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Roles of phase cancellation removing spuriously quantized states in semiclassical mechanics
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Two types of destructive interference among quantum phases are discussed that play an essential role in
canceling out the unquantized states and thereby leaving only the correct projection of true eigenstates behind.
Without these mechanisms, the Fourier spectra of the autocorrelation function, from which the energy spectra
can be deduced numerically, can suffer from spurious features. We show two such examples: One is a spurious
spectrum that appears in the negative energy domain of the Fourier frequencies for a positive potential. The
other is a family of harmonic and subharmonic frequencies that are born from the “quantizing orbits,” which
are responsible for forming eigenstates like the periodic orbits or those satisfying the Einstein-Brillouin-Keller
condition. The mechanisms for the spurious spectra to appear are analyzed, emphasizing their relationship to
the quality of semiclassical wave function§1050-294{@9)05707-9

PACS numbes): 03.65.Sq, 03.65.Ge, 31.15.Gy, 33.20.

[. INTRODUCTION rived through the stationary phase argument in application of
the Wentzel-Kramers-BrillouifWKB) theory or the semi-

In the study of energy spectra of a system where quanturolassical kernel, are represented exclusively in terms of the
nature is fading awayor surviving, there can exist two relevant information about the quantizing orbits only.
physical situations presupposed; one is a case where the Yet, there can exist another general and more straightfor-
Planck constant is very small compared with the system aoward method to calculate the quantum spe@tigenvalueg
tion integrals[1-5], and the other one is a many particle that is, the numerical evaluation of the Fourier transform of
system in which random cancellation among quantum phasehe autocorrelation functiotsee[12] for a method to extract
exposes only the particleclassical nature[6]. It is vital to  eigenfunctions directly In this less analytical approach,
investigate therefore what the essential factors giving birth teanany anonymous classical trajectories other than the quan-
quantum eigenstates in these semiclassical systems are. Rixing orbits are also to be included in the semiclassical
instance, the spectra of vibrationally excited states of relaevaluation. In comparing this kind of numerical approach to
tively large molecules in a large amplitude motipfl are  the above analytical theories, a natural question arises as to
among the most interesting subjects in this aspect. Semiclasshat is the role of the anonymous nonquantizing orbits in the
sical quantization of bound states has long been studied singgiantization process. Also, what pathological phenomena
the Bohr-Sommerfeld quantization condition. This conditioncan result, if their contributions are not appropriately taken
has been rebuilt so as to quantize tori in a canonically invariinto account? We would like to address these subjects in this
ant form. Further, the so-called Maslov index has been takepaper. This kind of study seems not as “useful” as those
into account, and the resultant expression is now known agiving the quantization conditions in that it is not intended to
the Einstein-Brillouin-Keller(EBK) quantization condition locate the correct eigenvalues. Nonetheless, the present study
[2,6]. For a case where a classical dynamics has no tori icould facilitate understanding of one aspect of quantum-
phase space, namely, the case of a nonintegrable system, ttlassical correspondence.
periodic orbit theory due to Gutzwiller has been established The results we are going to present here have been ob-
to quantize the density of statg®9]. Since then, many stud- tained through our study of semiclassical mechanl&s14]
ies have been made to extract the quantum spectra from clalsased on the Maslov-type wave packgt We have estab-
sically chaotic systemis,8—11]. lished a class of semiclassical approximation that has a hier-

The monumental studies mentioned above are all conarchical structure below or equal to the semiclassical Feyn-
cerned with identifying the quantizing orbit&r paths, man kernel[1,2]: A continuous class of semiclassical wave
along which constructive interference among quantunfunctions has been constructed, which are represented in
phases represented in terms of the action integral can formtarms of different numbers of classical trajectories. Some of
standing wave surviving eternally. We call these relevanthem are more accurate but require many classical trajecto-
trajectories and paths the “quantizing orbits” throughout theries, the semiclassical Feynman kernel being an extreme ex-
present paper. The explicit forms of the quantization condiample. The others are less accurate but demand far fewer
tions or the density of states, which have been basically derajectories. We have shown that the latter type of wave

