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We analyze the problem of suppression of reflections within the numerical propagation of wave packets
using finite atomiclike pseudostate expansions. Artificial reflections at effective “walls” and reentering of
probability flux into the interaction region represents a major limitation for the study of long-time evolution of
atomic ionization processes. We propose two methods, the repetitive projection niefPgll and Siegert
pseudostatéSPS propagation, and study their efficiency in suppressing reflections. It is shown that the
guantum Zeno effect sets a limit on the efficiency of the RPM as well as of masking functions. For the exactly
solvable propagation of a radial-free wave packet, we show that both the SPS and the RPM provide almost
complete suppression of reflections without appreciable distortion in the physically relevant region of coordi-
nate spacd.S1050-29479)03908-4

PACS numbeps): 32.80.Fb, 31.15:-p, 32.80.Rm, 02.76-c

[. INTRODUCTION mean level spacing of a systdr]. In order to delineate the
breakdown of classical-quantum correspondence, the chal-
For a large number of dynamical atomic processes, théenge is to integrate the time-dependent Sdhrger equa-
numerical solution of the time-dependent Sdinger equa- tion (TDSE) out to times longer thaty, . This time typically
tion requires the propagation of “free” wave packets out to€xceeds the time when the first reflections in the basis set
large times and large distances. Only at that point does prdave occurred. One prototype system where we encountered
jection onto asymptotic final states allow the unambiguoughe difficulty is the periodically kicked atom, a paradigm of
determination of transition amplitudes and, hence, offtee  quantum chaos in atomic physit2—6]. It is therefore cru-
S matrix. These include ionization of atoms by charged parcial to control and suppress reflections at the walls without
ticles, photons, and intense electromagnetic fields. In alflistortion of the wave packet evolution in the physically rel-
cases, the nonstationary wave packet contains a continuu@yant region of coordinate space where the classical-
component which will eventually escape the interaction requantum correspondence is being investigated.
gion. Numerical representations of the wave packet in terms In this paper we report new alternative techniques for the
of a finite basis set, either in terms of atomic pseudostates guppression of boundary reflections in the quantum evolution
lattice-based representations, have the fundamental limitavithin the framework of atomic pseudostate representations,
tion that they subtend only a finite domain in coordinatenamely, the repetitive projection methd®PM) and the
space up to a certain distanBe Therefore, any finite basis Siegert pseudostatéSPS propagation. Unlike for lattice-
representation contains a “wall” or boundary Bf either —based methods, controlling reflections within pseudostate ex-
explicitly in box or lattice representations or implicitly in pansions is less straightforward and poorly understood since
pseudostate representations, at which the continuum portidgh€ boundary is only implicitly determined. We study their
of the wave packet will eventually be reflected and will re-efficiency in suppressing reflections and we discuss their
enter the interaction region, thereby artificially distorting theconnection with standard methods such as masking functions
bound-state portion of the evolved wave packet. Dependingnd optical potentials as well as complex rotatigr-18]. It
on the method used, the wall may be hard or soft and itéS shown that the quantum Zeno effect sets a limit on the
efficient position may depend on the momentum and energ§fficiency of the RPM as well as of masking functions. We
of the wave packet. While this problem is ubiquitously Show that both RPM and SPS céamos) completely sup-
present in all numerical propagation schemes, it is of relapress reflections without appreciably perturbing the “inner”
tively little influence in the study of transitions into low- region. As a test case, we use the time propagation of a free
energy states and short times. It becomes, however, a majparticle which can be calculated analytically and which cap-
hurdle for long interaction times and problems involving tures the essence of the problem. Atomic units are used
highly excited states such as Rydberg states. throughout.
Suppression of reflections is particularly important in in-
vestigations of the classical-quantum correspondence of || COUPLED-STATE METHOD FOR THE SOLUTION
Hamiltonian systems with mixed phase space. The “discor- OF THE TDSE
dance” between the quantum evolution with the correspond- R
ing classical system exhibiting “soft chaos” should manifest Consider the dynamics of a particle with coordinatend
itself for sufficiently long times of the order of the so-called Hamiltonian H. One of the most versatile and most fre-
Heisenberg times,~7/(AE) where (AE) is the typical quently employed techniques to numerically solve a time-
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dependent Schdinger equation is the coupled-state method. 2
Its core ingredient is a finite basis expansion of the wave <r|¢ﬁ>=¢,‘?(r)= ﬁsin(pnr), (5)
function as

N with p,=mn/R. Another example of atomic pseudostates
_ which we discuss in the following is the Sturmié® pseu-
|d/(t)> I']Zl an(t)|¢n>y ( ) dOStateS{15,16,2q

whereN is the number of basis statg#,) included in the s s
truncated expression. Equati¢h converts the TDSE into a (rlm=n(r)=
system of coupled ordinary differential equations of the form

