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Classical and quantal atomic form factors for arbitrary transitions

D. Vrinceanu and M. R. Flannery
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 24 February 1999!

The classical form factor is deduced from exact correspondence with a phase-space representation of the
quantal form factor. Analytical expressions are provided fornl˜n8l 8, nl˜n8, and n˜n8 transitions in
hydrogenic systems and forn˜n8 in the one-dimensional harmonic oscillator. An efficient procedure for
calculation of quantal form factors as analytical functions of momentum transfer, for arbitrary quantum num-
bers, is presented. The classical approach has the ability to explain quite succinctly interesting trends and
various important aspects which remain hidden within the quantal treatment of form factors. The classical-
quantal comparison ranges from being qualitatively good fornl˜n8l 8 transitions to close agreement fornl
˜n8 andn˜n8 transitions. Excellent agreement is obtained for the integrated form factor for all transitions.
@S1050-2947~99!09107-6#

PACS number~s!: 32.80.Cy, 34.50.2s, 31.15.Gy
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I. INTRODUCTION

The inelastic form factor

Ffi5^C f ueiq•r /\uC i&5^C f ueiK•ra.u.uC i&

is a very basic quantity. It can accurately describe the ove
response and dynamics of an atom or molecule involved
various processes or external interactions. It is also comm
in various schemes of approximation.

The study of the hydrogen atom form factor serves a
pivotal starting point for the general study of electronic tra
sitions between highly excited states of atoms and molecu
The additional effects of the nonhydrogenic core may
incorporated via use of quantum defect theory. Inelastic tr
sitions between the ro-vibrational states of molecules can
studied by appeal to the inelastic form factor for the h
monic oscillator.

Inelastic scattering of incident~neutral or charged! par-
ticles or of photons~or short bursts of electromagnetic radi
tion @1#! by a structured target can be decomposed into
internal structure part, provided by the form factor of t
target, and a dynamic part which depends on details of
external projectile-target interaction. Bound-bound, bou
continuum , continuum-continuum, and ionization transitio
are treated on the same footing by using the form factor

The quantal impulse, semiclassical impact parameter,
Born approximation, and binary encounter methods of co
sion theory@2# focus on the transition probability as a d
namic response of the target in the field of the projectile. T
physical significance of the form factorF is that Pif (q)
5uFu2 is the probability of an internal transition arising fro
any external impulsive perturbation~whether due to collision
with particles or exposure to electromagnetic radiatio!
which induces a sudden changeq to the internal momentum
of the target system@3#. Since any interaction can be decom
posed as a series of sudden interactions, the scattering
section or other observables are determined by integra
the form factor, multiplied by some weighting factor chara
teristic of the interaction, over momentum transferq. For
PRA 601050-2947/99/60~2!/1053~17!/$15.00
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example, the generalized oscillator strengthf is written in
terms of the inelastic form factor as

f 5
2DEa.u.

K2
uFu2,

whereK5q(a0 /\) is dimensionless, and whereDEa.u. is the
change in energy between the initial and final states. The
Born approximation for the inelastic scattering of structu
less ions of chargeZe, of speedv, by a hydrogenlike ion of
chargeZ8e, is

s~v !5
8pZZ8a0

2

~v/v0!2 E
Kmin

Kmax
uF~K !u2 K23dK,

which can emphasize small momentum transfersK occurring
at high energies. The inelastic scattering of an ultraslow n
tral particle by a Rydberg atom is

s~v !5
2pa2

~v/v0!2EKmin

Kmax
uF~K !u2K dK,

wherea is the scattering length of the projectile–Rydber
electron interaction andv05e2/\ is the atomic unit for ve-
locity. This expression emphasizes intermediate and largeK
occurring within the interaction distancea.

Classical mechanics provides a good quantitative desc
tion of excited states via the correspondence principles@4#.
Classical mechanics also promotes physical insight into
process by transparent causality, and provides scaling l
and elucidation of the dynamics. A phase-space descrip
combined with statistical properties~microcanonical distri-
bution in most cases! are the basis for an alternative o
complementary view of quantal phenomena.

Based on the recognition of the above fundamental
pects of the form factor, this paper presents results for qu
tal form factors, and defines the classical form factor for
highly excited hydrogen atom and harmonic oscillator. Cl
sical mechanics is advantageous here~a! in revealing essen-
tial details of the dynamics for inelastic transitions,~b! in
1053 ©1999 The American Physical Society
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1054 PRA 60D. VRINCEANU AND M. R. FLANNERY
explaining the interesting trends in the behavior of the fo
factor ~as a function of the various variables!, and ~c! in
predicting quantitative results inaccessible to rigorous qu
tal calculations because of the formidable numerical rest
tions imposed by the highly oscillatory wave functions.

Some analytical quantal@5,6#, semiclassical@7,8# and
classical@9,6# form factors are available, but general syste
atic trends cannot be easily extracted from them. A key po
of this paper is that a complementary classical approach
generalnl˜n8l 8 transitions is developed in such a way th
reveals quite succinctly important aspects which remain h
den within the quantal treatment. The consistency of t
approach is verified by applying it tonl˜n8 and n˜n8
transitions. The known results@6# are then rederived in a
unified way.

The simple example of the one-dimensional harmonic
cillator is treated in Sec. II. The correspondence between
quantal and classical form factor for inelastic transitions
this system is apparent. On this ground, a generalization
three-dimensional systems~like the hydrogen atom! becomes
feasible. A definition of the classical form factor interpret
as a transition probability between two states described
microcanonical distributions in the phase space, is propo
in Sec. III. The classical form factor fornl˜n8l 8 is intro-
duced in Sec. IV, and compared with the quantal counterp
Various summations, over the momentum transfer and in
and final quantum numbers are obtained within the sa
theoretical framework. The classical calculation are based
the microcanonical distributions presented in Appendix A.
Appendix B the classical calculations are detailed. An e
cient algorithm for calculation of the various quantal for
factors is introduced in Appendix C.

II. FORM FACTOR FOR THE HARMONIC OSCILLATOR

The simple example of the one-dimensional harmonic
cillator with the Hamiltonian

H5p2/2m1mv2r 2/2

is considered in this section. The quantized energy levels
En5(n11/2)\v, and the corresponding wave function
un(r ) have the generating function

F~ t,r !5 (
n50

`
un~r !tn

An!
5p21/4r 0

21/2

3exp@2~r /r 0!2/21A2tr /r 02t2/2#,

wherer 05A\/mv is the natural length of the oscillator.
The inelastic form factor for the transition from leveln to

level n8 when the momentumq is transferred is defined as

Fnn8~q!5^un8ue
iqr /\uun&,

and has the generating function, in terms of the dimens
less variableQ5qr0 /A2\

I ~ t,z;Q!5 (
n,m50

`

Fnn8

tnzm

An!m!

5exp~2Q2/2!exp@ tz1 i ~ t1z!Q#.
n-
-

-
t
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This function provides an easy way to compute the fo
factor by using

Fnn85
1

An!n8!

]n1n8I ~ t,z;Q!

]nt]n8z
U

t,z50

, ~1!

and reveals the following analytical structure of the quan
form factor for the harmonic oscillator:

Fnn85exp~2Q2/2!Wn1n8~Q!,

whereWnn8 is a polynomial of ordern1n8.
The square of the absolute value of the form factor can

interpreted as the transition probability of the harmonic
cillator when an impulsive interaction imparts momentumq
@3#. Based on this observation, a classical analog of the fo
factor can be defined. Consider the phase space to be p
lated according to the microcanonical distribution. The tra
sition probability is then given, in a geometric sense, by
volume of that region in phase space where both initial a
final states can coexist.