function must be quite promising in an application to large-
dimensional systems. With the help of these characteristics,
* Author to whom correspondence should be addressed. Electronive have scanned a relationship between quantum and clas-
address: KazTak@mns2.c.u-tokyo.ac.jp sical mechanics in an approach that has not been done before
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beyond the validity of the present semiclassical scheme, we i T VF+5(V-»)F=0, 2.3
tion, which in turn originates from the breakdown of random
aqt) —-1/2
We show another example of a spurious spectrum that =F(o,0)
only with a single quantizing orbit without other general tra- generacy[2]. The classical action in Eq2.1) has naturally
the spurious frequencies. why we call this function the action decomposed function
i

of spurious spectra can depend on the semiclassical method W,(a.1)=F(a,00exp 2 Pod

local

aqt 1/2

(spurioug spectrum arises and a mechanism of how these ‘I’po(q,t)ZJ dgo8(q—0i(do,Po))F(do,t) 9%

to our knowledge. In an application to a system which lies JF 1
have found spurious spectra; negative energy spectra for a
positive potential. In the present paper, we ascribe this pathQuhich has neglectedi%/2)V2F from the full (rigoroug
logical appearance to the breakdown of the stationary phas&uation of motion fofF [13,14). An explicit solution to Eq.
condition in the Fourier time integral of the correlation func- (2 3) can be readily obtained such that
phase cancellation among the anonymous nonquantizing or-
bits. Conversely, with this mechanism of the stationary phase F(ae.t)= F(QO-O)(W
in time, quantum mechanics removes the unnecessary com- 0
ponents of the spectra. -1z i7™M
exp{ - T} , (2.4)

also has to be canceled out in quantum mechanics. Suppose
that only one quantizing orbit can dominate an eigenvaluewhere the derivativedq,/dq, is taken under a fixed initial
which can be generally seen in a one-dimensional system. thomentump,, andM is the Maslov index in this represen-
one then represents approximately a correlation functiomation that counts the number of zerosaf,/dq, up to de-
jectories, many harmonics and subharmonics of this energijeen chosen as the,-type generating function of Goldstein
appear in the Fourier spectrum in addition to the true eigenf15] (denoted asS, hereaftey. In other words, all the classi-
value. This example also directly suggests the role of decal paths representing E(.1) share a single action surface,
structive interference of nonquantizing orbits in removingthe initial momentum of which i, everywhere. This is

Although these spurious spectra have been found in agADF). Having this action function as a phase, the initial
plications of our Maslov-type semiclassical thedfys,14], form of ADF att=0 is rewritten as
we want to stress that the essential role of the destructive
interference is generic. In other words, although the patterns
one uses, the role of anonymous trajectories in cancellation
of the unnecessary components is intrinsic. That this is really An arbitrary wave function can be continuously expanded
the case can be confirmed by a poor application of the semin terms of the ADF’s(see below. A wave function which
classical kernel, which can also yield similar spurious specconsists of a single ADF, denoted By (q.t), is speci-
tra. _ _ _ _ fied as single ADRSADF) throughout this paper. A SADF

This paper is organized as follows. After briefly review- is rewritten in a little more global form as
ing our semiclassical scheme in Sec. Il, which is based on
the Maslov-type wave packet, we discuss how the negative
spurious components are canceled in Sec. lll A. Section 111 B
shows the role of anonymous trajectories that cancel out the i i
harmonics and subharmonics of a true eigenvalue. Section xex;{gsz(qt,po;t)— T} (2.6
IV concludes this paper.

Although the local solutior(q; ,t) in Eq. (2.4) diverges at

Il. MASLOV-TYPE every caustic point, where the Jacobian determidgptdoqg
SEMICLASSICAL WAVE FUNCTIONS becomes zero, the global solution E8.6) does not suffer
from the divergenc¢l3,14,17.
A. General The time-correlation function represented in a SADF is

It is well known that Maslov and FeodoriyB] have es- _
tablished a systematic theory to generate a class of wave C(t)_<q'po(0)|q'po(t)>

functions in the form of 1/2

. eh
:quOF (Qt,O)F(QO,O)‘H
. (2. °

\If(q,t)=F(q,t)ex;{;L—Sc

i i iT™™M
X exp =z Poli+ 7 So(0r.Poi) — |-
where S; denotes the classical action satisfying the

