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We present a quantum description for the evolution of atomic states of fast projectiles traveling through
matter. Our approach is based on the solution of a quantum Langevin equation, i.e., a stochastic time-
dependent Schdinger equation that describes electronic excitations of atoms during their transport through
solids. The present description can be considered the quantized version of a previously developed classical
transport theory. We analyze in detail the correspondence between classical and quantum transport simulations.
Applications to the stripping of relativistic Hand H through thin carbon foils and a comparison with
experimental data are presentE81050-294{®9)00308-X]

PACS numbeps): 34.50.Fa, 34.16:x

[. INTRODUCTION at relativistic energief9,10]. The latter plays a key role for
the reference design of next-generation spallation neutron

Ever since the seminal work by Bohr and Lindhard on thesourceSSNS3. An H™ beam in the form of macropulses is
evolution of the charge state and excitation state of fashccelerated te-1 GeV in a linear accelerat¢kINAC), and
atomic particles penetrating solid&], the investigation of is subsequently stripped to bare protons by transmission
the existence and the nature of the electronic excitation spethrough a thin foil and injected into and stored in an accu-
trum of swift ions has continued to draw considerable inter-mulator ring[11,12. The effective conversion of Hto H*
est. A complex array of multiple scattering processes proand the underlying beam-foil interaction at the point of in-
duces a variety of excited configurations not easilyjection is a crucial element for the design of high-intensity
accessible by other means. Despite the extensive applicati@NSs. A key parameter is the population of excited neutrals
of the ion-solid interaction as a spectroscopic tool as well a$i(n) which may get stripped by the strong magnetic field in
a “stripper” medium to produce high charge states, a micro-the first bending magnet. The resulting protons collide with
scopic understanding of the dynamics of the excitation prowalls and magnets leading to unacceptably high levels of
cess and of the evolution and transport of electrons accomradioactivity along the beam line.
panying fast ions is somewhat limited. The difficulties can be Despite the remarkable success of the description of these
attributed in part to the fact that perturbations of excitedcomplex processes within the framework of classical dynam-
states are sufficiently strong to preclude any perturbationics, the question as to the validity of the CTT has remained
treatment. open. One particularly puzzling aspect is that a fraction of

Some time ago, we proposed a classical transport theomhe collisions suffered by the electron involve small momen-
(CTT) [2,3] which is based on a microscopic Langevin equa-tum transfers for which classical dynamics is known to break
tion for the trajectory of projectile-centered electrons. Thedown since excitation and ionization become classically sup-
classical phase-space distributipg is represented by an pressed13,14. It appears, therefore, useful to develop a
ensemble of phase-space poiftisst particle discretization quantum transport approach to gauge the validity and appli-
whose trajectories are governed by the Langevin equatiortability of the classical transport calculations. Until recently,
Accordingly, the resulting phase-space distribution at a latea quantum calculation describing the electronic evolution of
point in time is determined by the ensemble of evolvedan atom as it moves through the solid has appeared to be a
phase-space points. In the case that only deterministic fieldermidable task even when the atom carries a single electron.
are present, this approach is equivalent to the classicalFhis is due to the fact that a large number of bound and
trajectory Monte CarldCTMC) method[4]. The determin- continuum states become populated as a result of the trans-
istic force in the Langevin equation contains the Coulombport process. Only now have a few contributions appeared in
force between the electron and the projectile nucleus, in gerthe literature in which selected aspects of the ion transmis-
eral modified by dynamical screening in the sdfitvake” sion problem have been tackled by numerically solving the
[5,6]), while the stochastic force represents the random multime-dependent Schdinger equation to calculate resonant
tiple scattering with electrons in the mediuin the simplest  coherent excitation ratd45] and stopping of ion§16].
case, the “electron gag”as well as atomic cores in the In this work we present a quantum description of trans-
target. This prescription has yielded remarkable agreememort which is based on a quantum Langevin equation. It de-
with a large variety of experimental data, such as for enscribes the stochastic evolution of the quantum state under
hanced mean free path3], for the enhanced production of the influence of both deterministic potentials, specifically a
high4 Rydberg states and the resulting long-time tail in theCoulomb potential or a dynamically screened potential, and a
delayed x-ray spectrig], for the yield of convoy yield$8],  stochastic potential which accounts for multiple scattering.
and, most recently, for the excited state distribution ohH( The latter is chosen to yield a stochastic force identical to
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that entering the classical Langevin equation. In analogy t@volution of such an open system due to the irregularly fluc-

similar developments in quantum opti¢d7] and in the tuating coupling to the environment, i.e., multiple scattering

theory of atom-radiation-field interaction, each stochasticallyof the active electron with the constituents of the solid. Since

evolved wave function can be labeled as a “quantum trajecwe focus on the transport of electrons which are closely

tory” or “quantum history.” The solution of the reduced phase space correlated with the projectile, the evolution of

guantum Liouville equation for the reduced density operatothe electron in the rest frame of the projectile is governed by

can be reconstructed from a Monte Carlo sampling of quannonrelativistic dynamics. Relativistic effects play a role only

tum trajectories. through the coupling with the environment and its kinematic
Applications to be discussed in the following include thetransformation to the projectile frame.

transport of relativistic H and H with energies of the order The state of the electron during the transport process is

of 1 GeV through carbon foils with applications to the injec- conveniently described through its density operator

tion problem for spallation neutron sourddd,12 as well as

the recent proposal for detecting relativistic antihydrogen _ _ _

[18] through the Ly, emission after controlled excitation in P % pJ'k|¢J><¢k|’ @

foil transmission. While the present approach is oriented to-

wards the treatment of the ion-solid interaction, we stress th§here{|¢,),n=1,2,...5} is a complete orthonormal basis

applicability of this method to a wide variety of other physi- set representing the open subsystem. A density-matrix de-

cal situations such as atoms in plasma environments and iription easily allows for the treatment of initial electronic
the cooler gas of a storage ring or the interaction of atomg;ates prior to transport which are mixed states
with radiation fields.