The density of probability in phase space for a given st
of the harmonic oscillator is

rn~r ,p!5Nd„H~r ,p!2~n1 1
2 !\v…,

where the normalization factorN5v/2p ensures one par
ticle in all of the phase space. The transition probability
then given by the conditional probability that the the syst
in the initial staten is in the phase-space volume elementdr
dp, and theq-displaced final state has quantum numbern8
within the same volume element. Hence

Pnn8~q!5
\v2

2p E dr dpd~H~r ,p!2~n1 1
2 !\v!

3d„H~r ,p1q!2~n81 1
2 !\v…

Phase space integration yields

Pnn8~Q!5
1

p
@2Q412~n1n811!Q22~n2n8!2#21/2,

~2!

where the dimensionless parameterQ25(q2/2m)/\v is,
again,q2r 0

2/2\2. Then

Pnn8~Q!5
1

p
@~Q1

2 2Q2!~Q22Q2
2 !#21/2,

which shows thatq is restricted to those values for which th
square root is a real number; otherwise the transition is c
sically forbidden, andPnn8 is zero. The limiting values of
Q5Q6 are given by

Q6
2 5~n1n811!6A~2n11!~2n811!,

where the probabilityPnn8 exhibits characteristic classica
singularities. The classical transition probability~2! satisfies
detailed balance. The transition probability for elastic co
sion (n5n8) is
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Pnn~Q!5
1

pQ
@2~2n11!2Q2#21/2. ~3!

The advantage of using the classical transition probab
is illustrated by the following example. Consider the
˜20 transition. The quantal expression deduced from
~1!,

F10̃ 20~Q!5
e2Q2/2 Q10

5225472000A323323
~2670442572800

1609493248000Q22228559968000Q4

146884096000Q625860512000Q8

1468840960Q10224418800Q12

1820800Q14217100Q161200Q182Q20!

is rather large, and is numerically inefficient due to the
cillations in the wave functions. The classical transiti
probability ~2!, however, has the simpler form

P10,20~Q!5
1

pY A2Q4162Q22100

within the classically allowed range 312A861<Q2<31
1A861.

The classicalPnn8 and quantaluFnn8u
2 are compared in

Fig. 1. The comparison exhibits excellent ‘‘background
agreement within the classically allowed region ofQ, the
characteristic classical singularities atQ6 , and the charac-
teristic exponential quantal tails in the forbidden region. T
number of quantal oscillations inFnn8 is given by
min(n,n8)11 which occur within the extent@(2n11)(2n8
11)#1/2 centered on the median value (n1n811) of theQ2

range.
The classical transition probability for any momentu

transfer~or the integrated form factor! is

Pif5E
2`

`

Pif~Q! dQ

5
2

pEQ2

Q1

@~Q22Q2
2 !~Q1

2 2Q2!#21/2dQ,

FIG. 1. Classical and quantal transition probabilities for then
510)˜(n8520) transition in the harmonic oscillator vs mome
tum transferQ.
y

q.

-

e

which reduces to

Pnn85
2

pQ2
FFS p

4 U 2s

12sD1A12s

s
FS arcsinAs

2
U 1

sD G
where s512Q2

2 /Q1
2

in terms of the incomplete elliptic functionF.
Figure 2 shows that there is an excellent agreement

tween the quantal and classical transition probabilities
generaln˜n8 transitions in the harmonic oscillator for an
momentum transfer. The singularity atn85n arises from Eq.
~3!. The characteristic agreement is displayed in Fig. 2.

III. PHASE-SPACE EXPRESSION FOR THE FORM
FACTOR

The quantal amplitude

Fif~q!5^C f~r !ueiq•r /\uC i~r !& r5^F f~p1q!uF f~p!&p
~4!

is expressed as the above integrations over either config
tion space or over momentum space, where the momen
wave functions are defined as

F~p!5~2p\!23/2E C~r !exp~2 iq•r /\!dr .

.

The transition probability

Pif~q!5 z^C f~r !ueiq•r /\uC i~r !& z2 ~5!

can therefore be expressed as

^C f~r !ueiq•r /\uC i~r !& r^F f~p1q!uF f~p!&p

5E dr dp @C f* ~r !ei (p1q)•r /\F f~p1q!#

3@C i~r !e2 ip•r /\F i* ~p!#.

The quantal phase-space distribution may be defined by

r~r ,p!5~2p\!23/2C~r !e2 ip•r /\F* ~p!

since the probability densitiesr(r ) in configuration space
and r(p) in momentum space~obtained by integrating the

FIG. 2. Classical~solid line! and quantal~dots! transition prob-
abilities for any momentum transferq from the staten54 to states
n850 –20.
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1056 PRA 60D. VRINCEANU AND M. R. FLANNERY
quantal phase-space distribution over momentum or confi
ration space! yield r(r )5*r(r ,p) dp5uC(r )u2 and r(p)
5uF(p)u2, respectively. This distribution is the standard o
dered version@10# of the Wigner distribution@11#.

The transition probability is therefore

Pif~q!5~2p\!3 E dr dp r i~r ,p!r f* ~r ,p1q!. ~6!

This expression for the transition probability is now in
form appropriate for classical correspondence, obtained
replacing the quantal densitiesr i , f ~even thoughr i , f have no
direct physical interpretation! by the classical phase-spac
distributionsrc(r ,p). Thus

Pif~q!5~2p\!3 E dr dp r i
c~r ,p!r f

c~r ,p1q! ~7!

is the basic expression for the classical probability for imp
sive transitions. The number of initial states in the pha
space elementdr dp is r i dr dp, and (2p\)3r f is the prob-
ability that the final state is in the same phase-space elem

Two fundamental properties, corresponding to simi
properties of the quantal result~5!, can be readily proven fo
the classical transition probability~7!. The classical distribu-
tions satisfy

r~r ,p!5(
n

rn~r ,p!5~2p\!23,

which means that the total number states in the phase vol
element isdr dp/(2p\)3, the number of elementary phas
space cells. The probability of transition from initial statei to
all statesf is then

(
f

Pif~q!5E r i~r ,p! dr dp5gi ,

the statistical weightgi of the initial state. The second prop
erty provides the transition probability for all momentu
transfersq. Integration of Eq.~7! over all possible values o
the momentum transferq involves

E r~r ,p1q! dq5E r~r ,p8! dp8 E d~p1q2p8! dq

5r~r !,

where r(r ) is the classical distribution in configuratio
space. Then

E Pif~q! dq5~2p\!3E r i~r !r f~r ! dr . ~8!

This classical property is again in correspondence with
quantal result

E uFif~q!u2 dq5~2p\!3E uC i~r !u2uC f~r !u2 dr , ~9!

which can be derived from Eq.~4!.
In the action-angle representation for bound states,

classical distribution is
u-

y

-
-

nt.
r

e

e

e

rn> ~J> ,w> ! dJ> dw> 5d~J> /h2n> ! dJ> dw> /~2p\!D

for a generalD-dimensional system with a set of action
angle variables~J> ,w> ! in a state specified by the set of qua
tum numbersn> . The classical probability forn> ˜ n> 8 tran-
sitions is therefore

Pif~q!5~2p\!2DE E d~J> /h2n> ! d~J> 8/h2n> 8!

3d~p1q2p8! d~r2r 8! dJ> dw> dJ> 8 dw> 8, ~10!

which provides a more general classical correspondence
the quantal expression~6!, rewritten as

Pif~q!5~2p\!3 E E dr dp dr 8dp8r i~r ,p! r f~r 8,p8!

3d~r2r 8! d~p1q2p8!.

These expressions emphasize the impulsive nature of
momentum transferred.