2 r —ring| 1
=8 Laa(2ring. (©)
S

) whereng is referred to as the Sturmian parameter. The spe-
ia(t) = Ha(t), (2) cific advantage of the Sturmian expansion is that for properly
chosenng, a single#® can represent a hydrogenic atomic
wherea(t)=(ay,...,a,,...,ay) is the state vector, and(t)  state for a given quantum number with its nodal structure

is the Hamiltonian matrix with elementgb,|H|,./). In Eq.  (for ns=n the equivalence is exaand it properly describes
(2) and in the following we assume that the basis set is or2 Coulomb singularity for—0. Moreover, for any fixess
thonormal[if the basis functions are nonorthogonal, £g).  the discrete set is complete and its truncatiomatields a

also contains the overlap matrix with elemetis,| ¢,/ )]. discrete representation of a portion of the continuum
The key point for the following analysis is that in any [15,16,20,21 o
truncated expansion of the forh) whereN is finite (limited One common feature of all these expansions is the pres-

by present computational capabilitiemly a finite domainin ~ ence of a “wall” at some value=R. For lattice-based ex-
coordinate space up to a radiusR can be adequately rep- Pansions, reflections occur at or near the outermost grid
resented. Thus, as the wave function expands in time, it be?0int, i.e.,ry=R. For box wave functionsR is obviously
comes reflected as it reaches this boundary. Here we study@ven by the wall of the box, while for atomic pseudostates
few techniques, old and new, for avoiding these reflection®f Sturmian type the wall is “soft” and its location is less
using various square integrable basis functideps). For obvious. It can be estimated from the radial expectation val-
simplicity, we apply these methods to the evolution of a freeues for Sturmian pseudostates

particle and we assume thidtrefers to the number of basis 3 3

states in the radial direction, thereby ignoring the basis states (Oa=(p3r|pS) = 5NNs=5Nns. (7)
required to subtend the angular degrees of freedom. For zero

angular momentum, the problem is equivalent to that of a . )
free one-dimensiondllD) particle with Hamiltonian The position of the wall is therefore of the order(ofy and
scales linearly witmg. In fact, the effective position of the

1 d2 wall is energy(or momentumdependent since the local den-
H=-5—, (3)  sity of states(LDOS) varies with the distance from the ori-
2 dr gin. For a simple estimate we use the asymptotic expression

. , of ¢3(r) for larger andn [22],
and the boundary condition on the wave functigf0,t)

=0 for all t. It should be kept in mind, however, that in lim ¢3(r)«cog 8nring—3m/4). (8)
realistic 3D calculations a total numberbasis states have rn—o

to be distributed among all degrees of freedom such that only

~N?2 states are available in the radial direction. In otherNearr =ngn the local wavelength is approximately given by
words, just increasingd)l is not a viable option to control the

problem of reflections. N=127ng 9
It is useful to distinguish two different classes of basis . .

states. corresponding to an-independent local momentum
(a) Strongly localized basis expansions greatly simplify (p) ~\2Ins. (10

the evaluation coordinate operators such as arbitrary poten-

tials or masking functions. They include, among others, 'at'Combining Eq.(10) with Eq. (7) leads to the relation
tice expansion$9,10] and discrete variable representations

(DVR) [19]. In each case$S(r) is effectively localized at (p) (ry,=2N (11
one grid pointr,, of the lattice and the matrix representation
of an operatoO(r) is diagonal, for the momentum dependence of the effective position of
the “reflecting wall.” A more detailed quantitative analysis
(¢n61|0(r)|¢n6>oc SmnO(ry). 4 of this problem will be given below. The physical signifi-

cance of Eq(11) is that reflections set in when the charac-
(b) Pseudostate expansions, on the other hand, are delteristic wavelength of the wave packet can no longer be ac-
calized within a finite domain of coordinate space with acommodated even when the spatial extent of the truncated
variable number of nodes, typically,(r) containsn—1 ra-  basis reaches farther out. The fact that for atomic pseu-
dial nodes. A prototype is the set of radial b®) wave dostates the effective position of the wall is a dynamic rather
functions for a box of radiug, than just a purely geometric quantity may be one of the
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reasons why systematic investigations of the problem of reThe nonunitarity is reflected in the complex eigenvalkgs
flections in atomic pseudostate expansions appear to be miss- E, = ER+iE, . Suppression of reflection in the exact evo-
ing. lution operator can therefore be attributed to the presence of
an imaginary part of the effective spectrum that eliminates
. SUPPRESSING REFLECTIONS probability from theP space. The basic ingredient to all ap-
proximate prescriptions for controlling reflection is the intro-
Suppose that the full Hilbert space of square integrablgluction of a nonunitary operator whose effect is to eliminate
functions is divided into® and Q subspaces such thgp}  Probability flux that is a;squated with the reflecting portion
={¢,:n=1,...N} is the subspace subtended by our finiteOf the wave packet. Within a coupled-state approach, for

basis set and example, a non-Hermitian interaction can be added to the
Hamiltonian to induce the nonunitary evolution. Such addi-
1=|P+Q){P+Q|=|P){P|+|Q)Q], (12)  tional terms are often referred to as “relaxation operators”

or “optical potentials.” For a faithful representation of the
N long-time evolution, it is essential that the effect of the re-
IPYP|=2 |dn){ebnl. (13)  laxation operator be confined to the region of the wall and
n=1 not disturb the evolution in the “inner” region.