Hamilton-Jacobi equatiofi5,16| 2.7
S S As was stressed in the previous papk4], this expression
cl <q, C',t> =0. (2.2 involves only anN-dimensional integral. This is in marked
at dq contrast to the correlation function represented in terms of

the semiclassical Feynman kerh2]17], which consists of at
The semiclassical equation of motion for the amplitude funcdeast 2\-fold integrals. Therefore, a SADF is anticipated to
tion F(q,t) is provide quantum spectra with far fewer classical trajectories.
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It has been evidenced through our numerical calculations ~
that this is really the cagd4]. On the other hand, SADF has ‘I’(q,t)=f dpoK(Q,po;t) ¥ (po) (219

a clear limitation beyond which the theory is not valid.
Hence, SADF can be a very powerful tool to calculate specexcept for a minor difference in the constant phase factor

tra of a rather large system, if care to its limitation is taken.[17(c)].

B. Propagation of an arbitrary wave function
in terms of ADF’'s

2. Single ADF (SADF)
A SADF, Eq. (2.5, can be readily reproduced with an

Suppose we have a decomposition for an arbitrary wav@lmost trivial procedure by setting

function such that

¥(9,0=F(q)G(q), (2.9

under a condition thaB(q) has a momentum representation

- 1 [
G(p)=(2w—ﬁ)Nf G(q)exp(—gpq)dq- (2.9

We assume tha& (q) is a slowly varying function irg space.
The total wave function thus decomposed is rewritten as

vao- | dpoé(po)F(Q)eXF{;i—poCI)y (2.10

F=F(q) and G=exp(lgpoq>, G(p)=8(p—po)-
(2.16

The most significant difference between the kernel and
SADF is in the distribution in momentum space, namely,
Egs.(2.13 and(2.16.

3. A pathological extreme of the SADF

The quality of a SADF depends strongly on the smooth-
ness of the initial wave function. Suppose th&tq) is a
Gaussian function. If the exponent is small enodgind
henceF(q) is smooth enoughthe level of accuracy of such
a SADF is not deteriorated so much. On the other hand, in

which is regarded as a superposition of many ADF's of Eqthe limit of the large exponertfixing the magnitude of the
(2.5). The semiclassical time propagation of this wave func-Planck constantit gets off the boundary of the semiclassical

tion is straightforward such that

112 _
F(d0,00G(Po)

99
V(0= ] | ddodped(a—ay|ze

i . iT™M
XeXF{%SZ(qtapOJ)_T)a (21])

whereqy=9dS,(q,pg;t=0)/dpg.

1. The kernel limit

The semiclassical Feynman kerng|exd — (i/%)Ht]|po)
=K(a,po;t) is reproduced by setting

F(g)=1 (constany;
G(g)=V(q) (wave function itself (2.12
and hence
G(p)=V¥(p) (momentum representation

of the wave functioh

(2.13

We then have
1 —-1/2
‘P(q,t)=mf f ddodpod(a—ay)

Ly
ddg

i7m™™ i =
Xexy{ - T) exr{gsz(Qt,po,t))‘l’(Po)-
(2.14

This is nothing but

validity. To be more precise, let us set
i
F(a)=5(d—qo), G(Q):exl{%pcq).

G(p)=8(p—po)- (2.17)

We then have

do

iTm™™ i .
xex;{ — T) exl{%sz((h ,po,t)>

X 5(qO_QC)5(pO_pc)-

‘If(q,t)=f dgodpod(q—ay)

(2.18

This expression is stimulating to think about a “classical
limit” of a quantum wave function, since a poing{,p.) is
specified in phase space in EG-18, determining a single
classical trajectory along which the wave function is to be
propagated. Thus it just seems to give a classical limit of a
wave function. It also seems to have violated the uncertainty
principle. However, specification atj{,p.) in phase space

is in a keen contradiction with the initial wave function

qf(q,0)=F<q>G<q)=6<q—qc>ex;{;'i—pcq)

