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Classical and quantal atomic form factors for arbitrary transitions
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The classical form factor is deduced from exact correspondence with a phase-space representation of the
qguantal form factor. Analytical expressions are provided rib~n’l’, nl—n’, andn—n’ transitions in
hydrogenic systems and for—n’ in the one-dimensional harmonic oscillator. An efficient procedure for
calculation of quantal form factors as analytical functions of momentum transfer, for arbitrary quantum num-
bers, is presented. The classical approach has the ability to explain quite succinctly interesting trends and
various important aspects which remain hidden within the quantal treatment of form factors. The classical-
guantal comparison ranges from being qualitatively goodnfern’l’ transitions to close agreement fok
—n’ andn—n’ transitions. Excellent agreement is obtained for the integrated form factor for all transitions.
[S1050-2947@9)09107-9

PACS numbes): 32.80.Cy, 34.50-s, 31.15.Gy

I. INTRODUCTION example, the generalized oscillator stren§tts written in
terms of the inelastic form factor as
The inelastic form factor
2AE
iq-r/ iK f= —2au|}_|2
Fi=(W¢|e' W) =(Wy[e Tav| W) K

_ ) ) ) whereK =q(aq/#%) is dimensionless, and whefe&=, |, is the
is a very basic quantity. It can accurately describe the overaihange in energy between the initial and final states. The first
response and dynamics of an atom or molecule involved iBorn approximation for the inelastic scattering of structure-

various processes or external interactions. It is also commogss jons of charg&e, of speedv, by a hydrogenlike ion of

in various schemes of approximation. chargeZ'e, is
The study of the hydrogen atom form factor serves as a
pivotal starting point for the general study of electronic tran- 87TZZ’a(2) Koo
sitions between highly excited states of atoms and molecules. o(v)= J | A(K)|2K~3dK,
The additional effects of the nonhydrogenic core may be (VIVo)? JKmin

incorporated via use of quantum defect theory. Inelastic tran-

sitions between the ro-vibrational states of molecules can b¥hich can emphasize small momentum transkemcurring
studied by appeal to the inelastic form factor for the har-at high energies. The inelastic scattering of an ultraslow neu-
monic oscillator. tral particle by a Rydberg atom is

Inelastic scattering of incideriheutral or chargedpar-
ticles or of photongor short bursts of electromagnetic radia- _ meax 2
. : o(v)= | F(K)|*K dK,
tion [1]) by a structured target can be decomposed into an (VIV)?J Kpin
internal structure part, provided by the form factor of the
target, and a dynamic part which depends on details of thevherea is the scattering length of the projectile—Rydberg-
external projectile-target interaction. Bound-bound, boundelectron interaction and,=e?/# is the atomic unit for ve-
continuum , continuum-continuum, and ionization transitionslocity. This expression emphasizes intermediate and la€ger
are treated on the same footing by using the form factor. occurring within the interaction distanee

The quantal impulse, semiclassical impact parameter, first Classical mechanics provides a good quantitative descrip-
Born approximation, and binary encounter methods of colli-tion of excited states via the correspondence principlgs
sion theory[2] focus on the transition probability as a dy- Classical mechanics also promotes physical insight into the
namic response of the target in the field of the projectile. Theprocess by transparent causality, and provides scaling laws
physical significance of the form factaf is that Pi(Qq) and elucidation of the dynamics. A phase-space description
=|F|? is the probability of an internal transition arising from combined with statistical propertigsnicrocanonical distri-
any external impulsive perturbatigwhether due to collision bution in most casesare the basis for an alternative or
with particles or exposure to electromagnetic radigtion complementary view of quantal phenomena.
which induces a sudden changéo the internal momentum Based on the recognition of the above fundamental as-
of the target systerf8]. Since any interaction can be decom- pects of the form factor, this paper presents results for quan-
posed as a series of sudden interactions, the scattering crass$ form factors, and defines the classical form factor for the
section or other observables are determined by integratinfighly excited hydrogen atom and harmonic oscillator. Clas-
the form factor, multiplied by some weighting factor charac-sical mechanics is advantageous h@ein revealing essen-
teristic of the interaction, over momentum transtgrFor tial details of the dynamics for inelastic transitior{b) in

2
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explaining the interesting trends in the behavior of the formThis function provides an easy way to compute the form
factor (as a function of the various variabjesand (c) in factor by using
predicting quantitative results inaccessible to rigorous quan-

tal calculations because of the formidable numerical restric- 1 ""I(t,zQ) @
. . H H i .7: r= 7 ’ 1
tions imposed by the highly oscillatory wave functions. nn T prapr

Some analytical quantdl5,6], semiclassical[7,8] and t,z=0
classical9,6] form factors are available, but general system-
atic trends cannot be easily extracted from them. A key poin
of this paper is that a complementary classical approach f
generalnl—n’l’ transitions is developed in such a way that
reveals quite succinctly important aspects which remain hid-
den within the quantal treatment. The consistency of thi%/vherew
approach is verified by applying it tal—n’ and n—n’
transitions. The known resul{$] are then rederived in a
unified way.

The simple example of the one-dimensional harmonic os
cillator is treated in Sec. Il. The correspondence between th

nd reveals the following analytical structure of the quantal
jorm factor for the harmonic oscillator:

fnn’:qu_Qzlz)WnJrn'(Q)y

ane IS @ polynomial of orden+n’.

The square of the absolute value of the form factor can be
interpreted as the transition probability of the harmonic os-
cillator when an impulsive interaction imparts momentgm
3]. Based on this observation, a classical analog of the form

: ! . o . Tfactor can be defined. Consider the phase space to be popu-
quantal and classical form factor for inelastic transitions in g according to the microcanonical distribution. The tran-
this system is apparent. On this ground, a generalization fo :

. i . Lition probability is then given, in a geometric sense, by the
thfe‘?‘d'mens"’.”?! systenfike the.hydrogen atoﬂrb_ecomes volume of that region in phase space where both initial and
feasible. A definition of the classical form factor interpreted

” . ' final states can coexist.
as a transn!on pf"b?‘b"!ty bgtween two states dgscnbed by The density of probability in phase space for a given state
microcanonical distributions in the phase space, is propose(glf the harmonic oscillator is

in Sec. lll. The classical form factor farl—n’l’ is intro-

duced in Sec. IV, and compared with the quantal counterpart. pn(r,p)=NSH(r,p)—(n+Hiw),

Various summations, over the momentum transfer and initial

and final quantum numbers are obtained within the sam@nere the normalization factdd=w/27 ensures one par-
theoretical framework. The classical calculation are based ofjcje in all of the phase space. The transition probability is
the microcanonical distributions presented in Appendix A. Inthen given by the conditional probability that the the system
Appendix B the classical calculations are detailed. An effi-i the initial staten is in the phase-space volume element
cient algorithm for calculation of the various quantal form dp, and theg-displaced final state has quantum numbér
factors is introduced in Appendix C. within the same volume element. Hence

Il. FORM FACTOR FOR THE HARMONIC OSCILLATOR

hw?
: : : _ Pnn’(Q)zz_f drdps(H(r,p)— (n+3)hw)
The simple example of the one-dimensional harmonic os- ™
cillator with the Hamiltonian X S(H(r,p+a)—(n'+ 3% w)

_ 2 2.2
H=p*/2m+moTr/2 Phase space integration yields

is considered in this section. The quantized energy levels are
E,=(n+1/2)hw, and 'Fhe corr_esponding wave functions P (Q)= E[—Q4+2(n+n’+1)Q2—(n—n’)2]‘1’2,
u,(r) have the generating function ™