The plan of this paper is as follows. In Sec. Il we give an Ni
outline of the theoretical framework. A few technical details pi= 2 Pala)al, (2.2
of the calculations are presented in Sec. Il together with a=1
numerical results for H transmission. In Sec. IV we focus
on the comparison between quantum and classical transpotherep, are occupation probabilities of the states, or, as
in order to assess the validity of the classical approach and t@ particular case, pure states
identify specific quantal, i.e., nonclassical features. Atomic
units are used unless otherwise stated. =1l 2.3
Il. THEORY yvhgre| ;) is the initial wave function. Even_ though theT pro-
jectile electron could be in a pure state prior to entering the
We shall be concerned with the transmission of an iorsolid, a random transport process will produce a mixture of
(atom with nuclear chargé&, and velocity\7p through a thin ~ states. .
amorphous foil of thicknesX’ (we use primes to denote The objective of the classical and quantum transport theo-
|ab0rat0ry frame Variab|¢s All numerical examp|es ries is the determination of the time evolution of the state of
throughout the paper will refer to a carbon foil. However, thethe electrorp(t) from t=0, prior to entering the solitr, in
method is, with minor modifications, applicable to other ma-general, the time at which the initial state is formed within
terials. The ion, referred to in the following as the projectile,the  solid up to a time T=T'y1—(v,/c)?
is assumed to be fast compared to the Fermi veloejty,of — =(X"/vp) \/1—(vp/c)2, which corresponds to the foil exit.
the material ¢,>vg) which corresponds to impact energies Our present formulation of quantum transport proceeds by
greater than hundreds of keW/We neglect the slowing quantization of our classical transport the¢8TT). For ref-
down or straggling of the heavy ion due to its interactionerence and comparison, it is therefore useful to first review
with the solid. Typical energy losses for thin foils are a verythe major steps of the CTT.
small fraction of the incident energy and have a negligible
effect on the evolution of projectile electrons. Thus, the ve-
locity of the ion is treated as an approximate constant of
motion. If desired, the change of the projectile velocity or ~ The starting point of the CTT is the time-dependent state
angular deflection can be easily taken into account, e.g9f the open system, the active electron, which is given by the
within the framework of a continuous slowing down ap- reduced probability densityy(r,p,t), wherer andp are the
proximation (CSDA) and small-angle scattering theory position and momentum vectors of the electront A, the
[19,20. The term transport refers in the following exclu- probability density is given by
sively to the electronic degrees of freedom of the projectile. N;
We will study the (_avolution_ of a single active electron Pc|,i=Pc|(F,570): > papgl(F, p), (2.4
carried by the projectile. For ions carrying more than one a=1
electron, additional approximations are requifedy., see the
treatment below for transmission of Hions). We decom- where pgl is chosen such that it approximate|y mimics the
pose this complex system into a subsystem, the atomic stafgantum statéa)(a| (see, e.g.[21]).
space centered around the projectile taken to be the rest The evolution of the open system due to both internal
frame, and the environment consisting of atomic cores anthteractions as well as the coupling to its environm@tte
the electron gas of the conduction electrons moving at apath”) can be described in terms of a reduced classical Liou-
average velocity of-v,,. The task is now to determine the ville equation

A. Classical Langevin equation



PRA 60 QUANTUM TRANSPORT THEORY FOR ATOMIC STATE . .. 1093

apy at zero temperature. For transport of atomic states centered
ot~ Haupat+ Rapa around the projectile witHp’)=v,, we assume that the
transition rates are independentf (i.e., W depends only

on \7p and (T). The transition rates are proportional to the
differential inverse mean free pathgDIMFPs or
momentum-differential cross section2-24 [i.e., W

:_5'v)fpcl+vaat'vﬁpcl+Rclpcl’ (2.9

where{ , } denote Poisson brackets afit}; is the atomic

Hamiltonian , , =vy(dr"Yd%q’), where\ is the mean free path They
oy _p_+v - P éJrV - 2.6 include both elastic and inelastic scattering processes of the
ar- o alr)= 2 r sc 1) ' active projectile electron with target cores and the electron

gas of the medium. The DIMFPs or collision rates are cal-

which contains the Coulomb interaction potentialZ,/r,  culated in linear-response theory, which treats the response
possibly modified by dynamical screenirfjwake poten-  of the environment, i.e., the electron gas of the medium, due
tial” [5,6]) in the solid,V,,. For the present studies involv- to perturbation by the active electron to first order in the
ing low-charged projectiles and very high projectile speedsinteracting potential but, in general, to all orders of the
Vp~C, Vy can be approximated by a pure Coulomb poten-€lectron-electron interaction of the mediufe.g., in the
tial. random-phase approximatipn

In Eq. (2.5, Ry is the classical relaxation superoperator Rather than solving Eq2.5) directly, the CTT proceeds
describing the dissipative interaction with the environmentby employing “test particle discretization.” The solution of
(the solid. The explicit construction ok is, in general, a the original classical Liouville equation for the phase-space
formidable task since it involves the many-body dynamics ofdensityp., is mapped onto the time evolution of a represen-
the environment to which the open system couples. In theative ensemble of initial phase poir(n%(O),ﬁi(O)) chosen
present caseR represents the multiple scattering with the by Monte Carlo sampling of the initial probability density,

solid. The central simplifying assumption which makes the Niest

determination of R feasible is the validity of linear- F 5.0)= ST =T1.(0)18T 5= Bu(0 28
response theory. Accordingly, the dynamics of the bath vari- Pelr:P.0) Ntestg‘l [r=rd0]elp=pl0)], (2.8
ables remain decoupled from the internal state of the

subsystem, or equivalentlR is not of a functional ofy, . whereN,.q is the number of test particles whose trajectories

