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Roles of phase cancellation removing spuriously quantized states in semiclassical mechanics
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Two types of destructive interference among quantum phases are discussed that play an essential role in
canceling out the unquantized states and thereby leaving only the correct projection of true eigenstates behind.
Without these mechanisms, the Fourier spectra of the autocorrelation function, from which the energy spectra
can be deduced numerically, can suffer from spurious features. We show two such examples: One is a spurious
spectrum that appears in the negative energy domain of the Fourier frequencies for a positive potential. The
other is a family of harmonic and subharmonic frequencies that are born from the ‘‘quantizing orbits,’’ which
are responsible for forming eigenstates like the periodic orbits or those satisfying the Einstein-Brillouin-Keller
condition. The mechanisms for the spurious spectra to appear are analyzed, emphasizing their relationship to
the quality of semiclassical wave functions.@S1050-2947~99!05707-8#

PACS number~s!: 03.65.Sq, 03.65.Ge, 31.15.Gy, 33.20.2t
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I. INTRODUCTION

In the study of energy spectra of a system where quan
nature is fading away~or surviving!, there can exist two
physical situations presupposed; one is a case where
Planck constant is very small compared with the system
tion integrals@1–5#, and the other one is a many partic
system in which random cancellation among quantum pha
exposes only the particle~classical! nature@6#. It is vital to
investigate therefore what the essential factors giving birth
quantum eigenstates in these semiclassical systems are
instance, the spectra of vibrationally excited states of re
tively large molecules in a large amplitude motion@7# are
among the most interesting subjects in this aspect. Semic
sical quantization of bound states has long been studied s
the Bohr-Sommerfeld quantization condition. This conditi
has been rebuilt so as to quantize tori in a canonically inv
ant form. Further, the so-called Maslov index has been ta
into account, and the resultant expression is now known
the Einstein-Brillouin-Keller~EBK! quantization condition
@2,6#. For a case where a classical dynamics has no tor
phase space, namely, the case of a nonintegrable system
periodic orbit theory due to Gutzwiller has been establish
to quantize the density of states@8,9#. Since then, many stud
ies have been made to extract the quantum spectra from
sically chaotic systems@5,8–11#.

The monumental studies mentioned above are all c
cerned with identifying the quantizing orbits~or paths!,
along which constructive interference among quant
phases represented in terms of the action integral can fo
standing wave surviving eternally. We call these relev
trajectories and paths the ‘‘quantizing orbits’’ throughout t
present paper. The explicit forms of the quantization con
tions or the density of states, which have been basically
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rived through the stationary phase argument in application
the Wentzel-Kramers-Brillouin~WKB! theory or the semi-
classical kernel, are represented exclusively in terms of
relevant information about the quantizing orbits only.

Yet, there can exist another general and more straight
ward method to calculate the quantum spectra~eigenvalues!,
that is, the numerical evaluation of the Fourier transform
the autocorrelation function~see@12# for a method to extract
eigenfunctions directly!. In this less analytical approach
many anonymous classical trajectories other than the qu
tizing orbits are also to be included in the semiclassi
evaluation. In comparing this kind of numerical approach
the above analytical theories, a natural question arises a
what is the role of the anonymous nonquantizing orbits in
quantization process. Also, what pathological phenom
can result, if their contributions are not appropriately tak
into account? We would like to address these subjects in
paper. This kind of study seems not as ‘‘useful’’ as tho
giving the quantization conditions in that it is not intended
locate the correct eigenvalues. Nonetheless, the present s
could facilitate understanding of one aspect of quantu
classical correspondence.

The results we are going to present here have been
tained through our study of semiclassical mechanics@13,14#
based on the Maslov-type wave packet@3#. We have estab-
lished a class of semiclassical approximation that has a h
archical structure below or equal to the semiclassical Fe
man kernel@1,2#: A continuous class of semiclassical wav
functions has been constructed, which are represente
terms of different numbers of classical trajectories. Some
them are more accurate but require many classical traje
ries, the semiclassical Feynman kernel being an extreme
ample. The others are less accurate but demand far fe
trajectories. We have shown that the latter type of wa
function must be quite promising in an application to larg
dimensional systems. With the help of these characteris
we have scanned a relationship between quantum and
sical mechanics in an approach that has not been done b
ic
112 ©1999 The American Physical Society
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PRA 60 113ROLES OF PHASE CANCELLATION REMOVING . . .
to our knowledge. In an application to a system which l
beyond the validity of the present semiclassical scheme,
have found spurious spectra; negative energy spectra f
positive potential. In the present paper, we ascribe this pa
logical appearance to the breakdown of the stationary ph
condition in the Fourier time integral of the correlation fun
tion, which in turn originates from the breakdown of rando
phase cancellation among the anonymous nonquantizing
bits. Conversely, with this mechanism of the stationary ph
in time, quantum mechanics removes the unnecessary c
ponents of the spectra.

