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We present a quantum description for the evolution of atomic states of fast projectiles traveling through
matter. Our approach is based on the solution of a quantum Langevin equation, i.e., a stochastic time-
dependent Schro¨dinger equation that describes electronic excitations of atoms during their transport through
solids. The present description can be considered the quantized version of a previously developed classical
transport theory. We analyze in detail the correspondence between classical and quantum transport simulations.
Applications to the stripping of relativistic H2 and H through thin carbon foils and a comparison with
experimental data are presented.@S1050-2947~99!00308-X#
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I. INTRODUCTION

Ever since the seminal work by Bohr and Lindhard on
evolution of the charge state and excitation state of
atomic particles penetrating solids@1#, the investigation of
the existence and the nature of the electronic excitation s
trum of swift ions has continued to draw considerable int
est. A complex array of multiple scattering processes p
duces a variety of excited configurations not eas
accessible by other means. Despite the extensive applica
of the ion-solid interaction as a spectroscopic tool as wel
a ‘‘stripper’’ medium to produce high charge states, a mic
scopic understanding of the dynamics of the excitation p
cess and of the evolution and transport of electrons acc
panying fast ions is somewhat limited. The difficulties can
attributed in part to the fact that perturbations of excit
states are sufficiently strong to preclude any perturba
treatment.

Some time ago, we proposed a classical transport the
~CTT! @2,3# which is based on a microscopic Langevin equ
tion for the trajectory of projectile-centered electrons. T
classical phase-space distributionrcl is represented by an
ensemble of phase-space points~test particle discretization!
whose trajectories are governed by the Langevin equat
Accordingly, the resulting phase-space distribution at a la
point in time is determined by the ensemble of evolv
phase-space points. In the case that only deterministic fi
are present, this approach is equivalent to the class
trajectory Monte Carlo~CTMC! method@4#. The determin-
istic force in the Langevin equation contains the Coulo
force between the electron and the projectile nucleus, in g
eral modified by dynamical screening in the solid~‘‘wake’’
@5,6#!, while the stochastic force represents the random m
tiple scattering with electrons in the medium~in the simplest
case, the ‘‘electron gas’’! as well as atomic cores in th
target. This prescription has yielded remarkable agreem
with a large variety of experimental data, such as for
hanced mean free paths@3#, for the enhanced production o
high-l Rydberg states and the resulting long-time tail in t
delayed x-ray spectra@7#, for the yield of convoy yields@8#,
and, most recently, for the excited state distribution of H(n)
PRA 601050-2947/99/60~2!/1091~12!/$15.00
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at relativistic energies@9,10#. The latter plays a key role fo
the reference design of next-generation spallation neu
sources~SNSs!. An H2 beam in the form of macropulses
accelerated to;1 GeV in a linear accelerator~LINAC !, and
is subsequently stripped to bare protons by transmiss
through a thin foil and injected into and stored in an acc
mulator ring@11,12#. The effective conversion of H2 to H1

and the underlying beam-foil interaction at the point of i
jection is a crucial element for the design of high-intens
SNSs. A key parameter is the population of excited neut
H~n! which may get stripped by the strong magnetic field
the first bending magnet. The resulting protons collide w
walls and magnets leading to unacceptably high levels
radioactivity along the beam line.

Despite the remarkable success of the description of th
complex processes within the framework of classical dyna
ics, the question as to the validity of the CTT has remain
open. One particularly puzzling aspect is that a fraction
the collisions suffered by the electron involve small mome
tum transfers for which classical dynamics is known to bre
down since excitation and ionization become classically s
pressed@13,14#. It appears, therefore, useful to develop
quantum transport approach to gauge the validity and ap
cability of the classical transport calculations. Until recent
a quantum calculation describing the electronic evolution
an atom as it moves through the solid has appeared to
formidable task even when the atom carries a single elect
This is due to the fact that a large number of bound a
continuum states become populated as a result of the tr
port process. Only now have a few contributions appeare
the literature in which selected aspects of the ion transm
sion problem have been tackled by numerically solving
time-dependent Schro¨dinger equation to calculate resona
coherent excitation rates@15# and stopping of ions@16#.

In this work we present a quantum description of tran
port which is based on a quantum Langevin equation. It
scribes the stochastic evolution of the quantum state un
the influence of both deterministic potentials, specifically
Coulomb potential or a dynamically screened potential, an
stochastic potential which accounts for multiple scatteri
The latter is chosen to yield a stochastic force identical
1091 ©1999 The American Physical Society
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that entering the classical Langevin equation. In analogy
similar developments in quantum optics@17# and in the
theory of atom-radiation-field interaction, each stochastica
evolved wave function can be labeled as a ‘‘quantum tra
tory’’ or ‘‘quantum history.’’ The solution of the reduced
quantum Liouville equation for the reduced density opera
can be reconstructed from a Monte Carlo sampling of qu
tum trajectories.

Applications to be discussed in the following include t
transport of relativistic H2 and H with energies of the orde
of 1 GeV through carbon foils with applications to the inje
tion problem for spallation neutron sources@11,12# as well as
the recent proposal for detecting relativistic antihydrog
@18# through the Lya emission after controlled excitation i
foil transmission. While the present approach is oriented
wards the treatment of the ion-solid interaction, we stress
applicability of this method to a wide variety of other phys
cal situations such as atoms in plasma environments an
the cooler gas of a storage ring or the interaction of ato
with radiation fields.

The plan of this paper is as follows. In Sec. II we give
outline of the theoretical framework. A few technical deta
of the calculations are presented in Sec. III together w
numerical results for H2 transmission. In Sec. IV we focu
on the comparison between quantum and classical trans
in order to assess the validity of the classical approach an
identify specific quantal, i.e., nonclassical features. Atom
units are used unless otherwise stated.

