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Reflection-free propagation of wave packets
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We analyze the problem of suppression of reflections within the numerical propagation of wave packets
using finite atomiclike pseudostate expansions. Artificial reflections at effective ‘‘walls’’ and reentering of
probability flux into the interaction region represents a major limitation for the study of long-time evolution of
atomic ionization processes. We propose two methods, the repetitive projection method~RPM! and Siegert
pseudostate~SPS! propagation, and study their efficiency in suppressing reflections. It is shown that the
quantum Zeno effect sets a limit on the efficiency of the RPM as well as of masking functions. For the exactly
solvable propagation of a radial-free wave packet, we show that both the SPS and the RPM provide almost
complete suppression of reflections without appreciable distortion in the physically relevant region of coordi-
nate space.@S1050-2947~99!03908-6#

PACS number~s!: 32.80.Fb, 31.15.2p, 32.80.Rm, 02.70.2c
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I. INTRODUCTION

For a large number of dynamical atomic processes,
numerical solution of the time-dependent Schro¨dinger equa-
tion requires the propagation of ‘‘free’’ wave packets out
large times and large distances. Only at that point does
jection onto asymptotic final states allow the unambiguo
determination of transition amplitudes and, hence, of theT or
S matrix. These include ionization of atoms by charged p
ticles, photons, and intense electromagnetic fields. In
cases, the nonstationary wave packet contains a contin
component which will eventually escape the interaction
gion. Numerical representations of the wave packet in te
of a finite basis set, either in terms of atomic pseudostate
lattice-based representations, have the fundamental lim
tion that they subtend only a finite domain in coordina
space up to a certain distanceR. Therefore, any finite basi
representation contains a ‘‘wall’’ or boundary atR, either
explicitly in box or lattice representations or implicitly i
pseudostate representations, at which the continuum po
of the wave packet will eventually be reflected and will r
enter the interaction region, thereby artificially distorting t
bound-state portion of the evolved wave packet. Depend
on the method used, the wall may be hard or soft and
efficient position may depend on the momentum and ene
of the wave packet. While this problem is ubiquitous
present in all numerical propagation schemes, it is of re
tively little influence in the study of transitions into low
energy states and short times. It becomes, however, a m
hurdle for long interaction times and problems involvin
highly excited states such as Rydberg states.

Suppression of reflections is particularly important in
vestigations of the classical-quantum correspondence
Hamiltonian systems with mixed phase space. The ‘‘disc
dance’’ between the quantum evolution with the correspo
ing classical system exhibiting ‘‘soft chaos’’ should manife
itself for sufficiently long times of the order of the so-calle
Heisenberg timestH'\/^DE& where ^DE& is the typical
PRA 601050-2947/99/60~2!/1113~11!/$15.00
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mean level spacing of a system@1#. In order to delineate the
breakdown of classical-quantum correspondence, the c
lenge is to integrate the time-dependent Schro¨dinger equa-
tion ~TDSE! out to times longer thantH . This time typically
exceeds the time when the first reflections in the basis
have occurred. One prototype system where we encount
the difficulty is the periodically kicked atom, a paradigm
quantum chaos in atomic physics@2–6#. It is therefore cru-
cial to control and suppress reflections at the walls with
distortion of the wave packet evolution in the physically re
evant region of coordinate space where the classi
quantum correspondence is being investigated.

In this paper we report new alternative techniques for
suppression of boundary reflections in the quantum evolu
within the framework of atomic pseudostate representatio
namely, the repetitive projection method~RPM! and the
Siegert pseudostate~SPS! propagation. Unlike for lattice-
based methods, controlling reflections within pseudostate
pansions is less straightforward and poorly understood s
the boundary is only implicitly determined. We study the
efficiency in suppressing reflections and we discuss th
connection with standard methods such as masking funct
and optical potentials as well as complex rotation@7–18#. It
is shown that the quantum Zeno effect sets a limit on
efficiency of the RPM as well as of masking functions. W
show that both RPM and SPS can~almost! completely sup-
press reflections without appreciably perturbing the ‘‘inne
region. As a test case, we use the time propagation of a
particle which can be calculated analytically and which ca
tures the essence of the problem. Atomic units are u
throughout.

II. COUPLED-STATE METHOD FOR THE SOLUTION
OF THE TDSE

Consider the dynamics of a particle with coordinaterW and
Hamiltonian H. One of the most versatile and most fr
quently employed techniques to numerically solve a tim
1113 ©1999 The American Physical Society
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1114 PRA 60YOSHIDA, WATANABE, REINHOLD, AND BURGDÖRFER
dependent Schro¨dinger equation is the coupled-state metho
Its core ingredient is a finite basis expansion of the wa
function as

uc~ t !&5 (
n51

N

an~ t !ufn&, ~1!

whereN is the number of basis statesufn& included in the
truncated expression. Equation~1! converts the TDSE into a
system of coupled ordinary differential equations of the fo

iaẆ ~ t ! 5 ĤaW ~ t !, ~2!

whereaW (t)5(a1 ,...,an ,...,aN) is the state vector, andĤ(t)
is the Hamiltonian matrix with elements^fnuHufn8&. In Eq.
~2! and in the following we assume that the basis set is
thonormal@if the basis functions are nonorthogonal, Eq.~2!
also contains the overlap matrix with elements^fnufn8&].