Conversely, no restrictive assumption is made for theare determined by atochasticequation of motion, the
strength of the perturbation of the environment on the subkangevin equation

system. In fact, in the present context we will consider strong 45
coupling that precludes a perturbative treatment of the evo- ap_ — V.Vt Eo(D). (2.9
lution of the projectile electron under the influenceRyj. In dt

our applicationsv,>ve and, therefore, projectile-centered ) . ) .
e|ectronS, inc'uding those in the Continuum, are well SepaNOte that the stochastic fOI’d_ec describes a discontinuous

rated in momentum space from target electrons. In otheProCess representing the momentum “jumps” embodied in
words, the removal of an electron from the projectile systenthe collision integra[Eq. (2.7)]. Provided thaf.(t) gives a

is reasonably well-defined and there is little risk of “double faithful representation of Eq2.7), the solution of the origi-
counting.” Furthermore, we assume that the projectile is fashal Liouville equation is given by

enough such that collisional interactions with the solid can Niest

be_represen_ted i_n terms of impulsive momentum tranﬁe_rg pc|(F,5,t)= N 2 S[r— Fi(t)]é[ﬁ— 5i(t)].

This approximation is based on the observation that collision testi=1

timestc:v;1 are short compared to the orbital period of a (2.10

hydrogsenJCZ: ele.ctron n-a hydrggen'rl: level, Tn:z,m"n ' Since the drift term in Eq(2.5) agrees with the determin-
=2mn°Z,“. With these approximations, the classical relax-istic part of the Langevin equatiaf2.9), the only nontrivial
ation operator is now specified in terms of a collision integralpart in establishing a correspondence between @48. and
3 . - I .. (2.9 lies in the determination of an appropriate stochastic
RchFf d*qW(vp.q")lpalr.p=a,t) = pa(r.p.0)1, force F.. While such a construction is not unique, an obvi-
(2.7 ous strategy is to optimize the agreement with the collision
. operator for a finite number of jump moments,
whereW(v,,q") represents the transition rate per unit time
to change the electron momentum frato p’ +q’ (se€[9] —(q/M= f d%q'q’ ”W(\7p q) (i=xy,2),
for the transformation of the momentum transfer from the dt’
laboratory frameg’, to the projectile framegq). Equation (2.1

(2.7 can be viewed as a linearized Boltzmann collision in-

tegral. Because of the large separation in momentum spacl®) the absence oPy (i.e., for free-electron transport
We use a stochastic force given by a sequence of impul-

Pauli blocking does not need to be included. In genéfal, um t fer&kicks”
depends on both the momentum transiérand the local sive momentum transfexSkicks™ ),

momentum in the laboratory frameg,, as well as on the F =S Ap.s(t—t 21
state of the target which we consider to be in the ground state ¢ Zk Ped(t =1, 212
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whereAﬁk is the stochastic momentum transfer per collisionquence of coIIisions,u={(A5i 4),i=1,2,..} and for a
at the timet, . The determination of .(t) is thereby reduced Particular statda)(e| of the initial state mixture. That is,

to that of a stochastic sequence of pa'ﬂtﬁ( ,ty). The zeroth 1 M Niraj
order of the collision kernel is given by the integrated tran- pa(r,p )= o > pa> phrpt), (216
sition ratevp)\*l, where\ is the mean free path between traj a=1  p=1

collisions in the laboratory frame. This moment is automati-
cally reproduced by choosing times in between collisionswhere Ny is the number of random collisional sequences
Aty =(ty—ty_,) at random according to a Poisson distribu- (ideally, Nyz— ).
tion We note a subtle point associated with E2}16): here we
, , have subjected alM.s;elements of our classical ensemble to
P(Aty)<exp — VoAt /A]. (213 the same stochastic sequence. For a classical ensemble rep-
resenting a true many-body system, such a choice of stochas-
For each collision, the momentum transfer is sampled at ranic histories would introduce artificial many-body correla-
dom according to a probability density tions. In the present case, however, the ensemble plays the
— - = role of a classical model for the single-particle quantum
P(AP") = W(Vp,AP"). (214 \ave function. Since we will use in the followingy, only to

calculate one-particle observables, identical stochastic se-

We have verified that this procedure reproduces up 10 thgences for all members of the ensemble do not affect the
second moments of the collision kernels for free-electrorhumerica| results. The present choice is motivated by the

transport extremely we(l3]. » direct analogy to the stochastic wave function described in
Details of the collision kernels determining the momen-i,o next section.

tum transfers and the times in between collisions have been
extensively described elsewhel®,9,10. We therefore re- _ )
strict ourselves to a brief summary. We decompose the sto- B. Quantum Langevin equation

chastic sequence into two independent subsequences. OneMuch like for the classical system, the evolution of an
sequence refers to elastic electron-target core scatteringpen quantum system can be formally described in terms of

while the other one refers to inelastic electron-electron scata quantum Liouville equation for the reduced density opera-
tering leading to single-particle—single-hole excitation and taor p of the electron,

