu(o; +5,(;q)BY va=———f do’ L D%(w).
X0 = 535G @ikIv,0) + 5, (w1 Q) B (w), (@)==3b%w) /. P2 ()
(2.19 (2.27
whergvz *. o _ Equation(2.26) is the main result of this section. It is easy
Using Egs.(2.17 and(2.7) one easily finds equations for to evaluate numerically since it expresses the transition am-
the coefficient8) (w) and B'ﬁ(w): plitude in terms of Sturiman eigenvalues and eigenfunctions

at realw. These quantities are connected to the more familiar

0 1, _ adiabatic eigenvalues and eigenfunctions through(£42.
I%[B”(w)p”(w)“ VB"(‘U)_O (220 Using this connection formula it is possible to change vari-
ables fromw to p in Eq. (2.26), provided the adiabatic func-
and tion is interpreted in the sense articulated by DemkA.
With this change of variables three features emerge. First,
Cd Ko 1 9S,(wklv) D, *(w) is found to be proportional to the adiabatic phase
o B@p(@)]+ TB (@)= 22 do factor exfj— (ilv)f?oE.(p')dp']. Secondly the Sturmian

(2.21  function is replaced by the adiabatic function. Finally, the
limits of integration arey(0) andp(w). In general, both limits

The solutions of these equations are are complex, thus the ionization amplitude is then expressed
as an integral along some contour in the compietane of
: 1 D,(w) an integrand involving the adiabatic functieh(R;q) and

B (w)=—= Ny (@) — 0, (222 the adiabatic phase factor. This shows that adiabatic func-

tions and eigenvalues are relevant even at high velocity pro-
vided these quantities are taken at complex values of the

and coordinatep=R, and provided the adiabatic wave functions
1 D () (o 9S.(w' kIV) are e_xpressed irj scaled coordinates. In 'ghis sense, adiabatic
BX(w)= —— —— 0 ————"D o), functions are universally applicable even in the absence of a
. V2mv32 pw) )= Jo : small mass ratio or other such adiabatic parameter. Further-

(2.23 more, these functions enter into the theory in much the same
way that they do in the hidden crossing theory, namely, their
where values at compleR are used to compute transitions between
: , states.
D ,(w)=ex ! jw dw, _ (2.24) The electron distributions are given in the Galilean invari-
Viople) ant form




1144 J. H. MACEK, S. YU. OVCHINNIKOV, AND E. A. SOLOV'EV PRA 60

d°p (a) 3dp
aie = Tl (2.28 | v

0.006

Integrating Eq.(2.28 over all impact parameters would
give the Galilean invariant cross section. Because we art
working only at an impact parameter equal to zero, we quote
only the differential probability. The total ionization prob-
ability P,,, at zero impact parameter is obtained by integrat-
ing Eq.(2.28 over all electron momenta. Alternatively, uni-
tarity gives

0.004

0.002

Pion:1_|Tv(O)|2- (2.29 > kJ_/'U

This equation has been used to check the numerical calcule 2
tions reported in Sec. Ill.

Amplitudes for Vy(g)=0
WhenVy(q) =0 the Sturmian eigenvalues are

2
Pt(p)=—z[ipiexp(ip)]. (2.30

where p=2w. The electron distributions with molecular
initial conditions are given by

. +(k\‘/++(k \7)
Szl v 2l TR T2 )
(230
where (c) S
Ff(k):fowdpexp(ikp)ex;{— y;p)}{l—Ti(p)} e
+J’:dpexq—ikp)[ex;{—y_;p)} AN |
—T+(O)exp{——[y_(2p)] H (2.32
) d kJ_/'U
“(py=—_i2 [PP AP
o= oy (239

) B . N, FIG. 1. Electron distributionsv®d®P/dk® vs k/v for v
TH(x)=— '_equi(x)]J' dppp (P)—[p~(p)] =10 a.u. Distributions corresponding @ “gerade” and(b) “un-
\Y X [Pi(p)]z gerade” symmetry andc) the distribution corresponding to an
electron initially on the projectile are shown.

xexg—y=(p)]. (2.39

reach the upper limit. Note that for the state, the contour
starts at negative values pfwhich naturally cannot be iden-
tified with physical values oR.