The key point for the following analysis is that in an
truncated expansion of the form~1! whereN is finite ~limited
by present computational capabilities! only a finite domain in
coordinate space up to a radiusr &R can be adequately rep
resented. Thus, as the wave function expands in time, it
comes reflected as it reaches this boundary. Here we stu
few techniques, old and new, for avoiding these reflecti
using various square integrable basis functionsufn&. For
simplicity, we apply these methods to the evolution of a fr
particle and we assume thatN refers to the number of basi
states in the radial direction, thereby ignoring the basis st
required to subtend the angular degrees of freedom. For
angular momentum, the problem is equivalent to that o
free one-dimensional~1D! particle with Hamiltonian

H52
1

2

d2

dr2
, ~3!

and the boundary condition on the wave functionc(0,t)
50 for all t. It should be kept in mind, however, that i
realistic 3D calculations a total number ofN basis states hav
to be distributed among all degrees of freedom such that o
;N1/3 states are available in the radial direction. In oth
words, just increasingN is not a viable option to control the
problem of reflections.

It is useful to distinguish two different classes of ba
states.

~a! Strongly localized basis expansions greatly simpl
the evaluation coordinate operators such as arbitrary po
tials or masking functions. They include, among others,
tice expansions@9,10# and discrete variable representatio
~DVR! @19#. In each case,fn

G(r ) is effectively localized at
one grid pointr n of the lattice and the matrix representatio
of an operatorO(r ) is diagonal,

^fm
GuO~r !ufn

G&}dm,nO~r n!. ~4!

~b! Pseudostate expansions, on the other hand, are d
calized within a finite domain of coordinate space with
variable number of nodes, typicallyfn(r ) containsn21 ra-
dial nodes. A prototype is the set of radial box~B! wave
functions for a box of radiusR,
.
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^r ufn
B&5fn

B~r !5A2

R
sin~pnr !, ~5!

with pn5pn/R. Another example of atomic pseudostat
which we discuss in the following is the Sturmian~S! pseu-
dostates@15,16,20#

^r ufn
S&5fn

S~r !5
2

nAnS

r

nS
e2r /nSLn21

1 ~2r /nS!, ~6!

wherenS is referred to as the Sturmian parameter. The s
cific advantage of the Sturmian expansion is that for prope
chosennS , a singlefS can represent a hydrogenic atom
state for a given quantum number with its nodal struct
~for nS5n the equivalence is exact! and it properly describes
a Coulomb singularity forr˜0. Moreover, for any fixednS
the discrete set is complete and its truncation atN yields a
discrete representation of a portion of the continuu
@15,16,20,21#.

One common feature of all these expansions is the p
ence of a ‘‘wall’’ at some valuer .R. For lattice-based ex-
pansions, reflections occur at or near the outermost
point, i.e., r N5R. For box wave functions,R is obviously
given by the wall of the box, while for atomic pseudostat
of Sturmian type the wall is ‘‘soft’’ and its location is les
obvious. It can be estimated from the radial expectation v
ues for Sturmian pseudostates

^r &n5^fn
Sur ufn

S&5
3

2
nnS<

3

2
NnS . ~7!

The position of the wall is therefore of the order of^r &N and
scales linearly withnS . In fact, the effective position of the
wall is energy~or momentum! dependent since the local den
sity of states~LDOS! varies with the distance from the or
gin. For a simple estimate we use the asymptotic expres
of fn

S(r ) for large r andn @22#,

lim
r ,n˜`

fn
S~r !}cos~A8nr/nS23p/4!. ~8!

Nearr 5nSn the local wavelength is approximately given b

l.A2pnS ~9!

corresponding to ann-independent local momentum

^p& 'A2/nS . ~10!

Combining Eq.~10! with Eq. ~7! leads to the relation

^p& ^r &n&2N ~11!

for the momentum dependence of the effective position
the ‘‘reflecting wall.’’ A more detailed quantitative analys
of this problem will be given below. The physical signifi
cance of Eq.~11! is that reflections set in when the chara
teristic wavelength of the wave packet can no longer be
commodated even when the spatial extent of the trunca
basis reaches farther out. The fact that for atomic ps
dostates the effective position of the wall is a dynamic rat
than just a purely geometric quantity may be one of
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PRA 60 1115REFLECTION-FREE PROPAGATION OF WAVE PACKETS
reasons why systematic investigations of the problem of
flections in atomic pseudostate expansions appear to be m
ing.

III. SUPPRESSING REFLECTIONS

Suppose that the full Hilbert space of square integra
functions is divided intoP and Q subspaces such that$P%
5$fn ;n51,...,N% is the subspace subtended by our fin
basis set and

15uP1Q&^P1Qu5uP&^Pu1uQ&^Qu, ~12!

uP&^Pu5 (
n51

N

ufn&^fnu. ~13!

The task is to find a good approximation for the projection
the wave function onto the subspaceP which is given by

uc~ t !&P5uP&^Puc~ t !&5uP&^Pue2 iHt uP&^Puc~0!&,
~14!

where we have assumed that the initial stateuc(0)& of the
wave packet is well localized in our basis set, i.e.,

uc~0!&.uP&^Puc~0!&, ~15!

^Quc~0!&.0. ~16!