We show another example of a spurious spectrum
also has to be canceled out in quantum mechanics. Sup
that only one quantizing orbit can dominate an eigenva
which can be generally seen in a one-dimensional system
one then represents approximately a correlation func
only with a single quantizing orbit without other general tr
jectories, many harmonics and subharmonics of this ene
appear in the Fourier spectrum in addition to the true eig
value. This example also directly suggests the role of
structive interference of nonquantizing orbits in removi
the spurious frequencies.

Although these spurious spectra have been found in
plications of our Maslov-type semiclassical theory@13,14#,
we want to stress that the essential role of the destruc
interference is generic. In other words, although the patte
of spurious spectra can depend on the semiclassical me
one uses, the role of anonymous trajectories in cancella
of the unnecessary components is intrinsic. That this is re
the case can be confirmed by a poor application of the se
classical kernel, which can also yield similar spurious sp
tra.

This paper is organized as follows. After briefly review
ing our semiclassical scheme in Sec. II, which is based
the Maslov-type wave packet, we discuss how the nega
~spurious! spectrum arises and a mechanism of how th
spurious components are canceled in Sec. III A. Section I
shows the role of anonymous trajectories that cancel out
harmonics and subharmonics of a true eigenvalue. Sec
IV concludes this paper.

II. MASLOV-TYPE
SEMICLASSICAL WAVE FUNCTIONS

A. General

It is well known that Maslov and Feodoriuk@3# have es-
tablished a systematic theory to generate a class of w
functions in the form of

C~q,t !5F~q,t !expF i

\
SclG , ~2.1!

where Scl denotes the classical action satisfying t
Hamilton-Jacobi equation@15,16#

]Scl

]t
1HS q,

]Scl

]q
,t D50. ~2.2!

The semiclassical equation of motion for the amplitude fu
tion F(q,t) is
s
e
a

o-
se

r-
e
m-

at
se

e,
If
n

gy
n-
-

p-

e
s
od
n

ly
i-
-

n
e
e

B
e

on

ve

-

]F

]t
1n•“F1

1

2
~“•n!F50, ~2.3!

which has neglected (i\/2)¹2F from the full ~rigorous!
equation of motion forF @13,14#. An explicit solution to Eq.
~2.3! can be readily obtained such that

F~qt ,t !5F~q0,0!S ]qt

]q0
D 21/2

5F~q0 ,0!U ]qt

]q0
U21/2

expF2
ipM

2 G , ~2.4!

where the derivative]qt /]q0 is taken under a fixed initia
momentump0 , andM is the Maslov index in this represen
tation that counts the number of zeros of]qt /]q0 up to de-
generacy@2#. The classical action in Eq.~2.1! has naturally
been chosen as theF2-type generating function of Goldstei
@15# ~denoted asS2 hereafter!. In other words, all the classi
cal paths representing Eq.~2.1! share a single action surface
the initial momentum of which isp0 everywhere. This is
why we call this function the action decomposed functi
~ADF!. Having this action function as a phase, the init
form of ADF at t50 is rewritten as

Cp0
~q,t !5F~q,0!expF i

\
p0qG . ~2.5!

An arbitrary wave function can be continuously expand
in terms of the ADF’s~see below!. A wave function which
consists of a single ADF, denoted byC local

p0 (qt ,t), is speci-
fied as single ADF~SADF! throughout this paper. A SADF
is rewritten in a little more global form as

Cp0
~q,t !5E dq0d„q2qt~q0 ,p0!…F~q0 ,t !U ]qt

]q0
U1/2

3expF i

\
S2~qt ,p0 ;t !2

ipM

2 G . ~2.6!

Although the local solutionF(qt ,t) in Eq. ~2.4! diverges at
every caustic point, where the Jacobian determinant]qt /]q0
becomes zero, the global solution Eq.~2.6! does not suffer
from the divergence@13,14,17#.