IV. FORM FACTOR FOR THE HYDROGENIC ATOM

A. Form factor for nl˜n8l 8 transitions

The classical distribution for an atom with given energyE
and angular momentumL, in (r ,p) phase space is~Appendix
A!

r~E,L;r ,p! dE dL dr dp

5dE d~H2Enl!dL d~ uL u2L !
dr dp

~2p\!3
, ~11!

where both the HamiltonianH(r ,p)5p2/2m1V(r ) and an-
gular momentumuL (r ,p)u5rp sinurp are constants of mo
tion. The classical transition probability for the case of
central field one-electron atom, between the states, or ba
of states centered at (E,L) and (E8,L8), due to momentum
transferq, is then

P~E,L;E8,L8;q! dE dL dE8 dL8

5dE dL dE8 dL8E dr dp

~2p\!3
d„H~r ,p!2E…

3d„uL ~r ,p!u2L…d„H~r ,p1q!2E…

3d„uL ~r ,p1q!u2L8…. ~12!

The quantityP(G;G8;q) is the transition probability density
~per unit intervalsdG dG8). WhenE, E8, L, or L8 are quan-
tized, the transition probability between corresponding sta
are obtained by the formal replacementsdE˜hnnl and dL
˜\ on the right-hand side of Eq.~12!. The transition prob-
ability between bound states with given quantum numb
(n,l ) and (n8,l 8) is then
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Pnl,n8 l 8~q!5hnnl hnn8 l 8\
2

3P„Enl ,~ l 11/2!\;En8,l 8 ,~ l 811/2!\…,

~13!

wherennl5tnl
21 is the radial frequency of the classical orb

Since the densities used in Eq.~13! are already normal-
ized to (2l 11) particles in all of the phase space~see Ap-
pendix A!, Eq. ~13! represents the basic definition of th
classical form factor, in direct correspondence with the~sym-
metrical! quantal form factor

Fnl,n8 l 8~q!5(
m

(
m8

z^nlmueiq•r /\un8l 8m8& z 2. ~14!

The physical significance of the basic expression~7! is that
the initial and final states correspond to definite regions
phase space populated according to the microcanonical
tributions ~11!. Transitions can only occur if these two re
gions overlap, and the amount of overlap is a measure of
transition probability. The classical form factor~13! which
has been developed in detail in Appendix B, will be direc
compared with the quantal result of Eq.~14!, developed in
Appendix C as a function ofq for arbitrarynl˜n8l 8 transi-
tions.

The result of the classical calculation~13! ~see Appendix
B for details! is

Pnl,n8 l 8~q!5F2~2l 11!~2l 811!\3

tnltn8 l 8
G

3E
R

dr/r 2

ṙ ṙ 8
FGif

1~r ,q!1Gif
2~r ,q!

q GQ~r ,q!,

~15!

whereQ(r ,q) is the step function having value unity withi
r ,r * ~given in Appendix B!, and zero otherwise, and th
function

Gif
6~r ,q!5

1

A~q22A6
2 !~B6

2 2q2!
~16!

must be real, so thatq must be within the classically acce
sible rangeR given by

A6
2 5m2~ ṙ 6 ṙ 8!21~L2L8!2/r 2<q2<B6

2

5m2~ ṙ 6 ṙ 8!21~L1L8!2/r 2.

The radial velocityṙ ( ṙ 8) is a function only ofr for a given
nl ~or n8l 8) state. For a given momentum transferq, the r
integration proceeds over the radial ranges within which
square roots in Eq.~16! are real. This situation is illustrate
in Fig. 3 for the (4,3)̃ (8,2) transition in the hydrogen
n
is-

he

e

atom. The dotted curve is the boundary (r * 2r 50) of the
region within which the functionQ is unity, and which en-
compasses the physical accessible regionA2<q<B1 .
When q is small ~below theA2 curve! or large ~above the
B1 curve!, Gif has complex values and the transition pro
ability is necessarily zero. In the shaded regions onlyGif

1 ~a!
or Gif

2 ~b! or bothGif
6 ~c! can contribute to the integral for

givenq. The rangeR of radial integration always lies within
the region specified byA15A25 real and B15B2

5 real. The boundaries of this region are then given
Rmin5max(Ri

2 ,Rf
2) and Rmax5min(Ri

1 ,Rf
1), whereR2 and

R1 are the pericenter and the apocenter of the Kepler or
The three situations possible~details in Ref.@3#! for the over-
lap of the initial and final orbits are illustrated in Fig. 4 asL8
of the final orbit is increased. Region I gives the maximu
overlap when regionR5(Ri

2 ,Ri
1) is specified only by the

initial state. In Region II the overlap is partial, because
lower limit of R is given by the pericenter of the final orb
Rf

2 . In Region III the pericenterRf
2 has moved outsideRi

1 ,
so that there is no overlap, the transition is classically f
bidden.

The quantal transition probability for bound-bound tran
tions, for hydrogenic atoms, is a rational function in the m
mentum transferq. The proof of this statement and the alg
rithm for quantal calculations are presented in Appendix
The form factor for the (4,3)̃ (8,2) transition, as a function
of q, is

FIG. 3. Integration region for a typical (4,3)̃(8,2) transition.

FIG. 4. Overlap situations for fixed initialn, l , and n8 and
varying l 8.
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P4,3̃ 8,2~q!5
34359738368q2

~9164q2!24
~1977006755367284352288228992q2252980973020131328q41914957411105636352q6

1557017745580707807232q8149144600326376878243840q1011304678925402985186983936q12

212446991865892540818391040q141839683843672479677596827648q16

15269768456130999660417384448q181226149481324737121139390676992q20

23490013454414646748315148877824q22122442701774022980630594896003072q24

263431755657397448352885433696256q26166458636923717615551358326276096q28!.
o
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The results of calculations for the quantal and classical pr
abilities ~form factors! are compared in Fig. 5. The four sin
gularities in the classical transition probability, which ind
cates maxima in quantal results, correspond with th
values of the momentum transfer for which theq
5 const) line is tangent to one of the curvesA65q or B
65q in Fig. 3. One of these equations has then a dou
root in r, which eventually yields after integration a logarit
mic singularity.

In Fig. 6 the quantum numbersn,l , andn8 are fixed and
the transition probability versus the momentum transferq is
plotted for various final angular momental 8. As l 8 increases,
the quantal and classical transition probabilities increase,
attain a maximum for some value ofl 8. This value is roughly
given by l 8'nA2, in agreement with the results derived
Ref. @3#. Further increasingl 8 produces a sharp decrease
the quantal transition probability. The classical transiti
probability is forbidden forl 856 and 7, since there is n
overlap at all between the phase-space regions occupie
the initial and the final states, for any momentum transfeq.
This situation corresponds to region III of Fig. 4. The quan
results forl 856 and 7 are therefore classically inaccessib

When the final principal quantum numbern8 is varied,
keepingn, l , and l 8 fixed, the shape of the transition prob
ability versus momentum transfer is preserved and the m
nitude rapidly decreases asn8 increases. This observation
valid for both quantal and classical cases, is demonstrate
Fig. 7 for a specific case. Because the transition probab
~14! contains the factor 1/t8;1/n83, the classical form factor
provides an explanation for this behavior.

FIG. 5. Quantal and classical transition probabilities for t
(4,3)̃ (8,2) transition.
b-

e

le

nd

by

l
.

g-

in
ty

When the final state is in the continuum with energy b
tween E8 and E81dE8, result ~15! is still valid provided
hnn8 l 8 is replaced bydE8. The probability for a bound-free
transition is then

Pnl,l 8~E8;q!dE85F ~2l 11!~2l 811!\2dE8

ptnl
G

3E
R

dr/r 2

ṙ 1ṙ 2
FGif

1~r ,q!1Gif
2~r ,q!

q G .
B. Integrated nl˜n8l 8 form factor

The integrated form factor or the transition probability f
any momentum transfer is the integral of theq-dependent
transition probability over theq space. The quantal calcula
tion gives

FIG. 6. Quantal~a! and classical~b! transition probabilities for
the ~4,3! ˜ ~8,l’! transitions, withl 850, . . . ,7.
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E uFnl,n8 l 8
q

~q!u2 dq

5~2p\!3E dq (
m

uCnlm~r !u2(
m8

uCn8 l 8m8~r !u2,

which, with C(r )5(Rnl /r )Ylm( r̂ ), reduces to

E uFnl,n8 l 8
q

~q!u2 dq

52p2~2l 11!~2l 811!\3E rnl
q ~r !rn8 l 8

q
~r !dr/r 2, ~17!

whererq(r )dr5Rnl
2 (r )dr is the radial probability.