2

F(t,r)= >, =g V4 12 where the dimensionless parame®f=(q%2m)/fiw is,
n=0 +/n! ; 2.2 2
again,q“rg/2i©. Then

xexy — (r/rg)2/2+ \2tr/ry—t%/2],

1
P (Q)=—[(02 —0?)(Q?—02)] 12
wherer = JA/mow is the natural length of the oscillator. ' (Q) w[(Q+ Q™ =Q%)]

The inelastic form factor for the transition from leveto
level n’ when the momenturq is transferred is defined as Which shows thag is restricted to those values for which the
_ square root is a real number; otherwise the transition is clas-
Fanr (@)= (Un [€9" ), sically forbidden, andP,,, is zero. The limiting values of
Q=0Q- are given by
and has the generating function, in terms of the dimension-

less variableQ=qrq/ 2% Q%2=(n+n'+1)=\(2n+1)(2n' +1),

(t,2:Q)= i r t"z™ where th_e probabilityPr_m, exhibi_ts characteristic clt_e\s_sical
e nelo ™ nimi singularities. The classical transition probabil{®) satisfies
detailed balance. The transition probability for elastic colli-
=exp(—Q?%2)exftz+i(t+2)Q]. sion (h=n’) is
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abilities for any momentum transferfrom the statem=4 to states
FIG. 1. Classical and quantal transition probabilities for the ( n’=0-20.
=10)—(n'=20) transition in the harmonic oscillator vs momen-

tum transferQ. which reduces to
1 2 7| —s 1-s_ "‘\f 1
Pnn(Q)=%[2(2n+1)—Q2]*1’Z. 3) Pnn’_ﬂ_Q_ Flali=5/* s Flarcsim/ 5 <
_ 2 2
The advantage of using the classical transition probability where s=1-Q%/Q%

is illustrated by the following example. Consider the 10.

—20 transition. The quantal expression deduced from Eq'.n terms of the incomplete elliptic functio.

1) Figure 2 shows that there is an excellent agreement be-
' tween the quantal and classical transition probabilities for
e—QZIZQJ_O generaln—n’ transitions in the harmonic oscillator for any
Fiom2o(Q)= (— 670442572800 momentum transfer. The singularityrat=n arises from Eq.
522547200Q323323 (3). The characteristic agreement is displayed in Fig. 2.
+60949324800Q2— 228559968000*
Ill. PHASE-SPACE EXPRESSION FOR THE FORM

+4688409600@° — 586051200@° FACTOR
+46884096@1°— 24418800Q12 The quantal amplitude
+820800Q™~ 17100Q"%+200Q**~ Q%) Fir(@)=(C¢(n)]e T Wi(r) =(Pi(p+a)|Ps(P)y

is rather large, and is numerically inefficient due to the os-

cillations in the wave functions. The classical transitionis expressed as the above integrations over either configura-

probability (2), however, has the simpler form tion space or over momentum space, where the momentum
wave functions are defined as

1
P102d Q)= —/ V—Q*+62Q7-100
™ CD(p)=(27Th)’3’2J W(r)exp(—iq-r/f)dr.
within the classically allowed range 31/861<Q?<31
+/861.
The classicalP,,, and quantal F,,|? are compared in The transition probability
Fig. 1. The comparison exhibits excellent “background” ~
aggreement Withinpthe classically allowed region (DQJ]‘ the Pir(a) = (W ¢(r)[ €@ | wi(r))[? (5
characteristic classical singularities @t. , and the charac-
teristic exponential quantal tails in the forbidden region. Th
number of quantal oscillations inF,, is given by
min(n,n’)+1 which occur within the extent(2n+1)(2n’

can therefore be expressed as

<‘I’f(r)|eiq'r/ﬁ|‘1’i(r)>r<q’f(p+ Q)|‘bf(p)>p

+1)]*? centered on the median value{n’ + 1) of theQ? ,

rang);]e. R ° =f dr dp[ W7 (r)e'®" "D (p+q)]
The classical transition probability for any momentum ot

transfer(or the integrated form factpis X[Wi(r)e P E(p)].

o The quantal phase-space distribution may be defined by
Pif:j Pi(Q)dQ ,
o p(r.p)=(2mh) " ¥2¥ (r)e” P d* (p)

=EJQ+[(Q2—QE)(Qi—Qz)]‘l’ZdQ, since the probability densities(r) in configuration space
TJQ- and p(p) in momentum spacé¢obtained by integrating the



1056 D. VRINCEANU AND M. R. FLANNERY PRA 60

guantal phase-space distribution over momentum or configu- po(J,w) dJdw=8(J/h—n) dJ dw/(27#)P
ration spacg yield p(r)=/p(r,p) dp=|¥(r)|?> and p(p)
=|®(p)|?, respectively. This distribution is the standard or-for a generalD-dimensional system with a set of action-
dered versiorf10] of the Wigner distributiorf11]. angle variable$J,w) in a state specified by the set of quan-
The transition probability is therefore tum numbersn. The classical probability fon — n’ tran-
sitions is therefore

Pif(q)=(2wﬁ)sfdrdppi(r.p)p?(r,pm)- (6)
Po(@)=2mh) © [ [ stan—n) a@im-n)

This expression for the transition probability is now in a

form appropriate for classical correspondence, obtained by X8(p+q—p’) 8(r—r’)dJdwdJ dw’, (10

replacing the quantal densitipg; (even thougltp; ; have no

direct physical interpretationby the classical phase-space Which provides a more general classical correspondence with

distributionsp®(r,p). Thus the quantal expressia®), rewritten as
P@=(2nh)? [ drdppfeppirpra) 0 Pu@=(2nn)? [ | drdpdridpprp) prr e
is the basic expression for the classical probability for impul- Xo(r=r")s(p+q—p’).

sive transitions. The number of initial states in the phase- ) ) ) ]
space elemerdr dp is p; dr dp, and (2%)3p; is the prob- These expressions emphasize the impulsive nature of the
ability that the final state is in the same phase-space elemerffomentum transferred.
Two fundamental properties, corresponding to similar
properties of the quantal resufi), can be readily proven for
the classical transition probability). The classical distribu- IV. FORM FACTOR FOR THE HYDROGENIC ATOM

tions satisfy A. Form factor for nl—n’l’ transitions

_2 B -3 The classical distribution for an atom with given enekgyy
p(r,p)= > pn(r,p)=(2mh) ">, ar;d angular momentuin, in (r,p) phase space i#\ppendix
A
which means that the total number states in the phase volume
element isdr dp/(27#4)3, the number of elementary phase- p(E,L;r,p) dE dL o dp
space cells. The probability of transition from initial state
all statesf is then

dr dp
=dE5(H—En|)dL5(|L|—L)( , (11

27h)3
Z Pif(Q):fPi(rap)drdp:gir ™h)

. . . where both the HamiltoniaHi (r,p) = p%/2m+V(r) and an-
the statistical weighty; of the initial state. The second prop- gular momentuniL (r,p)|=rp sin 6., are constants of mo-

erty provides the transition probability for all momentum g * The classical transition probability for the case of a
transfersq. Integration of. Eq(7) over all possible values of antral field one-electron atom, between the states, or bands
the momentum transfey involves of states centered aE(L) and E’,L’), due to momentum
transferq, is then

f p(r,p+q)dq=fp(r.p’)dp’f6(p+q—p’)dq

P(E,L;E’,L";q) dE dL dE dL’
=p(r),

where p(r) is the classical distribution in configuration —dEdLdFE dL’J dr dp S(H(r,p)—E)
space. Then 2mh)3