collective excitations of electrons in the medium. Elastic mo- Ip
mentum transfers are calculated from the differential elastic i—=[Hap]+Rp, (2.17
cross section for the scattering of electrons at the target ot
cores. Inelastic momentum transfers are obtained from a re-
alistic dielectric function of the foil as a function of the fre- where the relaxation superoperafrdescribes the dissipa-
quency and wave vectd23]. We consider both longitudinal tive interaction with the environment. After making the same
and transverse excitatiofs,25]. The main relativistic effect simplifying assumptions used in the classical Liouville Eqg.
in our calculations is associated with transverse electromadz2.5), an explicit, though very cumbersome, form f@rcan
netic excitations. The mean free path for these excitationde given which we omit in the following since we will not
decreases for increasing velocity and this process becomedectly solve Eq.(2.17). Instead, we solve the quantum
increasingly important at higher collision energies. For cartransport problem by test-particle discretization of a micro-
bon foils, however, collisional processes are dominated bgcopic quantum Langevin equation, in analogy to the CTT.
longitudinal excitations and elastic scattering. Inelastic lon-The stochastic Hamiltonian in E€R.15 generates a stochas-
gitudinal collisions have the shortest mean free path, whildic time evolution described by a Scliiager equation,
elastic collisions have the largest momentum transfers
among the scattering processes. ii|¢/(t)>=7{(t)|¢/(t)> (2.18
Our present quantum transport approach consists now of a ot '
guantization of the classical transport theory. We start by
noting that the classical Langevin equation is completelyto which we refer to in the following as the quantum Lange-
equivalent to the Hamilton equations of motion associatedin equation. Due to the stochastic nature of the Hamil-
with the stochastic Hamiltonian tonian, the time-evolved state/(t)) is indeterministic and
.o Eqg. (2.18 is understood to describe a continuous flow in
H()=Hart Ve(t) =Ha—1-Fe(t) (2.19 between discontinuous jumps. Each solutjm,a(t)) rep-
. resents one particular realization or history for a given ran-
involving the stochastic potential functiov.(t) = —rF.(t) dom sequence of collisiong,, and for a given initial state,
(within the framework of matter-radiation interaction, this |«). While in detail quite different, a solution of the quantum
corresponds to the so-called length ggugereV, plays the  Langevin equation resembles a “quantum trajectory” in the
role of a stochastic variable which determines the underlyingerminology of quantum optickl7].
stochastic process and the relaxation operator. With the help of the quantum Langevin equation, the so-
Moreover, the CTT solutiofEq. (2.10] generated by this lution of the transport problem can be easily determined in
stochastic Hamiltonian is, for transport of a single electronterms of the Monte Carlo sampling over quantum trajectories
completely equivalent to the average of various classical soar histories, much like the classical solution in Eg.16),
lutions each obtained for a particular history or random set.e.,
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1 N Niraj complementQ of any finite-dimensional representati¢see
p(t)= N E paE pH(t) the next section In simple terms, the exact electronic wave
traj =1 p=1 function evolves beyond the boundaries of the finite Hilbert
1N Niraj space. This loss amounts to a nonunitary evolution with
=N 2 Pa X [t ) (], (219 d
traj a=1  p=1 gt Trp<O0. (2.26

where, initially, y**(0)=|a).
Using now the explicit form of the stochastic potential in It may appear that the present method depends critically
terms of a sequence of impulsgsqg. (2.15], we can write  on the choice of the stochastic interaction potenfiag.
the solution of the quantum Langevin equation for one par{2.15] in terms of a sequence a@f-shaped pulses. This is,
ticular sequencew as however, not the case. The key observation is that any addi-
|¢M-Q(T)>:U#(T,O)|¢(0)>:U#(T,O)|a>, (2.20 tional smooth time-dependent potential can be represented in
terms of a sequence of infinitesimal kicks as

whereU , is the evolution operator after a particular random 3
sequence of collisions ={(Apy,ty), k=1,2,...M}. Due to V(t)= D, S(t—ty) dpy, (2.27
the 5-shaped time dependence of the kicks, the time evolu- k=1

tion operator adopts the form

t+A
| M-1 p= f " Vit (2.28
U (To=e ™M™ [T U(tyiq,t), (22D oA
k=0

in the limit A—0, J—, andT=JA =const. The represen-
tation of the time-dependent perturbation in terms of a se-
quence of infinitesimal kicks is just the essence of the so-
called split-operator algorithm for integration of the time-
Subsequently, the momentum of the electron is suddenI9‘z"|oenden.t _Sghdhwger equati(_)n._Therefore, any combination
. L= o . of deterministic and stochastic time-dependent potentials can
shifted m»A Pr+1 which is exactly described by boost opera- be treated according to E(.22). This includes the effect of
tor exdir-Apy.4]. In practice, upon a basis expansion in external ac and dc fields. The only difference is that for
terms of atomidpseudostates, the operators in the product stochastic processes with discrete jumps, the time interval
[Eq. (2.22] are represented by matrices. Consequently, thgetween subsequent kicks,. ;—ty, remains finite and has
calculation of a quantum trajectory is reduced to a sequencghysical significance in terms of a characteristic time scale

U(tk“,tk):eiF-Aﬁkﬂe*iﬁar(tku*tk), (2.22

wherety=0. That is, in between the timég andt, . ;, the
electron evolves freely according to éxpgH{tx.1—t) ]

of matrix multiplications. for the stochastic process that determines the interaction be-
Finally, the time-evolved density operator follows from tween subsystem and environment, while for smooth deter-
Eq.(2.19 as ministic processes this interval is to be taken as a finite-
Ni Niraj difference approximation to a continuous process and is to be
P(M=y_ 2 P U(TO]a)alUl(T,0) made sufficiently small untill, is independent of the length
trgj =1 u=1 (2.23 of the interval.

Furthermore, Eq(2.22 permits the treatment of stochas-
and the expectation value of an arbitrary observalllés  tic processes for which the jum[ﬁsﬁ(t) possess an explicit
given by (A)=Tr(Ap(t)). In particular, for A=|¢;){y;|, dependence on time or other parameters. The time-
one obtains the transition probability into a final sthtg)  correlation function of the jumps may correspond to “col-

which is given by ored noise” with long-time correlations. The only restriction
Niaj Ni is that the stochastic perturbation does not depend on the
Pi_’f:F > > Pl U L(TO)| ). (2.24 state of the 'subsys_tem. This is in accorq with the fundamen-
traj u=0 a=1 tal assumption of linear response mentioned above.