The task is to find a good approximation for the projection of _ _
the wave function onto the subspa@evhich is given by A. Masking functions

i For lattice-based localized basis expansidbg. (4)], the

— — iHt

l(1))p=|P)(P[y(t))=|P)(Ple”"™"|P)(P[(0)), (14) choice of relaxation operators is straightforward. We briefly
discuss their properties before turning to the construction of

where we have assumed that the initial s{at€0)) of the the corresponding operators for atomic pseudostate expan-

wave packet is well localized in our basis set, i.e., sions, which is the main focus of_this investigation. At the
most elementary level, a relaxation operator can be con-
|4(0))=|P)(P|4(0)), (15) structed by a masking functig@—210]. Let M(r) be a mask-
ing function so that
(Qlu(0))=0. (16 1 ey
Note that apart from this assumption, the wave function M(r)= ()<l if rys <r<ry. (22)
|4(t))p is exact. It differs from the coupled-state solution of
Eq. (2) which is given bya(t)=exp(—iHt)a(0) or, in the The range of lattice sitesy, 1, ... /'y close to the re-
present notatiora(t) =(P|(t)), H=(P|H|P), flecting wall now represent a finit®’ subspace @' CQ)
that corresponds to a finite number of lattice sites beyond the
|4V (1)) p=|P)e PIHIPY(P|4(0)), (17) P subspacer(<ry). In Q" the wave function is allowed to
relax by way of an amplitude-absorbing mask. The masking
due to the different evolution operators functionf(r) can be chosen to be continuously differentiable
) ) atry to high order in order to minimize effects of disconti-
exp(—i(P[H|P)t) # (P|exp(—iHt)[P). (18  nuities. Masking is effected by simply multiplying the state

vector after every time intervalt; by the masking operator

The matrix representation of the evolution operator W|th|nM which is diagonal in the lattice basi:

the P spacd left-hand side of inequality18)] is unitary and
does not allow for any flux of probability outside thHe ]

space. In turn, the right hand sidg?|exp(—iHt)|P), is not 1M())p=|PHPIP+Q)| [T Me i(P+QIHIP+Q)AY
unitary since it is a representation of the exact evolution j=1

operator which allows for coupling to th@ space. The dif-

ferences between Eg€l7) and (14) can be made more ex- X(P+Q'[¢(0)), (23
plicit by expressing the wave function in terms of the eigen-
vectors of the evolution operators: wit
N J
[W()e= 2, bi(0)e |y, (19 t=2 At (24)
» The application ofM is equivalent to a nonunitary evolution
|¢U(t)>P=k21 ck(0)e " gy). (200 operator
In Eq. (20), €, denotes the real eigenvalue of the Hamil- UM=exp(InM) =exp( =iV o t) (29
tonian{P|H|P). In Eq.(19), on the other hand, is defined _
through the relation generated by an optical potenthd),

(Plexp(—iHt)|P){P|xi)=exp —iEt){(P|xy). (21) Vopt= i (INM)/AL . (26)
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We note that masking functions introduce a specific class J
of optical potentials which can be expressed in terms of Eq. |¢RPM(t)>P:|P>( [T (P|P+Q)e P+ QIIHIP+QN)AY
(26). However, an arbitrary smooth optical potential cannot, =1

in general, be reduced to a simple masking funciiiq.

(22)]. UM does not explicitly depend oAt [Eq. (25)]. Im- X (P+Q’|P)
plicitly, however, At enters through the application of the
masking operator after every time intervat. From Eqgs.
(22) and (26) it is obvious that the spectrum &, lies on
the negative imaginary axis. Fait—0, V,,, seemingly be-
comes infinitely absorptivEEg. (26)]. However, we will dis-
cuss below how Eq$25) and(26) imply complete reflection H=|PY(P[H|PYP|+|Q" Q' |H|P)P|+|P)P[H|Q")
in the limit At—0. This result, somewhat surprising at first

glance, is connected to the quantum Zeno effect. X(Q'|+]Q'WQ'HIQ'XQ'|, (30)

(Pl(0)). (29

Note that the domain of the Hamiltonian is the full model
spaceP+Q’. Moreover,H is not block-diagonal with re-
spect to thd®—Q’ decomposition, i.e.,

- o where (P|H|Q’)=(Q’|H|P)* because of Hermiticity.
B. Repetitive projection method Within each time interval, the Hamiltonian couples the wave