= 5(q_QC)eXF{i|i_pcqc ) (2.19

in which information aboup, is already lost to the phase
factor exp(i/h)p0.]. Thus the semiclassical limit of Eq.
(2.18 is simply wrong. The point is that the Gaussian func-
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lator, on the other hand, does not give such a negative spec-
L trum because of the higher anharmonidity}].
I | | ’ | I | | lEn+Em The negative spectra for a positive potential can be sup-
pressed by lessening the magnitude of the Planck constant.
The present situation is simply summarized that this oscilla-
tor system is not in the domain where the present semiclas-
sical approximation is valid enough. Our concern here is not
to improve the semiclassical theory for removing the spuri-
ous spectrum but to analyze how the negative spectrum has
appeared in the present context and how quantum mechanics
suppresses the unnecessary components leaving only the cor-
rect eigenvalues. Since it is not unusual for negative frequen-
| | l l | J l | El_ g2 cies to arise from a Fourier spectrum of a general time-
noEm reversal quantity, it is not trivial how the correct quantum
correlation function does not generate the negative fre-

E quency.

Power Spectrum

FIG. 1. Spectrum for a direct product of two anharmonic sys- 2. A stationary phase condition on the Fourier time integral
tems with use of the single action decomposed function.1.0. i . .
Negative energies have arisen in one of the oscillators, for which L€t us consider a Fourier spectrum of a correlation func-

anharmonicity is very weak. tion
tion should not have been brought to tefunction with _f i )
- i . P(E)= | dtC(t)exp &t
fixing the magnitude of the Planck constant at a finite value. (B) ®) F{ﬁ €

Ill. ROLE OF PHASE CANCELLATION :f f dtdqq;*(q,o)qf(q,t)expu_gt>

A. Negative energies
1. Negative spectrum for a positive potential =27Th2 |ci|?6(e — ), (3.3
|

In a previous papdrl4], we have shown that the correla-
tion function represented in terms of a SADF can producavherec; is the coefficient of a true eigenfunction having the
quantum spectra very well with a much smaller number ofenergyE; in a trial function¥(q,t). Here in this Fourier
classical trajectories. However, if a SADF is applied to aspectrume/% serves simply as a frequency coveringe,<]
system in which quantunclassical nature is significantly and ¢ does not have to be regarded as an energy at this
strong (weak such as dynamics of electrons, for which the moment.
Planck constant is relatively large, the resultant correlation a. Case of the kernel in the trace formulalet us begin
function for a positive potential can produce spurious spectraith the density of states that has been extensively studied
in the negative frequency domaid4]. Let us take an ex- by Gutzwiller in his periodic orbit theor|8,9],
ample in a very simple system composed of a direct product

of two independent Morse oscillators i
Tr5(s—H)=(2ﬂ-ﬁ)_1j dtf dqgK(q,q;t)ex et

2
H= %"’D[l_exq_)\lql)]z) &q —-1/2
=(2mﬁ)—N’2f dtJ dq‘—
p2 dPo
+ 72+D[1—exp(—x2q2)]2). (3.2)

i i i
Xex;{%sl(q,q;t)—TJr%st), (3.9
The parameters are set@o=50,\;=0.1, and\,=0.03. We
here deliberately choose a large Planck constantl.0, whereu is the Maslov index. We now apply the stationary
which brings the system far beyond the semiclassical dophase argument to this Fourier time integral. Sigcis an
main. With an initial wave packet given as a Gaussian, independent variable and therefore independent of time, and
also due to the property of the Hamilton principal function

. 1 15], we simply have
Wo(%ﬂz)z(;) EX[{—E(qi—l—q%)} (3.2 [15], ply

we have obtained a spectrum as shown in Fig. 1. Spurious iSa.gt) +ety=—Eqte=0. 3.9
combination bands arising from a negative energy E@p

—Ef are observed, WherE'j is the jth energy of theith  Thuse must be one of the classical energies, which are never
oscillator. The negative spectrum occurs only for the secondegative for a positive potential. We would like to emphasize
oscillator, which is very close to a harmonic oscillator due tothat Eq.(3.5) can be brought about without even the periodic
the small anharmonicity parametes=0.03. The first oscil- orbit condition arising from the trace operatif89], that is,
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3S;(q,9;t) In contrast to the case of Eg®8.4) and(3.5), the time inte-

1(0,0Q; - ; )

g =p(t)—p(0)=0. (3.6)  gral proceeds with the poirg, along a trajectory, and thus
we should take