Integration of the corresponding classical transition pr
ability ~8! gives

E Pnl,n8 l 8~q! dq5
8p2~2l 11!~2l 811!\3

t1t2
E
R

~dr/r 2!

ṙ 1ṙ 2

.

~18!

Upon integration, Eq.~18! yields

Pnl,n8 l 85
8

n3n83
F~arcsinAsu1/s!@~x32x2!~x42x1!#21/2

with s5
~x32x2!~x42x1!

~x32x1!~x42x2!
,

where F is the incomplete elliptic function andxi ( i
51,2,3, and 4! is the sorted set (Ri

2 ,Ri
1 ,Rf

2 ,Rf
1). When

there is no overlap between the initial and final states (Ri
1

,Rf
2) the transition is of course classically forbidden~situ-

ation III in Fig. 4!. Comparison between the quantal a
classical expressions reveals the definition of the class
radial probability:rc(r )dr52dt/t, in agreement with the
customary correspondence~deduced in Appendix A!. The q
integrated transition probabilities for fixed initial quantu
numbersn and l and finaln8 as function of the final angula
momentuml 8 are shown in Fig. 8. There is excellent agre
ment between the quantal and classical calculations be
the first singularity inl 8, which marks the transition from
region I to region II in Fig. 4. For largerl 8, the quantal
transition probabilities oscillate about the classical transit
probabilities. As proven in Ref.@3#, there is a limiting value
l
*
8 of l 8 after which the quantal transition probability exp

nentially decays while the classical form factor is zero. T
situation corresponds with region III in Fig. 4, where t
transition is classically forbidden. If this special value ofl 8
cannot be accommodated, becausel

*
8 >n821, the transition

is classically always permitted and the quantal transit
probability has no exponential tail. This is the case of qu
elastic transitions~between the same principal quantum nu
bers!, as presented in Fig. 9. For this case, the agreem
-

al

-
re

n

s

n
si
-
nt

between quantal and classical calculations is excellent
any l 8. Theq-integrated form factors were discussed in R
@3#.

C. Form factor for nl˜n8 transitions

Summation over the final angular momentum numberl 8
provides the form factor

Pnl,n8~q!5 (
l 850

n821

(
m,m8

z^nlmueiq•r /\un8l 8m8& z 2. ~19!

The basic definition~7! gives the classical analog for thi
form factor:

Pnl,n8~q!5~2p\!3E dr dp rnl~r ,p!rn8~r ,p1q!,

where the densitiesrnl and l-averagedrn8 are described in
Appendix A. UsingV(r )5E2p2/2m, the final distribution
is rewritten in ther independent form as

rn8~r”,p1q!5~hnn8!d@~p1q!2/2m2p2/2m

1E2E8#/~2p\!3.

wherer” means ‘‘notr .’’ The classical transition probability
for impulsivenl˜n8 transitions is then

FIG. 7. Quantal~a! and classical~b! transition probabilities for
the ~4,3! ˜ ~n’,5! transitions, withn856, . . . ,12.
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Pnl,n8~q!5E dp rnl~p!rn8~p1q!,

which is the classical overlap only of the momentum sp
distributions, rather than the full phase-space distributions
in Eq. ~12! for nl˜n8l 8 transitions. Since

E d~pq cosupq /m1q2/2m1E2E8! dp̂52pm/pq

for p.p05u2m(E82E)2q2u/2q, and zero otherwise, thi
transition probability reduces to

Pnl,n8~q!5
2pm

q
~hnn8!E

p0

`

rnl~p! pdp,

which involves only the momentum distribution of the initi
state. The same result is also obtained in Appendix B

FIG. 8. Quantal~dots! and classical~solid line! transition prob-
abilities for the~35,30! ˜ ~55,l’! transitions, withl 850, . . . ,54.
Fi
f

ed

ck
e
as

y

~summing! integrating the original probabilityPnl,n8 l 8 over
all possible final angular momenta. The probability forn,l
˜n8 transitions in hydrogen is

Pnl,n8~q!5
2~2l 11!

pqn83 E
pmin

p1 n

p
~11n2 p2!22

3F12S L~11n2p2!

2n2p
D 2G21/2

, ~20!

where all quantities are in atomic units, andL5 l 11/2. The
limits of integration are given bypmin5max@p05uq211/n82

21/n2u/2q, p2#, where p65„16(12L2/n2)1/2
…/L are the

extreme values~at pericenter and apocenter! of the momen-
tum of the electron on a given orbit. As a specific examp
consider the 4,3̃ 8 transition. The quantal form factor is~cf.
Appendix C!

FIG. 9. Quantal~dots! and classical~solid line! transition prob-
abilities for the~20,10! ˜ ~20,l’! transitions, withl 850, . . . ,19.
P4,3̃ 8~q!5
34359738368q2

5~9164q2!17
~972121514498478208q21471603326976q416554684489728q62451062079160320q8

16344423684177920q10212676750592966656q12212899470417068032q141535928355657089024q16

1450359962737049600q18!.
f

of
ain

ed
The classical and quantal form factors, are compared in
10. The insets show thep integration range as a function o
the momentum transferq. Three special cases are present
~a! excitation, ~b! quasielastic transition, and~c! de-
excitation. Forq sufficiently small thatp0.p1, the transi-
tion is classically forbidden@cases~a! and ~c!#. As q in-
creases, the integration limits of Eq.~20! are (p0 ,p1). The
increase ofP in cases~a! and ~c! is due to the effect of
increasing range of integration overwhelming the ba
groundq21 decrease. With a further increase inq, the inte-
g.

:

-

gration limits change to (p2 ,p1) which are independent o
q. Here P decreases purely asq21, as in ~a! and ~b!. For
larger q, the more rapid decrease inP results from aq21

variation combined with the effect of a decreasing range
integration, as exhibited for all cases. The transition is ag
classically forbidden, for all cases, in the limit of largeq
when p0.p1 . These three overlap situations describ
above are illustrated in Fig. 11. For deexcitation (E8,E),
p0 has always one minimum valuep0* 5@2m(E2E8)#1/2.
Whenp0* .p2 , then the pattern of case~c!, with momentum
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limits (p0 ,p2), is established. This occurs for de-excitati
to levelsn8,n1(n,L)5(L/A2)@12(12L2/n2)1/2#21/2 De-
excitation to levelsn8.n1 is characterized by the pattern o
case~c!. When p0* .p1 , transitions are classically forbid
den. This occurs for de-excitation to final states,n8
,n2(n,L)5(L/A2)@11(12L2/n2)1/2#21/2, whose orbits
are fully within the orbit of the initial (n,L) state. Then2

limit therefore delineates the classically allowed from clas
cally forbidden de-excitation transitions. Then6 demarca-
tions are illustrated in Fig. 11. For excitation,p0 can be zero
at q* 5@2m(E82E)#1/2, so that there is always a range
transition momentaq for which p0,p2 i.e. n8.n1(n,L).
Excitation is therefore always characterized by the patter
case~a!. The quantal-classical agreement fornl˜n8 transi-
tions is overall very good.