Note that apart from this assumption, the wave funct
uc(t)&P is exact. It differs from the coupled-state solution
Eq. ~2! which is given byaW (t)5exp(2iĤt)aW(0) or, in the
present notation,aW (t)5^Puc(t)&, Ĥ5^PuHuP&,

ucU~ t !&P5uP&e2 i ^PuHuP&t^Puc~0!&, ~17!

due to the different evolution operators

exp~2 i ^PuHuP&t !Þ^Puexp~2 iHt !uP&. ~18!

The matrix representation of the evolution operator with
the P space@left-hand side of inequality~18!# is unitary and
does not allow for any flux of probability outside theP
space. In turn, the right hand side,^Puexp(2iHt)uP&, is not
unitary since it is a representation of the exact evolut
operator which allows for coupling to theQ space. The dif-
ferences between Eqs.~17! and ~14! can be made more ex
plicit by expressing the wave function in terms of the eige
vectors of the evolution operators:

uc~ t !&P5 (
k51

N

bk~0!e2 iEktuxk&, ~19!

ucU~ t !&P5 (
k51

N

ck~0!e2 i ektuwk&. ~20!

In Eq. ~20!, ek denotes the real eigenvalue of the Ham
tonian^PuHuP&. In Eq.~19!, on the other hand,Ek is defined
through the relation

^Puexp~2 iHt !uP&^Puxk&5exp~2 iEkt !^Puxk&. ~21!
-
ss-

le

f

n

n

-

The nonunitarity is reflected in the complex eigenvaluesEk

5 Ek5Ek
R1 iEk

I . Suppression of reflection in the exact ev
lution operator can therefore be attributed to the presenc
an imaginary part of the effective spectrum that elimina
probability from theP space. The basic ingredient to all a
proximate prescriptions for controlling reflection is the intr
duction of a nonunitary operator whose effect is to elimin
probability flux that is associated with the reflecting porti
of the wave packet. Within a coupled-state approach,
example, a non-Hermitian interaction can be added to
Hamiltonian to induce the nonunitary evolution. Such ad
tional terms are often referred to as ‘‘relaxation operator
or ‘‘optical potentials.’’ For a faithful representation of th
long-time evolution, it is essential that the effect of the r
laxation operator be confined to the region of the wall a
not disturb the evolution in the ‘‘inner’’ region.

A. Masking functions

For lattice-based localized basis expansions@Eq. ~4!#, the
choice of relaxation operators is straightforward. We brie
discuss their properties before turning to the construction
the corresponding operators for atomic pseudostate ex
sions, which is the main focus of this investigation. At t
most elementary level, a relaxation operator can be c
structed by a masking function@7–10#. LetM(r ) be a mask-
ing function so that

M~r !5H 1 if r ,r N

f ~r !,1 if r N11<r<r M.
~22!

The range of lattice sitesr N11, . . . ,r M close to the re-
flecting wall now represent a finiteQ8 subspace (Q8,Q)
that corresponds to a finite number of lattice sites beyond
P subspace (r ,r N). In Q8 the wave function is allowed to
relax by way of an amplitude-absorbing mask. The mask
function f (r ) can be chosen to be continuously differentiab
at r N to high order in order to minimize effects of discont
nuities. Masking is effected by simply multiplying the sta
vector after every time intervalDt j by the masking operato
M which is diagonal in the lattice basisfk :

ucM~ t !&P5uP&^PuP1Q8&S )
j 51

J

M e2 i ^P1Q8uHuP1Q8&Dt j D
3^P1Q8uc~0!&, ~23!

with

t 5 (
j 51

J

Dt j . ~24!

The application ofM is equivalent to a nonunitary evolutio
operator

UM5exp~ lnM!5exp~2 iVoptDt ! ~25!

generated by an optical potentialVopt

Vopt5 i ~ lnM!/Dt . ~26!
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1116 PRA 60YOSHIDA, WATANABE, REINHOLD, AND BURGDÖRFER
We note that masking functions introduce a specific cl
of optical potentials which can be expressed in terms of
~26!. However, an arbitrary smooth optical potential cann
in general, be reduced to a simple masking function@Eq.
~22!#. UM does not explicitly depend onDt @Eq. ~25!#. Im-
plicitly, however, Dt enters through the application of th
masking operator after every time intervalDt. From Eqs.
~22! and ~26! it is obvious that the spectrum ofVopt lies on
the negative imaginary axis. ForDt˜0, Vopt seemingly be-
comes infinitely absorptive@Eq. ~26!#. However, we will dis-
cuss below how Eqs.~25! and~26! imply complete reflection
in the limit Dt˜0. This result, somewhat surprising at fir
glance, is connected to the quantum Zeno effect.

B. Repetitive projection method

The implementation of the analog to masking into atom
pseudostate expansions is not obvious because of the
calized nature of the basis states. No particular subset o
basis can be directly associated with spatial region near
boundary. Consequently, the relaxation operator will be
general, nonlocal and nondiagonal with respect to the ba
The construction of such a relaxation operator is clearly
unique. We show in the following that repetitive projectio
onto a conveniently chosen subspace provides a realiza
of a relaxation operator or, equivalently, of an optical pote
tial. We implement this method for the Sturmian basis
@Eq. ~6!#. Many features of this repetitive projection metho
are, however, valid for other basis sets as well.