The implementation of the analog to masking into atomicpacket to the fullP+Q’ space including the “boundary re-
pseudostate expansions is not obvious because of the delgion” represented by th€' space. After each projection,
calized nature of the basis states. No particular subset of thenly the portion of the wave function remaining in the inner
basis can be directly associated with spatial region near theegion is kept. Equatiori29) is the central result for the
boundary. Consequently, the relaxation operator will be, irRPM.
general, nonlocal and nondiagonal with respect to the basis. It is easy to show that this method is formally equivalent
The construction of such a relaxation operator is clearly noto masking. The projection operator can be associated with a
unique. We show in the following that repetitive projection nonunitary masking operator
onto a conveniently chosen subspace provides a realization
of a relaxation operator or, equivalently, of an optical poten- M=[P)(P]. (3D
tial. We implement this method for the Sturmian basis se
[Eqg. (6)]. Many features of this repetitive projection method
are, however, valid for other basis sets as well. e Vot = |P)(P| (32)

The starting point is the observation that radial expecta-
tion values are ordered with quantum numbgEs. (7)]. as
Consequently, despite the delocalized nature and nodal struc-
ture of the basis states, one can associate the Sturmian states
with the largest quantum numbers with the probability am-
plitude in the region of coordinate space closest to the effec-
tive wall. We therefore decompose the truncated Hilbert Since the spectrum of the projection operator is positive

The corresponding optical potential follows from

Vo= 37 1n(P)(P]). 33

space into two finite subspaces definite and bounded from above by 1, the spectrunv of
s lies again on the negative imaginary axis. However, unlike
{P}={dnti=n=n. masking functions in coordinate space, this optical potential

(27 introduces also masking in momentyor energy space.

N — S
Q=1 sazn=m. C. Complex rotation method
with the description of the unity within th&l-dimensional As has been pointed out some time gd@], complex
model spacéi.e., Eq.(12) but for a finiteQ’ spacé. The P coordinate scaling provides a method to suppress reflections.
space represents the interaction region or inner region whefeomplex scaling involves the f0||0VY'”9 canonical transfor-
the initial state|/(0)) of the wave packet is localizdile., ~ Mation in the complex plangl3,14: The positionr and

Eqg. (15)]. momentump are rotated by an anglé into the complex
After a time stepAt, we project the time evolution in the Plane,
model spac”+Q’ onto P, r—relf (34)
|¢RPM(At)>p: | P><P| P+ Q/>e—i(P+Q’\H\P+Q’)At and
X(P+Q'|P)P|4(0)). (29) p—pe '’ (35)

) Correspondingly, the basis functions are rotated as
That is, from the evolved wave packet we now remove the

component that has reached Q¢ space, the boundary re- dn(r)—= pl(r)=n(re'?), (36)
gion, much like for the exact wave functida4) for which

the P+Q’ space would be the full Hilbert space of squarewhich are usually referred to as complex basis functions
integrable functions. Repeating this process for a total of [12—14. For Sturmian pseudostates, the complex rotation
time intervalsAt; (not necessarily equaleads to (CR) of r is equivalent to using a complex Sturmian param-
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eterng=ngexp(—i6) [15]. It can be shown that the projection 0.00
of the wave function onto thE space is equivalent to
|(t)p=e""M|y(0))=|P(~ ))(P(~ 0)|e ™ |P(~0)) 002
X(P(=0)|4(0)), (37) 004
where the subspadd®(#6)} corresponds to the séi}. Us- Tu
ing the property 006
<¢;0|H|¢:no>=f d(re” ") gn(re” ) Hep(re ')
-0.08
:fdr¢n(r)H(0)¢m(r):<¢n|H(0)|¢m>y a
-0.10 .
0.0 05 1.0
and 'Fhe approximation <Ff(_ 9)|9X.p(_th)|P(_9)> FIG. 1. The energy spectrum of the free-particle Hamiltonian
=exp —i(P(— 6)[H|P(—)t], one finally arrives at calculated with arN=50 Siegert pseudostate expansiorosses

: and the complex rotation method usihg=70 Sturmian functions
CR - —i(P[H(6)|P
|‘/f (t)>P—|P(_ 0))e HPIRCA) >t<P(_ 9)|¢(0)> (39 (circles. The rotation angle for the complex rotation methodis

. =0.05 rad and the Sturmian parametenis=1.
or, equivalently,

N D. Siegert pseudostate expansions

R(r,t)= >, c/(0)e Entep (re i?), (40) The Siegert states have played an important role in the
n=1 theory of scattering for a long time. For instance, Schneider
£23] proposed the calculation of resonances in time-
independent scattering theory employing Siegert pseu-
dostates. More recently, generating Siegert pseudostates as
eigenvectors of a generalized eigenvalue problem has been
proposed by Tolstikhirt al.[24], and a fuller account of its
mathematical structure and results have been givd25h

where the initial state is supposed to be contained in th
rotated basis ang,, are the eigenvectors of the Hamiltonian
[Eqg. (20)]. These equations are seemingly very similar to
Egs.(17) and(20). However, the rotated Hamiltoniad ()

is no longer Hermitian. Upon rotation @f

1 g2 1 2 Siegert pseudostates are, in fact, closely related to the box
= — SH(f)=—-e ¥ — | (41)  statedEq. (5)] where the standing-wave boundary condition
2 dr? 2 dr? at R is replaced by purely outgoing-wave boundary condi-