The subscript is redundant since the molecular symmetry is
denoted by thet superscript, but because linear combina-
tions of the= amplitudes are used to obtain atomic initial
conditions, it is useful to retain the redundant subsdript

For the two one-dimensiondllD) ZRP model the same Ill. ELECTRON DISTRIBUTIONS
formulas (2.31)—(2.34 apply except thafp=(p)]? in the
denominator of Eq(2.34 is replaced by-|p~(p)|?, and the
normalization factor in Eq(2.3)) is (i/2)\Z/27. In both The electron distributions correspondingg@ndu states
cases the lower limip(0) is real but not zero, whilg(«) is  at a relatively high velocity o = 10 are shown in Figs.(&)
infinite and complex. Thus a contour of integration in theand ib). In both cases there are two peaks, one centered at
complexR plane, discussed in the preceding section, startthe target and one at the projectile. The two peaks are well
out on the real axis but must go into the complex plane tcseparated from an oval-shaped ridge.

A. Distribution for high velocity
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The ridge is seen more clearly in Fig(cl where the a 3d3P
(@) : UV ars

0.003

distribution corresponding to “atomic” initial conditions,
where the electron is attached to the projectile, is shown
Again, there is a prominent peak centeredkatO corre-
sponding to slow electrons in the target frame, a smaller peal
centered ak=1 corresponding to slow electrons in the pro-
jectile frame, and the binary encounter ridge|lat-v|=v.
These features are similar to those observed in high-energ
ion-atom collisions.
Since these features are well understood in terms of high

velocity approximations we anticipate that these features will

emerge if the exact formulas of Sec. lll are expanded in ki/v
powers of 1y and only the lowest nonvanishing terms re-

0.002

il
AN
,;i;,'u'l'lll'." \

0.001

‘,llllll..
l......

-1

tained. The details of this calculation are given in Appendix
B, where we obtain for the functioR = (k) the result
9 (b) ¥
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S )2[ ( ; 1/2] , (3.1 155:5.:5§§§ MR
[(Zy/v)+(k=1)] NN
SRR \\\‘\\\\\\\\\\\\\\\\\\\\\\\i\\\\ 0.00005
. . R
wherex*(0) andz* are constants. Their numerical values NN
are x"(0)=-1.13-i0.13, z'=0.65+i0.38, x (0)= -1 \\ )

—i0.76,z"=1.56-10.52, andB=1.

The functionF = (k') peaks ak’ =0 andk’ = 1. Recalling
that the transition amplitud&, with molecular initial con-
ditions corresponds to a superposition of two terms, one with
k'=|k—v/2| and one withk’=|k+V/2|, we see that the
peaks withk’=|k=+¥/2|=0 correspond to electrons local- (c) w3l
ized near the target and projectile, respectively. Similarly, dk
the peak inF~ (k') with k=1 accounts for the oval-shaped
ridge in Figs. 1a) and 1b).

Linear superpositions of thg and u molecular ampli-
tudes form amplitudes corresponding to electrons on the tar
getT or projectileP. Because the third term &= becomes
independent of theg and u symmetry whenk’=1, the
atomic transition amplitudes show a ridge centered at the -0
velocity of P or T but not both. This ridge is readily recog-
nized as the binary encounter ridge familiar from the theory

of high-velocity collisions.
Alternatively, the coefficient of the first term on the right

hand side of Eq(3.1) depends explicitly upon the molecular
E}/Trﬂiﬂ%‘z?m?hpee}ks Correspor_ldlr';gM’0=|kEr://2|/\r: ar.]tc:] FIG. 2. Electron distributionsv?d3P/dk® vs kiv for v
_l v | V, erefore appear in Fig.(d), although wi . =0.1a.u. Distributions corresponding (@ “gerade” and(b) “un-
unequal magnitudes. The peak néarv corresponds to di- gerade” symmetry andc) the distribution corresponding to an
lectron initially in the projectile are shown. Out of phase oscilla-

rect ionization of the projectile electron while the peak nearg
k=0 corresponds to continuum electron capture. Both peakg§ons correspond to Fermi acceleration.