Xo(L(r,p)|—L)o(H(r,p+q)—E
| Puwda=@an? [ ppnar. @ (Lrpl=L)otH(r.pra)—E)
. . . - . X 3(L(r,p+a)[-L"). (12)
This classical property is again in correspondence with the

qguantal result ) ] -~ - )
The quantityP(I";I"";q) is the transition probability density

, 3 5 ) (per unit intervaldl’ dI"'). WhenE, E’, L, orL' are quan-
f | Fir(a)|“ dg=(2mh) f|‘1'i(f)| [We(n)|*dr, (9 tized, the transition probability between corresponding states
are obtained by the formal replacemedis—hv,, anddL
which can be derived from Ed4). —# on the right-hand side of Eq12). The transition prob-
In the action-angle representation for bound states, thability between bound states with given quantum numbers
classical distribution is (n,]) and (0',1") is then
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Painir (@) =hwy, hvnqrﬁz
XP(Ep,(1+12%;Eq 0, (I +1/2)1),
(13)

wherev, =7, is the radial frequency of the classical orbit.

Since the densities used in Ed.3) are already normal-
ized to (2+1) particles in all of the phase spatsee Ap-
pendix A), Eq. (13) represents the basic definition of the
classical form factor, in direct correspondence with(gen-
metrica) quantal form factor

Fann (=2 > Knim[e@™|n"I'm")|2. (14)
m ml

The physical significance of the basic expresdidnis that
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FIG. 3. Integration region for a typical (4,3)(8,2) transition.

the initial and final states correspond to definite regions in _
phase space populated according to the microcanonical digfom. The dotted curve is the boundary, ¢-r=0) of the

tributions (11). Transitions can only occur if these two re-

gions overlap, and the amount of overlap is a measure of th

transition probability. The classical form fact@t3) which
has been developed in detail in Appendix B, will be directly
compared with the quantal result of E{.4), developed in
Appendix C as a function af for arbitrarynl—n’l’ transi-
tions.

The result of the classical calculatioh3) (see Appendix
B for detail9 is

221+ 1)(2l" +1)A3

Pnl,n’l’(q):
T Tn|!
dr/r2[ G (r,q)+ G (r,
XJ’ — |f( q) |f( q)}(@(r,q),
RIT q
(15

where® (r,q) is the step function having value unity within
r<r* (given in Appendix B, and zero otherwise, and the
function

1
(q*—A%)(BZ—0?)

G‘?“"”W (16)

must be real, so thaj must be within the classically acces-
sible rangeR given by

AZ=m?(r=r")%+(L-L")%r?<g?<B?%
=m2(r=r")2+(L+L")%r2,

The radial velocityr (r’) is a function only ofr for a given
nl (or n’l") state. For a given momentum transtgrthe r

region within which the functior® is unity, and which en-
gompasses the physical accessible regn<g<B, .
Whenq is small (below theA_ curve or large (above the
B, curve, G; has complex values and the transition prob-
ability is necessarily zero. In the shaded regions @y (a)

or G; (b) or bothGi? (c) can contribute to the integral for a
giveng. The ranger of radial integration always lies within
the region specified byA,=A_= real and B,=B_

= real. The boundaries of this region are then given by
Rmin=maxR ,R;) and R,=min(R",R), whereR~ and

R" are the pericenter and the apocenter of the Kepler orbit.
The three situations possikléetails in Ref[3]) for the over-

lap of the initial and final orbits are illustrated in Fig. 4la’s

of the final orbit is increased. Region | gives the maximum
overlap when regiolR= (R, ,R;") is specified only by the
initial state. In Region Il the overlap is partial, because the
lower limit of R is given by the pericenter of the final orbit
R; . In Region Il the pericenteR; has moved outsidR;" ,

so that there is no overlap, the transition is classically for-
bidden.

The quantal transition probability for bound-bound transi-
tions, for hydrogenic atoms, is a rational function in the mo-
mentum transfeq. The proof of this statement and the algo-
rithm for quantal calculations are presented in Appendix C.
The form factor for the (4,3} (8,2) transition, as a function
of q, is

(I) total overlap  (II) partial overlap

(III) no overlap

integration proceeds over the radial ranges within which the

square roots in Eq.16) are real. This situation is illustrated
in Fig. 3 for the (4,3}(8,2) transition in the hydrogen

FIG. 4. Overlap situations for fixed initiah, |, andn’ and
varyingl’.
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PussA0)= (1977006755367 8435228822899 — 5298097302013132f + 91495741110563635

The results of calculations for the quantal and classical prob- When the final state is in the continuum with energy be-
abilities (form factorg are compared in Fig. 5. The four sin- tweenE’ and E’' +dE’, result (15) is still valid provided
gularities in the classical transition probability, which indi- hv,,, is replaced bydE’. The probability for a bound-free
cates maxima in quantal results, correspond with thoséransition is then

values of the momentum transfer for which the (

= const) line is tangent to one of the curves =q or B ) | (2l +1)(2l" +1)A%dE’

+=q in Fig. 3. One of these equations has then a double i1 (E"A)dE"= pyy }

root inr, which eventually yields after integration a logarith-

mic singularity. dr/r?[ Gy (r,q)+ Gy (r,9)
In Fig. 6 the quantum numbersl, andn’ are fixed and Xf op :

" p” ) R4l q

the transition probability versus the momentum transfes

plotted for various final angular momerita As|’ increases,

the quantal and classical transition probabilities increase, and B. Integrated nl—n’l" form factor

attain a m:a\ximum for some value Bt This value is roughly e integrated form factor or the transition probability for

Ref. [3]. Further increasing’ produces a sharp decrease intransition probability over the space. The quantal calcula-
the quantal transition probability. The classical transitiontion gives

probability is forbidden forl’=6 and 7, since there is no
overlap at all between the phase-space regions occupied by 5
the initial and the final states, for any momentum trangfer 0.1r (a) 4
This situation corresponds to region Il of Fig. 4. The quantal f\\
results forl’=6 and 7 are therefore classically inaccessible. 0.08} |

When the final principal quantum numbef is varied, \
keepingn, |, andl’ fixed, the shape of the transition prob- , .|
ability versus momentum transfer is preserved and the mag-
nitude rapidly decreases &s increases. This observation,
valid for both quantal and classical cases, is demonstrated i -
Fig. 7 for a specific case. Because the transition probability
(14) contains the factor ¥/ ~1/n’3, the classical form factor ~ 0.02}
provides an explanation for this behavior.

P

4,3-8,0...7 (q)

04t

0.012} 3,3_,8’2@)
0.08
0.01
0.008} 0.06
quantal
0.006 ]
classical 0.04
0.004
0.02
0.002
q
0.2 0.4 0.6 0.8 1

FIG. 5. Quantal and classical transition probabilities for the FIG. 6. Quantala) and classicalb) transition probabilities for
(4,3)—(8,2) transition. the (4,3) — (8,I') transitions, withl’=0,...,7.