] ] . tions. The radial Schainger equation within the interval
the solutions|e,,) of the energy eigenvalue equation Now [ R] which defines Siegert states
yield complex eigenvalues. The free-particle continuum is

rotated into the lower half plane, 1 d? 1
-5 TV(N—E|¢(r)=0, E=5k>  (46)
k—k=kg+ik,=|k|(coss—1sing), (42) 2dr 2
K2 oOK2 is solved subject to the boundary conditions
=5——-e =ER+iE (43
2 2 d
$(r)|;=0=0, ——Ik)¢(r)|rR=0- (47)
with dr
1 1 In the present case of the free radial wave packet evolution,
ERIE(k’é_ k,2) =5 |k|%cos29, (44  we choose
1 0, r<R
E'=kek = — 5|k|sin26. (45) V(r)=\v,>0, r=R (48)

All positive-energy discrete eigenvalues of the Hamil-wherevg is small but finite. We show that SPSs are particu-
tonian in the pseudostate basis lie on a ray emanating frodarly well suited to control reflections. The obvious advan-
the origin and making an angle of 26 with the positive tage of a truncated set of SPSs is that the outgoing boundary
(rea) energy axigFig. 1). The free-particle continuum states conditions explicitly suppress reflections. The price to be
are square integrable and satisfy, apart from exponentiglaid is that the square root of the eigenenefigs., k) ap-
damping at large distances, outgoing boundary conditionpears in the boundary condition. This leads to a quadratic
~elkre~"IkI This property suggests that complex rotationeigenvalue problem whetleis now, in general, complex.
may also be well suited for describing the reflection-free  The solution of the Siegert pseudostate eigenvalue prob-
propagation of the wave packet. lem proceeds by expansion into DVR basis functiang),
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0.04 | ' ' 1=0 4
(1) =2 Bai\W(r)m(r), (49 ] ]
0.02 + ——~- analytical solution b
where;(r) is a strongly localized function on the grid sat- - —— coupled-states method .
isfyin . t } t
sfying 888 F , o ]
m(rj)=0, |¢j (50) i i T
2002t : ]
andw(r) is a weighting function in the orthogonality rela- ‘@ [ ! ]
tion of polynomials from which the DVR functions are con- & 0.00 ; " '
structed. Details can be found in RE25]. Our Siegert basis : 0.04 : t=100 )}
set is constructed from the eigenvalues of E@f) using the £ [ ]
N smallest values for the absolute magnitude of the eigenen§ 002 1 ]
ergies. Note that in order to accurately calculate thise '3 [ | ]
Siegert states, one needs to perform a calculation using & 90T + } .
larger DVR basis set. Usually one uesDVR states from [ | i
which one keeps onli Siegert eigenstates with the lowest 0.02 b : ]
eigenenergies, discarding the rest. In the following, we use [ A ]
N=100 DVR basis functions and retaiN=50 Siegert 0.00 + z
states. 0.04 |- : 1
Within the SPS approach, the projection of the wave func- [ : ]
tion in the P subspacdi.e., the[0,R] subspacecan be ex- 0.02 | /wv% 1
pressed as [ | ]
0.00 ! e N~
N 0 50 100 200
Yo = 2, ca(0)e Enlgy(r), (51 r

n=1
FIG. 2. Comparison of the analytical wave pactddashed lines

where the eigenenergids, are complex numbers. We give and the unitary coupled-state results obtained using Sturmian pseu-
in Fig. 1 the complex energy spectrum for the SPS states. Falostates wittN=70 andng=1 (solid lines. The initial Gaussian
a free particle in a box with a small, but finite, valug of ~ wave packet has a peak B§=40 with a width =10 and an

the potential at the boundaffgs. (46)—(48)], the eigen-
value equation can be expressed as

average momenturky=0.5. The vertical dashed line is the ap-
proximate position of the reflecting wall.

i JE—ett ¢ tion of a free radial wave packet. In order to satisfy the
§=nm— Elnﬁ' (52 boundary condition at=0 for all t, we choose at=0 the
Foe—¢ antisymmetric linear combination of Gaussian wave packets
where
(r=ro)®
£=kR, Y(r,0)=A{ ex —Tﬂkor
, , (53 7
€ :ZVOR . 2
(r+rgp) " (55
. . . . __ . . —exg — ————iker| ¢,
Solving this by iteration, the first iteration yields A2 0

kzéz l n-+ E W_”n‘/inw (54) whereA is a normalization constark, is the initial (mean
R R 2 WoR|’ momentum of the wave packet, its mean position, and

o . _ ~its radial width. If (o+kot)?>0?+t%/402, the analytic so-
wheree<|[. The iteration may be continued until a desired jution of the free-particle time evolution is given by
degree of convergence is achieved. As indicated by the first-

order iteration formuldEq. (54)], the imaginary part grows 2(Ac)? 2020 — (1 o+ tho))?
only logarithmically. Resonances satisfying Siegert bound- |p(r,t)|2= Z€Xp — 5 0 7 0
ary conditions are square integrable and lie in the complex Vet 4o t“+do

plane at an angle- 8, where taB=|E,/Eg| in the section (56)