II. THEORY

We shall be concerned with the transmission of an
~atom! with nuclear chargeZp and velocityvW p through a thin
amorphous foil of thicknessX8 ~we use primes to denot
laboratory frame variables!. All numerical examples
throughout the paper will refer to a carbon foil. However, t
method is, with minor modifications, applicable to other m
terials. The ion, referred to in the following as the projecti
is assumed to be fast compared to the Fermi velocity,vF , of
the material (vp@vF) which corresponds to impact energi
greater than hundreds of keV/u. We neglect the slowing
down or straggling of the heavy ion due to its interacti
with the solid. Typical energy losses for thin foils are a ve
small fraction of the incident energy and have a negligi
effect on the evolution of projectile electrons. Thus, the
locity of the ion is treated as an approximate constant
motion. If desired, the change of the projectile velocity
angular deflection can be easily taken into account, e
within the framework of a continuous slowing down a
proximation ~CSDA! and small-angle scattering theo
@19,20#. The term transport refers in the following exclu
sively to the electronic degrees of freedom of the project

We will study the evolution of a single active electro
carried by the projectile. For ions carrying more than o
electron, additional approximations are required~e.g., see the
treatment below for transmission of H2 ions!. We decom-
pose this complex system into a subsystem, the atomic s
space centered around the projectile taken to be the
frame, and the environment consisting of atomic cores
the electron gas of the conduction electrons moving at
average velocity of2vW p . The task is now to determine th
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evolution of such an open system due to the irregularly fl
tuating coupling to the environment, i.e., multiple scatteri
of the active electron with the constituents of the solid. Sin
we focus on the transport of electrons which are clos
phase space correlated with the projectile, the evolution
the electron in the rest frame of the projectile is governed
nonrelativistic dynamics. Relativistic effects play a role on
through the coupling with the environment and its kinema
transformation to the projectile frame.

The state of the electron during the transport proces
conveniently described through its density operator

r5(
j ,k

r j ,kuf j&^fku, ~2.1!

where$ufn&,n51,2, . . . ,̀ % is a complete orthonormal bas
set representing the open subsystem. A density-matrix
scription easily allows for the treatment of initial electron
states prior to transport which are mixed states,

r i5 (
a51

Ni

paua&^au, ~2.2!

wherepa are occupation probabilities of the statesua&, or, as
a particular case, pure states

r i5uc i&^c i u, ~2.3!

whereuc i& is the initial wave function. Even though the pro
jectile electron could be in a pure state prior to entering
solid, a random transport process will produce a mixture
states.

The objective of the classical and quantum transport th
ries is the determination of the time evolution of the state
the electronr(t) from t50, prior to entering the solid~or, in
general, the time at which the initial state is formed with
the solid! up to a time T5T8A12(vp /c)2

5(X8/vp)A12(vp /c)2, which corresponds to the foil exit
Our present formulation of quantum transport proceeds
quantization of our classical transport theory~CTT!. For ref-
erence and comparison, it is therefore useful to first rev
the major steps of the CTT.

A. Classical Langevin equation

The starting point of the CTT is the time-dependent st
of the open system, the active electron, which is given by
reduced probability densityrcl(rW,pW ,t), whererW andpW are the
position and momentum vectors of the electron. Att50, the
probability density is given by

rcl,i5rcl~rW,pW ,0!5 (
a51

Ni

parcl
a~rW,pW !, ~2.4!

where rcl
a is chosen such that it approximately mimics t

quantum stateua&^au ~see, e.g.,@21#!.
The evolution of the open system due to both inter

interactions as well as the coupling to its environment~‘‘the
bath’’! can be described in terms of a reduced classical Li
ville equation
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]rcl

]t
5$Hat,rcl%1Rclrcl

52pW •¹W rWrcl1“ rWVat•“pWrcl1Rclrcl , ~2.5!

where $ , % denote Poisson brackets andHat is the atomic
Hamiltonian

Hat5
p2

2
1Vat~rW !5

p2

2
2

Zp

r
1Vscr~rW !, ~2.6!

which contains the Coulomb interaction potential,2Zp /r ,
possibly modified by dynamical screening~‘‘wake poten-
tial’’ @5,6#! in the solid,Vscr. For the present studies involv
ing low-charged projectiles and very high projectile spee
vp;c, Vat can be approximated by a pure Coulomb pote
tial.

In Eq. ~2.5!, Rcl is the classical relaxation superopera
describing the dissipative interaction with the environm
~the solid!. The explicit construction ofRcl is, in general, a
formidable task since it involves the many-body dynamics
the environment to which the open system couples. In
present case,Rcl represents the multiple scattering with th
solid. The central simplifying assumption which makes t
determination ofRcl feasible is the validity of linear-
response theory. Accordingly, the dynamics of the bath v
ables remain decoupled from the internal statercl of the
subsystem, or equivalently,Rcl is not of a functional ofrcl .
Conversely, no restrictive assumption is made for
strength of the perturbation of the environment on the s
system. In fact, in the present context we will consider stro
coupling that precludes a perturbative treatment of the e
lution of the projectile electron under the influence ofRcl . In
our applicationsvp@vF and, therefore, projectile-centere
electrons, including those in the continuum, are well se
rated in momentum space from target electrons. In ot
words, the removal of an electron from the projectile syst
is reasonably well-defined and there is little risk of ‘‘doub
counting.’’ Furthermore, we assume that the projectile is f
enough such that collisional interactions with the solid c
be represented in terms of impulsive momentum transferqW .
This approximation is based on the observation that collis
times tc.vp

21 are short compared to the orbital period of
hydrogenic electron in a hydrogenicn level, Tn52pvn

21

52pn3Zp
22 . With these approximations, the classical rela

ation operator is now specified in terms of a collision integ

Rclrcl5E d3qW~vW p ,q8W !@rcl~rW,pW 2qW ,t !2rcl~rW,pW ,t !#,

~2.7!

whereW(vW p ,q8W ) represents the transition rate per unit tim
to change the electron momentum fromp8W to p8W1q8W ~see@9#
for the transformation of the momentum transfer from t
laboratory frame,q8, to the projectile frame,q). Equation
~2.7! can be viewed as a linearized Boltzmann collision
tegral. Because of the large separation in momentum sp
Pauli blocking does not need to be included. In generalW

depends on both the momentum transferq8W and the local
momentum in the laboratory frame,p8W , as well as on the
state of the target which we consider to be in the ground s
s,
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at zero temperature. For transport of atomic states cent
around the projectile witĥ p8W &.vW p , we assume that the
transition rates are independent ofp8W ~i.e., W depends only
on vW p and q8W ). The transition rates are proportional to th
differential inverse mean free paths~DIMFPs! or
momentum-differential cross sections@22–24# @i.e., W
5vp(dl21/d3q8), where l is the mean free path#. They
include both elastic and inelastic scattering processes of
active projectile electron with target cores and the elect
gas of the medium. The DIMFPs or collision rates are c
culated in linear-response theory, which treats the respo
of the environment, i.e., the electron gas of the medium,
to perturbation by the active electron to first order in t
interacting potential but, in general, to all orders of t
electron-electron interaction of the medium~e.g., in the
random-phase approximation!.