have exactly the shape predicted by Garraboti and Bar-

rachina[ 25] for electron transfer to continuum states of NeU-function taken aR=p(w). This example shows that if the
adiabatic functions are interpreted as Sturmian functions at

tral projectiles, namely,
1 appropriate values oR, which may be complex, they do
(3.20  describe high-velocity collisions.

€ ——
7 Zi+|k—v[?’

0.0015

0.001

0.0005

From this analysis one sees that the ZRP model has all of B. Distributions for low velocity
the qualitative features of ion-atom and atom—negative-ion The exact electron distributions correspondingtandu
collisions in the high-velocity region. Furthermore, just onestates at low velocity~1 are shown in Figs.(2@) and 2b).
Sturmian function and eigenvalygw) gives the exact elec- For g states, there is just one peak centerell-av/2 and a
tron distribution. This holds despite the fact that the Stur-small ridge ak~7 a.u. In comparison with the high-velocity
mian eigenfunction is just the ground state adiabatic eigendistributions one notes that the binary encounter peak com-
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pletely disappears and the separbi@ndP peaks merge into Substitution of these expressions in £g§.3) gives the ad-
one peak centered between the target and projectile. The situanced adiabatic expression of E§.5).
ation is similar for the ungerade state where now there is a The advanced adiabatic approximation derives from the
node at the midpoint owing to symmetry requirements. InSturmian theory via the stationary phase approximation, and
this case there is also no binary encounter peak, and th&hould be valid when there are points of stationary phase in
separate target and projectile peaks have merged into a pettie domain of integration. Alternatively, there may be no
with a node exactly midway between target and projectile points of stationary phase in the allowed region. In that case
There is also no small ridge at high electron momentum. the advanced adiabatic theory does not give the correct dis-
Figure Zc) shows the distribution with atomic initial con- tribution.

ditions. This distribution exhibits the peak at the center of For theu symmetry we find that Imp,(k)<Rep,(k) so
mass velocity seen in Fig.(d), but also shows a series of that there is a point of stationary phase in the allowed region.
interference features. Because thendu distributions are In this case Eq(3.3) gives the advanced adiabatic result
smooth, it is apparent that the oscillations in the atomic rep-
resentation are due to interference betweengtl@adu am-

p,(k)coss ‘

(3.9

2

plitudes. Furthermore, the oscillations in the forward and o 1 Zy P.(K)

. . . |T | = . IS
backward directions are out of phase since the peaks are at ! ki mvk Jk+72|1—ip,(k)
(2n—1/2)v in the forward direction and at (2+1/2)v in !
the backward direction. Such peaks are attributed classically 2 k

X ex —Vlmf p,(k"dk'|.
0

i

to Fermi acceleration where the electron bounces back and
forth between the target and the projectile, picking up two
units of velocity with each collision18].

To describe they andu distributions the integrals in Eq.  Thjs expression is compared with the exact result at one
(2.32 may be evaluated in the stationary phase approximagngie in Fig. 8a). The advanced adiabatic theory is indistin-
tion appropriate in the limit ag—0. For this purpose we gyishable from the exact distribution on this scale. On a finer
introduce a new functionp,(k) reciprocal to k,(p)  scale(not shown it is seen that the advanced adiabatic ex-
=p/p,(p). If Imp,(K)<Rep,(K), then the integrals in EQ. pression never deviates by more than 6% from the exact at
(2.26 have stationary phase poings=p,(k) and we obtain y=0.1. Even for a higher velocity of =1.0, the disagree-