between— 6 and the energy axis provided that 42
>0 [13,14) (see Fig. 1 He?g and inpthe followingaweﬁ?set and will be used in the following as a benchmark of the
Vo:10:4 R=100 ' methods outlined above to represent reflection-free propaga-

tion where the wave packet is about to leave the inner region.
Figure 2 illustrates the reflection at the boundary of the

coupled-state radial wave packet calculated using Sturmian
The efficiency of the various methods of suppressing repseudostatelEq. (20)]. According to Eq(7), the soft wall is

flections is quantitatively analyzed in this section employinglocalized around ~1.5ngN~ 100 (for ng=1, N=70) which

a simple, analytically solvable model, namely, the propagais in good agreement with the onset of reflection in Fig. 2. As

IV. NUMERICAL RESULTS
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0 L L .
20 40 60 80 100
fo

FIG. 3. Lines of constand, i.e., £? deviation of the approxi-

mate from the exact wave function, for two different Sturmian pa-

rameters =1 or 5). Above (below each curveA is bigger
(smallep than 0.1.N=70 is used as a basis size.

0.1 | T 4 0.2
the wave packet approaches the wall to within the approxi- \

mate width, oscillations due to interference with the reflected R . . . .

portion become visible. At larger evolution times, the exact 00 00
solution and the Sturmian pseudostate expansion have con [ '
pletely diverged from each other. While the wave packet has 01 | .

moved out to large distances and has completely left the r‘—“\ \

inner region, the pseudostate expansion describes a unitat .

0.2 T y y T y y 0.2
E=0~0.1 E=0.5~0.6
0.1 "N + 401
0.0 } 4 4 1 4 0.0
E=0.1~0.2 E=0.6~0.7
01} + 4 0.1
0.0 —— ==y r\ ——p 0.0
E=0.2~0.3 E=0.7~0.8
W
QO o1F + 4 0.1
Q
-
0.0 } } } } } t 0.0
E=0.3~0.4 E=0.8~0.9
E=0.4~0.5 E=09~1.0 420
{10

X . . . 0.0
transformation within the inner region subtended by the trun- 0 5 100 150 0 50 100 150 200

cated expansion and retains the whole wave packet.
It is instructive to analyze th&, dependence of the re-

flection. Whether or not a reflection occurs is directly asso- ™
ciated with whether or not the wave packet can be Iocalizeézs__
in the basis set. Therefore, as a figure of merit we introduc&®’ =

the £? distance between the exagt and projectediy;
wave packet,

I _ ] 2
A—fO dr|'r//(r) d/proj(r)|v (57)
N
[ o) = 24 (bl )| b (59

Figure 3 displays lines of constat for different values
of the Sturmian parameters and a fixed width of the wave
packeto=10 in the kq,ry) plane. The contours are given
for the valueA =0.1 such that the wave packet is well local-
ized in the basis set. As can be anticipated from Edsand
(11), the contour lines forn{approximate hyperbolas with
kor o=~ const. Moreover, with decreasimg;, the range ok,

FIG. 4. Local density of states using a Sturmian basis with
1, N=70). Each graph is averaged oer(AE=0.1) andr
16).

of r for different energy bins. Low-energflow-k) states
have a near-uniform high density out to largeWith in-
creasing energymomentun), decreasing ranges ofcan be
supported. This property of the LDOS provides the under-
pinning of the relatioEq. (11)]. The consequence of this
observation is that a Sturmian basis provides an adequate
representation of the near-threshold continuum but may fail
for the emission of energetic electrons. Equatidd) is a
useful simple tool for estimating the dynamical range of the
representation of the continuum by a Sturmian basis.

We turn now to alternative techniques for suppression of
reflections. For reference, we show in Fig. 5 the standard
masking technique for a lattice-based expansion where we
use here the DVR expansion. As a masking function in Eg.
(22) we usedf(r)=sin[m(r—ry)/2(ry—rw)] if >R, ry
=R=90, andry,=100. Note that we present a result from

for a givenr, supported by the basis set increases. Notethe masking method as a reference but using a masking func-

however, thang—0 is not a viable strategy to avoid reflec-
tion since for smallng the errorA for representing well-
localized atomic initial states will eventually increase.

tion which is not necessarily the best for this problem. The
momentum of the wave packet kg=0.5 and the time step
for application of the nonunitary operatpEqg. (23)] is At

The dependence of the effective position of the reflecting=50 a.u. As the wave packet reaches the masking region, it
wall on the momentum can be analyzed in terms of the locagjets distorted and altered. There is, however, a small but

density of the state®,

Dm(r,E):; |n(r)|28(E—E,), (59

finite fraction of the wave packet that is reflected. For a given
width and momentum of the wave packet, one can fine tune
the masking function to reduce the distortion and the reflec-
tion. However, both features cannot be eliminated com-
pletely. In realistic wave packet propagations describing ion-

wherey, are the eigenstates of the free-particle Hamiltonianization, the broad distribution in both energy and position of
[Eqg. (3)] diagonalized in the truncated Sturmian basis. Figurea coherent excitation makes the optimization of fine tuning

4 displays the LDOSaveraged oveAr=16) as a function

difficult.
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FIG. 5. Comparison of the analytical wave pacidashed lines . ) )
and the results obtained using DVR basis states and a masking F!G- 6. Comparison of the analytical wave pactdashed lines

function (solid line) (see text The initial wave packet is the same @nd the complex rotation results using a Sturmian basis mdth
as that in Fig. 2. =1, N=70, and an angl@=0.05 (solid lines. The initial wave

packet is the same as that in Fig. 2.