It is worthwhile noting a few properties of the stochastic
evolution operatol , . It is obviously not energy conserving lll. APPLICATIONS
within the atomic subsystem since it explicitly treats a time- A. Method of calculation
dependent external perturbation. It therefore allows for en-
ergy flow into and out of the “open” subsystem in accor-
dance with

The ultimate purpose of our calculations consists of com-
puting population fractions of various final states after the
d d ion-solid interaction[Eq. (2.24]. Because typical calcula-
el _ - tions involve an average over 1000 trajectories, the key
dt<Hat> dtTr(Ha'p(t)#o' .29 issue for the simulation of the quantum transport is to utilize
) o ) an efficient and accurate method to numerically evaluate the
A more subtle feature dfl , is that any finite-dimensional - eyolution operatotJ,,. The basic pieces for the latter have
matrix representation obl,, unlike the operator itself, is peen developed in a series of recent pap2és14,27.
not unitary. The reason is that both the boost operators ap explicit matrix representation of E¢2.22 can be
exfir-ApJ] and the free evolution operators exp found by expanding the wave function in an orthonormal
[—iHa(tk+1—te)] couple the subsystem to the orthogonalbasis set composed of states,), N=1,2,...Nmyay,
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RS ir-Ap the direction ofAp (see, e.g[32]). Subsequently, these cou-
|wu(tk+1)>:s,§‘:l | b)(Ble" 2P| ) plings are rotated for any arbitrary directiéh of the mo-
Holtys 1- ) mentum transfer according to
X{ p:|e™ " tallk+17W| h. ) t)). S
<¢I| |¢J><¢J|¢’M( k))( ) <Xn,|,m|equAp'r)|Xn’,|',m’>
3.1

) . = 2 <Xn,|,ml|exinpZ)|Xn’,l’,m2>
Since the evolution operator couples states of the complete my,my

Hilbert space, a finite-dimensional representation of this op- | Y R
erator is, in general, not unitary. In other words, if a finite XD, m( D e (), (3.5
basis sef|¢,,)} is used, the norm of the wave function is not ,
preserved. The amount of probability lost in this nonunitarywhereDJm,m are rotation matrix elements.
calculation gives the probability flux to states outside the An accurate nonunitary representation of the free evolu-
basis sefsee Eq(2.26)]. tion operator in Eq(3.1), exf —iHa(txs 1—te) ], requires, in
Our orthonormal basis set is constructed from a nonorgeneral, a more elaborate treatment such as the use of the
thonormal Sturmian basis sg28-31], which is defined by complex dilation methofi31], masking function, or complex
the complete set of functions obeying potentials(see, e.q.[33] for a general discussionin this
work we assume that the time in between collision is short
(P__ L)l Ny = — ") (3.2 enough and that the momentum transfers are large enough
2 ngr X 2n§ X ' such that most of the outgoing flux of probability can be
described by the boost operator. Thus, we adopt a unitary

wheren=1,2, ..., and the parameter, defining the setis Matrix representation, ekpiHa(ty+1—t) ], within the basis
called the Sturmian parameter. Equati@®) can be solved Set. Since our basis set diagonalizég, exp(-iH,dt) is
in spherical coordinates leading to basis stdg¥ ) in also diagonal with matrix elements expEd) k
terms of spherical quantum numbers. A completé and count= 1+2: - - Nmax-
able basis set for the full Hilbert space is generated by
changing the set of quasi-quantum numbessl,2,. .. o,
|==(n—-1),...,(0—1), m=—1,... . In practice, how- In order to treat the transport of a two-electron kn, an
ever, the basis must be truncated; i.e., the basis size definedditional approximation is required which goes beyond the
by Nmax in EQ. (3.1 is finite. In the following, we use 1 one-electron transport outlined abo\10]. We reduce the
SN<Npa 0=<I<(n—1),—I<m=I, which corresponds to complex problem of H(1s,1s’)-solid interaction to two
a number of state®N o= Nmad Nmaxt 1) (2Nmaxt1)/6. By  major steps. First, the weakly bound “outer's electron is
definition, a bound hydrogenic state can be written asollisionally detached, thereby leaving the “inner” electron
|n,|,m>:|)(28I o if ng=n/Z,. For hydrogen Z,=1) the in a superposition of states of the H atom. Second, the re-
value of ng determines whether a givem shell is exactly ~Sulting H atom propagates through the solid experiencing
reproduced by the basié.e., whenns=n). In general,n, ~ Multiple collisions, as described by the present transport ap-
takes real values and a Sturmian basis set represents a fra¢oach.
tion of both bound and continuum energy levels. Under- The probability for destruction of Has a function of the
standing which other physical energy levels can be properljoil thicknessX is given by Py (X')=e X"*o, where the
described within a finite basis requires additional analysisnverse mean free patfiMFP) for collisional single-electron
(see, e.qg.[27]). detachment of H, )\51, is approximately given by the total
Since Sturmian functions are not orthogonal, we defindMFP of free electrong9]. The sudden collisional removal
the orthonormal basis ségtcﬁES), k=1,2,...Nnat entering of the outermost electron leads to a redistributisinake-up
Eq. (3.1) as the set of orthonormal eigenvectors of the finiteof the inner electron of H among hydrogenias states.

2

B. Transmission of H™ through thin carbon foils

Sturmian representation 6i,. Namely, Using the generalized shake-up approximation and the 20-
N parameter H wave function of Hart and Herzbef84], it is
n = kN found that predominantly H&) and H(ZX) become popu-
|b)= ;l bi |Xnis,li ) (33 lated[9]. The probability to find the electron in thes and
2s states isp,s=0.815 andp,;=0.183, respectively. The
ﬂatﬁk: Ek”SBk' (3.4 population of higms states including those in the continuum

is less than~0.2%. Within this isotropic shake approxima-

tion, states of higher angular momenta are not occupied.
whereE, is the eigenenergy of an electron in the s{atg®), The shake-up process creates a coherent excitation of the
Sis the overlap matrix$; = (xn. | ,m|an , ), andb¥ and residua[ hydro_gen atom. However, since the energy and an-
A . . gular distribution of the detached electron remains unre-
Mo are the column vector and matrix reprgsentaﬂofdoj}) solved, these coherences are partially averaged out. We
and’H in the Sturmian basis set, respecnvely.a therefore consider two limiting cases for the initial density