1|dp,(K) 5 v ment is never greater than_25%. Wg can con_cludg _t_hat the
T |2~ = | ———c%(p,(K),K) exr{ - _|mf p, (k" )dk’ advanced adiabatic approximation gives a reliadieinitio
' v| dk v 0 electron distribution at low velocity in this model when the
(3.3  conditions for its validity are fulfilled.
Integrating over electron rejection angles gives the elec-

wherei= v andc,(p,k) is defined by tron energy distribution. While this distribution is not needed
for the results reported here, for completeness expressions
- __expipq) for the energy distribution are given in Appendix C.
S,(p72;9)—=¢,(p,q) T q ®47= (3.4 Alternatively, forg states we find Inp,(k)>Rep,(k) and

there is no point of stationary phase in the allowed region. In
Equation (3.9 is equivalent to advanced adiabatic ap-this case the advanced adiabatic approximation
proximation defined in Ref.10]. In that fundamental paper
the expression

T 2 z, 1 p,(K) Cos{pv(k)cosﬁ ’
1|/dR,(E - 2 E kil " rvk e+ 22| 1—ip(k 2
Tealz=2 TR E) 2 ) ex ——|mf R(E")dE’ vk i +z311 7P (k)
’ \% dE v \% 0 v
(3.5 _2 -
X ex v Im | p,(k')dk (3.9
0
was derived. Her&=k?/2, R(E) is the function reciprocal
to E(R), andC,(E,k) is an angular part in the asymptotic . . . R
limit of the electronic adiabatic wave function: is expected to fail. The failure is verified in Fig(t3 where
Eg. (3.9 and the exact results @=0 are compared over an
n(ikr) extended energy range. The distributions disagree by orders

exp(ik
@V(R(E);r)aCV(E,f)f asr—». (3.6) of magnitude except ned=0.
To obtain an expression valid when there is no point of

The equivalence of the Sturmian and advanced adiabat%taltlonary phase we approximate the Sturmian eigenvalue by

expressions follows fronR(E) = p(k)/k and the identities an expansion around its first, generally complex, zeyp

1/2
c,(p(k),k)= R(E)l’z( %) C,(E,k) p,(P)=~a(p/pp—1). (3.10

_ d_R v % —1/2C (E.R) 3.7) The functionF (k) is evaluated with this approximation in
dE dk v ' Appendix D. One has



PRA 60 ENERGY AND ANGULAR

v’ d*Pidk®

V¢ d°Prdk®

v® d°Prdk®

0 5 10 15 20

FIG. 3. Comparison of exact, solid curve, and advanced ad
batic, dot-dashed, distributions® d®P/dk® vs k/v for #=0°, v
=0.1a.u. in the center of mass frame. The curvesvfer0.1 a.u.
are indistinguishable on the scale for theymmetry in(a) whereas
the exact and advanced adiabatic distributions forghlsymmetry
in (b) differ by orders of magnitude except ndar 0. The approxi-
mate Sturmian theory of E¢3.11), dashed curve, is seen to be in
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FK)=[11(k)+ (=K ]=[17T (=K +15(k)]T(0)
+i(Impo/j)(po/pg)Likl(—k)+1],
T(0)=—i(Impo/pg)e” (2j) 2" (2j-1,2),

. L . U
11(k) = po(ikpo+j) 1"t exp(ikpo+ )L (j+1ikpo+j),
1K) =T 2] ~12) | dx(1+x/po)
0

Xexp(jx/Ipo—ikx)I'(2j —1,2) + 2jx/py),

whereI'(a,x) is the incomplete gamma functid26], and
j=ipaalv.

The approximate Sturmian expression is found to be in
good agreement with exact calculations Yot 0.1, as shown
by the dashed curve in Fig(l3. This emphasizes that the
advanced adiabatic approximation fails fpisymmetry ow-
ing to the lack of a stationary phase poinfw)=R for
physical values oR.

Electron velocities ok~v=0.1a.u. correspond to elec-
trons with an energy of 273 meV, which are too slow to be
analyzed by conventional electron analyzers. For that reason
interest attaches to the relatively fast electrons with
~0.5(10r)?>~13eV. In this case the approximate expression
evaluated in Appendix E has the form

Flo= 2% 4 ks (3.12
T v ' '

It is important to note that the electron distribution falls off
as a power of electron energy,, in this case aE;“, rather
than with the exponential decrease that obtains in the station-
ary phase approximation.