D. Form factor for n˜n8 transitions

The classical probability of transition between sta
specified only by their principal quantum numbers as fu
tion of the dimensionless parameterQ5qa0 /Z\ ~as derived
in Appendix B! is
s
p

i
p
-
t

sy
av
sic
ic
r
o
a

i-

of

s
-

Pn,n8~Q!5
29

3p~nn8!3
Q5FQ412S 1

n2
1

1

n82D Q2

1S 1

n2
2

1

n82D 2G23

,

which is the classical correspondence of

Pn,n8~q!5 (
l 50

n21

(
l 850

n821

(
m,m8

u^nlmueiq•r /\un8l 8m8&u2.

~21!

This quantal form factor~as derived in Appendix C! is again
a rational function in the momentum transferq since is a
summation ofPnln8 l 8 form factors. The classical result is i
agreement with the result deduced by Vriens@9# from com-
parison of binary-encounter and Bethe treatments
electron-atom collisions, and by Borodin@12# from the mi-
crocanonical phase space distributiond(H2E).

Exact quantal and classical form factors for 6˜40 tran-
sitions are compared in Fig. 12. The expression for the qu
tal form factor for this specific transition
6

P6˜40~q!5
382205952 107 q2 ~289114400q2!32

~529114400q2!48
~609748651778452988718867471792636791

114111768459949658350018177645240757923102 q22184318171941496097624317093441846656

3105 q41936709977168183708573253309588008963107 q622400432080403014981637748114489344

31010q813486588122609384325911291625681715231010q102292769474419849301858890156710297

31012q1211438756727461299687468019639910431015q142395454399288571654223098281984

31017q161596074634304896886217113631022q18239617692385952963165054566431020q20

1165618431673730925278003231022q22!
es
its

t is

is
end

in

uce

ase

cal
um
nti-
is an application of the general expression for transition
˜n8 presented in Table I. These results are derived in A
pendix B ~classical form factor! and Appendix C~quantal
form factor!. Due to the correspondence principle, there
excellent agreement between the quantal and more com
classical expressionsn8@n@1. The agreement is also ex
pected because the characteristic classical singularities in
form factor are ‘‘smoothed’’ after thel , l 8, m, andm8 sum-
mations.

V. SUMMARY AND CONCLUSIONS

Based on the phase-space description of an atomic
tem, classical expressions for the inelastic form factor h
been derived. The formulas obtained are the exact clas
correspondences of the quantal form factors. The class
methods quite succinctly reveals important aspects which
main hidden in the quantum treatment. An efficient alg
rithm for calculation of quantal form factors as analytic
6
-

s
act

he

s-
e
al
al
e-
-
l

functions of momentum transferq, for arbitrary initial and
final states, has also been developed.

For nl˜n8l 8 transitions, the classical method provid
both the qualitative behavior of the quantum results and
physical interpretation. The classical-quantal agreemen
particularly noteworthy for the integrated form factors~cf.
Figs. 8 and 9! for inelastic and quasielastic transitions. Th
is because both classical and quantal form factors dep
only on the overlap of the initial and final distributions
configuration space@cf. Eqs.~17! and~18!#, so that the clas-
sical singularities apparent in Fig. 5 are averaged to prod
the smooth results in Figs. 8 and 9.

The increasing accuracy obtained uponl 8 integration is
due to the absence of the multiple delineation of the ph
space associated withnl˜n8l 8 transitions ~see Fig. 3!.
Again the classical picture not only provides the physi
explanation for the quantal behavior when the moment
transferq and quantum numbers are varied, but also ide
fies the patterns associated with each type~excitation, quasi-
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elastic, and de-excitation! of transition ~cf. Fig. 10!. The
agreement between classical and quantal integrated form
tors is again excellent. In the limit of summing over all fin
states, the total transition probability is( f Pif (q)5gi , the
same result for both quantal and classical cases, which
sures full agreement in this limit.

On integrating over angular momentum quantum num
l for n˜n8 transitions, the agreement is excellent for alq
even for small quantum numbers. This is due to the fact
the phase-space region common to the both initial and fi
states~a sphere in configuration space with of radiusr * ) is
densely and continuously populated.

The classical form factors represent an attractive appro
for classical collision theory. The form factor is a collisio
kernel to be convoluted according to the dynamics of
external interaction causing the transition. Due to the os
latory nature of the wave functions, quantal calculations
processes involving highly excited states are still compu
tionally expensive~in terms of precision, memory, and/o

FIG. 10. Quantal and classical transition probabilities for~a!
(4,3)̃ 8, ~b! (4,3)̃ 4, and~c! (8,3)̃ 4 transitions as a function
of the momentum transfer. Insets: the gray area is the integra
range.
c-

n-

r

at
al

ch

e
l-
r
-

time!, while classical models are capable of exact resu
according to the correspondence principles@4#. Although
classical-quantal comparisons have been made to the
dimensional harmonic oscillator and to hydrogenic syste
classical form factors can be useful for other atomic a
molecular systems. The present method would also be v
able in determining the response of the three-dimensio
Rydberg atom to a train of unidirectional short pulses
electromagnetic radiation@1#. The classical form factor
methods would be also useful for excited-atom collisio
@13#.
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APPENDIX A: MICROCANONICAL DISTRIBUTIONS

The basic classical probability density for a particle mo
ing in a symmetrical potentialV(r ) is given by the microca-
nonical distribution

n

FIG. 11. The three overlap situations in momentum space
region ~a! there is a value of q for whichp0,p2 ; in region ~c!
p0.p2 for any q, even thoughp0,p1 for some q; in shaded
region transitions are classically forbidden,p0.p1

FIG. 12. Quantal and classical transition probabilities for the
˜40 transition as a function of the momentum transfer.
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TABLE I. Quantal form factor@Eq. ~21! from text# for n8˜n transitions.

n8 Pnn8~q!5
28 n7q2@~n/n821!21q2 n2#(n2n822)

3 n83@~n/n811!21q2n2#(n1n812)
3

1 211n213 n2q2

2 3 q6n615 q4n41q2n219 n2/4223n4/16115n6/6429 n4q2/2165n6q2/16211n6q4/421

3 3 q10n10111q8n8114q6n616 q4n42q2n2171n2/27262n4/2711790n6/218722431n8/19683
1377n10/5904924 n4q2/91290n6q2/8121460n8q2/72911943n10q2/65612122n6q4/91310n8q4/27
2442n10q4/2432412n8q6/271518n10q6/81243n10q8/921

4 3 q14n14117q12n12139q10n10145q8n8125q6n613 q4n423 q2n2145n2/1622131n4/76815093n6/4096
2167011n8/589824135231n10/1048576232899n12/167772161106183n14/2415919104141n4q2/82269n6q2/256
23475n8q2/30721107449n10q2/1966082128581n12q2/15728641201047n14q2/503316482217n6q4/16
12691n8q4/128259239n10q4/61441333157n12q4/1966082290087n14q4/31457282197n8q6/4116273n10q6/384
234543n12q6/30721188555n14q6/1966082917n10q8/1618027n12q8/256216035n14q8/40962239n12q10/8
12119n14q10/256295n14q12/1621

5 3 q18n18123q16n16176q14n141140q12n121154q10n10198q8n8128q6n624 q4n425 q2n2173n2/25
228828n4/9375124084n6/1562521475182n8/3515625129028838n10/43945312524495228n12/732421875
190535316n14/274658203125212906833n16/137329101562511251587n18/11444091796875156n4q2/5
213876n6q2/1875175224n8q2/468751319042n10q2/351562527425752n12q2/8789062519110956n14q2/732421875
28239208n16q2/1098632812514510567n18q2/27465820312524 n6q4/516836n8q4/3752673004n10q4/46875
13108484n12q4/703125218475444n14q4/2929687512024596n16q4/48828125254614636n18q4/54931640625
21912n8q6/251178396n10q6/18752672976n12q6/15625110191692n14q6/1171875222581416n16q6/29296875
118069764n18q6/7324218752914n10q8/5159212n12q8/37522347228n14q8/4687511541158n16q8/234375
22802002n18q8/976562525272n12q10/2511233332n14q10/937521272296n16q10/4687512099902n18q10/1171875
2676n14q12/516996n16q12/125217868n18q12/31252232n16q14/516076n18q14/6252167n18q16/2521