Incidentally, the condition ok=E_ is also essential to d
construct a quantization condition like the EBK condition —{Sy(ar,qo;t) +et}=L+e, (3.12
[1-5], in which only Hamilton’s characteristic functiqi5] dt

whereL(=T-V) is the classical Lagrangian. Applying the
> § p;da; (3.7  stationary phase argument to E@.9) under the obvious
constraintq;=q;, we have rather a complicated form

remains out of the Hamilton principal function d
gt [S1(GeGo;t) + doPo—d1pP1 + &t]

> § pidg;— Egt. (3.9 d
= i[5 doi) —apa] + &
To obtain the quantization condition, elaborated manipula-
tions including the summation over the infinite cycles along 5 dg;
the periodic orbits are necessd®,9,11. However, in our =5 P V(A — gy Pate. (3.13
context, the conditior = E suffices to see that the correla-
tion function can have values only in the positive energylt thus turns out that a simple application of the stationary
domain ofe. phase condition does not warrant tlkaghould coincide with
b. Case of the general ADF.We next proceed to the the energy of the corresponding classical trajectory. How-
case of ADF, which is less trivial than the above kernel caseever, we know that the correlation function should be domi-
With use of the general form of the decomposition as in Eqnated by the trajectories specified by E@s10 and(3.11).
(2.8, the Fourier spectrum based on the correlation functiorLet us call these trajectories “dominant trajectories” in that
is written as they make a stationary phase contribution to the correlation
function C(t). All other trajectories should make a very mi-
nor contribution due to the Riemann-Lebesgue lenitt,
P(E):f dtJ dqldle ddodpod(@i(do, Po) — A1) provided that sampling of classical trajectories to evaluate
C(t) is not biased. In other words, if both the dominant
F(do,0) trajectories and nondominant trajectories are dealt with ap-
o propriately, the correct value of the Fourier transform in Eq.
(3.9 must be determined by the dominant trajectories only.
We thus insert the periodic orbit condition E@.11) into
Eq. (3.13 and get

1/2

o* e * 9t
XG*(p1)G(pg)F (QLO)’a—qO

i iTm™
Xex g[sl(Qt +do:t) +doPo—d1p1+et]— >

(3.9 d
Although this function covers the versions ranging from the dt[sl(qt Goit) doPo QP+ &t]
semiclassical kernel to a SADF depending on the selection of 1
F and G, we first confine ourselves to a case of the kernel =— _pf_v(qt)+8: —Eg+te, (3.19
limit and its proximity. The case of SADF will be considered 2
separately. It was readily shown in a previous pdfiét that

P(E) is dominated by trajectories which satisfy which is essentially the same as E@.5. Again, it is

stressed that the contribution from the nondominant trajecto-
ries, which do not satisfy Eq3.11), to the correlation func-
tion must be canceled out by their destructive interference
beforehand.
c. Case of Single ADF.We next consider the case of
(3.11) SADF separately, since the stationary phase argument for
' SADF is a little different from that applied to the kernel, and

0¢(do,Po) =01 (3.10

arising from theé function in Eq.(3.9), and

Pt=P1

ince a SADF tends to have negative spectrum more often

that comes from the stationary phase condition to the integraﬁWan the kernel does. The energy spectrum represented in
go Wwith fixing (g1,p1). Thus trajectories making a dominant terms of a SADF is '

contribution to the integral should pass repeatedly through a

point, (9:(do,Po).Pt(do.Po))=(d1.p1). This is a periodic ag,| 12
orbit. All the possible periodic orbits are to be summed up byP(E)= f dtj dgoF*(a:,0)|=—| F(Q90,0)
integrating in the §,,p,) space. 9o

We now want to consider the stationary phase on the time i i ™M
coordinate in Eq(3.9). Before applying the stationary phase ><exp<%[sl(qt ,Jo;t) +doPo— GiPo+ et]— — |

condition, however, care should be taken as to how the time
derivative of the action integr&, (q;,qo,t) should be made. (3.19
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The dominant trajectories to determine the correlation func-