The starting point is the observation that radial expec
tion values are ordered with quantum numbers@Eq. ~7!#.
Consequently, despite the delocalized nature and nodal s
ture of the basis states, one can associate the Sturmian s
with the largest quantum numbers with the probability a
plitude in the region of coordinate space closest to the ef
tive wall. We therefore decompose the truncated Hilb
space into two finite subspaces

$P%5$fn
S% i<n<N ,

~27!

$Q8%5$fn
S%N11<n<M ,

with the description of the unity within theM-dimensional
model space@i.e., Eq.~12! but for a finiteQ8 space#. TheP
space represents the interaction region or inner region w
the initial stateuc(0)& of the wave packet is localized@i.e.,
Eq. ~15!#.

After a time stepDt, we project the time evolution in the
model spaceP1Q8 onto P,

ucRPM~Dt !&P5uP&^PuP1Q8&e2 i ^P1Q8uHuP1Q8&Dt

3^P1Q8uP&^Puc~0!&. ~28!

That is, from the evolved wave packet we now remove
component that has reached theQ8 space, the boundary re
gion, much like for the exact wave function~14! for which
the P1Q8 space would be the full Hilbert space of squa
integrable functions. Repeating this process for a total oJ
time intervalsDt j ~not necessarily equal! leads to
s
q.
t,
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ucRPM~ t !&P5uP&S )
j 51

J

^PuP1Q8&e2 i ^P1Q8uHuP1Q8&Dt j

3^P1Q8uP& D ^Puc~0!&. ~29!

Note that the domain of the Hamiltonian is the full mod
spaceP1Q8. Moreover,H is not block-diagonal with re-
spect to theP2Q8 decomposition, i.e.,

H5uP&^PuHuP&^Pu1uQ8&^Q8uHuP&^Pu1uP&^PuHuQ8&

3^Q8u1uQ8&^Q8uHuQ8&^Q8u, ~30!

where ^PuHuQ8&5^Q8uHuP&* because of Hermiticity.
Within each time interval, the Hamiltonian couples the wa
packet to the fullP1Q8 space including the ‘‘boundary re
gion’’ represented by theQ8 space. After each projection
only the portion of the wave function remaining in the inn
region is kept. Equation~29! is the central result for the
RPM.

It is easy to show that this method is formally equivale
to masking. The projection operator can be associated wi
nonunitary masking operator

M5uP&^Pu. ~31!

The corresponding optical potential follows from

e2 iVoptDt 5 uP&^Pu ~32!

as

Vopt5
i

Dt
ln~ uP&^Pu!. ~33!

Since the spectrum of the projection operator is posit
definite and bounded from above by 1, the spectrum ofVopt
lies again on the negative imaginary axis. However, unl
masking functions in coordinate space, this optical poten
introduces also masking in momentum~or energy! space.

C. Complex rotation method

As has been pointed out some time ago@12#, complex
coordinate scaling provides a method to suppress reflecti
Complex scaling involves the following canonical transfo
mation in the complex plane@13,14#: The positionr and
momentump are rotated by an angleu into the complex
plane,

r˜reiu, ~34!

and

p˜pe2 iu. ~35!

Correspondingly, the basis functions are rotated as

fn~r !˜fn
u~r !5fn~reiu!, ~36!

which are usually referred to as complex basis functio
@12–14#. For Sturmian pseudostates, the complex rotat
~CR! of r is equivalent to using a complex Sturmian para
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PRA 60 1117REFLECTION-FREE PROPAGATION OF WAVE PACKETS
eternS
u5nSexp(2iu) @15#. It can be shown that the projectio

of the wave function onto theP space is equivalent to

uc~ t !&P5e2 iHt uc~0!&5uP~2u!&^P~2u!ue2 iHt uP~2u!&

3^P~2u!uc~0!&, ~37!

where the subspace$P(u)% corresponds to the set$fn
u%. Us-

ing the property

^fn
2uuHufm

2u&5E d~re2 iu!fn~re2 iu!Hfm~re2 iu!

5E drfn~r !H~u!fm~r !5^fnuH~u!ufm&,

~38!

and the approximation ^P(2u)uexp(2iHt)uP(2u)&
.exp@2i^P(2u)uHuP(2u)&t#, one finally arrives at

ucCR~ t !&P.uP~2u!&e2 i ^PuH(u)uP&t^P~2u!uc~0!& ~39!

or, equivalently,

cCR~r ,t !5 (
n51

N

cn
u~0!e2 iEntwn~re2 iu!, ~40!

where the initial state is supposed to be contained in
rotated basis andwn are the eigenvectors of the Hamiltonia
@Eq. ~20!#. These equations are seemingly very similar
Eqs.~17! and ~20!. However, the rotated HamiltonianH(u)
is no longer Hermitian. Upon rotation ofp,

H52
1

2

d2

dr2
˜H~u!52

1

2
e22iu

d2

dr2
, ~41!

the solutionsuwn& of the energy eigenvalue equation no
yield complex eigenvalues. The free-particle continuum
rotated into the lower half plane,

k˜k5kR1 ikI5uku~cosu2ısinu!, ~42!

E5
k2

2
˜

uku2

2
e22iu5ER1 i EI , ~43!

with

ER5
1

2
~kR

22kI
2!5

1

2
uku2cos2u, ~44!

EI5kRkI52
1

2
uku2sin2u. ~45!