6 3 q22n22129q20n201125q18n181315q16n161510q14n141546q12n121378q10n101150q8n8270q6n8115q6n6

215q4n427 q2n21323n2/10821417n4/43211230149n6/69984026667507n8/12597120143800179n10/453496320
233636707n12/30233088001805306763n14/97955205120028183128999n16/211583243059200
18488861159n18/761699675013120024894595653n20/2742118830047232001398746151n22/3290542596056678400
135n4q2/2218907n6q2/12961157637n8q2/291602781087n10q2/83980811290871n12q2/25194240
2167865689n14q2/27209779200257381211n16q2/4897760256015399280829n18q2/70527747686400
2117424517n20q2/5077997833420812465858993n22q2/914039610015744001905n6q4/3617 n8q4/108
243949n10q4/388814792471n12q4/8398082188652173n14q4/15116544014792471n12q4/839808
2188652173n14q4/151165440177931593n16q4/544195584232278661n18q4/3627970560
1264468259n20q4/9403699691522594305017n22q4/169266594447360143385n10q6/32421458407n12q6/17496
260952999n14q6/2519424282299863n16q6/226748161470998955n18q6/1632586752
2111918155n20q6/97955205121166167173n22q6/94036996915226335n10q8/181258155n12q8/648
24222535n14q8/23328111088691n16q8/279936243657751n18q8/1007769611017419n20q8/4478976
258621799n22q8/1306069401626167n12q10/91128209n14q10/21622015063n16q10/97201141006431n18q10/4199040
261592369n20q10/25194240113034627n22q10/201553920214035n14q12/181170017n16q12/324
223723233n18q12/174960112337645n20q12/839808227182041n22q12/5038848025030n16q14/9190701n18q14/324
293505n20q14/19441737941n22q14/27993628995n18q16/36136175n20q16/432
237405n22q16/518423455n20q18/54114045n22q18/12962259n22q20/3621
a
-

ate
jec-
n

r~E,L,Lz ;r ,p!dE dL dLz dr dp

5$d~H2E!dE d~ uL u2L !dL d~L• ẑ2Lz!dLz%
dr dp

~2p\!3
,

~A1!

where the HamiltonianH, angular momentumuL u, and the
projection of the angular momentum onz axis L• ẑ are con-
served quantities, and specify the state of the system. V
ous other less restrictive@14# distributions are directly de
ri-

duced from Eq.~A1! by dropping from Eq.~A1! thosed
functions which correspond with the restrictions on the st
of the system to be relaxed. For example, when the pro
tion Lz of the angular momentum is arbitrary, the distributio
is

r~E,L;r ,p! dE dL dr dp

5$d~H2E!dE d~ uL u2L !dL%
dr dp

~2p\!3
, ~A2!
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and describes a population of 2L states in all of phase spac
The physical interpretation is that Eq.~A2! is the number of
states~phase-space cells! compatible with energy and angu
lar momentum conservation. The$ % factor is a fractional
number of states in the intervaldE dL dLz of about
(E,L,Lz).

If the system is described in terms of discrete quant
numbers, e.g., the motion is bounded within a finite spa
region, the classical distribution is defined in the action
angle representation by

rnlm dJ> dw> 5d~J1 /h2n! d„J2 /h2~ l 11/2!…

3d~J3 /h2m!
dJ> dw>

~2p\!3
.

Upon action-angle variables (J> ,w> ) integration, this distribu-
tion corresponds to a single particle in all of phase spa
Also (nlmrnlm5(2p\)23 is the number of particles in al
states occupying the unit phase-space element. The ph
space distribution for statenl is

rnldJ> dw> 5d~J1 /h2n! d@J2 /h2~ l 11/2!#

3
dJ1 dJ2 dJ3 dw1 dw2 dw3

~2p\!3
.

SinceJ35J2cosL̂•ẑ, theJ3 integration gives 2J2, so that the
above rnl distribution corresponds to a population of (2l
11) states in all of phase space. The corresponding di
bution in (r ,p) phase space is then, by changing variable

rnl dr dp5h2F]H~J1 ,J2!

]J1
GF]L~J2!

]J2
Gd„H~r ,p!2Enl…

3d„uL ~r ,p!u2L…
dr dp

~2p\!3
.

Since]H/]J15nnl5tnl
21 , the frequency~or inverse period!

for radial bounded motion, then

rnl~r ,p! dr dp5$hnnld~H2Enl!\d~ uL u2L !%
dr dp

~2p\!3
.

~A3!

This result can be obtained, formally, from Eq.~A2!, by
replacingdE anddL by hnnl and\, respectively. The sepa
ration between highly excited neighboring energy levelsn
and n61 is hnnl , the Bohr correspondence, and\ is the
separation between neighboring angular momentum le
n,l andn,l 61.

By noting that

E
21

1

d~rp sinu2L ! d~cosu!5
2L

rp
~r 2p22L2!21/2,

p>L/r 5p0

and
l
-

e.

se-

ri-

ls

E
pmin

`

d„p2/2m1V~r !2Enl…
pdp

~r 2p22L2!1/2

5
m

~r 2p1
2 2L2!1/2

51/~r ṙ !

for p1
2 52m„Enl2V(r )…>pmin

2 , which ensures real radia

speedsṙ , then

E d~H2Enl!d~ uL u2L !dr dp58p2L R dr

ṙ
58p2L/nnl .

Distribution ~A3! is thus confirmed as being normalized
(2l 11) states.

Since dr dp/(2p\)3 is the total number of bound an
continuum states, with all quantum numbers, in the pha
space volume elementdr dp5dJ> dw> , then the$ % factor in
~A3! represents the fractional number of states with spec
quantum numbers.

For the particular case of Coulomb attraction the ene
levels are degenerate. The phase-space distribution fo
hydrogenic atom in the energy levelEn , corresponding with
the principal quantum numbern, is

rn~r ,p! dr dp5hnnd~H2En!
dr dp

~2p\!3
~A4!

for bound states of degeneracyn2. The same expressio
holds for states in the continuum ifhnn is replaced bydE.

The classical distributionrnl(r )5*rnl(r ,p) dp in con-
figuration space is

rnl~r ! r 2dr dr̂5
gl

tnl

2 dr

ṙ

dr̂

4p

wheregl52l 11 is the statistical weight of thenl level. For
Coulombic attraction,V(r )52Ze2/r , tn52pn3 a.u., and

4prnl~r ! r 2dr5Rnl~r ! dr

5
1

pn3 S 2Z

r a.u.
2

Z2

n2
2

~ l 11/2!2

r a.u.
2 D 21/2

dr

for onenl state (gl51).
Integration of Eq. ~A2! over the configuration spac

yields the momentum space distributionr(E,L;p)
5*r(E,L;r ,p) dr . Then

r~E,L;p! p2dp dp̂

5
gl

2p\2F(i

2 pdp

~p22L2/r i
2!1/2

1

uV8~r i !u
G dp̂

4p
,

~A5!

where r i are the roots ofp252m@E2V(r )# for a givenp
and V85dV/dr. The radial momentum distribution,rnl
5r(E,L)hnnl \, for bound hydrogenic states, reduces w
gl51 to
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rnl~p! 4pp2dp5S 2Ze2 dp

tnuEu2
D ~11x2!22

3S 12
2muEuL2

~2mZe2!2

~x211!2

x2 D 21/2

,

wherex5p/(2muEu)1/2. SinceE52Z2(e2/a0)/2n2, then x
5p/pn wherepn5Zp0 /n is the characteristic momentum i
the Rydberg orbitn, p05\/a0 is the atomic unit for linear
momentum, anda0 the Bohr radius is the atomic unit fo
distance. WithL5( l 11/2)\, the hydrogenic momentum
distribution is

rnl~p! 4pp2dp5
4

p
n

dP

~11n2P2!2 H 12F S l 11/2

n D
3S 11n2P2

2nP D G2J 21/2

,

whereP5p/Zp0. This compares formally with the quanta
results and is useful for thenl˜n8 classical form factor.
Another formulation of classical momentum distributio
was recently presented in Ref.@15#.