Rather than solving Eq.~2.5! directly, the CTT proceeds
by employing ‘‘test particle discretization.’’ The solution o
the original classical Liouville equation for the phase-spa
densityrcl is mapped onto the time evolution of a represe
tative ensemble of initial phase points„rW i(0),pW i(0)… chosen
by Monte Carlo sampling of the initial probability density,

rcl~rW,pW ,0!5
1

Ntest
(
k51

Ntest

d@rW2rWk~0!#d@pW 2pW k~0!#, ~2.8!

whereNtest is the number of test particles whose trajector
are determined by astochastic equation of motion, the
Langevin equation

dpW

dt
52¹ rWVat1FW c~ t !. ~2.9!

Note that the stochastic forceFc describes a discontinuou
process representing the momentum ‘‘jumps’’ embodied
the collision integral@Eq. ~2.7!#. Provided thatFW c(t) gives a
faithful representation of Eq.~2.7!, the solution of the origi-
nal Liouville equation is given by

rcl~rW,pW ,t !5
1

Ntest
(
i 51

Ntest

d@rW2rW i~ t !#d@pW 2pW i~ t !#.

~2.10!

Since the drift term in Eq.~2.5! agrees with the determin
istic part of the Langevin equation~2.9!, the only nontrivial
part in establishing a correspondence between Eqs.~2.5! and
~2.9! lies in the determination of an appropriate stochas
force FW c . While such a construction is not unique, an ob
ous strategy is to optimize the agreement with the collis
operator for a finite number of jump moments,

d

dt8
^qi8

n&5E d3q8qi8
nW~vW p ,q8W ! ~ i 5x,y,z!,

~2.11!

in the absence ofVat ~i.e., for free-electron transport!.
We use a stochastic force given by a sequence of im

sive momentum transfers~‘‘kicks’’ !,

FW c5(
k

DpW kd~ t2tk!, ~2.12!
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whereDpW k is the stochastic momentum transfer per collisi
at the timetk . The determination ofFW c(t) is thereby reduced
to that of a stochastic sequence of pairs (DpW k ,tk). The zeroth
order of the collision kernel is given by the integrated tra
sition ratevpl21, wherel is the mean free path betwee
collisions in the laboratory frame. This moment is automa
cally reproduced by choosing times in between collisio
Dtk85(tk82tk218 ) at random according to a Poisson distrib
tion

P~Dtk8!}exp@2vpDtk8/l#. ~2.13!

For each collision, the momentum transfer is sampled at
dom according to a probability density

P~Dp8W k!}W~vW p ,Dp8W k!. ~2.14!

We have verified that this procedure reproduces up to
second moments of the collision kernels for free-elect
transport extremely well@3#.

Details of the collision kernels determining the mome
tum transfers and the times in between collisions have b
extensively described elsewhere@3,9,10#. We therefore re-
strict ourselves to a brief summary. We decompose the
chastic sequence into two independent subsequences.
sequence refers to elastic electron-target core scatte
while the other one refers to inelastic electron-electron s
tering leading to single-particle–single-hole excitation and
collective excitations of electrons in the medium. Elastic m
mentum transfers are calculated from the differential ela
cross section for the scattering of electrons at the ta
cores. Inelastic momentum transfers are obtained from a
alistic dielectric function of the foil as a function of the fre
quency and wave vector@23#. We consider both longitudina
and transverse excitations@5,25#. The main relativistic effect
in our calculations is associated with transverse electrom
netic excitations. The mean free path for these excitati
decreases for increasing velocity and this process beco
increasingly important at higher collision energies. For c
bon foils, however, collisional processes are dominated
longitudinal excitations and elastic scattering. Inelastic lo
gitudinal collisions have the shortest mean free path, w
elastic collisions have the largest momentum trans
among the scattering processes.

Our present quantum transport approach consists now
quantization of the classical transport theory. We start
noting that the classical Langevin equation is complet
equivalent to the Hamilton equations of motion associa
with the stochastic Hamiltonian

H~ t !5Hat1Vc~ t !5Hat2rW•FW c~ t ! ~2.15!

involving the stochastic potential functionVc(t)52rWFW c(t)
~within the framework of matter-radiation interaction, th
corresponds to the so-called length gauge!. HereVc plays the
role of a stochastic variable which determines the underly
stochastic process and the relaxation operator.

Moreover, the CTT solution@Eq. ~2.10!# generated by this
stochastic Hamiltonian is, for transport of a single electr
completely equivalent to the average of various classical
lutions each obtained for a particular history or random
-
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quence of collisionsm5$(DpW i ,t i), i 51,2, . . .% and for a
particular stateua&^au of the initial state mixture. That is,

rcl~rW,pW ,t !5
1

Ntraj
(
a51

Ni

pa (
m51

Ntraj

rcl
m,a~rW,pW ,t !, ~2.16!

where Ntraj is the number of random collisional sequenc
~ideally, Ntraj˜`).

We note a subtle point associated with Eq.~2.16!: here we
have subjected allNtest elements of our classical ensemble
the same stochastic sequence. For a classical ensemble
resenting a true many-body system, such a choice of stoc
tic histories would introduce artificial many-body correl
tions. In the present case, however, the ensemble plays
role of a classical model for the single-particle quantu
wave function. Since we will use in the followingrcl only to
calculate one-particle observables, identical stochastic
quences for all members of the ensemble do not affect
numerical results. The present choice is motivated by
direct analogy to the stochastic wave function described
the next section.