PRA 60 CLASSICAL AND QUANTAL ATOMIC FORM FACTORS ... 1059
0.251
[T @
0.2¢
P, (@)
4,3-6..12,5
—@rt* [ da S [P Wi (]2
ml
which, with \If(r)=(Rn|/r)Y|m(?), reduces to
f [F o (@)|?dg q
0.6
0.25 b
=2772(2I+1)(2I’+1)ﬁ3f pﬂ|(r)pﬂ,|,(r)dr/r2, 17 ( ) 6
0.2}
1)4,3->6...12,5(q)
Wherepq(r)drzRﬁ|(r)dr is the radial probability. 0.151
Integration of the corresponding classical transition prob-
ability (8) gives -
A2
8m2(21+1)(21"+1)A2 [ (dr/r?) A58 |
J Pnl,n’l’(Q) dq: r R .
172 R Il q
(18)

. . . FIG. 7. Quantala) and classica(b) transition probabilities for
Upon integration, Eq(18) yields the (4,3) — (n’,5) transitions, withn’=6, ...,12.

between quantal and classical calculations is excellent for
anyl’. Theg-integrated form factors were discussed in Ref.

8
Pn|,n/|'=WF(arCSif\/§| 18)[ (Xa—X2) (X4—X1)] ™12
[3].
~ (X3=Xp)(Xg—Xq)

with = (X3=X1)(Xg—Xz)

C. Form factor for nl—n’ transitions

Summation over the final angular momentum numiBer

where F is the incomplete elliptic function and; (i

=1,2,3, and #is the sorted setR; ,R;" ,R; ,R{). When
there is no overlap between the initial and final staf@s (
<Ry) the transition is of course classically forbiddesitu-

provides the form factor

n"—1

Pon(@)= > 2 Knimle!d " |n'I"m")|2.

1"=0 mm’

(19

ation Il in Fig. 4. Comparison between the quantal and
classical expressions reveals the definition of the classical
radial probability: p°(r)dr=2dt/7, in agreement with the The pasic definition7) gives the classical analog for this
customary correspondenégeduced in Appendix A Theq  form factor:

integrated transition probabilities for fixed initial quantum
numbersn andl and finaln’ as function of the final angular
momentuml’ are shown in Fig. 8. There is excellent agree-
ment between the quantal and classical calculations before
the first singularity inl’, which marks the transition from
region | to region Il in Fig. 4. For largel’, the quantal
transition probabilities oscillate about the classical transitiorwhere the densitiep,,, and |-averagedp,,, are described in
probabilities. As proven in Ref3], there is a limiting value  Appendix A. UsingV(r)=E—p?/2m, the final distribution
|, of I after which the quantal transition probability expo- is rewritten in ther independent form as

nentially decays while the classical form factor is zero. This
situation corresponds with region Il in Fig. 4, where the
transition is classically forbidden. If this special valuel 6f
cannot be accommodated, becal{sen’—1, the transition

is classically always permitted and the quantal transition
probability has no exponential tail. This is the case of quasi
elastic transitiongbetween the same principal quantum num-where/ means “notr.” The classical transition probability
berg, as presented in Fig. 9. For this case, the agreemeifior impulsivenl—n’ transitions is then

Pnl,n’(q):(ZWﬁ)sf dr dp pn(r,p)pn (r,p+0a),

pn (V,p+0)=(hvy) 8 (p+g)%/2m—p?/2m
+E—E']/(27h)3.
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FIG. 8. Quantaldoty and classica(solid line) transition prob-
abilities for the(35,30 — (55,I') transitions, withl’ =0, . .. ,54.
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FIG. 9. Quantaldotg and classicalsolid line) transition prob-
abilities for the(20,10 — (20,I') transitions, withl"=0, ... ,19.

(summing integrating the original probability,, ,,,» over
all possible final angular momenta. The probability fot
—n’ transitions in hydrogen is

which is the classical overlap only of the momentum space

distributions, rather than the full phase-space distributions, as

in Eq. (12) for nl—n’l’ transitions. Since

f 8(pqcost,q/m+q%2m+E—E’) dp=27m/pq

for p>po=|2m(E’' —E)—q?|/2q, and zero otherwise, this
transition probability reduces to

2mm ©
Pm,n«q):—(hvnr)f pu(P) P,
q Po

2(21+1) (p+n B
i (@)=——2"] —(1+n?p*)~?
wqgn Pmin
L(1+n2p?)\ %] *?
x{l— —(2 : p)) 1 . @
n=p

where all quantities are in atomic units, aheF | +1/2. The
limits of integration are given by =maX{py=|g>+1/n’?2
—1/n?|/12q, p_], where p.=(1+(1—L%n?Y3)/L are the
extreme valuesat pericenter and apocentaf the momen-
tum of the electron on a given orbit. As a specific example,

which involves only the momentum distribution of the initial consider the 43>8 transition. The quantal form factor (&f.
state. The same result is also obtained in Appendix B byAppendix Q

34359738368

P =
4,3-8(0) 5916407

(9721215 44984782082+ 471603326976+ 6554684489728° — 45106207916032G°

+6344423684177929'°— 12676750592966656°— 1289947041706803¢*+ 535928355657089024#°

+4503599627370496G§}°).

The classical and quantal form factors, are compared in Figgration limits change tod_ ,p,) which are independent of
10. The insets show theintegration range as a function of ¢. Here P decreases purely ag !, as in(a) and (b). For
the momentum transfay. Three special cases are presentediarger g, the more rapid decrease  results from aq ™!

(@) excitation, (b) quasielastic transition, andc) de-
excitation. Forq sufficiently small thatp,>p+, the transi-
tion is classically forbidderjcases(a) and (c)]. As q in-
creases, the integration limits of E@O) are (py,p.). The
increase ofP in cases(a) and (c) is due to the effect of

variation combined with the effect of a decreasing range of
integration, as exhibited for all cases. The transition is again
classically forbidden, for all cases, in the limit of large

when po>p, . These three overlap situations described

above are illustrated in Fig. 11. For deexcitatid®’ € E),

increasing range of integration overwhelming the back{, has always one minimum valugi =[2m(E—E’)]*2

groundq ! decrease. With a further increasegnthe inte-

Whenpg >p_, then the pattern of cage), with momentum
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limits (pg,p_), is established. This occurs for de-excitation 29 1 1

to levelsn’<n_(n,L)=(L/y2)[1—(1—-L?/n?)Y?~12 De- Pn,n,(Q)z—,sQS[ Q4+2<—2+ —,2) Q2
excitation to levelsy’>n_ is characterized by the pattern of 3m(nn’) n~.n
case(c). Whenpg>p, , transitions are classically forbid- 1 112178

den. This occurs for de-excitation to final states), +| =— _) ,
<n_(n,L)=(L/\2)[1+(1-L%n?)Y]"12 whose orbits n® n'?

are fully within th_e orbit of the |n|t_|al O,L) state. Then_ _which is the classical correspondence of
limit therefore delineates the classically allowed from classi-

cally forbidden de-excitation transitions. The. demarca- n-1n'-1

tions are illustrated in Fig. 11. For excitatigny can be zero Pon(@=2> 2 > [nim[e" |n'l"'m")|2.

at g* =[2m(E’ —E)]"? so that there is always a range of ’ (=0 "=0 mm’

transition momentay for which p,<p_ i.e. n’>n,(n,L). (21)