The time-correlation function represented in a SADF i

C~ t !5^Cp0
~0!uCp0

~ t !&

5E dq0F* ~qt,0!F~q0,0!U ]qt

]q0
U1/2

3expF2
i

\
p0qt1

i

\
S2~qt ,p0 ;t !2

ipM

2 G .
~2.7!

As was stressed in the previous paper@14#, this expression
involves only anN-dimensional integral. This is in marke
contrast to the correlation function represented in terms
the semiclassical Feynman kernel@2,17#, which consists of at
least 2N-fold integrals. Therefore, a SADF is anticipated
provide quantum spectra with far fewer classical trajector
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It has been evidenced through our numerical calculati
that this is really the case@14#. On the other hand, SADF ha
a clear limitation beyond which the theory is not vali
Hence, SADF can be a very powerful tool to calculate sp
tra of a rather large system, if care to its limitation is take

B. Propagation of an arbitrary wave function
in terms of ADF’s

Suppose we have a decomposition for an arbitrary w
function such that

C~q,0!5F~q!G~q!, ~2.8!

under a condition thatG(q) has a momentum representatio

G̃~p!5
1

~2p\!N E G~q!expS 2
i

\
pqDdq. ~2.9!

We assume thatF(q) is a slowly varying function inq space.
The total wave function thus decomposed is rewritten as

C~q,0!5E dp0G̃~p0!F~q!expS i

\
p0qD , ~2.10!

which is regarded as a superposition of many ADF’s of E
~2.5!. The semiclassical time propagation of this wave fun
tion is straightforward such that

C~q,t !5E E dq0dp0d~q2qt!U ]qt

]q0
U1/2

F~q0,0!G̃~p0!

3expS i

\
S2~qt ,p0 ;t !2

ipM

2 D , ~2.11!

whereq05]S2(q,p0 ;t50)/]p0 .

1. The kernel limit

The semiclassical Feynman kernel^quexp@2(i/\)Ht#up0&
5K(q,p0;t) is reproduced by setting

F~q!51 ~constant!;

G~q!5C~q! ~wave function itself! ~2.12!

and hence

G̃~p!5C̃~p! ~momentum representation

of the wave function!. ~2.13!

We then have

C~q,t !5
1

~2p\!N E E dq0dp0d~q2qt!U ]qt

]q0
U21/2

3expS 2
ipM

2 DexpS i

\
S2~qt ,p0 ;t ! D C̃~p0!.

~2.14!

This is nothing but
s

-
.

e

.
-

C~q,t !5E dp0K~q,p0 ;t !C̃~p0! ~2.15!

except for a minor difference in the constant phase fac
@17~c!#.

2. Single ADF (SADF)

A SADF, Eq. ~2.5!, can be readily reproduced with a
almost trivial procedure by setting

F5F~q! and G5expS i

\
p0qD , G̃~p!5d~p2p0!.

~2.16!

The most significant difference between the kernel a
SADF is in the distribution in momentum space, name
Eqs.~2.13! and ~2.16!.

3. A pathological extreme of the SADF

The quality of a SADF depends strongly on the smoo
ness of the initial wave function. Suppose thatF(q) is a
Gaussian function. If the exponent is small enough@and
henceF(q) is smooth enough#, the level of accuracy of such
a SADF is not deteriorated so much. On the other hand
the limit of the large exponent~fixing the magnitude of the
Planck constant!, it gets off the boundary of the semiclassic
validity. To be more precise, let us set

F~q!5d~q2qc!, G~q!5expS i

\
pcqD ,

G̃~p!5d~p2pc!. ~2.17!

We then have

C~q,t !5E dq0dp0d~q2qt!U ]qt

]q0
U1/2

3expS 2
ipM

2 DexpS i

\
S2~qt ,p0 ;t ! D

3d~q02qc!d~p02pc!. ~2.18!