i
tion are those that satisfy +0oPc—diPctet]— 2 M . (3.2
h d [ i i o ! . " N
Tael T gpoqt-i- %poqo+ %Sd(qt ,do:t)—i EM Here we find neithee = E nor other conditions in this ex-
I dGo pression. It is therefore not surprising to observe that this
.9 Ssfunction representation of a SADF is always associated
=pot+ —S Jdo:t)+ — —I[S Jdo:t)— with negative spectra.
Pot g0 Seil At AoV + 7o - 50 [Sa(A1,Gost) ~ Poth] 9 P
49, 3. Summary from the examples
=—(py—Po)=0, 3.1 . . - .
aqo(pt Po) (3.16 The equalitye =E has thus been identified as a condi-
tion for a negative spectrum in a positive potential not to
that is, appear. This is never an unusual equality but rather is seen
quite universally in the literaturel8]. However, as far as we
P:=Po, (3.17  are aware, it has not been presented before what consequence

would occur if this condition is not well fulfilled. Inciden-
provided thatF(q,,0) and other preexponential factors in tally, we note that Eqs(3.5), (3.14), and(3.19 are only a
Eq. (3.15 are smooth enough. Note again that the orbits ofnecessary condition for a negative spectrum not to appear.
Eq. (3.17 are not necessarily periodic. The spectrum givenEven if they are not fulfilled, the negative spectrum can hap-
as in Eq.(3.19 is to be dominated by the stationary phasepen not to appear numerically.

condition for the Fourier time integral such that Through the above case studies, we notice that there can
be a robustness class to an extent for the equaktf, to
hod i i i hold or to break down. In the semiclassical integral of the
T gt ~ 7 Podtt 7 Polot 7 ST, Goit) + et density of states Eq3.4), for instance, it is hard to break

e=E unless a very poor set of classical trajectories is em-
1, ployed. As noted theres=E_ holds even without the peri-
=—PiPot 5 Pt —V+e=0. (318 qodic orbit condition of Eq(3.6). [The periodic orbit theory
itself does not take into account the numerical calculation of

Again if the correlation function is really dominated by the EQ. (3.4), since it proceeds to the final expression assuming

trajectories satisfying Eq3.17), we have e=E is perfectly satisfied.On the other hands=E in

Egs. (3.14 and (3.19 is not independent of the numerical

i i i accuracy of the correlation function. In particular, contribu-

— 7 Podi+ > Podo+ %Sd(qt ,0o;t) +et tions to the correlation function from trajectories that are not
the dominant trajectories should be well canceled out among

them. If the cancellation is not well realized due to a poor
+e=—Ey+e=0. (319  choice of a set of classical trajectories, a part of the correla-
tion function that should be very small otherwise can sur-
Thus, e should be positive irrespective of the absolute values V& t_herebz/ rendering itself to the t|m_e integral without
of the individual peaks that are eventually extracted. How—sat'Sfymg e=Eq. In analogy to the Riemann-Lebesgue

ever, negative spectra can arise, if, for instance, trajectorielg mma that holds for an oscillatory integréd9], one can

satisfying — pop,— 2V=0 happen to have a large contribu generally expect that a larger number of trajectories is more
0Pt - -

. 0 X ! . favorable to destructive interference of quantum phases. In
tion of orderO(%") to the correlation function for an acci- this sense. the conditiofi= E.. becomes more robust in the
dental reason, thereby leading to ' cl

order: the kernellEq. (3.4)) >general ADF[EQ. (3.9]
>single ADF[Eg. (3.19] >4 function SADF[Eq. (3.2D)].
We will show that this is really the case in a different nu-
merical example in the next section.

fi
i

d
dt

1,
= Ept+v

8=_EC|. (32()

d. Case of the’ function as a SADF. Another example
can be made in a pathological case of the SADF, in which

F(q)=456(q—q.), as in Eq.2.17). SinceF(q) is not smooth, B. Harmonics and subharmonics

the stationary phase condition in E®.17) is never valid. arising from quantizing trajectories

Hencc_a, there is no mgchanlsm leading to the condition We next turn to another kind of example, in which de-
=Eg in the corresponding spectrum structive interference among the quantum phases is essential

to remove the unnecessary spectral components. Here our
focus is placed on the role of anonymous orbits that are not
the quantizing trajectories.