Excitation is therefore alwqys characterized by the pattgrn this quantal form factofas derived in Appendix s again
case(d). The quantal-classical agreement fdi—n’ transi- 5 ational function in the momentum transfersince is a

tions is overall very good. summation ofP,,,,,, form factors. The classical result is in

agreement with the result deduced by Vri¢@$from com-

parison of binary-encounter and Bethe treatments of

electron-atom collisions, and by Borodj®2] from the mi-
The classical probability of transition between statescrocanonical phase space distributiéfH — E).

specified only by their principal quantum numbers as func- Exact quantal and classical form factors for@0 tran-

tion of the dimensionless parameter=qay/Z% (as derived sitions are compared in Fig. 12. The expression for the quan-

in Appendix B is tal form factor for this specific transition

D. Form factor for n—n’ transitions

Py ()= 382205952 10q? (289+ 14400q2) 32
640 (529+ 14400q2)%8

+141117684599496583500181776452407579¢F q°— 184318171941496097624317093441846656

X 10° g*+93670997716818370857325330958800826’ q°— 2400432080403014981637748114489344
X 10'°q®+ 3486588122609384325911291625681 7130 10— 2927694744198493018588901567102976
X 10*2 g%+ 14387567274612996874680196399%04'° 14— 395454399288571654223098281984

X 10 g6+ 59607463430489688621711860°2q*8—39617692385952963165054566407°q%°
+16561843167373092527800820°2 %%

(609748651778452988718867471792636791

is an application of the general expression for transitions Gunctions of momentum transfey, for arbitrary initial and
—n’ presented in Table I. These results are derived in Apfinal states, has also been developed.

pendix B (classical form factgrand Appendix C(quantal For nl—n’l’ transitions, the classical method provides
form factop. Due to the correspondence principle, there ishoth the qualitative behavior of the quantum results and its
excellent agreement between the quantal and more compaghysical interpretation. The classical-quantal agreement is
classical expressions’>n>1. The agreement is also ex- particularly noteworthy for the integrated form factdi.
pected because the characteristic classical singularities in trpqgs_ 8 and ®for inelastic and quasielastic transitions. This
form factor are “smoothed” after the I”, m, andm’ sum- s pecause both classical and quantal form factors depend
mations. only on the overlap of the initial and final distributions in
configuration spacfef. Egs.(17) and(18)], so that the clas-
sical singularities apparent in Fig. 5 are averaged to produce
the smooth results in Figs. 8 and 9.

Based on the phase-space description of an atomic sys- The increasing accuracy obtained updnintegration is
tem, classical expressions for the inelastic form factor havelue to the absence of the multiple delineation of the phase
been derived. The formulas obtained are the exact classicapace associated withl—n’l’ transitions (see Fig. 3.
correspondences of the quantal form factors. The classic#gain the classical picture not only provides the physical
methods quite succinctly reveals important aspects which reexplanation for the quantal behavior when the momentum
main hidden in the quantum treatment. An efficient algo-transferq and quantum numbers are varied, but also identi-
rithm for calculation of quantal form factors as analytical fies the patterns associated with each tggeitation, quasi-

V. SUMMARY AND CONCLUSIONS
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elastic, and de-excitatipnof transition (cf. Fig. 10. The
agreement between classical and quantal integrated form fac-
tors is again excellent. In the limit of summing over all final
states, the total transition probability 5;P;(q)=g;, the
same result for both quantal and classical cases, which en-

sures full agreement in this limit.

On integrating over angular momentum quantum number
| for n—n’ transitions, the agreement is excellent for all
even for small quantum numbers. This is due to the fact that
the phase-space region common to the both initial and final
states(a sphere in configuration space with of radiyg is
densely and continuously populated.

The classical form factors represent an attractive approach 0+
for classical collision theory. The form factor is a collision

D. VRINCEANU AND M. R. FLANNERY
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n’

(@)

excitations

n

kernel to be convoluted according to the dynamics of the F|G. 11. The three overlap situations in momentum space: in
external interaction causing the transition. Due to the oscilregion (a) there is a value of q for whicip,<p_ ; in region (c)
latory nature of the wave functions, quantal calculations forp,>p_ for any g, even thoughp,<p. for someg; in shaded
processes involving highly excited states are still computaregion transitions are classically forbiddem,>p .

tionally expensive(in terms of precision, memory, and/or

(a) \

0.15 o2 .
0.1
P
0.05 quantal 4 3—>8(q)
— classical q
107 0.‘2 0.4 0.6 0.8

(b) P

0.04
P
0.02 8’3—>4(q)
q
0.2 0.4 0.6 0.8

FIG. 10. Quantal and classical transition probabilities far
(4,3)—38, (b) (4,3)—4, and(c) (8,3)—4 transitions as a function

time), while classical models are capable of exact results,
according to the correspondence princip[d3. Although
classical-quantal comparisons have been made to the one-
dimensional harmonic oscillator and to hydrogenic systems,
classical form factors can be useful for other atomic and
molecular systems. The present method would also be valu-
able in determining the response of the three-dimensional
Rydberg atom to a train of unidirectional short pulses of
electromagnetic radiatioril]. The classical form factor
methods would be also useful for excited-atom collisions
[13].
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APPENDIX A: MICROCANONICAL DISTRIBUTIONS

The basic classical probability density for a particle mov-
ing in a symmetrical potentiaf(r) is given by the microca-
nonical distribution

Fs _40(a)
0.015
001 quantal
classical
0.005
q

0.1 0.2 0.3 0.4 0.5 0.6

of the momentum transfer. Insets: the gray area is the integratioRlG. 12. Quantal and classical transition probabilities for the 6

range.

—40 transition as a function of the momentum transfer.



PRA 60 CLASSICAL AND QUANTAL ATOMIC FORM FACTORS ... 1063

TABLE I. Quantal form factofEq. (21) from texf] for n’—n transitions.

28 n7q2[(n/nr _ 1)2+q2 n2](nfn’ -2)
3 an[(n/nr +1)2+q2n2](n+n/+2)

" Pyy(a)=

1 —1+n?+3n?%g?

2 30°n®+5 g*n*+g%n?+9 n?/4—23n*/16+ 15n%/64— 9 n*g?/2+ 65n°q%/16— 11n®q*/4—1

3 309+ 119%n%+140°n%+6 g*n*—g?n%+ 71n?/27—62n*/27+ 1790n°/2187- 2431n8/19683
+377n'9%59049- 4 n*q?/9+290n5q?/81— 1460n8q?/729+ 1943n'%?/6561— 122n°q*/9+ 310n8q*/27
—442n'%*/243— 412n8q%/27+518n'%°®/81— 43n*%?®/9— 1

4 3g¥n'*+179¥n1%+ 39110+ 450%n8+ 250°%n8+ 3 g*n*— 3 g?n?+ 45n?/16— 2131n*/768+ 5093n°®/4096
—167011n8/589824+ 35231n%1048576- 32899n'%/16777216- 106183n'42415919104 41 n*q%/8— 269n°q?/256
—3475n8g2/3072+ 107440°G2/196608- 128581n1%9%/1572864+ 201047 1%q%/50331648- 217n°q*/16
+2691n8q*/128—59239n'°q*/6144+ 333157n1%q*/196608- 290087n*%q*/3145728- 197n8q%/4+ 16273n'%°/384
—34543n%q%/3072+ 188555n/q%/196608- 917n'%8/16+ 8027n'%q%/256— 16035nq®/4096— 239n*%q Y8
+2119n%q*%256— 95n*q 16— 1