IV. DISCUSSION

Electron distributions for an exactly solvable model of
atom-—negative-ion collisions have been computed for both
high and low ion velocities. The exactly solvable model uses
zero-range potentials. Such potentials are commonly used to
model negative-ion interactions in collisions, although low
energy is usually emphasized. In this paper, the exact solu-
tions have been expressed in termsgofand u Sturmian
functions. Direct ionization cusps, continuum capture cusps,
and the binary encounter ridge are identified at high velocity.
These features are accurately modeled by expanding the ex-
act transition amplitude in inverse powerswgfas is implicit
in Born-type approximations for real collisions.

i Distributions at low velocity exhibit Fermi acceleration
apeaks due to interference betweggandu amplitudes. The
amplitudes are accurately calculated in the advanced adia-
batic approximation, but thg amplitudes are not. An alter-
native approximatey amplitude was derived and found to
agree well with the exact amplitude. The failure of the ad-
vanced adiabatic approximation fgrsymmetry was traced

excellent agreement with the exact distribution over an extended0 @ lack of a stationary phase point at physical valueR.of

electron momentum range. (o), the distribution corresponding to
an electron initially on the projectile is shown. Out of phase oscil
lations correspond to Fermi acceleration.

Conversely, the success of this approximationdf@ymme-
-try was traced to the existence of a stationary phase point
p_(w)=R at positive values oR.
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The general Eq(2.26 has also been interpreted in the Substituting Eqs(2.19 and (2.18 into Eq. (A1) gives the
hidden crossing sense. The exact expresatail velocities  following expression for the transition amplitude:
is given by an integral along some path in the compRex
plane of an integrand involving only Demkov’s general adia- i i ® ' Ci(o—a)r
batic function®(R;q), and eigenvalu&(R). In this sense Tk,izzf do By(w)J’ do'e
one sees that adiabatic functions can be used at all velocities, o o
but they must be taken at compl& The Sturmian theory
provides a practical means to find the required complex val-
ues ofR, namely, they are just the values gfw) for real w.

The calculations presented here are based upon a single
Sturmian function which is closely related to the complete
set of adiabatic functions through E@.7). For real poten-
tials there is a complete, and therefore infinite, set of Stur-
mian functions. Exact calculations employ a sufficient num- where we have usefi"=(S*")* andG"=(G°"*. Taking
ber of terms for the Sturmian expansion @fw,q) to into account that the matrix elements
converge. For the ZRP model presented here as well as the
Demkov-Oshero13] model, one Sturmian functiof22],

1 .
X \/2——\/3,2f GJ(w';k/v,a)S)"(w;0)d%q
a

(A2)

+BE(w’>f SMw';9)S(w;q)d%q

* !
gives the exact solution. In the more general case, the one—f Sj(w’;q)sv(w;q)d3q= — Py (@ ,) po(@) = R”,“(w),
Sturmian wave function is approximate, but the results pre- w o w o
sented here suggest that many qualitative features of the de- (A3)
tached electron distributions emerge in the one-Sturmian o s Si(eh0)-S(w;q")
approximation. In any event, application of the stationary f G (@":0,9")S,(w:q)d q= 0 —w
phase approximation to the one-Sturmian wave function
gives the advanced adiabatic approximation, which has been B R®(w;0q)
shown here to be quite reliable at low velocities provided the T o0 —w

stationary phase conditions are met.
In summary, high- and low-velocity regions are connectechave first order poles ab=w’ with residuesR,,(») and

through a single Sturmian function. Evaluating the ampli-R(®)(,q) gives

tudes by expanding in inverse powerswofgives the high-

velocity distribution, while evaluating them at low velocity

in the stationary phase approximation gives the advanced Tk,i=f do B' () o E,G)(w k/v)

adiabatic theory. When there is a point of stationary phase, \/_

the low-velocity distribution is quite reliable. This simple

connection between high- and low-velocity regimes is the +BYw)R, (o) |.

main contribution of the present manuscript. g "

(A4)
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py(w)
p,(w)

+Ty(w)

—S:(w;k/v)[BL<w>+Tv<0>BL*<w>]],
(A5)

where

APPENDIX A: TRANSITION AMPLITUDES FOR ZRPs
IN THE STURMIAN REPRESENTATION py(w —py(0)
T(0)= D%(w')d
w)=—7 D52 (w) , (o' )do'.