B. Quantum Langevin equation

Much like for the classical system, the evolution of a
open quantum system can be formally described in term
a quantum Liouville equation for the reduced density ope
tor r of the electron,

i
]r

]t
5@Hat,r#1Rr, ~2.17!

where the relaxation superoperatorR describes the dissipa
tive interaction with the environment. After making the sam
simplifying assumptions used in the classical Liouville E
~2.5!, an explicit, though very cumbersome, form forR can
be given which we omit in the following since we will no
directly solve Eq.~2.17!. Instead, we solve the quantum
transport problem by test-particle discretization of a mic
scopic quantum Langevin equation, in analogy to the CT
The stochastic Hamiltonian in Eq.~2.15! generates a stochas
tic time evolution described by a Schro¨dinger equation,

i
]

]t
uc~ t !&5H~ t !uc~ t !&, ~2.18!

to which we refer to in the following as the quantum Lang
vin equation. Due to the stochastic nature of the Ham
tonian, the time-evolved stateuc(t)& is indeterministic and
Eq. ~2.18! is understood to describe a continuous flow
between discontinuous jumps. Each solutionucm,a(t)& rep-
resents one particular realization or history for a given r
dom sequence of collisions,m, and for a given initial state
ua&. While in detail quite different, a solution of the quantu
Langevin equation resembles a ‘‘quantum trajectory’’ in t
terminology of quantum optics@17#.

With the help of the quantum Langevin equation, the s
lution of the transport problem can be easily determined
terms of the Monte Carlo sampling over quantum trajector
or histories, much like the classical solution in Eq.~2.16!,
i.e.,
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r~ t !5
1

Ntraj
(
a51

Ni

pa (
m51

Ntraj

rm,a~ t !

5
1

Ntraj
(
a51

Ni

pa (
m51

Ntraj

ucm,a~ t !&^cm,a~ t !u, ~2.19!

where, initially,cm,a(0)5ua&.
Using now the explicit form of the stochastic potential

terms of a sequence of impulses@Eq. ~2.15!#, we can write
the solution of the quantum Langevin equation for one p
ticular sequencem as

ucm,a~T!&5Um~T,0!uc~0!&5Um~T,0!ua&, ~2.20!

whereUm is the evolution operator after a particular rando
sequence of collisionsm5$(DpW k ,tk), k51,2, . . . ,M %. Due to
the d-shaped time dependence of the kicks, the time evo
tion operator adopts the form

Um~T,0!5e2 iHat(T2tM) )
k50

M21

U~ tk11 ,tk!, ~2.21!

U~ tk11 ,tk!5eirW•DpW k11e2 iHat(tk112tk), ~2.22!

wheret050. That is, in between the timestk and tk11, the
electron evolves freely according to exp@2iHat(tk112tk)#.
Subsequently, the momentum of the electron is sudde
shifted inDpW k11, which is exactly described by boost oper
tor exp@irW•DpWk11#. In practice, upon a basis expansion
terms of atomic~pseudo!states, the operators in the produ
@Eq. ~2.22!# are represented by matrices. Consequently,
calculation of a quantum trajectory is reduced to a seque
of matrix multiplications.

Finally, the time-evolved density operator follows fro
Eq. ~2.19! as

r~T!5
1

Ntraj
(
a51

Ni

pa (
m51

Ntraj

Um~T,0!ua&^auUm
† ~T,0!

~2.23!

and the expectation value of an arbitrary observableA is
given by ^A&5Tr„Ar(t)…. In particular, forA5uc f&^c f u,
one obtains the transition probability into a final stateuc f&
which is given by

Pi˜ f5
1

Ntraj
(
m50

Ntraj

(
a51

Ni

paz^c f uUm~T,0!ua& z2. ~2.24!

It is worthwhile noting a few properties of the stochas
evolution operatorUm . It is obviously not energy conservin
within the atomic subsystem since it explicitly treats a tim
dependent external perturbation. It therefore allows for
ergy flow into and out of the ‘‘open’’ subsystem in acco
dance with

d

dt
^Hat&5

d

dt
Tr„Hatr~ t !…5” 0. ~2.25!

A more subtle feature ofUm is that any finite-dimensiona
matrix representation ofUm , unlike the operator itself, is
not unitary. The reason is that both the boost opera
exp@irW•DpWk# and the free evolution operators ex
@2iHat(tk112tk)# couple the subsystem to the orthogon
r-

-

ly

t
e
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rs
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complementQ of any finite-dimensional representation~see
the next section!. In simple terms, the exact electronic wav
function evolves beyond the boundaries of the finite Hilb
space. This loss amounts to a nonunitary evolution with

d

dt
Trr,0. ~2.26!

It may appear that the present method depends critic
on the choice of the stochastic interaction potential@Eq.
~2.15!# in terms of a sequence ofd-shaped pulses. This is
however, not the case. The key observation is that any a
tional smooth time-dependent potential can be represente
terms of a sequence of infinitesimal kicks as

V~ t !5 (
k51

J

d~ t2tk!dpk , ~2.27!

dpk5E
tk2D

tk1D

V~ t !dt, ~2.28!

in the limit D˜0, J˜`, andT5JD5const. The represen
tation of the time-dependent perturbation in terms of a
quence of infinitesimal kicks is just the essence of the
called split-operator algorithm for integration of the tim
dependent Schro¨dinger equation. Therefore, any combinatio
of deterministic and stochastic time-dependent potentials
be treated according to Eq.~2.22!. This includes the effect of
external ac and dc fields. The only difference is that
stochastic processes with discrete jumps, the time inte
between subsequent kicks,tk112tk , remains finite and has
physical significance in terms of a characteristic time sc
for the stochastic process that determines the interaction
tween subsystem and environment, while for smooth de
ministic processes this interval is to be taken as a fin
difference approximation to a continuous process and is to
made sufficiently small untilUm is independent of the length
of the interval.

Furthermore, Eq.~2.22! permits the treatment of stocha
tic processes for which the jumpsDpW (t) possess an explici
dependence on time or other parameters. The tim
correlation function of the jumps may correspond to ‘‘co
ored noise’’ with long-time correlations. The only restrictio
is that the stochastic perturbation does not depend on
state of the subsystem. This is in accord with the fundam
tal assumption of linear response mentioned above.

III. APPLICATIONS

A. Method of calculation

The ultimate purpose of our calculations consists of co
puting population fractions of various final states after t
ion-solid interaction@Eq. ~2.24!#. Because typical calcula
tions involve an average over*1000 trajectories, the key
issue for the simulation of the quantum transport is to util
an efficient and accurate method to numerically evaluate
evolution operatorUm . The basic pieces for the latter hav
been developed in a series of recent papers@26,14,27#.

An explicit matrix representation of Eq.~2.22! can be
found by expanding the wave function in an orthonorm
basis set composed of statesufn&, n51,2, . . . ,Nmax,
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ucm~ tk11!&5 (
s,i , j 51

Nmax

ufs&^fsueirW•DpW k11uf i&

3^f i ue2 iHat(tk112tk)uf j&^f j ucm~ tk!&.