This expression is stimulating to think about a ‘‘classic
limit’’ of a quantum wave function, since a point (qc ,pc) is
specified in phase space in Eq.~2.18!, determining a single
classical trajectory along which the wave function is to
propagated. Thus it just seems to give a classical limit o
wave function. It also seems to have violated the uncerta
principle. However, specification at (qc ,pc) in phase space
is in a keen contradiction with the initial wave function

C~q,0!5F~q!G~q!5d~q2qc!expS i

\
pcqD

5d~q2qc!expS i

\
pcqcD , ~2.19!

in which information aboutpc is already lost to the phas
factor exp@(i/\)pcqc#. Thus the semiclassical limit of Eq
~2.18! is simply wrong. The point is that the Gaussian fun
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tion should not have been brought to thed function with
fixing the magnitude of the Planck constant at a finite val

III. ROLE OF PHASE CANCELLATION

A. Negative energies

1. Negative spectrum for a positive potential

In a previous paper@14#, we have shown that the correla
tion function represented in terms of a SADF can produ
quantum spectra very well with a much smaller number
classical trajectories. However, if a SADF is applied to
system in which quantum~classical! nature is significantly
strong~weak! such as dynamics of electrons, for which t
Planck constant is relatively large, the resultant correlat
function for a positive potential can produce spurious spe
in the negative frequency domain@14#. Let us take an ex-
ample in a very simple system composed of a direct prod
of two independent Morse oscillators

H5S p1
2

2
1D@12exp~2l1q1!#2D

1S p2
2

2
1D@12exp~2l2q2!#2D . ~3.1!

The parameters are set toD550,l150.1, andl250.03. We
here deliberately choose a large Planck constant\51.0,
which brings the system far beyond the semiclassical
main. With an initial wave packet given as a Gaussian,

C0~q1 ,q2!5S 1

p D 1/2

expF2
1

2
~q1

21q2
2!G , ~3.2!

we have obtained a spectrum as shown in Fig. 1. Spur
combination bands arising from a negative energy likeE0

1

2E1
2 are observed, whereEj

i is the j th energy of thei th
oscillator. The negative spectrum occurs only for the sec
oscillator, which is very close to a harmonic oscillator due
the small anharmonicity parameterl250.03. The first oscil-

FIG. 1. Spectrum for a direct product of two anharmonic s
tems with use of the single action decomposed function.\51.0.
Negative energies have arisen in one of the oscillators, for wh
anharmonicity is very weak.
.

e
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ct
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lator, on the other hand, does not give such a negative s
trum because of the higher anharmonicity@14#.

The negative spectra for a positive potential can be s
pressed by lessening the magnitude of the Planck cons
The present situation is simply summarized that this osci
tor system is not in the domain where the present semic
sical approximation is valid enough. Our concern here is
to improve the semiclassical theory for removing the spu
ous spectrum but to analyze how the negative spectrum
appeared in the present context and how quantum mecha
suppresses the unnecessary components leaving only the
rect eigenvalues. Since it is not unusual for negative frequ
cies to arise from a Fourier spectrum of a general tim
reversal quantity, it is not trivial how the correct quantu
correlation function does not generate the negative
quency.

2. A stationary phase condition on the Fourier time integral

Let us consider a Fourier spectrum of a correlation fu
tion

P~E!5E dtC~ t !expS i

\
«t D

5E E dtdqC* ~q,0!C~q,t !expS i

\
«t D

52p\(
i

uci u2d~«2Ei !, ~3.3!

whereci is the coefficient of a true eigenfunction having th
energyEi in a trial function C(q,t). Here in this Fourier
spectrum«/\ serves simply as a frequency covering@2`,`#
and « does not have to be regarded as an energy at
moment.

a. Case of the kernel in the trace formula.Let us begin
with the density of states that has been extensively stud
by Gutzwiller in his periodic orbit theory@8,9#,

Tr d~«2H !5~2p\!21E dtE dqK~q,q;t !expS i

\
«t D

5~2p i\!2N/2E dtE dqU ]q

]p0
U21/2

3expS i

\
S1~q,q;t !2

ipm

2
1

i

\
«t D , ~3.4!

wherem is the Maslov index. We now apply the stationa
phase argument to this Fourier time integral. Sinceq is an
independent variable and therefore independent of time,
also due to the property of the Hamilton principal functio
@15#, we simply have

]

]t
$S1~q,q;t !1«t%52Ecl1«50. ~3.5!

Thus« must be one of the classical energies, which are ne
negative for a positive potential. We would like to emphas
that Eq.~3.5! can be brought about without even the period
orbit condition arising from the trace operation@8,9#, that is,

-

h
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]S1~q,q;t !

]q
5p~ t !2p~0!50. ~3.6!

Incidentally, the condition of«5Ecl is also essential to
construct a quantization condition like the EBK conditio
@1–5#, in which only Hamilton’s characteristic function@15#

( R pidqi ~3.7!

remains out of the Hamilton principal function

( R pidqi2Eclt. ~3.8!