")

1. Transition amplitudes (A6)

Transition amplitudes to the continuum are given[Bg]
Integrating by parts in EqA5) gives Eq.(2.27) of Sec. I,

Thi= f P70 e (r.a)d% namely.

e - I Fd iSwikiv)
o [ do [ dwrertieen =Tz Jo 80| T e D@L Ti(@)]

. IS (w;kIV)
% [ o @xio.ad (A1) - =D (@)~ T, (0D} (@)][. (AD)
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It is convenient to introduce a new varialpe- 2w and
rewrite Eq.(A7) in the form

[ = 39S, (p22:klv
- fd (p )

' :\/ﬂv 0 ap
Y.(P) ©  JSF(p2I2;klv)
Xexp{— v }{1_Tv(p)}+J’0 de

X‘ex;{— yV\(/p)}—T,,(O)exp{— y"\ip)H, (A8)

where

’d 14
yy<p>=—ifopp i (A9)

pu(P)’

2y,(p) J“d (P )—pr(p")
v e T

i
o e o)

r{ 2yv(p’)}
exp — .
Vv

2. Total ionization probability

(A10)

The probability of recapture from the continuum is

Prec= |Tv(0)|21 (A11)
and is computed using
Ti,i:J @?UI(T,Q)<PEH(T-C])d3q
i (= plw)=p)(0) B
) e Zw  biw MY
(A12)
The total ionization probability is
Pion=1—|T,(0)]?=2 ReQ,(0)—[ImQ,(0)]?,
(A13)
where
2 T2y (7, Repup')
Qup)=1-T,p)= Ivexr{ v }fpdpp—pm
exp[— Zy”\(/p )}. (A14)

APPENDIX B: TRANSITION AMPLITUDES
AT HIGH ENERGY
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whereZ;, n, and g are some constants. The corresponding

potential energy curves in the limR—o are[27]

le)Sl p( le”

— exg ——| |
n n

Equation(B1) is used in Eq(2.32 written in the form

Zi

E(R~—5=

o2 1+28

(B2)

Y.(P)
\'

+ f: exq—ikp)(exp{— yv\(l_p)}

Y5 (p)
—exp{——v Hdp

+QV(O)K exq—ikp)exr{ -

Fv(k)=f: exp(ikp)exp[— }Qy(p)dp

Y5 (p)
” }dp.

(B3)

Introducing the scaled velocity=vn/Z;, a new function

X, (p)=—1Iim fm !Lﬂ)exp(— "Ydp’
AP e e ap
(B4)
for which
Y. (P)=(VIV)[p—X,(p)+X,(0)], (BS)

and using asymptotic expressions foj(p) and Q,(p) as
p—o°

X,(p)~—Bp° titexpip),
(B6)

2B isexplip)
Qu(p)~—i <P lRe{W},

gives, fors>0, the result
Q,(0)exy — X3 (0)/V]+2i Im{ex —x,(0)/V]}
1IN +ik

23 d5! (Refexd —x,(0)/V]}
v dkI| T 1NFi(k+1)

Re{exd —x,(0)/v]}
TR

Fuk)~

The spectrum of electrons for fast collisions contains two

main features: cusps and binary encounter peaks. These fea-
tures are determined by the behavior of Sturmian eigenval-

uesp,(p) at largep>1.
Sturmian eigenvalues in the limit—o are given by

pv<p>~—Zil[ipwy(ipfexp(ip)], (B1)

exfg —x,(0)/v]
T AT 2[NS (k)]

exg —x,(0)/v]
TACMIN (kD]