Matrix elements of the boost operator, exgf-r), can be  matrix. When the phase-space distortion due to the detached

evaluated analytically. First, the matrix elements are calcuelectron is strong, we arrive at a completely incoherent state
lated in a basig), | , whose quantization axis coincides with mixture,
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FIG. 1. Fractions of H and Hn=1,2,3,4) as a function of foil FIG. 2. lllustration of the statistical error of the quantum calcu-

thickness for transmission of a 0.8 GeV Bbeam through a carbon lations in Fig. 1. The different calculations have been obtained us-
foil: experimental data of Gullegt al. [35] (symbolg, quantum ing two different random sequences of collisions.

transport(solid lineg, and classical transpoftiashed lines ] ] ) ]
Clearly, any firm conclusion from this comparison re-

quires an assessment of the intrinsic errors. Our quantum
pizz | ) Prel ¥nd - (3.6) transport calculations have two sources of errors: statistical
n and numerical. Statistical errors are associated with the finite
number of quantum trajectories involved in the simulation,
Conversely, if the residual interaction is negligiltéeg., for Nirs=1000. This is obviously the origin of the fluctuations
an extremely fast receding electjom pure, fully coherent of the outgoing fraction of H ions when the fraction has

state fallen to below~10"2 and which should coincide with the
classical result in the limiNy,— . Figure 2 illustrates the
o= > VPnd ¥ne) (3.7 statistical error of our calculation of the outgoing fractions of
n

excited states of hydrogen. The two results were obtained

using a different ensemble of random collisions and the dif-
would result with the relative phases directly given by theference between the curves gives directly a measure for the
shake-up amplitude. We have verified that the numerical restatistical uncertainties of our results. We therefore estimate
sults using Eqgs(3.6) and(3.7) agree with each other within the statistical error of our calculations to E620%.
our numerical uncertainties. Most of the results presented Numerical errors are associated with the truncation effects
below are based on E3.7). in the solution of the time-dependent Sctfirmger equation

Having generated the initial state after collisional detach-in a finite Hilbert space. As a convergence criterion, we use

ment and shake-up, the evolution of the hydrogenic electroa stabilization method27] according to which converged
in the rest frame of the proton is governed by the nonrelativresults should be stable with respect to variations of our basis
istic stochastic HamiltoniafEqg. (2.15]. Figure 1 illustrates  size,N,,.x, and the Sturmian parameter,. We find that an
the evolution of outgoing charge state and population fraceptimal Sturmian parameter for this problemmig=3. Figure
tions of n shells of hydrogen as a function of the foil thick- 3 illustrates the convergence of our calculations with respect
ness for a beam energy of 800 MeV. The foil thicknéss to the basis size as it changes froip, =140 (Nya=7) tO
time) at which the populations off(n=1,2) maximize is N,,=285 (nn=9) states. The relative error of the calcu-
very different from the ones fad (n=3), indicating the ex- lations is found to bes5%. The relatively fast convergence
istence of different production mechanisms. While shake-ujis due to the fact that we follow the time evolution only for
plays a very important role in the population of the=1,2  a relatively short time@bout four orbital periods of an
shells, n=3 shells are predominantly populated through=2 electron and about one orbital period of ms 3 elec-
multiple collisions. An average of eight collisions are in- tron). With increasing time or foil thickness, the error would
volved for the largest foil thickness in the figure. Previousincrease. One physical origin for the breakdown would be
classical transport calculations were found to be in reasorthe collisional recapture of continuum electrons which be-
able agreemer(within a factor of 2 with experimental data comes a more important process after long periods of time
of Gulleyet al.[35] on an absolute scalsee Fig. L. We can  or, equivalently, large distancé8,10]. This would also re-
now test the classical simulation by comparing with ourquire a larger basis size to be accounted for accurately.
present quantum transport simulation. Remarkably, the quan- A more detailed test for the agreement between the clas-
tum and classical calculations are in very good agreemendical and quantum simulations is provided by a comparison
with each other. of the subshell populations of the outgoing hydrogen atoms.
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FIG. 3. Relative numerical error of the calculations in Fig. 1 as
the basis size is increased froMy,=140 (Nma=7) 10 Npjax
=285 (Nmax=9). 0.00 ' ' ' : ' : '
0 5000 10000 15000 20000
The time-dependent subshell populations of excited hydro- Foil thickness (a.u.)

genic states generated during propagation of the hydrogen S _
atom through the foil probe the relative contributions of elas- FIG- 4. Substate distributions in tire=4 shell as a function of
tic and inelastic momentum transfer as well as their absolutfil thickness for transmission of a 0.8 GeV tbeam through a
values and direction and allow for the identification of pro-carbon foil: experimental data of Keatirgf al. [36] (symbols,
pensity rules favoring certain quantum numbers. Figyez 4 duantum transportsolid lines, and classical transpoifdashed
displays a comparison between our classical and quamwl_wes). (a) Relative m distribution. (b) Stark k distribution for m

calculations and the measurements of Keaghgl.[36] for

the m distributions in then=4 shell. Note that the quantiza—l states(largelk| states |4,—3,0) and|4,3,0) by about 50%
tion axis is chosen to be perpendicular to the beam Veloc'%ompared t0 théd,— 1 0>’ an(’j 14,1,0 s’taltes in accordance
Vp. The agreement between classical and quantum resuliith the dominance of transverse momentum transfers. As
and the experiment is very good. The=0 population is  ng strong external magnetic field is present during the trans-
drastically enhanced compared to a statistical distributionyort, the population of states with the saatesolute electric
(the statistical weights o=0,1,2,3 are 0.25, 0.375, 0.25, quantum number should be equal. Small deviations from
and 0.125, respectivelyFor small foil thicknesses, the pro- equal population are a measure of the statistical error of the