To obtain the quantization condition, elaborated manipu
tions including the summation over the infinite cycles alo
the periodic orbits are necessary@8,9,11#. However, in our
context, the condition«5Ecl suffices to see that the correla
tion function can have values only in the positive ener
domain of«.

b. Case of the general ADF.We next proceed to the
case of ADF, which is less trivial than the above kernel ca
With use of the general form of the decomposition as in E
~2.8!, the Fourier spectrum based on the correlation funct
is written as

P~E!5E dtE dq1dp1E dq0dp0d„qt~q0 ,p0!2q1…

3G̃* ~p1!G̃~p0!F* ~q1,0!U ]qt

]q0
U1/2

F~q0,0!

3expS i

\
@S1~qt ,q0 ;t !1q0p02q1p11«t#2

ipM

2 D .

~3.9!

Although this function covers the versions ranging from t
semiclassical kernel to a SADF depending on the selectio
F and G, we first confine ourselves to a case of the ker
limit and its proximity. The case of SADF will be considere
separately. It was readily shown in a previous paper@14# that
P(E) is dominated by trajectories which satisfy

qt~q0 ,p0!5q1 ~3.10!

arising from thed function in Eq.~3.9!, and

pt5p1 ~3.11!

that comes from the stationary phase condition to the inte
q0 with fixing (q1 ,p1). Thus trajectories making a domina
contribution to the integral should pass repeatedly throug
point, „qt(q0 ,p0),pt(q0 ,p0)…5(q1 ,p1). This is a periodic
orbit. All the possible periodic orbits are to be summed up
integrating in the (q1 ,p1) space.

We now want to consider the stationary phase on the t
coordinate in Eq.~3.9!. Before applying the stationary phas
condition, however, care should be taken as to how the t
derivative of the action integralS1(qt ,q0 ,t) should be made
-

y

e.
.
n

of
l

al

a

y

e

e

In contrast to the case of Eqs.~3.4! and ~3.5!, the time inte-
gral proceeds with the pointqt along a trajectory, and thu
we should take

d

dt
$Scl~qt ,q0 ;t !1«t%5L1«, ~3.12!

whereL(5T2V) is the classical Lagrangian. Applying th
stationary phase argument to Eq.~3.9! under the obvious
constraintq15qt , we have rather a complicated form

d

dt
@S1~qt ,q0 ;t !1q0p02q1p11«t#

5
d

dt
@S1~qt ,q0;t !2qtp1#1«

5
1

2
pt

22V~qt!2
dqt

dt
p11«. ~3.13!

It thus turns out that a simple application of the stationa
phase condition does not warrant that« should coincide with
the energy of the corresponding classical trajectory. Ho
ever, we know that the correlation function should be dom
nated by the trajectories specified by Eqs.~3.10! and ~3.11!.
Let us call these trajectories ‘‘dominant trajectories’’ in th
they make a stationary phase contribution to the correla
function C(t). All other trajectories should make a very m
nor contribution due to the Riemann-Lebesgue lemma@19#,
provided that sampling of classical trajectories to evalu
C(t) is not biased. In other words, if both the domina
trajectories and nondominant trajectories are dealt with
propriately, the correct value of the Fourier transform in E
~3.9! must be determined by the dominant trajectories on
We thus insert the periodic orbit condition Eq.~3.11! into
Eq. ~3.13! and get

d

dt
@S1~qt ,q0 ;t !1q0p02q1p11«t#

52
1

2
pt

22V~qt!1«52Ecl1«, ~3.14!

which is essentially the same as Eq.~3.5!. Again, it is
stressed that the contribution from the nondominant traje
ries, which do not satisfy Eq.~3.11!, to the correlation func-
tion must be canceled out by their destructive interfere
beforehand.

c. Case of Single ADF. We next consider the case o
SADF separately, since the stationary phase argument
SADF is a little different from that applied to the kernel, an
since a SADF tends to have negative spectrum more o
than the kernel does. The energy spectrum represente
terms of a SADF is

P~E!5E dtE dq0F* ~qt,0!U ]qt

]q0
U1/2

F~q0,0!