(B7)

For s=0, which corresponds to two 3D ZRPs, we find
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Q,(0)exd] — x5 (0)/V]+2i Im{exi] —x,(0)V]}

Fu(k)~ IN+ik
2B [exd —x,(0)/ V][ 1IN +i(k*+1)]¥2
_'T[ 1tioh | IN=i(k+1)
exfd —x,(0)/V][ 1IN +i(k* —1)]*?
1-i2h IN—i(k—1)
+Reflexd —x,(0)/v]} w v
v IN+i(k+1)
—Relexd —x,(0)/v]} u 1/2] (B8)
v IN+i(k—1)

Equation(B8) shows that~,(k) has singularities at five
points, namelyk=—i/v andk=*1*i/v for anyv. For
fast collisionsv>1 we find

z, 2B, 2—(k+1)[Imx,(0)—2]
Fulk)= 1I\T+|k {[(1/\7)2+(k+1)2]1’2
2—(k—1)[Imx,(0)+2]
- [(1m2+(k_1)2]1/2 } (Bg)
where
=20 mx,(0)
Repy(p |mpy(p)
——| —€p).
T;f PP olpip) P
(B10)

For two 3D ZRPsgB,==*1, x*(0)=—1.13-i0.13, z*
=0.65+i0.38, andx (0)=-—i0.76, z =1.56-i0.52. In
the case of two 1D ZRPs we hawe,=0, since x,(0)
=iQ,(0)v/2, and there are no cusp electrons.

APPENDIX C: ENERGY DISTRIBUTIONS

The energy distribution is

P(E)=kj | Tyi|?dk

v

2 k
X ex ——Imf p,(k")dk’
\ 0

k|dR,(E)
dE

dp”(k) c2(p <k>)‘

\Y

2 E ! !
Xexp{—vlm fo R(E")dE }

C§<E>’
(Cy
where

|C§(E>|=f |C,(E,k)|?dk,
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|5 (pu(K))| = f |C2(p,(K), k)| dk. (C2)

This result differs from Ref[10] by the definition of
C(E). There C(E) was incorrectly defined a<,(E)
=[C,(E,k)dk. UsuallyC(E) is not known, and an approxi-
mation based upon the Demkov-Osherov model is used. In
that model[13,12 S(E;r)=JdR(E)/dE® ,(R(E);r) is a
Sturmian function andR,(E) is a Sturmian eigenvalue, then
|C2(E)| is found by comparing

Py (E")—p,(E)

f S, (ELQ)S,(Eiqdie=-—F—g — (C3

and

a2 42

J2E'—\2E
asE'—-E. (C9
One finds
5 :dRy(E)}lzlmRy(E)
|CL(E)| [ e B (C5)

In our theory,S(E;r) is not a Sturmian function, rather
S(p,q) is, therefore, using the same arguments, we find

Imp,(p(k)) _21Imp(k)
p(k) kp(k) ’

if Im p(k)<Rep(k).

|c2(p,(k))|~

(Co)
With this expression, we obtain

2lmpy<k>‘dpy<k> 1|
dk  p,(k)|

2 k
X ex ——Imf p,(k")dk’
\ 0

_2ImR,(E) 2E dR,(E)|
- R,(E) dE |

2 E ! !
xex;{—vlm fo R(E")dE }

Our result Eq.(C7) for P(E) differs from Eq.(C5) by the
second term inside the absolute value sign. In some regions
of the spectrum the second term is significant and should be
retained.