pensity for populatingn=0 states is primarily driven by the cajculations as well as of the experimental uncertainties.
shake-up process following the single-electron detachment

of H™. Remarkably, the preference for populating=0
states extends to all foil thicknesses and, additionally, the
population fractions are nearly independent of the foil thick-
ness. This propensity is a consequence of the direction of the In order to investigate the origin of the remarkably close
typical momentum transfers involved in the transport pro-classical-quantum correspondence observed for the transport
cess: for high-velocity collisions, both elastic and inelasticproblem in more detail and identify parameter regions where
momentum transfers are nearly perpendicular to the beamliscrepancies might occur, we present in the following re-
axis. sults for the evolution of a pure hydrogenic initial state
The preferential direction of the momentum transfers alsarather than a mixed stateln addition, we have chosen a
give rise to the propensity to create Stark states whose spatiebllision energy of 8.85 GeV energy which is higher than the
probability densities have the largest polarization perpenene in the preceding section so that the present results can be
dicular to the beam axis. Within each Starkmanifold, the  directly used for recently proposed experiments for the exci-
most polarized states correspond to the=0 states. The tation and Ly, detection of antihydrogefi8]. Note that the
population fractions of the varioufn,k,m) Stark states same conclusions concerning classical-quantum correspon-
within a givenn manifold obtained theoretically and experi- dence are obtained for a beam energy of 0.8 G&é, e.g.,
mentally [36] are in agreement with this picture. As an ex- the scaling properties of the population fractigt§]).
ample, Fig. 4b) shows the relative probability within the Figures 5 and 6 show that classical and quantum calcula-
=4, m=0 subshell for populating Stark states witectric  tions for then and| distributions of outgoing excited states
guantum numbek= —3,—1,1,3. Both experimert36] and  of hydrogen are again in reasonably good agreement with
theory reveal population preferences of the extreme Starkach other. The main difference with respect to transmission

IV. CORRESPONDENCE BETWEEN CLASSICAL
AND QUANTUM TRANSPORT
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FIG. 6. Substaté distributions in then=2 andn=4 shells as a
function of foil thickness after transmission of a 8.85 GeV b1

FIG. 5. Fractions of Hi=1,2,3,4) as a function of foil thick- Peam through a carbon foil: quantum transp@olid lines and
ness after transmission of 8.85 GeV Kjland H(Z) beams classical transportdashed lines

through a carbon foil: quantum transpésblid lineg and classical - )
transport(dashed lines cesses. In addition, the transport problem involves an aver-

age over the magnitude and the direction of the momentum

of H™ is that the fraction of the level associated with the transfers delivered to the electron.

initial state provides the dominant source of probability and In order to delineate the origin of the classical-quantum

is a monotonically decreasing function of thickness. Thecorrespondence, we analyze next a simplified problem of an

dominant angular momentum after excitation frorfi#i is ~ atom subject to a train of impulséer kicks) for which the

| =1 in accordance with dipole selection rules for soft colli- FRndomness of the stochastic force is reduced by keeping the

sions. The point to be noted is that classical transport cafirection and strength constafite., mis a constant of mo-

account for thd =1 dominance reasonably well despite the fion),

fact that dipole transitions due to virtual photon absorption

are not properly accounted for within classical dynamics. Hya(t) =Ha— AP, 8(t—t)), 4.1

The biggest differences between the classical and quantum ‘

calculations are observed for the population of large angular

momentum states at small thicknesses. For increasing foind by constraining the time interval between col-

thickness, the fractions of larger angular momentum statesions, At=t;,,—t;, to be Poisson distributedP(t;, ;)

become larger, which is recognized as a signature of multipleexd — (t -1 —t;)/(At)], where the constanfAt) represents

scattering(e.g.,[37,38,7,39. the average time between collisions. Analysis of this prob-
One might expect that the good agreement between claggm can provide evidence as to whether the randomness of

sical and quantum transport is due to the benign effect othe collision times controlled byAt) suffices to achieve the

averaging over many degrees of freedom and parametegorrespondence between the classical and quantum results.

(momentum transfers, collision timemherent in transport. In Fig. 7 we compare classical and quantal ionization of

Conversely, the more degrees of freedom are resolved, tfn H(1s) initial state as a function oAp after an average

better the chances to observe clear discrepancies. Generafiymber ofNi,= 10 kicks(i.e.,t/(At)=10), which is a typi-

speaking, a quantum system reaches its classical limit fotal number for the transport problem. We display results for

short times, strong perturbations, and large quantum nuntwo different{At) values, one much smaller and one much

bers. For the transport problem with random flight times inlarger than the orbital period of the state to be ionized

between collisions, however, the Fourier spectrum of the€T,,=27 a.u. forn=1). As a point of reference, we also

perturbation is broad and, consequently, a time scale for thehow the single kick result for which randomness in time is

perturbation can be determined only in terms of an averageabviously eliminated. Note that the valgat)=10 T,,, cor-

This averaging effectively eliminates time coherences whichresponds to the realistic transport calculations discussed

may otherwise lead to, for example, resonant excitation proabove, while(At)=T,,/10 corresponds to the “ultrashort”
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FIG. 7. lonization probability as a function of the momentum yansfer after a H(4) atom is subject to a single momentum trans-
transfer after a H(8) atom is subject to a single momentum trans- ¢o; anq to a train of constant momentum transféisks) with a
fer and to a train of constant momentum transfikisks) with a random time intervalAt in between them such tha(At)

random time intervalAt in between them: quantum simulation _ gy . quantum simulatiorisolid line and classical simulation
(solid lineg and classical simulatiofdashed lines (dashed lines

limit where the time evolution between adjacent kicks can bgnomentum transfer determining the ionization probability to
(almos} neglecte_d and where randomness of collision timeg,o Apeur=VNugAp. In this case, the results for 10 kicks
should play a minor rale. hould be shifted in-1/y/N,is With respect to the results for
For_a single kick, clgssmal and qugntum resuIFs are foun ne kick, which is also approximately observed in Fig. 7.
to be in agreement W'Fh each other if the magnitude of the Figures 8 and 9 show that the conclusions found about
T(C))n;entum Ftransferllls large enoug(ef.g., A.pE.APCf“ b classical-quantum correspondence for ionization have to be
~0.52a.u.). For small momentum transfers, ionization bes,,qitied for the excitation probability into the=2 or n
comes classically suppressed since the classical average

en o - ;
. =3 levels. The excitation probability as a function of the
— 2
ergy transferred to the eIectrQ@AE}—(Ap) /2] is much momentum transfer for 10 kicks is shifted compared with the
smaller than the level spacing near=1. In turn, the