Figure 6 illustrates that evolution of the same wave packet
in a complex-rotated basis also provides for a nonunitark values(variation by a factor #and energiesgfactor 16, a
evolution and an approximate suppression of reflection. Théarge amount of suppression of reflections can be achieved.
origin of the loss of probability is damping due to the com- The transmission curves show a rapid falloff from the
plex energy spectrurfEqg. (43)]. An optimization at a high maximum towards largeAt as well as smalleAt. The re-
level of transmission through the wdile., absorptiopwith- ~ duced transmission through the wall, or equivalently, en-
out significant distortion in the inner region could be accom-hanced reflection for largdt has a simple “geometric”
plished by tuning to a small rotation angle 6=0.05 rad interpretation. If the time interval exceeds the round-trip time
=2.86°. For such small rotation angles, the effective regiorthrough the “masking region” of lengtiAR,
of phase space that can be represented by the rotated basis is
very similar to that of the unrotated basis. -

The RPM provides an alternative tool to realize masking At=2ARlk, (60
in an atomic pseudostate expansion without losing the ad-
vantage of using atomiclike states which may be helpful fothe wave packet is reflected at the “outer wall” associated
describing the bound-state portion of the spectrum. Figure With the border of the domai®+Q’ to the inner region
presents an example for the same wave packet as in Figs. @&tatese, with n=<N) before the next projection takes place.
5, and 6 but now with repetitive projection applied with  Note that the discontinuous dropoff in Fig. 8 flg=1 oc-
=70, andM =120. Clearly, the projection-induced masking curs whenAt changes abruptly fromt=t to At=t/2 cor-
introduces some distortion of the wave packet similar to theesponding toJ=1,2 (the total propagation time for the
one observed for complex rotation or lattice-based maskingmaller momenta is, in turn, outside of the time range in the
method. The distortion is, however, confined to the maskindigure).

region. Only wherry=100 and is close to the “wall,” do More interestingly, the transmission is also reduced when
distortions due to interferences become visible while the inthe projection is performed too often, i.e., whan is too
ner region remains unaffected. small. This is nothing but the manifestation of the onset of

It is now of interest to explore the efficiency and tunabil- the quantum Zeno effed26], here observed for the free-
ity of the RPM. Figure 8 shows the transmission probabilityparticle wave packet evolution. Its physical interpretation is
through the wall(i.e., the loss of probability from the “in- that by projecting too often, the evolution of the wave packet
ner” region) as a function of the time intervalt between is “frozen” inside theP space which prevents the transmis-
successive projections and differdqt For different values sion and the leakage out. For the lindit—0 this can be
of kg, the transmission probability reaches90% for the easily shown as follows: Using the decompositi&y. (24)]
same range oht~5-50. Consequently, for a wide range of we find for smallAt
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FIG. 7. Comparison of the analytical wave pacidashed lines x(Q'|H| P)Atz. (62)
and the results of the repetitive projection meth@PM) using
Sturmian pseudostates with=70, M=120, andns=1 (solid Note that there are no couplings to tRe space to first

lines). The initial wave packet is the same as that in Fig. 2. order inAt but only to second order At2. If we take a fixed

evolution timet and J time steps,At=t/J, we find in the

|P+Q,>e_i<P+Q,‘H‘P+Q/>At<P+Q,|P> I|m|t J—oo
=|P)(1—i(P[H|P)At)+|Q")(—i(Q'|H|P)AL). (P|P+Q)e ((PFQIHIP+Q" )M P | P)
(61) ~[(P|P+Q)e {P+QHIP+Q)at b 4 7| PY )
JAt?
Therefore, =(1-i(P|H|P)At)’— ?<P|H|Q’><Q’|H|P>

=
o

t
=1-i(P[H[P)t— 5 (P|H|Q")}Q'[H[P)ALt. (63

Therefore, in the limit J—»~, At—0, and JAt=t
=const, the coupling to th®’ space vanishes. This is the
direct analog to the quantum Zeno effect in spin systems. In
the present case, it corresponds to the complete eradication
of the masking effect and the replacement by a complete
reflection at the boundary between the interaction region and
the masking region. This—at first counterintuitive—result is
the essence of the quantum Zeno effect. The decrease of
transmission in Fig. 8 with decreasing can therefore be
considered as the onset of this effect which is completely