All positive-energy discrete eigenvalues of the Ham
tonian in the pseudostate basis lie on a ray emanating f
the origin and making an angle of22u with the positive
~real! energy axis~Fig. 1!. The free-particle continuum state
are square integrable and satisfy, apart from exponen
damping at large distances, outgoing boundary conditi
;eirk Re2r ukI u. This property suggests that complex rotati
may also be well suited for describing the reflection-fr
propagation of the wave packet.
e

s

m

ial
s

D. Siegert pseudostate expansions

The Siegert states have played an important role in
theory of scattering for a long time. For instance, Schnei
@23# proposed the calculation of resonances in tim
independent scattering theory employing Siegert ps
dostates. More recently, generating Siegert pseudostate
eigenvectors of a generalized eigenvalue problem has b
proposed by Tolstikhinet al. @24#, and a fuller account of its
mathematical structure and results have been given in@25#.
Siegert pseudostates are, in fact, closely related to the
states@Eq. ~5!# where the standing-wave boundary conditi
at R is replaced by purely outgoing-wave boundary con
tions. The radial Schro¨dinger equation within the interva
@0,R# which defines Siegert states

F2
1

2

d2

dr2
1V~r !2EGf~r !50, E5

1

2
k2 ~46!

is solved subject to the boundary conditions

f~r !ur 5050, S d

dr
2 ik Df~r !ur 5R50. ~47!

In the present case of the free radial wave packet evolut
we choose

V~r !5H 0, r ,R

v0.0, r 5R ~48!

wherev0 is small but finite. We show that SPSs are partic
larly well suited to control reflections. The obvious adva
tage of a truncated set of SPSs is that the outgoing boun
conditions explicitly suppress reflections. The price to
paid is that the square root of the eigenenergy~i.e., k) ap-
pears in the boundary condition. This leads to a quadr
eigenvalue problem wherek is now, in general, complex.

The solution of the Siegert pseudostate eigenvalue p
lem proceeds by expansion into DVR basis functionsp i(r ),

FIG. 1. The energy spectrum of the free-particle Hamilton
calculated with anN550 Siegert pseudostate expansion~crosses!
and the complex rotation method usingN570 Sturmian functions
~circles!. The rotation angle for the complex rotation method isu
50.05 rad and the Sturmian parameter isnS51.
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1118 PRA 60YOSHIDA, WATANABE, REINHOLD, AND BURGDÖRFER
fn~r !5(
i

bn,iAw~r !p i~r !, ~49!

wherep i(r ) is a strongly localized function on the grid sa
isfying

p i~r j !50, iÞ j ~50!

and w(r ) is a weighting function in the orthogonality rela
tion of polynomials from which the DVR functions are co
structed. Details can be found in Ref.@25#. Our Siegert basis
set is constructed from the eigenvalues of Eq.~46! using the
N smallest values for the absolute magnitude of the eigen
ergies. Note that in order to accurately calculate theseN
Siegert states, one needs to perform a calculation usin
larger DVR basis set. Usually one usesÑ DVR states from
which one keeps onlyN Siegert eigenstates with the lowe
eigenenergies, discarding the rest. In the following, we
Ñ5100 DVR basis functions and retainN550 Siegert
states.

Within the SPS approach, the projection of the wave fu
tion in theP subspace~i.e., the@0,R# subspace! can be ex-
pressed as

cSPS~r ,t !5 (
n51

N

cn~0!e2 iEntfn~r !, ~51!

where the eigenenergiesEn are complex numbers. We giv
in Fig. 1 the complex energy spectrum for the SPS states.
a free particle in a box with a small, but finite, valuev0 of
the potential at the boundary@Eqs. ~46!–~48!#, the eigen-
value equation can be expressed as

j5np2
i

2
ln

Aj22e21j

Aj22e22j
, ~52!

where

j5kR,
~53!

e252v0R2.

Solving this by iteration, the first iteration yields

k5
j

R
.

1

RF S n1
1

2Dp2 i ln
A2np

Av0R
G , ~54!

wheree!uju. The iteration may be continued until a desir
degree of convergence is achieved. As indicated by the fi
order iteration formula@Eq. ~54!#, the imaginary part grows
only logarithmically. Resonances satisfying Siegert bou
ary conditions are square integrable and lie in the comp
plane at an angle2b, where tanb5uEI /ERu in the section
between2u and the energy axis provided that (2u2b)
.0 @13,14# ~see Fig. 1!. Here and in the following we se
v051024, R5100.

IV. NUMERICAL RESULTS

The efficiency of the various methods of suppressing
flections is quantitatively analyzed in this section employ
a simple, analytically solvable model, namely, the propa
n-

a

e

-

or

t-

-
x

-

-

tion of a free radial wave packet. In order to satisfy t
boundary condition atr 50 for all t, we choose att50 the
antisymmetric linear combination of Gaussian wave pack

c~r ,0!5AH expF2
~r 2r 0!2

4s2
1 ik0r G

2expF2
~r 1r 0!2

4s2
2 ik0r G J , ~55!

whereA is a normalization constant,k0 is the initial ~mean!
momentum of the wave packet,r 0 its mean position, ands
its radial width. If (r 01k0t)2@s21t2/4s2, the analytic so-
lution of the free-particle time evolution is given by

uc~r ,t !u2.
2~As!2

At214s4
expF2

2s2$r 2~r 01tk0!%2

t214s4 G
~56!

and will be used in the following as a benchmark of t
methods outlined above to represent reflection-free propa
tion where the wave packet is about to leave the inner reg

Figure 2 illustrates the reflection at the boundary of t
coupled-state radial wave packet calculated using Sturm
pseudostates@Eq. ~20!#. According to Eq.~7!, the soft wall is
localized aroundr'1.5nSN'100 ~for nS51, N570) which
is in good agreement with the onset of reflection in Fig. 2.