~3.1!

Since the evolution operator couples states of the comp
Hilbert space, a finite-dimensional representation of this
erator is, in general, not unitary. In other words, if a fin
basis set$ufn&% is used, the norm of the wave function is n
preserved. The amount of probability lost in this nonunita
calculation gives the probability flux to states outside
basis set@see Eq.~2.26!#.

Our orthonormal basis set is constructed from a non
thonormal Sturmian basis set@28–31#, which is defined by
the complete set of functions obeying

S p2

2
2

n

nsr
D uxns&52

1

2ns
2

uxns&, ~3.2!

wheren51,2, . . . ,̀ , and the parameterns defining the set is
called the Sturmian parameter. Equation~3.2! can be solved
in spherical coordinates leading to basis statesuxn,l ,m

ns & in
terms of spherical quantum numbers. A complete and co
able basis set for the full Hilbert space is generated
changing the set of quasi-quantum numbersn51,2,. . . ,`,
l 52(n21), . . . ,(n21), m52 l , . . . ,l . In practice, how-
ever, the basis must be truncated; i.e., the basis size de
by Nmax in Eq. ~3.1! is finite. In the following, we use 1
<n<nmax, 0< l<(n21),2 l<m< l , which corresponds to
a number of statesNmax5nmax(nmax11)(2nmax11)/6. By
definition, a bound hydrogenic state can be written
un,l ,m&5uxn,l ,m

ns & if ns5n/Zp . For hydrogen (Zp51) the
value of ns determines whether a givenn shell is exactly
reproduced by the basis~i.e., whenns5n). In general,ns
takes real values and a Sturmian basis set represents a
tion of both bound and continuum energy levels. Und
standing which other physical energy levels can be prop
described within a finite basis requires additional analy
~see, e.g.,@27#!.

Since Sturmian functions are not orthogonal, we defi
the orthonormal basis set$ufk

ns&, k51,2, . . . ,Nmax% entering
Eq. ~3.1! as the set of orthonormal eigenvectors of the fin
Sturmian representation ofHat. Namely,

ufk
ns&5 (

i 51

Nmax

bi
kuxni ,l i ,m

ns &, ~3.3!

Ĥatb̂
k5EkŜb̂k, ~3.4!

whereEk is the eigenenergy of an electron in the stateufk
ns&,

Ŝ is the overlap matrix (Si j 5^xni ,l i ,muxnj ,l j ,m&), andb̂k and

Ĥat are the column vector and matrix representation ofufk
ns&

andHat in the Sturmian basis set, respectively.
Matrix elements of the boost operator, exp(iDpW•rW), can be

evaluated analytically. First, the matrix elements are ca
lated in a basisxn,l ,m8 whose quantization axis coincides wi
te
-

y
e

r-

t-
y

ed

s

ac-
-
ly
is

e

-

the direction ofDpW ~see, e.g.,@32#!. Subsequently, these cou
plings are rotated for any arbitrary directionVW of the mo-
mentum transfer according to

^xn,l ,muexp~ iDpW •rW !uxn8,l 8,m8&

5 (
m1 ,m2

^xn,l ,m1
uexp~ iDpz!uxn8,l 8,m2

&

3Dm1m
l ~VW !Dm2m8

l 8 ~VW !, ~3.5!

whereDm8m
j are rotation matrix elements.

An accurate nonunitary representation of the free evo
tion operator in Eq.~3.1!, exp@2iHat(tk112tk)#, requires, in
general, a more elaborate treatment such as the use o
complex dilation method@31#, masking function, or complex
potentials~see, e.g.,@33# for a general discussion!. In this
work we assume that the time in between collision is sh
enough and that the momentum transfers are large eno
such that most of the outgoing flux of probability can
described by the boost operator. Thus, we adopt a uni
matrix representation, exp@2iĤat(tk112tk)#, within the basis
set. Since our basis set diagonalizesĤa , exp(2iĤatdt) is
also diagonal with matrix elements exp(2iEkdt) k
51,2, . . . ,Nmax.

B. Transmission of H2 through thin carbon foils

In order to treat the transport of a two-electron H2 ion, an
additional approximation is required which goes beyond
one-electron transport outlined above@9,10#. We reduce the
complex problem of H2(1s,1s8)-solid interaction to two
major steps. First, the weakly bound ‘‘outer’’ 1s8 electron is
collisionally detached, thereby leaving the ‘‘inner’’ electro
in a superposition of states of the H atom. Second, the
sulting H atom propagates through the solid experienc
multiple collisions, as described by the present transport
proach.

The probability for destruction of H2 as a function of the
foil thicknessX is given by PH2(X8)5e2X8/lD, where the
inverse mean free path~IMFP! for collisional single-electron
detachment of H2, lD

21 , is approximately given by the tota
IMFP of free electrons@9#. The sudden collisional remova
of the outermost electron leads to a redistribution~shake-up!
of the inner electron of H2 among hydrogenicns states.
Using the generalized shake-up approximation and the
parameter H2 wave function of Hart and Herzberg@34#, it is
found that predominantly H(1s) and H(2s) become popu-
lated @9#. The probability to find the electron in the 1s and
2s states isp1s50.815 andp2s50.183, respectively. The
population of highns states including those in the continuu
is less than'0.2%. Within this isotropic shake approxima
tion, states of higher angular momenta are not occupied

The shake-up process creates a coherent excitation o
residual hydrogen atom. However, since the energy and
gular distribution of the detached electron remains un
solved, these coherences are partially averaged out.
therefore consider two limiting cases for the initial dens
matrix. When the phase-space distortion due to the detac
electron is strong, we arrive at a completely incoherent s
mixture,
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r i5(
n

ucns&pnŝ cnsu. ~3.6!

Conversely, if the residual interaction is negligible~e.g., for
an extremely fast receding electron!, a pure, fully coherent
state

c i5(
n

Apnsucns& ~3.7!

would result with the relative phases directly given by t
shake-up amplitude. We have verified that the numerical
sults using Eqs.~3.6! and~3.7! agree with each other within
our numerical uncertainties. Most of the results presen
below are based on Eq.~3.7!.