: —4
FIG. 8. Transmission probability through the wall generated byreallze_d atAtS1Q : . .
the repetitive projection method. Each curve corresponds to a dif- In Fig. 9, a typical dependence of the reflection coefficient

ferent momentum and total propagation titreuich that 99% of the @S @ function of the momentum of the wave packgt,is
exact wave packet should go through the inner wall. lgpr0.25  displayed for both the CR and the RPM methods. The reflec-

t=830, fork,=0.5t=320, and fork,=1 t=150. The parameters tion coefficient in this case is defined as the probability to
for the initial wave packet are-=10 andr,=30. The parameters find the electron in the interv4l0,100 after a long enough

for the basis sets used in this calculation bre 70, M=120, and  time such that the whole wave packet is outside this interval.
ng=1. Note that the calculations in the figure have been obtained

Transmission probability
o
»
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[ i 4 \ ] respect to the real energy axis and both real and imaginary
0.00 . de” NN parts ofE grow at the same rate, the imaginary part of the
° 50 100 150 200 energies of the SPS is weakly dependent on the real part and
r is almost constant for largk values. For the time propaga-

FIG. 10. Comparison of the analytical wave packdashed tion up tot=<100 the relevant region of the spectrum sh_ould
i i ; i be such thaE!t<1, or E! =102 (such that the probability
lines and the results obtained using=50 Siegert pseudostates n ' n

generated by 100 DVR basis functiofsolid lines. The initial IS Not yet absorbadin this region, both spectral densities are
wave packet is the same as that in Fig. 2. quite similar. One may therefore interpret the efficiency of

the complex rotation method in terms of the proximity of the
complex rotation spectrum to the one of the most relevant
Siegert states.

The range of energies and momentum of wave packets
which can be represented in a given SPS basis depends, of
ourse, not only on the amount of suppression of reflection
ut also on the effective spectral density of stafes the

region of physical interest,

using a fixed basis set and a fixed valueAdf i.e., we in-
tentionally avoid any optimization of the reflection coeffi-
cient as a function df,. For this particular set of parameters,
reflections can be reduced to less than 1% fortkg<2,
which corresponds to an energy variation by more than
factor 40. Clearly, this * applicability range” can be in-
creased and shifted by appropriately tunitty ng, N, and
M. For this free-particle time evolution problem, CR can 1 1
suppress the reflection more effectively. However, in prob- DE)=—— 2, Im(—), (64)
lems with nondilatation analytic potentiale., the cas&' in n E-E,
Eq. (43) becomes positiviean implementation of CR is less
obvious. For such cases, the RPM can be considered aswdhere E,, represents a complex eigenval{ia the limit
viable alternative within the framework of atomic pseu- Im(E,)—0 one obtains a sum df functions as in Eq(59)].
dostate expansions. Figure 11 gives a comparison of the spectral density of the
Finally, the SPS basis provides a very efficient method fosame number of positive-energy states using the complex
suppressing reflections. Figure 10 displays the propagatiofturmian pseudostates and the SPS. For reference, we show
of the wave packet with the same parametdis=0.5, ¢  also the DOS for a free particle in a one-dimensional box,
=10) as in the previous example. Obviously, the SPS propaP1/y/(E). Obviously, the spectral weight is differently dis-
gation allows for virtually perfect transmission through thetributed in the two methods. The Sturmian pseudostates
boundary. Moreover, in contrast to the lattice-based maskinglace an increased spectral weight in the near-threshold re-
function (Fig. 5, the complex rotatiofiFig. 6), and the RPM gion relative to the free-particle DOS while under-
(Fig. 7), the wave packet remains virtually undisturbed nearepresenting high-energy continuum states. This is a direct
the boundary. The SPS basis shares many common featuresnsequence of the effective momentum dependence of the
with the complex scaling calculatiofFig. 6), in particular  position of the wall[Eg. (11)]. The SPS states, on the other
the complex energy propagation. It is therefore interesting tdvand, follow closely the free-particle behavior of the DOS.
further inquire into the differences for the wave packetThese differences may also influence the choice of the opti-
propagation employing the two methods. The key is the difmal basis set depending on the process to be investigated.
ference in the spectral distributions of the energies in thd-or near-threshold processes, the Sturmian pseudostates may
complex plane(Fig. 1). While within the complex scaling be advantageous while for high-energy electron emission the
approach the energies lie on a ray of fixed anglevith SPS may be more appropriate.



PRA 60 REFLECTION-FREE PROPAGATION OF WAVE PACKETS 1123

V. CONCLUSION cause significant distortions of the wave packet near the
boundary where reflections take place. The present test for

me\:\rlltce) dgac\)ll?wg?/réoggcesetaprc:prgggziacﬂwv%ez[gr?gegfbsIf;e:ﬁ]](tat—he free-particle evolution may serve as a benchmark for
dependent Schdinger equation within atomic pseudostate complex problems such as the periodically kicked Rydberg

expansions. We have proposed two techniques which are da‘_[om which features complex, nonseparable dynamics and

; ) . . .“Where no exact analytical solution is available.
signed to control unphysical reflections. One is the extension

of the notion of masking functions, well known for grid-
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