5  3g%n'®+23¢%n%+ 7691+ 1409*n*%+ 154911+ 9888+ 280°n®— 4 *n*—5 g?n?+ 73n?/25
—28828n*/9375+ 24084n°/15625- 1475182n%/3515625+ 29028838119/439453125- 4495228n1%/732421875
+905353161%274658203125 129068331%/137329101562% 125158 *8/114440917968756 56 n*q2/5
—13876n°0?%/1875+ 75224n8q%/46875+ 319042n1%G?%/3515625- 742575 1%q2/87890625 911095 1q?/732421875
—8239201%%G?/10986328125 451056 *q?/274658203125 4 n®q*/5+ 6836n8q*/375— 673004n'%*/46875
+3108484%2q*/703125- 18475444 %q*/29296875 2024596 °q*/48828125- 54614636 %q*/54931640625
—1912n8q8/25+ 178396n'%q%/1875- 672976n1%q°%/15625+ 1019169q%/1171875- 225814161%%/29296875
+ 18069764 %q5/732421875- 914n*°G®/5+ 59212n'%q8/375— 23472280 1q%146875+ 154115 %q®/234375
—280200%8q®/9765625- 5272n%q %25+ 123333201 1%9375- 1272296 '%q %46875+ 209990 %q'%1171875
—676n%q'%5+ 6996n%%q%125— 1786808 %3125- 232n%%q %5+ 6076n8q1Y625— 167néq1%25— 1

6  30%°n?+2909°n?°+ 125988+ 3150%n 8+ 51091 n 4+ 5469 %+ 3780 N1+ 1500°n®— 70g°n8+ 15q°n®
—15¢*n*—7 gn%+323n2/108— 1417n*/432+ 123014M5/699840- 666750 M°8/1259712G- 438001 7N 19453496320
—33636701M'%3023308806- 805306763114979552051200 818312899%'4/211583243059200
+848886115%'%/7616996750131200489459565512%2742118830047232603987461513%/3290542596056678400
+35n%q%/2— 18907n5q?/1296+ 157637n%q%/29160- 781087n1%q?/839808+ 1290871n'%q%/25194240
—16786568%1%0%/27209779206 57381211n'%q2/48977602566 5399280829 8%/70527747686400
—117424511%q?/50779978334208 24658589937%%/91403961001574400905n°q*/36+ 7 n®q*/108
—43949n'°q*/3888+ 4792471n'%q*/839808- 18865217 q* /151165446 479247 1n%q*/839808
—18865217%hq*/151165446- 7793159 %q*/544195584- 32278661n'%q*/3627970560
+26446825912°4/940369969152 59430501 h?%q*/16926659444736043385n%%/324— 1458407 *%q%/17496
—6095299N1%q%/2519424- 82299863 '%q5/22674816- 47099895518q/1632586752
—11191815%12%%/9795520512 1661671737%q°/940369969152 6335n'%®/18+ 2581551'%®/648
—422253m%q®/23328+ 11088691n*%q®/279936- 43657751n'%q®/10077696- 101741N%°q8/14478976
—5862179M%8/13060694016 6167n'%q %9+ 12820nq1%216— 201506 %G %9720+ 141006431 %q1%4199040
—615923612°q1%25194240- 13034621%%q1%201553926- 14035n1%q1%18+ 170017n%q %324
—23723230%%q'%174960+ 1233764512%91%839808- 2718204 1n?%q1%/503884806- 5030n'%q4/9-+ 90701n*%q14324
—93505n%°q Y1944+ 737941n%%q 4279936~ 8995n%q'¢/36+ 36175n%°q %432
—37405n%°q%/5184— 3455n2%q 854+ 14045n%°q8/1296— 259n%?9%/36— 1

p(E,L,L,;r,p)dEdLdL,drdp duced from Eq.(Al) by dropping from Eq.(Al) those §

functions which correspond with the restrictions on the state
- drdp of the system to be relaxed. For example, when the projec-
={8(H-E)dE&(|L|-L)dL &(L-z—L,)d Lﬂ‘(zwﬁ)g » tion L, of the angular momentum is arbitrary, the distribution
is
(A1)

where the HamiltoniarH, angular momentunjL|, and the p(E,L;r,p) dEdL dr dp

projection of the angular momentum araxis L -z are con- drd

served quantities, and specify the state of the system. Vari- ={8(H—E)dE &(|L|—L)dL} P (A2)

ous other less restrictivgl4] distributions are directly de- (27rﬁ)3’
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and describes a population of Ztates in all of phase space. x pdp
The physical interpretation is that EGA2) is the number of f S(p?12m+V(r)—E,) PR NT
states(phase-space cellsompatible with energy and angu- Pmin (rep=—L%)

lar momentum conservation. THe} factor is a fractional

number of states in the intervalE dL dL, of about -

(E.L,L,). (r?p3—L?*2
If the system is described in terms of discrete quantum

numbers, e.g., the motion is bounded within a finite spatiafor pi=2m(En|—V(r))> pﬁqin, which ensures real radial

region, the classical distribution is defined in the action -speeds, then

angle representation by

=1/(rr)

dr
prmdJddw=8(J;/h—n) 6J,/h—(1+1/2)) f S(H—E,)8(]L|—L)dr dp=8m2L fﬁ —=8m?Llv,,.
r
Jdw
X 8(Jz/h—m) ———. Distribution (A3) is thus confirmed as being normalized to
(27) (21+1) states.

. . . . C Since dr dp/(274)® is the total number of bound and
Upon action-angle variableg ) integration, this distribu- continuum stgtes with all quantum numbers, in the phase-
tion corresponds to a single particle in all of phase spacespace volume ele'memr dp=dJdw, then the] ’} factor in

— -3 ; i
Also E“'mp”'m._(zwm s the number of particles in all (A3) represents the fractional number of states with specific
states occupying the unit phase-space element. The pha%

distribution for statal i Jantum numbers.
Space distribution for statel 1S For the particular case of Coulomb attraction the energy

_ _ _ levels are degenerate. The phase-space distribution for an
pridIdw=0(Jy/h=n) o[ Jo/h=(1+1/2)] hydrogenic atom in the energy levg},, corresponding with
dJ, dJ, dI; dw, dw, dw, the principal quantum number; is

(2’77;1)3 dr dp
pn(r,p) dr dp=hv,6(H - En)(Zwﬁ)3

(A4)
SinceJ;=J,cosL -z, theJ; integration gives 2,, so that the

above p,, di;tribution corresponds to a population. ofl (_2 for bound states of degeneranf. The same expression
+1) states in all of phase space. The corresponding distrisgqs for states in the continuumlif,, is replaced bydE.