Having generated the initial state after collisional deta
ment and shake-up, the evolution of the hydrogenic elec
in the rest frame of the proton is governed by the nonrela
istic stochastic Hamiltonian@Eq. ~2.15!#. Figure 1 illustrates
the evolution of outgoing charge state and population fr
tions of n shells of hydrogen as a function of the foil thick
ness for a beam energy of 800 MeV. The foil thickness~or
time! at which the populations ofH(n51,2) maximize is
very different from the ones forH(n>3), indicating the ex-
istence of different production mechanisms. While shake
plays a very important role in the population of then51,2
shells, n>3 shells are predominantly populated throu
multiple collisions. An average of eight collisions are i
volved for the largest foil thickness in the figure. Previo
classical transport calculations were found to be in reas
able agreement~within a factor of 2! with experimental data
of Gulleyet al. @35# on an absolute scale~see Fig. 1!. We can
now test the classical simulation by comparing with o
present quantum transport simulation. Remarkably, the qu
tum and classical calculations are in very good agreem
with each other.

FIG. 1. Fractions of H2 and H(n51,2,3,4) as a function of foil
thickness for transmission of a 0.8 GeV H2 beam through a carbon
foil: experimental data of Gulleyet al. @35# ~symbols!, quantum
transport~solid lines!, and classical transport~dashed lines!.
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Clearly, any firm conclusion from this comparison r
quires an assessment of the intrinsic errors. Our quan
transport calculations have two sources of errors: statist
and numerical. Statistical errors are associated with the fi
number of quantum trajectories involved in the simulatio
Ntraj51000. This is obviously the origin of the fluctuation
of the outgoing fraction of H2 ions when the fraction has
fallen to below'1022 and which should coincide with the
classical result in the limitNtraj˜`. Figure 2 illustrates the
statistical error of our calculation of the outgoing fractions
excited states of hydrogen. The two results were obtai
using a different ensemble of random collisions and the
ference between the curves gives directly a measure for
statistical uncertainties of our results. We therefore estim
the statistical error of our calculations to be&20%.

Numerical errors are associated with the truncation effe
in the solution of the time-dependent Schro¨dinger equation
in a finite Hilbert space. As a convergence criterion, we u
a stabilization method@27# according to which converged
results should be stable with respect to variations of our b
size,Nmax, and the Sturmian parameter,ns . We find that an
optimal Sturmian parameter for this problem isns.3. Figure
3 illustrates the convergence of our calculations with resp
to the basis size as it changes fromNmax5140 (nmax57) to
Nmax5285 (nmax59) states. The relative error of the calc
lations is found to be&5%. The relatively fast convergenc
is due to the fact that we follow the time evolution only fo
a relatively short time~about four orbital periods of ann
52 electron and about one orbital period of ann53 elec-
tron!. With increasing time or foil thickness, the error wou
increase. One physical origin for the breakdown would
the collisional recapture of continuum electrons which b
comes a more important process after long periods of t
or, equivalently, large distances@8,10#. This would also re-
quire a larger basis size to be accounted for accurately.

A more detailed test for the agreement between the c
sical and quantum simulations is provided by a compari
of the subshell populations of the outgoing hydrogen ato

FIG. 2. Illustration of the statistical error of the quantum calc
lations in Fig. 1. The different calculations have been obtained
ing two different random sequences of collisions.
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The time-dependent subshell populations of excited hyd
genic states generated during propagation of the hydro
atom through the foil probe the relative contributions of el
tic and inelastic momentum transfer as well as their abso
values and direction and allow for the identification of pr
pensity rules favoring certain quantum numbers. Figure 4~a!
displays a comparison between our classical and quan
calculations and the measurements of Keatinget al. @36# for
them distributions in then54 shell. Note that the quantiza
tion axis is chosen to be perpendicular to the beam velo

vW p . The agreement between classical and quantum re
and the experiment is very good. Them50 population is
drastically enhanced compared to a statistical distribu
~the statistical weights ofm50,1,2,3 are 0.25, 0.375, 0.25
and 0.125, respectively!. For small foil thicknesses, the pro
pensity for populatingm50 states is primarily driven by the
shake-up process following the single-electron detachm
of H2. Remarkably, the preference for populatingm50
states extends to all foil thicknesses and, additionally,
population fractions are nearly independent of the foil thic
ness. This propensity is a consequence of the direction o
typical momentum transfers involved in the transport p
cess: for high-velocity collisions, both elastic and inelas
momentum transfers are nearly perpendicular to the b
axis.

The preferential direction of the momentum transfers a
give rise to the propensity to create Stark states whose sp
probability densities have the largest polarization perp
dicular to the beam axis. Within each Starkn manifold, the
most polarized states correspond to them50 states. The
population fractions of the variousun,k,m& Stark states
within a givenn manifold obtained theoretically and exper
mentally @36# are in agreement with this picture. As an e
ample, Fig. 4~b! shows the relative probability within then
54, m50 subshell for populating Stark states withelectric
quantum numberk523,21,1,3. Both experiment@36# and
theory reveal population preferences of the extreme S

FIG. 3. Relative numerical error of the calculations in Fig. 1
the basis size is increased fromNmax5140 (nmax57) to Nmax

5285 (nmax59).
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states~large-uku states! u4,23,0& and u4,3,0& by about 50%
compared to theu4,21,0& and u4,1,0& states, in accordanc
with the dominance of transverse momentum transfers.
no strong external magnetic field is present during the tra
port, the population of states with the sameabsolute electric
quantum number should be equal. Small deviations fr
equal population are a measure of the statistical error of
calculations as well as of the experimental uncertainties.

IV. CORRESPONDENCE BETWEEN CLASSICAL
AND QUANTUM TRANSPORT

In order to investigate the origin of the remarkably clo
classical-quantum correspondence observed for the trans
problem in more detail and identify parameter regions wh
discrepancies might occur, we present in the following
sults for the evolution of a pure hydrogenic initial sta
~rather than a mixed state!. In addition, we have chosen
collision energy of 8.85 GeV energy which is higher than t
one in the preceding section so that the present results ca
directly used for recently proposed experiments for the ex
tation and Lya detection of antihydrogen@18#. Note that the
same conclusions concerning classical-quantum corres
dence are obtained for a beam energy of 0.8 GeV~see, e.g.,
the scaling properties of the population fractions@10#!.