FIG. 2. Comparison of the analytical wave packet~dashed lines!
and the unitary coupled-state results obtained using Sturmian p
dostates withN570 andnS51 ~solid lines!. The initial Gaussian
wave packet has a peak atr 0540 with a width s510 and an
average momentumk050.5. The vertical dashed line is the ap
proximate position of the reflecting wall.



x
te
ac
o

ha
th
it
un

-
so
ze
uc

n
l-

te
c-

in
c

ia
ur

er-
s
uate
fail

he

of
ard
we

Eq.

m
unc-
he

n, it
but
en

une
ec-
m-
on-
of

ing

a

ith

PRA 60 1119REFLECTION-FREE PROPAGATION OF WAVE PACKETS
the wave packet approaches the wall to within the appro
mate width, oscillations due to interference with the reflec
portion become visible. At larger evolution times, the ex
solution and the Sturmian pseudostate expansion have c
pletely diverged from each other. While the wave packet
moved out to large distances and has completely left
inner region, the pseudostate expansion describes a un
transformation within the inner region subtended by the tr
cated expansion and retains the whole wave packet.

It is instructive to analyze thek0 dependence of the re
flection. Whether or not a reflection occurs is directly as
ciated with whether or not the wave packet can be locali
in the basis set. Therefore, as a figure of merit we introd
the L 2 distance between the exactc and projectedcproj
wave packet,

D5E
0

`

druc~r !2cproj~r !u2, ~57!

ucproj&5 (
n50

N

^fn
Suc&ufn

S&. ~58!

Figure 3 displays lines of constantD for different values
of the Sturmian parameternS and a fixed width of the wave
packets510 in the (k0 ,r 0) plane. The contours are give
for the valueD50.1 such that the wave packet is well loca
ized in the basis set. As can be anticipated from Eqs.~7! and
~11!, the contour lines form~approximate! hyperbolas with
k0r 0'const. Moreover, with decreasingnS , the range ofk0
for a given r 0 supported by the basis set increases. No
however, thatnS˜0 is not a viable strategy to avoid refle
tion since for smallnS the errorD for representing well-
localized atomic initial states will eventually increase.

The dependence of the effective position of the reflect
wall on the momentum can be analyzed in terms of the lo
density of the statesDloc ,

Dloc~r ,E!5(
n

ucn~r !u2d~E2En!, ~59!

wherecn are the eigenstates of the free-particle Hamilton
@Eq. ~3!# diagonalized in the truncated Sturmian basis. Fig
4 displays the LDOS~averaged overDr 516) as a function

FIG. 3. Lines of constantD, i.e.,L 2 deviation of the approxi-
mate from the exact wave function, for two different Sturmian p
rameters (nS51 or 5). Above ~below! each curveD is bigger
~smaller! than 0.1.N570 is used as a basis size.
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of r for different energy bins. Low-energy~low-k) states
have a near-uniform high density out to larger. With in-
creasing energy~momentum!, decreasing ranges ofr can be
supported. This property of the LDOS provides the und
pinning of the relation@Eq. ~11!#. The consequence of thi
observation is that a Sturmian basis provides an adeq
representation of the near-threshold continuum but may
for the emission of energetic electrons. Equation~11! is a
useful simple tool for estimating the dynamical range of t
representation of the continuum by a Sturmian basis.

We turn now to alternative techniques for suppression
reflections. For reference, we show in Fig. 5 the stand
masking technique for a lattice-based expansion where
use here the DVR expansion. As a masking function in
~22! we usedf (r )5sin4@p(r2rM)/2(r N2r M)# if r .R, r N
5R590, andr M5100. Note that we present a result fro
the masking method as a reference but using a masking f
tion which is not necessarily the best for this problem. T
momentum of the wave packet isk050.5 and the time step
for application of the nonunitary operator@Eq. ~23!# is Dt
550 a.u. As the wave packet reaches the masking regio
gets distorted and altered. There is, however, a small
finite fraction of the wave packet that is reflected. For a giv
width and momentum of the wave packet, one can fine t
the masking function to reduce the distortion and the refl
tion. However, both features cannot be eliminated co
pletely. In realistic wave packet propagations describing i
ization, the broad distribution in both energy and position
a coherent excitation makes the optimization of fine tun
difficult.

-

FIG. 4. Local density of states using a Sturmian basis w
(nS51, N570). Each graph is averaged overE (DE50.1) andr
(Dr 516).



ke
ar
Th

-

m

io
s

in
a
fo
re
s

g
th
in
in

in

il-
lity

of

ed.
he

n-

e

ed

e.

the

en

of
-
is

ket
s-

k
e
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Figure 6 illustrates that evolution of the same wave pac
in a complex-rotated basis also provides for a nonunit
evolution and an approximate suppression of reflection.
origin of the loss of probability is damping due to the com
plex energy spectrum@Eq. ~43!#. An optimization at a high
level of transmission through the wall~i.e., absorption! with-
out significant distortion in the inner region could be acco
plished by tuning to a small rotation angle ofu50.05 rad
52.86°. For such small rotation angles, the effective reg
of phase space that can be represented by the rotated ba
very similar to that of the unrotated basis.