1/2

5(q - qt(qc apc))

dq;
P(E>=fdtf 405(a-0) 50"

[ [ 1. Role of unquantizing trajectories
xexp(g[sl(qt Goit) + doPc— GcPe+ st]— gM) , drantizing fral
The simplest way to examine the role of the anonymous

112 i trajectories would be to estimate an energy spectrum without
exp(%[sl(qt ,do;t) them and see the difference. As a sample system, we adopt a

aqy
= | dt(a:(dc.pc) —de) Er
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30.00| /.- ]

20.00

Power Spectrum

10.00 o™

0.00 | - i FIG. 3. Power spectrum of the correlation function in terms of
0 20 70 50 30 00 the &-function SADF with use of a single classical trajectory that is
responsible for quantizing the staterof 30. (a) and(b) are for the
n positive and negative energies.

FIG. 2. The energies plotted against the quantum numbers for a
one-dimensional anharmonic oscillator. The black squares on th@nonymous trajectories other than the quantizing orbits these
convex curve represent the true eigenvalues. The white squares diftual states cannot be canceled away.
the straight line have been given by thdéunction SADF with use
of a single classical trajectory that is responsible for quantizing the 2. An effect of theé function

state ofn=30. We further consider what makes the approximation based

on a single trajectory so bad. Here again we examine the
negative energies, since we have seen above that the spuri-
ously negative spectrum is an indicator of poor quality in the
semiclassical approximation. Figure 3 exhibits both positive
and negative energies i@ and (b), respectively. Negative
energy components are observed as high as in the positive
_ (3.22 domain, indicating a very bad quality of the spectrum. This
is not only because we have used a single trajectory repre-
sentation but also becauseddunction-like sharp function
The correlation function is now to be evaluated with only has been adopted in the correlation function.
one of the quantizing trajectories. We pick a trajectory which  In a previous pap€erl4], we discussed that there are two
is responsible for producing the quantum state of the quargeneral requirements to keep the correlation function good:
tum numbem=30. The spectrum is calculated with a SADF. (i) The phase should satisfy the stationary condition, @nd
To justify that only a single trajectory is used to evaluate thethe initial amplitude functionF(q,0) must be smooth
correlation function, it seems natural to sE(q)=4(q enough. It is obvious that the pathological case in which

—-q.), G(p)=48(p—p.), and G(q)=exd(i/4)pal, see Eq. F(q)=45(q—q.) andG(p)=&(p—p.) meets none of these
(2.17 with (g;,p;) being placed on the relevant orbit. To requirements. Although the harmonic components cannot be
mimic this & function, we chooser in the Gaussian to be eliminated without the presence of anonymous trajectories,
10°. the quality of the approximation is expected to be improved
The Fourier spectrum obtained from the thus estimatedo some extent by relaxing th&function.
correlation function is depicted in Fig. 2; each white square We then relax the effect of relaxing th& function by
on the straight line marks an energy in the order of the corfeducing the exponent of the Gaussian function,(B®2) to
responding quantum numbers. The energy arrangemeiat=1.0. The Gaussian function now becomes much smoother
hence looks as though it came from a harmonic oscillatorin shape. Nonetheless only a single trajectory that is exactly
For a comparison, a set of the correct energies is displayed ithe same as that used above for th&flinction” case is
Fig. 2, which forms a convex curv®lack squares The two  adopted to represent the integral. Figure 4 exhibits the ener-
lines cross each other at=30 as they should. However, the gies obtained as a function of the quantum numbers. Here
other energy values estimated based on the single trajectogagain, the harmonic frequencies, aligning on a line, have
show large deviations from the true values. The Fourier enbeen generated as a natural consequence of the use of a
ergies other than that afi=30 are all spurious and have single trajectory, and the energy &t 30 is set to be exact.
arisen as harmonics of the fundamental frequency given bilowever, we notice significant difference between the cases
this trajectory. It is not surprising that such harmonics areof Figs. 2 and 4. First, the Fourier amplitude arising from the
generated through the phase factor of this anharmonic maorrelation function becomes too small beyand 45 to as-
tion, since it consists of many harmonics in itself. The pointsign the energies. Second and moreover, the straight line on
is, however, that these unnecessary harmonic componenighich the harmonic energies lie seems tangent to the convex
must be eliminated, leaving only the true eigenstate in quaneurve for the exact energies, thus displaying that the energies
tum mechanics. Therefore one can conclude that without theearbyn=30 are also good approximations to the exact val-

one-dimensional Morse oscillator retaining the first coordi-
nate in Eq.(3.1) with the parameter® =30 and\ =0.08.
The Planck constant is again chosenfat 1.0. An initial
wave packet takes the form

o 1/4 o
‘I’(q,O):(;) exp{ -5(0-0q)°
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FIG. 4. The same as Fig. 2, except that a smooth initial Gaussian
function is adopted in place of th@function for the SADF calcu-
lation.