Figures 5 and 6 show that classical and quantum calc
tions for then and l distributions of outgoing excited state
of hydrogen are again in reasonably good agreement w
each other. The main difference with respect to transmiss

FIG. 4. Substate distributions in then54 shell as a function of
foil thickness for transmission of a 0.8 GeV H2 beam through a
carbon foil: experimental data of Keatinget al. @36# ~symbols!,
quantum transport~solid lines!, and classical transport~dashed
lines!. ~a! Relative m distribution. ~b! Stark k distribution for m
50.
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PRA 60 1099QUANTUM TRANSPORT THEORY FOR ATOMIC STATES . . .
of H2 is that the fraction of then level associated with the
initial state provides the dominant source of probability a
is a monotonically decreasing function of thickness. T
dominant angular momentum after excitation from H~1s! is
l 51 in accordance with dipole selection rules for soft co
sions. The point to be noted is that classical transport
account for thel 51 dominance reasonably well despite t
fact that dipole transitions due to virtual photon absorpt
are not properly accounted for within classical dynami
The biggest differences between the classical and quan
calculations are observed for the population of large ang
momentum states at small thicknesses. For increasing
thickness, the fractions of larger angular momentum sta
become larger, which is recognized as a signature of mult
scattering~e.g.,@37,38,7,39#!.

One might expect that the good agreement between c
sical and quantum transport is due to the benign effec
averaging over many degrees of freedom and parame
~momentum transfers, collision times! inherent in transport.
Conversely, the more degrees of freedom are resolved
better the chances to observe clear discrepancies. Gene
speaking, a quantum system reaches its classical limit
short times, strong perturbations, and large quantum n
bers. For the transport problem with random flight times
between collisions, however, the Fourier spectrum of
perturbation is broad and, consequently, a time scale for
perturbation can be determined only in terms of an avera
This averaging effectively eliminates time coherences wh
may otherwise lead to, for example, resonant excitation p

FIG. 5. Fractions of H(n51,2,3,4) as a function of foil thick-
ness after transmission of 8.85 GeV H(1s) and H(2s) beams
through a carbon foil: quantum transport~solid lines! and classical
transport~dashed lines!.
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cesses. In addition, the transport problem involves an a
age over the magnitude and the direction of the momen
transfers delivered to the electron.

In order to delineate the origin of the classical-quantu
correspondence, we analyze next a simplified problem o
atom subject to a train of impulses~or kicks! for which the
randomness of the stochastic force is reduced by keeping
direction and strength constant~i.e., m is a constant of mo-
tion!,

Htrain~ t !5Hat2zDp(
i

d~ t2t i !, ~4.1!

and by constraining the time interval between c
lisions, Dt5t i 112t i , to be Poisson distributed,P(t i 11)
}exp@2(ti112ti)/^Dt&#, where the constant̂Dt& represents
the average time between collisions. Analysis of this pro
lem can provide evidence as to whether the randomnes
the collision times controlled bŷDt& suffices to achieve the
correspondence between the classical and quantum resu

In Fig. 7 we compare classical and quantal ionization
an H~1s! initial state as a function ofDp after an average
number ofNkick510 kicks~i.e., t/^Dt&510), which is a typi-
cal number for the transport problem. We display results
two different ^Dt& values, one much smaller and one mu
larger than the orbital period of the state to be ioniz
(Torb52p a.u. for n51). As a point of reference, we als
show the single kick result for which randomness in time
obviously eliminated. Note that the value^Dt&510 Torb cor-
responds to the realistic transport calculations discus
above, while^Dt&5Torb/10 corresponds to the ‘‘ultrashort’

FIG. 6. Substatel distributions in then52 andn54 shells as a
function of foil thickness after transmission of a 8.85 GeV H(1s)
beam through a carbon foil: quantum transport~solid lines! and
classical transport~dashed lines!.
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limit where the time evolution between adjacent kicks can
~almost! neglected and where randomness of collision tim
should play a minor role.

For a single kick, classical and quantum results are fo
to be in agreement with each other if the magnitude of
momentum transfer is large enough~e.g., Dp*Dpcrit
'0.5 a.u.). For small momentum transfers, ionization
comes classically suppressed since the classical averag
ergy transferred to the electron@^DE&5(Dp)2/2# is much
smaller than the level spacing nearn51. In turn, the
quantum-mechanical result becomes proportional to (Dp)2

in the dipole limit ~see, e.g.,@13,14# for a more detailed
discussion!. The results after a train of 10 kicks show that t
domain of momentum transfers for which classical and qu
tum results agree shifts to smallerDp. In the limit Dt˜0,
this is due to the fact that the sum

DpW sum5 (
i 51

Nkick

DpW i ~4.2!

rather than an individual momentum transfer has to be c
sidered. The effect of 10 collinear kicks becomes exac
equivalent to that of a single kick with ten times larger ma
nitude. Therefore,Dpcrit ~per kick! above which ionization
becomes classical should scale as 1/Nkick , which is approxi-
mately observed in Fig. 7. That is, the results for 10 kic
and^Dt&50.1Torb are shifted inDp in about a factor of ten
with respect to the results for one kick. In turn, for^Dt&
510Torb, the relative orientation ofDpW with respect to the
local momentumpW in the orbit between different kicks i
randomized. Therefore, one would expect the ‘‘effectiv

FIG. 7. Ionization probability as a function of the momentu
transfer after a H(1s) atom is subject to a single momentum tran
fer and to a train of constant momentum transfers~kicks! with a
random time intervalDt in between them: quantum simulatio
~solid lines! and classical simulation~dashed lines!.
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momentum transfer determining the ionization probability
be Dpsum.ANkickDp. In this case, the results for 10 kick
should be shifted in;1/ANkick with respect to the results fo
one kick, which is also approximately observed in Fig. 7.