The RPM provides an alternative tool to realize mask
in an atomic pseudostate expansion without losing the
vantage of using atomiclike states which may be helpful
describing the bound-state portion of the spectrum. Figu
presents an example for the same wave packet as in Fig
5, and 6 but now with repetitive projection applied withN
570, andM5120. Clearly, the projection-induced maskin
introduces some distortion of the wave packet similar to
one observed for complex rotation or lattice-based mask
method. The distortion is, however, confined to the mask
region. Only whenr 0'100 and is close to the ‘‘wall,’’ do
distortions due to interferences become visible while the
ner region remains unaffected.

It is now of interest to explore the efficiency and tunab
ity of the RPM. Figure 8 shows the transmission probabi
through the wall~i.e., the loss of probability from the ‘‘in-
ner’’ region! as a function of the time intervalDt between
successive projections and differentk0. For different values
of k0 , the transmission probability reaches*90% for the
same range ofDt'5 – 50. Consequently, for a wide range

FIG. 5. Comparison of the analytical wave packet~dashed lines!
and the results obtained using DVR basis states and a mas
function ~solid line! ~see text!. The initial wave packet is the sam
as that in Fig. 2.
t
y
e

-

n
is is

g
d-
r
7

. 2,

e
g
g

-

k values~variation by a factor 4! and energies~factor 16!, a
large amount of suppression of reflections can be achiev

The transmission curves show a rapid falloff from t
maximum towards largerDt as well as smallerDt. The re-
duced transmission through the wall, or equivalently, e
hanced reflection for largeDt has a simple ‘‘geometric’’
interpretation. If the time interval exceeds the round-trip tim
through the ‘‘masking region’’ of lengthDR,

Dt> 2DR/k0 , ~60!

the wave packet is reflected at the ‘‘outer wall’’ associat
with the border of the domainP1Q8 to the inner region
~statesfn with n<N) before the next projection takes plac
Note that the discontinuous dropoff in Fig. 8 fork051 oc-
curs whenDt changes abruptly fromDt5t to Dt5t/2 cor-
responding toJ51,2 ~the total propagation time for the
smaller momenta is, in turn, outside of the time range in
figure!.

More interestingly, the transmission is also reduced wh
the projection is performed too often, i.e., whenDt is too
small. This is nothing but the manifestation of the onset
the quantum Zeno effect@26#, here observed for the free
particle wave packet evolution. Its physical interpretation
that by projecting too often, the evolution of the wave pac
is ‘‘frozen’’ inside theP space which prevents the transmi
sion and the leakage out. For the limitDt˜0 this can be
easily shown as follows: Using the decomposition@Eq. ~24!#
we find for smallDt

ing FIG. 6. Comparison of the analytical wave packet~dashed lines!
and the complex rotation results using a Sturmian basis withnS

51, N570, and an angleu50.05 ~solid lines!. The initial wave
packet is the same as that in Fig. 2.
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uP1Q8&e2 i ^P1Q8uHuP1Q8&Dt^P1Q8uP&

.uP&~12 i ^PuHuP&Dt !1uQ8&~2 i ^Q8uHuP&Dt !.

~61!

Therefore,

FIG. 7. Comparison of the analytical wave packet~dashed lines!
and the results of the repetitive projection method~RPM! using
Sturmian pseudostates withN570, M5120, and nS51 ~solid
lines!. The initial wave packet is the same as that in Fig. 2.

FIG. 8. Transmission probability through the wall generated
the repetitive projection method. Each curve corresponds to a
ferent momentum and total propagation timet such that 99% of the
exact wave packet should go through the inner wall. Fork050.25
t5830, for k050.5 t5320, and fork051 t5150. The parameters
for the initial wave packet ares510 andr 0530. The parameters
for the basis sets used in this calculation areN570, M5120, and
nS51.
^PuP1Q8&e2 i ^P1Q8uHuP1Q8&Dt^P1Q8uP&

.12 i ^PuHuP&Dt2
1

2
^PuHuP&2Dt22

1

2
^PuHuQ8&

3^Q8uHuP&Dt2. ~62!

Note that there are no couplings to theQ8 space to first
order inDt but only to second order;Dt2. If we take a fixed
evolution time t and J time steps,Dt5t/J, we find in the
limit J˜`

^PuP1Q8&e2 i ^P1Q8uHuP1Q8&JDt^P1Q8uP&

.@^PuP1Q8&e2 i ^P1Q8uHuP1Q8&Dt^P1Q8uP&#J

.~12 i ^PuHuP&Dt !J2
JDt2

2
^PuHuQ8&^Q8uHuP&

.12 i ^PuHuP&t2
t

2
^PuHuQ8&^Q8uHuP&Dt. ~63!

Therefore, in the limit J˜`, Dt˜0, and JDt5t
5const, the coupling to theQ8 space vanishes. This is th
direct analog to the quantum Zeno effect in spin systems
the present case, it corresponds to the complete eradica
of the masking effect and the replacement by a comp
reflection at the boundary between the interaction region
the masking region. This—at first counterintuitive—result
the essence of the quantum Zeno effect. The decreas
transmission in Fig. 8 with decreasingDt can therefore be
considered as the onset of this effect which is complet
realized atDt&1024.