APPENDIX B: CALCULATIONS OF CLASSICAL
FORM FACTORS

The classical form factor for transitions between ene
and angular momentum bands (E,E1dE;L,L1dL) is

Pif~q!5P~E,L;E8,L8;q!dE dE8 dL dL8

5~2p\!23D if~q! dE dE8 dL dL8

in terms of the phase-space integral

D if~q!5E dr dp d„H~r ,p!2E…d„uL ~r ,p!u2L…

3d„H~r ,p1q!2E8…d„uL ~r ,p1q!u2L8…

of d functions involving statesi 5(E,L) and f 5(E8,L8).
For transitions between bound states the transition proba
ity is obtained simply by the replacementsdE˜hn anddL
˜\. The integral can be recast in terms of the radial integ

R̂if~p1 ,p2 ;r !5
1

4pE21

1

d~rp1 sinu2L !

3d~cosu!E
0

2p

d~rp2 sinũ2L8!df,

~B1!

where u and ũ are the angles betweenr̂ and p̂1 and p̂2,
respectively, as

D if~q!5E dp1 dp2 d~q1p12p2!d„H~r ,p1!2E…

3d„H~r ,p2!2E8…„4p R̂if~p1 ,p2 ;r ! r 2dr….

~B2!
y

il-

l

When R̂if is summed~integrated! over all L states, then
*R̂if dL dL851 and

E R̂ifdL85
1

2E21

1

d@rp1 sinu2L#d~cosu!5L/~mr2p1ṙ !.

~B3!

1. Form factor for EL˜E8L 8 transitions

Evaluation ofR̂if for fixed L andL8 is facilitated by not-
ing, from Fig. 13, that

cosũ5cosu12cosu1sinu12sinu cosf

in terms of r̂ (u,f) and the fixed angleu12 betweenp̂1 and
p̂2.

On changing thef variable toũ in Eq. ~B1!, thef inte-
gral, for u fixed, is

E
0

2p

d~rp2 sinũ2L8!df52E
uu2u12u

u1u12
S21~ ũ,u,u12!

3d~rp2 sinũ2L8!d~cosũ !.

The factor 2 originates from the fact that, asf50˜p

˜2p, the range (uu2u12u,u1u12) in ũ is covered twice.
The function

S5sinu12sinu sinf

is expressed as a function ofũ andu variables by

S2~ ũ,u;u12!5sin2u sin2ũ2~cosu122cosu cosũ !2.

Subsequent integrations are facilitated by noting that

d„F~x!…5(
n

~x2xn!

uF8~xn!u
, F~xn!50.

Hence

~sinũ !d~rp2sinũ2L8!5F L8

mp2r 2ṙ 8
G(

i 51

2

d~ũ2 ũ i !,

where the roots,ũ1,p/2 andũ25p2 ũ1, are given by

sinũ i5L8/rp2 , cosũ152cosũ2.

FIG. 13. The basic geometry for calculation ofRif .
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The f integral therefore reduces to

E
0

2p

d@rp2 sinũ2L8# df5F L8

mp2r 2ṙ 8
G

3@S1
21~ ũ1 ,u!1S2

21~ ũ1 ,u!#,

where

S6
2 ~ ũ1 ,u!5sin2u sin2 ũ12~cosu126cosu cosũ1!2.

Upon u integration,

4pR̂if~p1 ,p2 ;r !5F 2L8

mp2r 8 ṙ 8
G E

21

1

@S2
21~ ũ1 ,u!

1S1
21~ ũ2 ,u!#d~rp1 sinũ2L ! d~cosu!

5F 2LL8

m2p1p2r 4ṙ ṙ 8
G @S2

21~ ũ1 ,u1!

1S2
21~ ũ1 ,u2!1S1

21~ ũ1 ,u1!

1S1
21~ ũ1 ,u2!#,

where sinu15sinu25L1 /rp1,and cosu252cosu1. From
these relations and from the above definitions of theS6 func-
tions, then

S2~ ũ1 ,u1!5S1~ ũ1 ,u2!,

S2~ ũ1 ,u2!5S1~ ũ1 ,u1!,

with the result that the radial integral is

4pR̂if~p1 ,p2 ;r !5F 4LL8

m2p1p2r 4ṙ ṙ 8
G @S1

21~ ũ1 ,u1 ;u12!

1S2
21~ ũ1 ,u1 ;u12!#.

Upon p2 integration in Eq.~B2!

R̂if~p1 ;r !5E R̂if~p1 ,p2 ;r !d„p22~p11q1!…,dp2,

S6 are evaluated using the substitutions

sinu5L/rp1 , cosu5mṙ/p1 ,

sinũ5L8/rp2 , cosũ5mṙ8/p2 ,

and

cosu125~p1
21p2

22q2!/2p1p2

to give, simply,

2p1p2S6~ ũ1 ,u1!5A~q22A6
2 !~B6

2 2q2!,

expressed in terms of the momentum-change limits

A6
2 5m2~ ṙ 6 ṙ 8!21~L2L8!2/r 2
and

B6
2 5m2~ ṙ 6 ṙ 8!21~L1L8!2/r 2.

The integralR̂if (p1 ;r ) is then

4pR̂if~p”1 ;r !5F 8LL8

m2r 4ṙ ṙ 8
G @Gif

1~r ,q!1Gif
2~r ,q!#, ~B4!

where

Gif
6~r ,q!5

1

A~q22A6
2 !~B6

2 2q2!
.

Since

mṙ2/25E2V~r !2L2/2mr2

holds for the initial and final states, theS, A, andB functions,
and hence integral~B1!, are all independent ofp1 . The tran-
sition integral~B2! is then

D if~q!5E
0

`

4pR̂if~r ,q!P~r ,q! r 2dr, ~B5!

where the onlyp integral is

P~r ,q!5E d„H~r ,p!2E…d„H~r ,p1q!2E8…dp.

Hence

P~r ,q!52pE
0

`

p2 dp d@p2/2m1V~r !2E#

3E
21

11

d@pq cosu/m2E82E1q2/2m# d~cosu!,

whereu is the angle betweenp andq. There is only oneu
root provided that

p>p05m/quE2E81q2/2mu.

The p integrations therefore yield

P~r ,q!5
2pm2

q
Q~r ,q!,

whereQ is the step function having a value 1 ifV(r )<E
2p0

2/2m is satisfied, and zero otherwise. The final expr
sion for the classical transition probability density~13! for
E,L˜E8,L8 impulsive transitions is therefore

P~E,L;E8,L8;q!5
1

~2p\!3

2pm2

q

3E 4pR̂if~r ,q!Q~r ,q! r 2dr,

~B6!

whereR̂if is given by Eq.~B4!. Hence
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P~E,L;E8,L8;q!5
16pLL8

~2p\!3q
E
R

dr/r 2

ṙ ṙ 8
@Gif

1~r ,q!

1Gif
2~r ,q!#Q~r ,q!.