FIG. 6. The same as Fig. 2, except that a smooth initial Gaussian
function is adopted and the kernel limit has been taken.

wave packet. In order to remove the harmonic components
ﬁpd retain the correct spectrum only, an appropriate treat-

ent of the anonymous trajectories which are not the quan-
tizing orbits is unavoidable.

ues. This makes a clear contrast to thiinction case. Fig-
ure 5 shows the positive and negative spectra of the prese
wide Gaussian wave packet. As anticipated theoretically, th
negative component bears only small amplitudes.

We further proceed to the kernel limit of ADF, which is
more time consuming but more accurate. As in Egsl2 IV. CONCLUDING REMARKS
and (2.13 we simply setF(gq)=1 and setG(q)="V(q) as
the Gaussian function at=1.0 that was used above in the
SADF calculation. Again the trajectory quantizing= 30 is
examined. In contrast to the previous cases, however, 10
different points have been prepared on this single periodi

There can exist in principle two types of phase interfer-
ence that work in generating quantum eigenstates and their
dgyrergy spectrum. One is the constructive interference of
guantum phases among particular trajectories such as those
orbit in phase space in order to carry out the integration of2lisfying the EBK condition and the periodic orbits. These
the correlation function. Figures 6 and 7 are the counterpart§J€ctories or paths can support on them appropriate classi-

corresponding to Figs.(@) and 35). As discussed in the cal actions, together with the Maslov index, that can in turn
preceding section, the amplitudes in the negative energ _present standing waves on manifolds in phase space. This

range are the smallest in the kernel version. The global feg<ind Of role of the phase interference is well known to date

ture of the positive spectrum seems to be divided into thre@nd the most important activity in this regard is directed
groups as in the case of SADFig. 5a)]. Unlike the SADF towards the study of spectrum for classically chaotic systems

case, the harmonics seen in Fig. 6 are also grouped into thrée9-11. _ o
bunches and each has come closer to the true eigenvalues. The other one is destructive interference under a random
Thus, we have shown that although the harmonic appealphase situation. We have shown in the present paper two

ance of the spectrum cannot be eliminated, the quality of thgxamples of quantum dgstructi_ve interference that removes
approximation is improved with use of the smoother initial undesired components in a discrete energy spectrum and
thereby makes it possible for only correct eigenvalues to sur-
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FIG. 5. The same as Fig. 3, except that a smooth initial Gaussian
function is adopted in place of th@function for the SADF calcu- FIG. 7. The same as Fig. 3, except that a smooth initial Gaussian

lation. function is adopted and the kernel limit has been taken.
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vive in the Fourier transform of the correlation function. It and subharmonics too, which are of course spurious in an-
has been shown that the Fourier spectra can suffer frorharmonic systems. These unnecessaigubharmonics
anomalous features without these phase-interference mechgtiould be eliminated by the destructive interference among
nisms. The first one is components that appear in the negather anonymous trajectories.

tive domain of the energy in scanning the Fourier frequen- The study of the destructive interference is therefore
cies. This spurious spectrum can arise due to failure irhighly vital to distinguishing the mathematical structure of
random phase cancellation in the correlation function, whiclquantum mechanics from that of classical mechanics. The
should not remain to the integrationsat E;. Therefore the examples we have raised in this paper are rather simple. A
correlation function must be evaluated correctly not only formuch more subtle example of the destructive quantum inter-
the part that brings about the energy peaks but also for thierence is the so-called quantum smoothing of the infinitely
portion with which no eigenstate is associated. Hence aprested structure of classical phase space in a nonintegrable
pearance of the negative energies can be used as a use$ystem 10]. This subject is under study in terms of our semi-
indicator to check the quality of a semiclassical wave func-classical scheme.

tion. The second example of destructive interference is re-

Igt_ed to the harmoni(_: spectra Whic_h are born fr_o_m the quan- ACKNOWLEDGMENT
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