In Fig. 9, a typical dependence of the reflection coefficie
as a function of the momentum of the wave packet,k0 is
displayed for both the CR and the RPM methods. The refl
tion coefficient in this case is defined as the probability
find the electron in the interval@0,100# after a long enough
time such that the whole wave packet is outside this inter
Note that the calculations in the figure have been obtai

y
if-

FIG. 9. Reflection coefficient as a function of mean moment
value k0 of the initial wave packet withr 0540 ands510. The
RPM ~solid line! calculation was performed usingnS51, N570,
M5270, and Dt580. For the complex rotation method~CR:
dashed line! we usedN570, nS51, andu50.05.
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using a fixed basis set and a fixed value ofDt, i.e., we in-
tentionally avoid any optimization of the reflection coef
cient as a function ofk0. For this particular set of parameter
reflections can be reduced to less than 1% for 0.3<k0<2,
which corresponds to an energy variation by more tha
factor 40. Clearly, this ‘‘ applicability range’’ can be in
creased and shifted by appropriately tuningDt, ns , N, and
M. For this free-particle time evolution problem, CR c
suppress the reflection more effectively. However, in pr
lems with nondilatation analytic potential@i.e., the caseEI in
Eq. ~43! becomes positive# an implementation of CR is les
obvious. For such cases, the RPM can be considered
viable alternative within the framework of atomic pse
dostate expansions.

Finally, the SPS basis provides a very efficient method
suppressing reflections. Figure 10 displays the propaga
of the wave packet with the same parameters (k050.5, s
510) as in the previous example. Obviously, the SPS pro
gation allows for virtually perfect transmission through t
boundary. Moreover, in contrast to the lattice-based mask
function ~Fig. 5!, the complex rotation~Fig. 6!, and the RPM
~Fig. 7!, the wave packet remains virtually undisturbed ne
the boundary. The SPS basis shares many common fea
with the complex scaling calculation~Fig. 6!, in particular
the complex energy propagation. It is therefore interesting
further inquire into the differences for the wave pack
propagation employing the two methods. The key is the
ference in the spectral distributions of the energies in
complex plane~Fig. 1!. While within the complex scaling
approach the energies lie on a ray of fixed angleu with

FIG. 10. Comparison of the analytical wave packet~dashed
lines! and the results obtained usingN550 Siegert pseudostate
generated by 100 DVR basis functions~solid lines!. The initial
wave packet is the same as that in Fig. 2.
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respect to the real energy axis and both real and imagin
parts ofE grow at the same rate, the imaginary part of t
energies of the SPS is weakly dependent on the real part
is almost constant for largek values. For the time propaga
tion up to t&100 the relevant region of the spectrum shou
be such thatEn

I t&1, or En
I &1022 ~such that the probability

is not yet absorbed!. In this region, both spectral densities a
quite similar. One may therefore interpret the efficiency
the complex rotation method in terms of the proximity of t
complex rotation spectrum to the one of the most relev
Siegert states.

The range of energies and momentum of wave pack
which can be represented in a given SPS basis depend
course, not only on the amount of suppression of reflect
but also on the effective spectral density of statesD in the
region of physical interest,

D~E!52
1

p (
n

ImS 1

E2En
D , ~64!

where En represents a complex eigenvalue@in the limit
Im(En)˜0 one obtains a sum ofd functions as in Eq.~59!#.
Figure 11 gives a comparison of the spectral density of
same number of positive-energy states using the com
Sturmian pseudostates and the SPS. For reference, we
also the DOS for a free particle in a one-dimensional b
D}1/A(E!. Obviously, the spectral weight is differently dis
tributed in the two methods. The Sturmian pseudosta
place an increased spectral weight in the near-threshold
gion relative to the free-particle DOS while unde
representing high-energy continuum states. This is a di
consequence of the effective momentum dependence o
position of the wall@Eq. ~11!#. The SPS states, on the oth
hand, follow closely the free-particle behavior of the DO
These differences may also influence the choice of the o
mal basis set depending on the process to be investiga
For near-threshold processes, the Sturmian pseudostates
be advantageous while for high-energy electron emission
SPS may be more appropriate.

FIG. 11. Comparison of the spectral densities obtained us
N570 complex Sturmian states withnS570 andu50.05 ~dashed
line! andN550 Siegert states constructed from 100 DVR states
with R5100 ~solid line!.
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V. CONCLUSION

We have performed a comparative study of differe
methods of wave packet propagation described by a ti
dependent Schro¨dinger equation within atomic pseudosta
expansions. We have proposed two techniques which are
signed to control unphysical reflections. One is the extens
of the notion of masking functions, well known for grid
based expansions@7–10#, to equivalent projection operator
for atomic pseudostates, as specifically implemented
Sturmian basis states. The other one is the application
Siegert pseudostates, well known for time-independent s
tering theory for resonances@23,24#, to the study of wave
packet evolution. Both methods provide efficient techniqu
for suppressing reflections. The SPS method features
added benefit that the suppression of reflections does
.
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cause significant distortions of the wave packet near
boundary where reflections take place. The present tes
the free-particle evolution may serve as a benchmark
complex problems such as the periodically kicked Rydb
atom which features complex, nonseparable dynamics
where no exact analytical solution is available.
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