For hydrogenic systems, the conditionV(r )<E2p0
2/2m is

satisfied for anyq and all r within the radial regionR ~cf.
Fig. 3!. Thus the step functionQ is always unity.

The probability ofn,l˜n8,l 8 transitions due to an impul
sive momentum change is then

Pnl,n8 l 8~q!5~hnnl!~hnn8 l 8!\
2

3P„En ,~ l 11/2!\;En8 ,~ l 811/2!\;q….

2. Form factor for EL˜E8 transitions

On using Eq.~B3! in Eq. ~B6! the probability density for
E,L˜E8 transitions is

P~E,L;E8;q!5
L

p\3q
E

0

`

~v ṙ !21Q~r ,q! dr,

where v(r ) is the speed along the initial trajectory. Sin
p252m@E2V(r )#, integration overr may be replaced byp
integration anddr/v5dp/V8(r ) so that

P~E,L;E8;q!5
L

p\3q
(

j
E

p0

`

u ṙ jV8~r j !u21 dp,

where r j is the root ofp252m@E2V(r )#. In terms of the
momentum distribution~A5!, then

P~E,L;E8;q!5
mL

gl\qEp0

`

r~E,L;p! 4pp dp,

which for boundnl states is in agreement with previous r
sults @8,16,6#.

The classical form factor fornl˜n8 transitions in hydro-
genic systems is, in atomic units,

Pnl,n8~q!5
2~2l 11!

pqn83 E
pmin

pmax n

p
~11n2 p2!22

3F12S L~11n2p2!

2n2p
D 2G21/2

dp,

where the integration limits are given by two conditions: t
integrand is real andp>p05uq211/n8221/n2u/2q.

3. Form factor for E˜E8 transitions

Using Eq. ~B6! with R̂if51, the probability density for
E˜E8 transitions is

P~E,E8;q!5
2pm2

q~2p\!3 S 4

3
pr

*
3 D ,

wherer * is the largestr which satisfy the condition
p~r !52m@E2V~r !#>p05
m

q
uE82E2q2/2mu.

This probability density is exact for allV(r ) and has a
simple physical interpretation. The transition probability
given byVDp/(2p\)3, which is the number of states in th
‘‘reaction’’ volume V54/3pr

*
3 multiplied by the volume of

momentum spaceDp consistent with energy conservatio
The initial- final-state energy conservation equations areE
5p2/2m1V(r ) and E85E1q•p/m1q2/2m, respectively.
Then

Dp5E
f50

2p

dp52p p2dp d~cosu!5
2pm2

q
dE dE8,

where thez axis is alongq̂.
The classical form factor forn˜n8 transitions is

Pnn8~q!5~hnn!~hnn8!P~En ,En8 ;q!.

For Coulomb attractionV(r )52Ze2/r , then

r * ~q!58~Ze2m!q2@q424m~E1E8!q214m2~E2E8!2#21

so that the transition probability, with the substitutionq
5Q(Z\/a0) now becomes

Pn,n8~Q!5
29

3p~nn8!3
Q 5FQ 412S 1

n2
1

1

n82DQ 2

1S 1

n2
2

1

n82D 2G23

.

APPENDIX C: CALCULATIONS OF QUANTAL
FORM FACTORS

The quantal transition probability~5! for the hydrogen
atom is in general a rational function of the momentu
transferq because Eq.~5! with C(r )5Rnl(r )Ylm( r̂ ) can be
decomposed as

Fnl,n8 l 8~q!5~2l 11!~2l 811! (
L5u l 2 l 8u

l 1 l 8

f n l
n8 l 8

L
~q!2~2L11!

3H L l l 8

0 0 0J
2

where $•••% is the Wigner 3j symbol, andf n l
n8 l 8

L
(q) is the

radial integral:

f n l
n8 l 8

L
~q!5E

0

`

Rnl~r !Rn8 l 8~r ! j L~qr ! r 2dr, ~C1!

where j L is the modified Bessel function. Because the rad
wave functionRnl has the simple structuree2r /n r l Q(r ),
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where Q is a polynomial of ordern2 l 21, integral ~C1!
contains only terms with the form

I k,L~a,q!5E
0

`

e2ar r k j L~qr ! dr,

wherea is 1/n11/n8 andk is an integer number (k5 l 1 l 8
12, . . . ,n1n8) greater thanL. This integral is the following
rational function inq:

I k,L~a,q!5
qLak2L21

~2L11!~2L21!!!

~L1k!!

~a21q2!k

3 2F1S 2
k2L

2
11,2

k2L

2
1

1

2
,L1

3

2
;2

q2

a2D ,

since the hypergeometric function2F1 is a polynomial when
either the first or second argument is an integer. This pro
that integral~C1!, and hence the quantal form factor~14!, are
rational function inq. It also provides the practical procedu
to calculate the quantal probability~14! in an analytical
form.

The quantal transition probability~21! can be written in
terms of the density matrix element,rn(r ,r 8)
5( l ,mcnlm* (r )cnlm(r 8), as

Pnn8~q!5E E dr dr 8eiqr•r8rn~r ,r 8!rn8
* ~r ,r 8!.

The densityrn is the residue of the Coulomb Green’s fun
tion @17# and can be calculated from

rn~r ,r 8!5 lim
E˜En

~E2En!GE~r ,r 8!5
1

pna0
3

Pn

x2y

in the spatial variables (x,y) given by

x5Z/a0~r 1r 81r!, y5Z/a0~r 1r 82r!

where r5ur2r 8u. The functionPn has a simple structure
Because

Pn5S ]

]x
2

]

]yD @Mn,1/2~x/n!Mn,1/2~y/n!#,

where M is Whittaker’s function, thenPn is simply
exp@2(x1y)/2n#3 polynomial inx andy. Thus

Pn~x,y!52
e2(x1y)/2n

2n3
@2n~x2y! f n~x!gn~x!

1~n21!xy„f n~x!gn~y!2gn~x! f n~y!…#,
es

where the polynomials

f n~x!5 1F1~12n,2,x/n!, gn~x!5 1F1~22n,3,x/n!

are given by the degenerate hypergeometric function1F1,
where the first argument is a negative integer. Finally,Pnn8
is the integral inx, y variables:

Pnn8~q!5
1

24nn8
E

0

`E
0

`

dx dysin~q~x22!/2!

3~x214xy1y2!Pn~x,y!Pn8~x,y!/~x2y!.

The observation thatPn(x,x)50, means thatx2y is a divi-
sor for Pn(x,y). On writing sin in exponential form, the
integral contains only primitive terms of the form
xm( f or g)(x)e2a6x, with various positive integer power
m anda65(1/n11/n86 iq)/2. The elementary integrals

E
0

`

xmf n~x!e2ax dx5S an21

an D n m!

a S n

an21D m

3 2F1~n11,12m,2,1/an!

and

E
0

`

xmgn~x!e2ax dx5S an21

an D n m!

a S n

an21D m

3 2F1~n11,22m,3,1/an!

are rational functions ina which is linear inq. The form
factor Pnn8 is therefore a rational function ofq. The proce-
dure described is remarkably efficient since it reduces
multiple integrations to a finite number of symbolic oper
tions by ~a! recognizing the primitive terms, and~b! replac-
ing them with the appropriate elementary integrals. Based
this procedure, the results of calculations for the transit
probabilities forn851,2,3,4,5, and 6 and arbitraryn are pre-
sented in Table I. This illustrates the power of the meth
The form factors for transitions fromK, L, andM shells were
obtained by Bethe and Walske@18#. The form factors for
transitions to continuum states with wave numberk are ob-
tained by analytical continuation replacingn with i /k. The
dipole oscillator strengths forn2n8 transitions,

f nn852DEa.u.lim
q˜0

Pnn8~q!

q2
,

can be readily deduced from the results presented in Tab
@1#
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