For theu state of two 3D ZRPs we find that Rgk)
>|Im p,(K)|>0 for all k>0. Then the adiabatic expression

P(E)~

(C7)

T Z; P,(K) Sir? p,(k)cosé
ITeil= ka Jk+Z2|1=ip,(K) 2

(C8)

2 k
X ex ——Imf p,(k")dk’
\ 0
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accurately descripes_ the_ spectrurr_l kor v andv< 1. _ FK)=[11(k)+1.(=kK)]-[1F(—Kk) +1,(k)]T(0)
The energy distribution, obtained by integrating over
angles, is +i(Impo/j)(po/pg)Lik I1(—k)+1],
2 Zl pv(k) Sin[‘“m py) T(O):_i(|mpolpS)EZj(zj)_2j+lF(2j_1,2j),
PEI=S Jar 2| 1=ip,(0| I | (03
i+ zp [ 1=ip, Py 11(K)=Polikpo+ ) I~ explikpo+ )T (j + Likpo+]),
sin(Rep,) 2 k - .
" Rep, ex’{_v'm J Pt } 1) =T (2j-12) [ “ax(1+x7po)

Xexp(jx/pot+ikx)I'(2j —1,2) +2jXx/py),

_sin pv)

(k)

Y \/k2+Z2 —ip,( P,
2 k

X ex ——Imj p,(k")dk’
\ 0

with j=ip3al/v. For fast electron&>1 at all velocities we

(9 find

i8a
F(k)=—k 4. (D4)
For slow electronsk<1 we can use the approximation PoVv

p,(K)~k/Zy, then For slow collisionsv<<1 we also have

P(E)~ L3z (C10 T(0)=—i e \/ 2 (D5)
3vZ;3 ijo Po~3):
For fast electrong>1, the alternative approximation, APPENDIX E: FAST ELECTRONS

This part of the electron spectrum is determined by the
(C11)  behavior of Sturmian eigenvalye,(p) at smallp<1. We
will consider two cases, namely,(p)—R;#0 asp—0,
associated with ionization via promotion to the continuum
wherek, ~1.337+10.318 is determined from the equation gnd p,(p)—0 asp—0, associated with ionization via de-
iko =exp(ky), gives coupling. In the case of promotion to the continuum we write
Sturmian eigenvalues in the limit—0 as

Dy(k)%m,

k
f p,(k)dK =kok—Kk2Z, IN[1+Kk/ (k3 Z;)] (C12) kt1
° PuP)=Re[ 1+ 2, agp™+ipp? |+ 0(p??),
and (ED
L whereR;, ag, andg are some constants. The corresponding
o(E 2Z,| ko sinko)\ [ KoZy | 2ko?1 /v potential energy curves have the form
(B~ 1—ikg Ko k
E(R)= [(R R)+i,8R(RC_R”
2 v - 3 c c\ o p
X exp( - Zim kok) . (c13 2R 1R
+0O(R,—R)k*1 (E2
APPENDIX D: TRANSITION AMPLITUDES for k#0 and
AT LOW ENERGY (R—R)?
For g states we approximate the Sturmian eigenvalues E.(R)=— —2R3B2 +O(R.—R)* (E3)

p.(p) by an expansion around their first zero,
for k=0. We obtain

pu(P)=a(p/po—1), (D1) Bper (2 "
s+ s+
and obtain Fu(k)= R.vk?st4 ' E4D
N N For theg state of two 3D ZRPs we hawe=0, R.= —Z/2,
1 k v k Vv -~
Toi=——=|F*| |-+ 5| |=F*| |=— 5| ||, (D2) andB=2 so that
Yoovmz % v 2
T > E5
where i~ IR (£
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For theu state of two 3D ZRPs we hawe=1, R.=2Z/2, and
B=1/6, thus Eq(E4) gives

- (2s+4)F (k) 5 96 9. (E6)
i~ =009 = ——37,57C0S
2varyZk k!

For decoupling we write Sturmian eigenvalues in the limit

p—0 as

. k+1
n
puD)=— 2| 1+ 3 anp)+iB(np) %
s=1

+0(p**?), (E?)

whereZ, n, a4, andp are some constants. The correspond-
ing potential energy curves in the linlk— 0 have the form
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2 k+1
E(R=—5|1+ 2 HZR)®+(—1)2B(ZR* 1

+O(R%**3), (E8)

We find

8B(s+1)(2s+1)!
F(k)~i V2KETa (E9)
for s>0 and
88 8p?

Fv(k)wl V2k4+ W (ElO)

for s=0.
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