3expS i

\
@S1~qt ,q0 ;t !1q0p02qtp01«t#2

ipM

2 D .

~3.15!
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The dominant trajectories to determine the correlation fun
tion are those that satisfy

\

i

d

dq0
F2

i

\
p0qt1

i

\
p0q01

i

\
Scl~qt ,q0 ;t !2 i

p

2
M G

5p01
]

]q0
Scl~qt ,q0 ;t !1

]qt

]q0

]

]qt
@Scl~qt ,q0 ;t !2p0qt#

5
]qt

]q0
~pt2p0!50, ~3.16!

that is,

pt5p0 , ~3.17!

provided thatF(q0,0) and other preexponential factors i
Eq. ~3.15! are smooth enough. Note again that the orbits
Eq. ~3.17! are not necessarily periodic. The spectrum giv
as in Eq.~3.14! is to be dominated by the stationary phas
condition for the Fourier time integral such that

\

i

d

dt F2
i

\
p0qt1

i

\
p0q01

i

\
Scl~qt ,q0 ;t !1«t G

52ptp01
1

2
pt

22V1«50. ~3.18!

Again if the correlation function is really dominated by th
trajectories satisfying Eq.~3.17!, we have

\

i

d

dt F2
i

\
p0qt1

i

\
p0q01

i

\
Scl~qt ,q0 ;t !1«t G

5S 1

2
pt

21VD1«52Ecl1«50. ~3.19!

Thus,« should be positive irrespective of the absolute valu
of the individual peaks that are eventually extracted. Ho
ever, negative spectra can arise, if, for instance, trajecto
satisfying2p0pt22V50 happen to have a large contribu
tion of orderO(\0) to the correlation function for an acci-
dental reason, thereby leading to

«52Ecl . ~3.20!

d. Case of thed function as a SADF. Another example
can be made in a pathological case of the SADF, in whi
F(q)5d(q2qc), as in Eq.~2.17!. SinceF(q) is not smooth,
the stationary phase condition in Eq.~3.17! is never valid.
Hence, there is no mechanism leading to the condition«
5Ecl in the corresponding spectrum

P~E!5E dtE dqd~q2qc!U ]qt

]q0
U1/2

d„q2qt~qc ,pc!…

3expS i

\
@S1~qt ,q0 ;t !1q0pc2qcpc1«t#2

i

\
M D

5E dtd„qt~qc ,pc!2qc…U ]qt

]q0
U1/2

expS i

\
@S1~qt ,q0 ;t !
-

f
n

s
-
es

h

1q0pc2qtpc1«t#2
i

\
M D . ~3.21!

Here we find neither«5Ecl nor other conditions in this ex
pression. It is therefore not surprising to observe that t
d-function representation of a SADF is always associa
with negative spectra.

3. Summary from the examples

The equality«5Ecl has thus been identified as a cond
tion for a negative spectrum in a positive potential not
appear. This is never an unusual equality but rather is s
quite universally in the literature@18#. However, as far as we
are aware, it has not been presented before what consequ
would occur if this condition is not well fulfilled. Inciden
tally, we note that Eqs.~3.5!, ~3.14!, and ~3.19! are only a
necessary condition for a negative spectrum not to app
Even if they are not fulfilled, the negative spectrum can h
pen not to appear numerically.

Through the above case studies, we notice that there
be a robustness class to an extent for the equality«5Ecl to
hold or to break down. In the semiclassical integral of t
density of states Eq.~3.4!, for instance, it is hard to brea
«5Ecl unless a very poor set of classical trajectories is e
ployed. As noted there,«5Ecl holds even without the peri
odic orbit condition of Eq.~3.6!. @The periodic orbit theory
itself does not take into account the numerical calculation
Eq. ~3.4!, since it proceeds to the final expression assum
«5Ecl is perfectly satisfied.# On the other hand,«5Ecl in
Eqs. ~3.14! and ~3.19! is not independent of the numerica
accuracy of the correlation function. In particular, contrib
tions to the correlation function from trajectories that are n
the dominant trajectories should be well canceled out am
them. If the cancellation is not well realized due to a po
choice of a set of classical trajectories, a part of the corre
tion function that should be very small otherwise can s
vive, thereby rendering itself to the time integral witho
satisfying «5Ecl . In analogy to the Riemann-Lebesgu
lemma that holds for an oscillatory integral@19#, one can
generally expect that a larger number of trajectories is m
favorable to destructive interference of quantum phases
this sense, the condition«5Ecl becomes more robust in th
order: the kernel@Eq. ~3.4!! .general ADF @Eq. ~3.9!#
.single ADF @Eq. ~3.15!# .d function SADF@Eq. ~3.21!#.
We will show that this is really the case in a different n
merical example in the next section.