: i one for a single kick, much like the ionization probability.
qua”t“”"'.'meCh.a”.'Ca' result becomes proportlonalﬁp)e However, the degree of correspondence after ten random
n the <_j|po|e limit (see, e.g.,[13,_14] for a more detailed  yjoys is not as good. Clearly, the excitation probability into a
discussion The results after a train of 10 kicks show that the

q o of tors f hich classical and given level is a more delicate case than the total ionization
omain of momentum transfers for which classical and quangqpapility, which includes a sum over all continuum energy
tum results agree shifts to smallap. In the limit At—0,

o levels (a more appropriate comparison would be the ioniza-
this is due to the fact that the sum tion into a given continuum energyAs expected, the exci-
. Nigck tation probability is classically suppressed for small momen-
APsun= 2 Ap; (4.2 tum transfers. However, depending on the valu¢xdif), the
=1 excitation probability for large momentum transfers can be

rather than an individual momentum transfer has to be Con(_:lassmally suppresseqt) =10) or enhancedsee[13] for

: ; . a single kick, which corresponds to the limift)—0).
sidered. The effect of 10 collinear kicks becomes exaCtlyl'herefore, not only a lower critical valukp,; above which

equivalent to that of a single k.iCk with ten timesllar.ger_mag-the classical-quantum correspondence holds has to be con-
nitude. ThereforeApey, (per kick above which ionization sidered, but also an upper cutoff exists. In other words, we

becomes classical should scale dd,1/, which is approxi- ; ; :
- . ., _encounter the following opposing trends: correspondence for
mately observed in Fig. 7. That is, the results for 10 kicks neounter Wing opposing TENCs. corresp

- . . . excitation into a specific final state exists only for not too
ar.]d<At>_o'lT°fb are shifted inAp in a_bout a factor of ten large and not too small values of the momentum transfer.
with respect to the results for one kick. In turn, fokt)

N The origin of this apparent puzzle is that classical dynam-
=10T,p, the relative orientation oAp with respect to the jcs can describe the quantum system “on the average,” but
local momentumﬁ in the orbit between different kicks is not all of its peculiarities. In general, classical-quantum dis-
randomized. Therefore, one would expect the “effective” crepancies become larger when the probabilities for the cor-
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FIG. 10. Fractions of H{=1,2,3,4) as a function of scaled time
after a H(1) atom is subject to trains with random momentum
transfers in the interval 0.1 astAp<1 a.u. and with a random
time interval in between them such th@it)=10T,,: quantum
simulation(solid lineg and classical simulatiofdashed lines

Time/KAt) results for the transmission of relativistic Hand H atoms
FIG. 9. Fractions of Hi=1,2) as a function of scaled time after through thin carbon foils. Our results are found to be in
a H(1s) atom is subject to trains of three different momentum agreement with experiment and classical transport calcula-
transfers with a random time interval in between them such thations.
(At)=10T,y: quantum simulatiorgsolid line9 and classical simu- We have shown that the surprisingly good agreement be-
lation (dashed linep tween classical and quantum transport is due to two effects.

) . ) First, the typical momentum transfers in ion-solid collisions
responding processes become smaller. For a single kick, thge such that they lie, on the average, in the range for which

bulk of the energy levels that become populated are thosgiassical-quantum correspondence for a single momentum
whose energy differs from the initial energy in the averageransfer(“kick” ) is expected to exist. Second, the stochastic
energy transfer{AE)=(Ap)?/2 (i.e., the so-called Bethe nature of the collisional interaction destroys quantum effects
ridge). The probability for excitation into energy levels that of time coherence and averages over a broad distribution of
are far from this ridge is small and is not properly describednomentum transfers.
by classical dynamics. The breakdown is also visible for The present results suggest that promising candidates for
many kicks, i.e., in the time evolutl_on of excitatighRig. 9). _ which larger discrepancies should appear would be highly
As the amount of momentum delivered to the system incharged ions as projectiles. Here, the average collisional en-
creases, the classical-quantum discrepancies increase.  ergy transfers would be smaller than the quantum level spac-
Since in addition to the randomness of the collision timejngs and the critical threshold for classical excitation may not
also the size of the momentum transfer critically influencegye reached. Thus, the regime of “small” nonclassical mo-
the agreement between classical and quantum transport, Weentum transfers could be explored. In addition, because of
can now explore how much randomness\ip is required o the |arge value of the projectile charge, dynamical screening
“repair” the classical-quantum correspondence and to yieldgng the fine structure of the atom may play an important role.
the level of agreement observed in the realistic calculationgecent experiments for fast & and KP®* ions interacting
To this end, we randomize in our model the valuesA@f  \yith carbon foils have found unexplained discrepancies with
according to a uniform distribution in the intervgd.1  ¢jassical simulationg40]. Work is underway to analyze

<Ap;=1] but still keeping the direction fixed. The resulting these systems using the present quantum transport formal-
excitation functions are displayed in Fig. 10 and show thajgm.

classical and quantum calculations are now in reasonable
agreement with each other, the largest deviationrfer2 ACKNOWLEDGMENTS
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