Figures 8 and 9 show that the conclusions found ab
classical-quantum correspondence for ionization have to
modified for the excitation probability into then52 or n
53 levels. The excitation probability as a function of th
momentum transfer for 10 kicks is shifted compared with
one for a single kick, much like the ionization probabilit
However, the degree of correspondence after ten rand
kicks is not as good. Clearly, the excitation probability into
given level is a more delicate case than the total ionizat
probability, which includes a sum over all continuum ener
levels ~a more appropriate comparison would be the ioni
tion into a given continuum energy!. As expected, the exci
tation probability is classically suppressed for small mom
tum transfers. However, depending on the value of^Dt&, the
excitation probability for large momentum transfers can
classically suppressed (^Dt&510) or enhanced~see@13# for
a single kick, which corresponds to the limit^Dt&˜0).
Therefore, not only a lower critical valueDpcrit above which
the classical-quantum correspondence holds has to be
sidered, but also an upper cutoff exists. In other words,
encounter the following opposing trends: correspondence
excitation into a specific final state exists only for not t
large and not too small values of the momentum transfe

The origin of this apparent puzzle is that classical dyna
ics can describe the quantum system ‘‘on the average,’’
not all of its peculiarities. In general, classical-quantum d
crepancies become larger when the probabilities for the

FIG. 8. Excitation probability as a function of the momentu
transfer after a H(1s) atom is subject to a single momentum tran
fer and to a train of constant momentum transfers~kicks! with a
random time interval Dt in between them such that̂Dt&
510Torb: quantum simulation~solid lines! and classical simulation
~dashed lines!.
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responding processes become smaller. For a single kick
bulk of the energy levels that become populated are th
whose energy differs from the initial energy in the avera
energy transfer,̂ DE&5(Dp)2/2 ~i.e., the so-called Bethe
ridge!. The probability for excitation into energy levels th
are far from this ridge is small and is not properly describ
by classical dynamics. The breakdown is also visible
many kicks, i.e., in the time evolution of excitation~Fig. 9!.
As the amount of momentum delivered to the system
creases, the classical-quantum discrepancies increase.

Since in addition to the randomness of the collision tim
also the size of the momentum transfer critically influenc
the agreement between classical and quantum transpor
can now explore how much randomness inDp is required to
‘‘repair’’ the classical-quantum correspondence and to yi
the level of agreement observed in the realistic calculat
To this end, we randomize in our model the values ofDp
according to a uniform distribution in the interval@0.1
<Dpi<1] but still keeping the direction fixed. The resultin
excitation functions are displayed in Fig. 10 and show t
classical and quantum calculations are now in reason
agreement with each other, the largest deviation forn52
being about 50%. Obviously, as more averaging enters
realistic calculation, the agreement becomes even better

V. CONCLUSIONS AND OUTLOOK

In this work we have introduced a quantum transp
theory to describe the evolution of the excited states of ato
as they are transmitted through the solid. We have prese

FIG. 9. Fractions of H(n51,2) as a function of scaled time afte
a H(1s) atom is subject to trains of three different momentu
transfers with a random time interval in between them such
^Dt&510Torb: quantum simulation~solid lines! and classical simu-
lation ~dashed lines!.
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results for the transmission of relativistic H2 and H atoms
through thin carbon foils. Our results are found to be
agreement with experiment and classical transport calc
tions.

We have shown that the surprisingly good agreement
tween classical and quantum transport is due to two effe
First, the typical momentum transfers in ion-solid collisio
are such that they lie, on the average, in the range for wh
classical-quantum correspondence for a single momen
transfer~‘‘kick’’ ! is expected to exist. Second, the stochas
nature of the collisional interaction destroys quantum effe
of time coherence and averages over a broad distributio
momentum transfers.

The present results suggest that promising candidates
which larger discrepancies should appear would be hig
charged ions as projectiles. Here, the average collisional
ergy transfers would be smaller than the quantum level sp
ings and the critical threshold for classical excitation may
be reached. Thus, the regime of ‘‘small’’ nonclassical m
mentum transfers could be explored. In addition, becaus
the large value of the projectile charge, dynamical screen
and the fine structure of the atom may play an important ro
Recent experiments for fast Ar181 and Kr361 ions interacting
with carbon foils have found unexplained discrepancies w
classical simulations@40#. Work is underway to analyze
these systems using the present quantum transport for
ism.
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FIG. 10. Fractions of H(n51,2,3,4) as a function of scaled tim
after a H(1s) atom is subject to trains with random momentu
transfers in the interval 0.1 a.u.,Dp,1 a.u. and with a random
time interval in between them such that^Dt&510Torb: quantum
simulation~solid lines! and classical simulation~dashed lines!.
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@32# Dž Belkić, J. Phys. B14, 1907~1981!; the basic integrals can

be actually found in, e.g., I. G. Gradshteyn and I. M. Rysh
in Table of Integrals, Series, and Products~Academic Press,
San Diego, 1980!, p. 844.

@33# S. Yoshida, S. Watanabe, C. O. Reinhold, and J. Burgdo¨rfer,
Phys. Rev. A60, 1113~1999!.

@34# J. F. Hart and G. Herzberg, Phys. Rev.106, 79 ~1957!.
@35# M. S. Gulley, P. B. Keating, H. C. Bryant, E. P. MacKerrow

W. A. Miller, D. C. Rislove, S. Cohen, J. B. Donahue, D. H
Fitzgerald, S. C. Frankle, D. J. Funk, R. L. Hutson, R.
Macek, M. A. Plum, N. G. Stanciu, O. B. van Dyck, and C. A
Wilkinson, Phys. Rev. A53, 3201~1996!.

@36# P. B. Keating, M. S. Gulley, H. C. Bryant, E. P. MacKerrow
W. A. Miller, D. C. Rislove, S. Cohen, J. B. Donahue, D. H
Fitzgerald, D. J. Funk, S. C. Frankle, R. L. Hutson, R.
Macek, M. A. Plum, N. G. Stanciu, O. B. van Dyck, and C. A
Wilkinson, Phys. Rev. A58, 4526~1998!.

@37# Y. Yamazakiet al., Phys. Rev. Lett.61, 2913~1988!.
@38# J. P. Gibbonset al., Phys. Rev. Lett.67, 481 ~1991!.
@39# P. Nicolai, M. Chabot, J. P. Rozet, M. F. Politis, A. Chetiou

C. Stephan, A. Touati, D. Vernhet, and K. Wohrer, J. Phys
23, 3609~1990!.

@40# D. Vernhet, J. P. Rozet, E. Lamour, B. Gervais, C. Fourme
and L. J. Dube, Phys. Scr.~to be published!; D. Vernhet, J. P.
Rozet, I. Bailly-Despiney, C. Stephan, A. Casimi, J-P. Gra
din, and L. J. Dube, J. Phys. B31, 117 ~1998!; E. Lamour,
Ph.D. thesis, Universite de Caen, 1997~unpublished!.