B. Harmonics and subharmonics
arising from quantizing trajectories

We next turn to another kind of example, in which d
structive interference among the quantum phases is esse
to remove the unnecessary spectral components. Here
focus is placed on the role of anonymous orbits that are
the quantizing trajectories.

1. Role of unquantizing trajectories

The simplest way to examine the role of the anonymo
trajectories would be to estimate an energy spectrum with
them and see the difference. As a sample system, we ad
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one-dimensional Morse oscillator retaining the first coor
nate in Eq.~3.1! with the parametersD530 andl50.08.
The Planck constant is again chosen at\51.0. An initial
wave packet takes the form

C~q,0!5S a

p D 1/4

expF2
a

2
~q2qc!

2G . ~3.22!

The correlation function is now to be evaluated with on
one of the quantizing trajectories. We pick a trajectory wh
is responsible for producing the quantum state of the qu
tum numbern530. The spectrum is calculated with a SAD
To justify that only a single trajectory is used to evaluate
correlation function, it seems natural to setF(q)5d(q
2qc), G̃(p)5d(p2pc), and G(q)5exp@(i/\)pcq#, see Eq.
~2.17! with (qc ,pc) being placed on the relevant orbit. T
mimic this d function, we choosea in the Gaussian to be
107.

The Fourier spectrum obtained from the thus estima
correlation function is depicted in Fig. 2; each white squ
on the straight line marks an energy in the order of the c
responding quantum numbers. The energy arrangem
hence looks as though it came from a harmonic oscilla
For a comparison, a set of the correct energies is displaye
Fig. 2, which forms a convex curve~black squares!. The two
lines cross each other atn530 as they should. However, th
other energy values estimated based on the single trajec
show large deviations from the true values. The Fourier
ergies other than that ofn530 are all spurious and hav
arisen as harmonics of the fundamental frequency given
this trajectory. It is not surprising that such harmonics
generated through the phase factor of this anharmonic
tion, since it consists of many harmonics in itself. The po
is, however, that these unnecessary harmonic compon
must be eliminated, leaving only the true eigenstate in qu
tum mechanics. Therefore one can conclude that without

FIG. 2. The energies plotted against the quantum numbers
one-dimensional anharmonic oscillator. The black squares on
convex curve represent the true eigenvalues. The white square
the straight line have been given by thed-function SADF with use
of a single classical trajectory that is responsible for quantizing
state ofn530.
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anonymous trajectories other than the quantizing orbits th
virtual states cannot be canceled away.

2. An effect of thed function

We further consider what makes the approximation ba
on a single trajectory so bad. Here again we examine
negative energies, since we have seen above that the s
ously negative spectrum is an indicator of poor quality in t
semiclassical approximation. Figure 3 exhibits both posit
and negative energies in~a! and ~b!, respectively. Negative
energy components are observed as high as in the pos
domain, indicating a very bad quality of the spectrum. T
is not only because we have used a single trajectory re
sentation but also because ad-function-like sharp function
has been adopted in the correlation function.

In a previous paper@14#, we discussed that there are tw
general requirements to keep the correlation function go
~i! The phase should satisfy the stationary condition, and~ii !
the initial amplitude functionF(q,0) must be smooth
enough. It is obvious that the pathological case in wh
F(q)5d(q2qc) and G̃(p)5d(p2pc) meets none of these
requirements. Although the harmonic components canno
eliminated without the presence of anonymous trajector
the quality of the approximation is expected to be improv
to some extent by relaxing thed function.

We then relax the effect of relaxing thed function by
reducing the exponent of the Gaussian function, Eq.~3.22! to
a51.0. The Gaussian function now becomes much smoo
in shape. Nonetheless only a single trajectory that is exa
the same as that used above for the ‘‘d-function’’ case is
adopted to represent the integral. Figure 4 exhibits the e
gies obtained as a function of the quantum numbers. H
again, the harmonic frequencies, aligning on a line, ha
been generated as a natural consequence of the use
single trajectory, and the energy atn530 is set to be exact
However, we notice significant difference between the ca
of Figs. 2 and 4. First, the Fourier amplitude arising from t
correlation function becomes too small beyondn545 to as-
sign the energies. Second and moreover, the straight lin
which the harmonic energies lie seems tangent to the con
curve for the exact energies, thus displaying that the ener
nearbyn530 are also good approximations to the exact v

a
he
on

e

FIG. 3. Power spectrum of the correlation function in terms
thed-function SADF with use of a single classical trajectory that
responsible for quantizing the state ofn530. ~a! and~b! are for the
positive and negative energies.
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ues. This makes a clear contrast to thed-function case. Fig-
ure 5 shows the positive and negative spectra of the pre
wide Gaussian wave packet. As anticipated theoretically,
negative component bears only small amplitudes.