bution in (r,p) phase space is then, by changing variables  Tha classical distributiorp,,(r)=f p(r,p) dp in con-

figuration space is
IL(3;) ¢ P

93,

IH(J, ,Jz)}

—h2
pmdrdp—h[ a3,

S(H(r,p)—E ~
} (H(r,p)—En) vy O odr ot
pni(r) redr f—T—mTE

drd
X S(IL(r,p)] — L)——

(2mh)® whereg,=2I +1 is the statistical weight of thel level. For

Coulombic attractionV/(r)=—2€&’/r, r,=27n° a.u., and
SincedH/dd = v, = Tn‘ll, the frequencyor inverse periogd

for radial bounded motion, then 4arpn(r) r2dr=Ry(r) dr
dr dp _ Lz z_(r12n) ™
pai1 P dr dp={hw S(H—E)h (LI~ L)} 5. Tl Tew 12 2,
(A3)

for onenl state ¢,=1).
This result can be obtained, formally, from EG2), by _ Integration of Eq.(A2) over the .configgration space
replacingdE anddL by hv,, and#, respectively. The sepa- Yields the momentum space distributiom(E,L:p)
ration between highly excited neighboring energy levels =Jp(E.L;r,p)dr. Then
andn=1 is hy,, the Bohr correspondence, afdis the

separation between neighboring angular momentum levels p(E,L;p) p?dp dp
n,| andn,l+1. -
By noting that __9 [ 2pdp 1 @
2mh? T (p2-L2rA)M2 |V (r))|| 47
1 2L
f15(rpsin0—L)d(cose)zm(rzpz—Lz)*l’z, (A5)

wherer; are the roots op?=2m[E—V(r)] for a givenp
p=L/r=pg and V'=dV/dr. The radial momentum distributiory,,
=p(E,L)hv, %, for bound hydrogenic states, reduces with
and g=1to
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2Z€?dp
4mp3dp= 14x2) 2 7/ P
pi(p) 47p2dp ( g 0 i/ |
[, 2mIEIL? oPr1?) O AND !
(2mze)? X2 ’ 23; o]

wherex=p/(2m|E|)Y2. SinceE=—Z?%(e?/ay)/2n?, thenx
=p/p,, wherep,=Zp,/n is the characteristic momentum in
the Rydberg orbih, po=7%/a, is the atomic unit for linear ¢
momentum, andy, the Bohr radius is the atomic unit for

distance. WithL=(l+1/2)%, the hydrogenic momentum

distribution is FIG. 13. The basic geometry for calculation&f; .
4 dP I+ 1/2 When ﬁzif is summed(integrated over all L states, then
pni(p) 4mpPdp=—n— ——11— s r—
T (1+n2P2)2 n lededL =1 and
2p2\ 12) —1/2 R 111 .
ﬂ f Ride’:—f S[rpysind—L]d(cosd)=L/(mr?pyr).
2nP ’ 2]

(B3)
where P=p/Zp,. This compares formally with the quantal
results and is useful for thal—n' classical form factor.
Another formulation of classical momentum distributions .
was recently presented in R¢i5]. Evaluation ofR;; for fixed L andL’ is facilitated by not-

ing, from Fig. 13, that

1. Form factor for EL—E'L’ transitions

APPENDIX B: CALCULATIONS OF CLASSICAL ~ . .
FORM EACTORS COSf=Cc0sf;,C0SH+ Sin H1,Sin 6 oS

The classical form factor for transitions between energyn terms ofr (6,¢) and the fixed angle,, betweenp; and
and angular momentum bands,E+dE;L,L+dL) is p2

P.(q)=P(E,L:E’,L":q)dE dE dL dL’ On changing thep variable tof in Eq. (B1), the ¢ inte-
gral, for 6 fixed, is
=(27h) 2A¢(q) dE dE' dL dL’

2 o~ . 0+ 6012 o~
in terms of the phase-space integral fo o(rppsing—L )d¢=2L0_0 2|S 1(6,6,601,)
1.
Aif(q):f dr dp 8(H(r,p)—E)&(L(r,p)|—L) X 8(rp, sin6—L")d(cose).

The factor 2 originates from the fact that, @s=0— =
—27r, the range |(6— 614,60+ 61,) in @ is covered twice.
of & functions involving states=(E,L) and f=(E’,L’).  The function
For transitions between bound states the transition probabil-

ity is obtained simply by the replacememtE—hv anddL
—#. The integral can be recast in terms of the radial mtegral

X 8(H(r,p+a)—E)S(L(r,p+a)|-L")

S=sinf#,,sindsin¢

is expressed as a function 6fand 6 variables by

R 1 ~ ~
Ri(P1,P2:r)= Ef_lé(rpl sing—L) S%(6,6; 6,,) = Sirf 0 sif 6 — (cos6,,— cosh cosh)?.

Subsequent integrations are facilitated by noting that
Xd(cosﬁ)j S(rp,sing—L")dé,

Xn)
S(F(x))= Z F(x,)=0.
(B1) |F ol

where 6 and @ are the angles betweenand p; and p,,  Hence

respectively, as )

(sin@)8(rp,sind—L") = — |2 86—,
Aif(q)=f dp; dpz 8(q+p;—p2) S(H(r,p1) —E) mp,rer Ji=t
X S(H(r.py)— E (@ Ry(py.pyir) r2dr). where the rootsg, < =/2 and 6,= w— 6, are given by

(B2) sinf;=L'/rp,, c0sf;=—cosb,.
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The ¢ integral therefore reduces to

27 -
j S[rppsind—L']d¢=
0

mpzrz'r’l
X[S;4(61,0)+S"1(01,0)],
where
S%(6,,6)=sirf g sin® 0, — (cosf;,*+ cosd cosd;)>.

Upon @ integration,

R 2L’ 1
4R (P1,P2;r) = . ﬁl[s,(el,e)

L mpor'r’
+S.%(6,,6)18(rp; sin—L) d(cos#)

2LL’

——————|[S2(01,6,)
L M™Pypor-rr

+S-%0,,60,)+S;1(6,,6,)
+ S; 1(’91 ’ 02)] y

where sing;=sin6,=L,/rp;,and cog,=—cosh;. From
these relations and from the above definitions ofShefunc-
tions, then

S_(01,6,)=S,(04,0,),

S_(01,05)=S,(,61),
with the result that the radial integral is

!

4mR(py,P2;T) = [S,%(6,,61;0:)

m2pyporirr’

+S7Y(8,,6,:6.5)].

Upon p, integration in Eq.(B2)

ﬁif(pl;r)=f Rif(P1.P2:1) 8(P2— (P1+d1)),dp2,
S. are evaluated using the substitutions

sin6=L/rp;, cosf=mr/p;,

sind=L"/rp,, cosf=mr'/p,,
and
C0Sf1,= (pi“‘ pg— 9°)/2p1p;

to give, simply,

2p1p,S.(01,6:)= (>~ A2)(B2—g?),

expressed in terms of the momentum-change limits

AZ=m*(r£r')2+(L-L")%r?

D. VRINCEANU AND M. R. FLANNERY
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and
Bi=m?(r=r")2+(L+L")%r2

The integralRy(p;;r) is then

~ 8LL'
4an<¢1;r>=[ﬁ [Gif (r.a)+ G (r.)], (B4)
mer-rr

where

S R

Since
mré/2=E—V(r)—L2/2mr?
holds for the initial and final states, ti$A, andB functions,

and hence integrdB1), are all independent qf;. The tran-
sition integral(B2) is then

A= [ CanRyranea @9
where the onlyp integral is

H(r,q>=f S(H(r,p)— E)S(H(r,p-+q)— E')dp.

Hence

H(r,q)=27TJ p2dp 8 p?/2m+V(r)—E]
0

+1
X f s pgcosé/m—E’ —E+q?/2m] d(cosé),
-1
where @ is the angle betweep andq. There is only on&d
root provided that
p=po,=m/q|[E—E’+q?2m|.
The p integrations therefore yield

27m?

H(r,q)= O(r,a),

where ® is the step function having a value 1\¥{(r)<E
—p§/2m is satisfied, and zero otherwise. The final expres-
sion for the classical transition probability densi{ty3d) for
E,L—E’,L" impulsive transitions is therefore

1 2mm?

P(E,L;E',L";q)=
( v (2wh)® A4

XJ AmR(r,q)O(r,q) radr,
(B6)

whereRy is given by Eq.(B4). Hence
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167LL’ [ dr/r? m _

P(E,L;E’,L";q)= il f —[G; (r,q) p(r)=2m[E—V(r)]=po=—|E'—E—qg?/2m|.
27h)3q)R rr’ q
+ Gy (r,9)]0O(r,q). This probability density is exact for aN/(r) and has a

_ N 5 . simple physical interpretation. The transition probability is
For hydrogenic systems, the conditidf{r)<E—pg/2m is  given by VAp/(27#)3, which is the number of states in the

satisfied for anyg and allr within the radial regionR (cf.  “reaction” volume V=4/3=r3 multiplied by the volume of

Fig. 3. Thus the step functio® is always unity. momentum spacdp consistent with energy conservation.
The probability ofn,I—n’,1" transitions due to an impul-  The initial- final-state energy conservation equations Ere

sive momentum change is then =p?/2m+V(r) and E'=E+q-p/m+q?/2m, respectively.

Then
F)nl,n’l’(q):(hvnl)(h”n’l’)h2

XP(E,,(1+12)h:E, (1" + 1/2%:0q). 2

2m 2mm
Ap=f dp=2m p?dp d(cosd) = dE dE,
$=0

2. Form factor for EL—E’ transitions

On using Eq(B3) in Eq. (B6) the probability density for Where thez axis is alongq. , o
E.L—E' transitions is The classical form factor fon—n’ transitions is

L P (a)=(hvy)(hv,)P(E, Ey 5 Q).

P(E,L;E";q)=
( s

f (vr)~1@(r,q) dr,
0 For Coulomb attractioV(r)=—Z¢€?/r, then

wherev(r) is the speed along the initial trajectory. Since oo 4 o 5 B
p2=2m[E—V(r)], integration over may be replaced bp  "+()=8(Z&'m)q°[q"—4m(E+E’)q"+4m*(E—E')"]

integration anddr/v=dp/V'(r) so that
so that the transition probability, with the substitution

L © = Q(Zhlay) now becomes
P(E,LiE;q)=—%- 2 f V' (rp|~*dp,
mh>q T Jpo 29 1 1
— 5 4 I T 2
wherer; is the root ofp?=2m[E—V(r)]. In terms of the P”v“’(Q)_gm(nn/)sQ Q +2( anr an) Q
momentum distributiofA5), then
1 1 27-3
mL (= H=-—=
P(E,L;E’;q)=—f p(E,L:p) 4mp dp, n2 n’z)

912qJp,
which for boundnl| states is in agreement with previous re- APPENDIX C: CALCULATIONS OF QUANTAL
sults[8,16,4. FORM FACTORS

The classical form factor fanl—n’ transitions in hydro-

genic systems is, in atomic units The quantal transition probabilitys) for the hydrogen

atom is in general a rational function of the momentum
transferq because Eq(5) with ¥ (r)=R,(r)Y,n(r) can be

2(21+1) (Pmax N
Py ()= ( ,3)J D 14n2p?)-2 decomposed as
wgn Pmin
21-1/2 o L
L(1+n?p?) Fon(@=21+1)21'+1) >, fai(q)2(2L+1)
|\ dp, L=lI-1"| n'l’
2n“p
L I 11?2
where the integration limits are given by two conditions: the X 00 0
integrand is real ang=py=|q%+ 1/n'%—1/n?|/2q.
. . L .
3. Form factor for E—E’ transitions where{---} is the Wigner 3 symbol, andf r)I',(Q) is the
n

Using Eq.(B6) with R;=1, the probability density for radial integral:
E—E’ transitions is
L * .
fni (q)=f Rn(M) Ry /(1) ju(gr)rédr, — (CD
27m? (4 3> ! 0
P(E,E";q)= ———|z7r} |,

wherej, is the modified Bessel function. Because the radial

wherer, is the largest which satisfy the condition wave functionR,, has the simple structure """ r' Q(r),
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where Q is a polynomial of ordem—1—1, integral (C1)
contains only terms with the form

I (e, q)= fo e *rfj(andr,

wherea is 1h+1/n" andk is an integer numberkE1+1"
+2,...,n+n") greater tharL. This integral is the following
rational function inq:

grak ot (L+k)!

V=GR DT (424 g0k

kL,
2 1

k—L

2

1
EI

3

2
o q
+§,

_a_),

X oFq| — >

since the hypergeometric functigf, is a polynomial when

M. R. FLANNERY PRA 60

where the polynomials

fa(X)=1F1(1—n,2x/n), g,(xX)=1F1(2—n,3x/n)

are given by the degenerate hypergeometric functibp,
where the first argument is a negative integer. Findy,
is the integral inx, y variables:

_ 1
24nn’

P (4) |7 axaysinace-2i2

X (X2+4xy+y2) P (X,Y) Pr (X,¥)/ (X—Y).

The observation tha®,(x,x) =0, means thax—y is a divi-

sor for P,(x,y). On writing sin in exponential form, the
integral contains only primitive terms of the form
xM(f or g)(x)e” =X, with various positive integer powers

either the first or second argument is an integer. This provem and «. = (1/n+ 1/n’ £iq)/2. The elementary integrals

that integral(C1), and hence the quantal form factd#), are
rational function ing. It also provides the practical procedure
to calculate the quantal probabilitfl4) in an analytical
form.

The quantal transition probabilitf21) can be written in
terms of the density matrix element,p,(r,r")

= EI,mlr/”r';lm(r) dfnlm(r ,)v as

Pn"'(q):f f drdr’ e p(r,r)pr(r.r').

The densityp, is the residue of the Coulomb Green’s func-
tion [17] and can be calculated from

Ph

wnag X=y

pa(r,r")=lim (E-En)Ge(r,r')=
E—E,

in the spatial variablesx(y) given by

x=Zlag(r+r'+p), y=Zlag(r+r'—p)

where p=|r—r’|. The functionP, has a simple structure.
Because

-

where M is Whittaker's function, thenP, is simply
exd —(x+y)/2n] X polynomial inx andy. Thus

J
ox

7

_@> [Mp (XM 10(yin) ],

e—(x+ y)/2n

T[ZH(X—Y)fn(X)gn(X)

+(n=D)xy(fa(X)gn(y) = ga() fn(y))],

Pn(X!y) =

n
an—1

j XM (x)e” X dx=
0

an o

an—l)”m! ( )m
X ,F1(n+1,1-m,2,1l/an)

and

n

an a \an—1

|

X ,F4(n+1,2—m,3,1/an)

f 'xmgn(x)e‘ X dx=
0

are rational functions inx which is linear ing. The form
factor P, is therefore a rational function af. The proce-
dure described is remarkably efficient since it reduces the
multiple integrations to a finite number of symbolic opera-
tions by (a) recognizing the primitive terms, an@®) replac-

ing them with the appropriate elementary integrals. Based on
this procedure, the results of calculations for the transition
probabilities fom’=1,2,3,4,5, and 6 and arbitraryare pre-
sented in Table I. This illustrates the power of the method.
The form factors for transitions froiq, L, andM shells were
obtained by Bethe and WalsKé&8]. The form factors for
transitions to continuum states with wave numkeare ob-
tained by analytical continuation replacimgwith i/k. The
dipole oscillator strengths far—n’ transitions,

P
fom =2AE, , lim —— (q),

2
g—0 (

can be readily deduced from the results presented in Table I.
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