We further proceed to the kernel limit of ADF, which
more time consuming but more accurate. As in Eqs.~2.12!
and ~2.13! we simply setF(q)51 and setG(q)5C(q) as
the Gaussian function ofa51.0 that was used above in th
SADF calculation. Again the trajectory quantizingn530 is
examined. In contrast to the previous cases, however, 1
different points have been prepared on this single perio
orbit in phase space in order to carry out the integration
the correlation function. Figures 6 and 7 are the counterp
corresponding to Figs. 2~4! and 3~5!. As discussed in the
preceding section, the amplitudes in the negative ene
range are the smallest in the kernel version. The global
ture of the positive spectrum seems to be divided into th
groups as in the case of SADF@Fig. 5~a!#. Unlike the SADF
case, the harmonics seen in Fig. 6 are also grouped into t
bunches and each has come closer to the true eigenvalu

Thus, we have shown that although the harmonic app
ance of the spectrum cannot be eliminated, the quality of
approximation is improved with use of the smoother init

FIG. 4. The same as Fig. 2, except that a smooth initial Gaus
function is adopted in place of thed function for the SADF calcu-
lation.

FIG. 5. The same as Fig. 3, except that a smooth initial Gaus
function is adopted in place of thed function for the SADF calcu-
lation.
nt
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wave packet. In order to remove the harmonic compone
and retain the correct spectrum only, an appropriate tr
ment of the anonymous trajectories which are not the qu
tizing orbits is unavoidable.

IV. CONCLUDING REMARKS

There can exist in principle two types of phase interf
ence that work in generating quantum eigenstates and
energy spectrum. One is the constructive interference
quantum phases among particular trajectories such as t
satisfying the EBK condition and the periodic orbits. The
trajectories or paths can support on them appropriate cla
cal actions, together with the Maslov index, that can in tu
represent standing waves on manifolds in phase space.
kind of role of the phase interference is well known to da
and the most important activity in this regard is direct
towards the study of spectrum for classically chaotic syste
@5,9–11#.

The other one is destructive interference under a rand
phase situation. We have shown in the present paper
examples of quantum destructive interference that remo
undesired components in a discrete energy spectrum
thereby makes it possible for only correct eigenvalues to s

an

an

FIG. 6. The same as Fig. 2, except that a smooth initial Gaus
function is adopted and the kernel limit has been taken.

FIG. 7. The same as Fig. 3, except that a smooth initial Gaus
function is adopted and the kernel limit has been taken.
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vive in the Fourier transform of the correlation function.
has been shown that the Fourier spectra can suffer f
anomalous features without these phase-interference me
nisms. The first one is components that appear in the n
tive domain of the energy in scanning the Fourier frequ
cies. This spurious spectrum can arise due to failure
random phase cancellation in the correlation function, wh
should not remain to the integration at«ÞEcl . Therefore the
correlation function must be evaluated correctly not only
the part that brings about the energy peaks but also for
portion with which no eigenstate is associated. Hence
pearance of the negative energies can be used as a u
indicator to check the quality of a semiclassical wave fu
tion. The second example of destructive interference is
lated to the harmonic spectra which are born from the qu
tizing orbits that satisfy the quantization condition and a
responsible for giving energy peaks at correct locatio
While these quantizing orbits support the standing waves
them, they alone should inevitably generate their harmon
-
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and subharmonics too, which are of course spurious in
harmonic systems. These unnecessary~sub!harmonics
should be eliminated by the destructive interference am
other anonymous trajectories.

The study of the destructive interference is therefo
highly vital to distinguishing the mathematical structure
quantum mechanics from that of classical mechanics.
examples we have raised in this paper are rather simple
much more subtle example of the destructive quantum in
ference is the so-called quantum smoothing of the infinit
nested structure of classical phase space in a noninteg
system@10#. This subject is under study in terms of our sem
classical scheme.
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