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We derive a classical path expression for a pressure-broadened atomic spectral line shape that allows for an
electric-dipole moment that is dependent on the position of perturbers. The theory is applied to the atomic
hydrogen Lymarz and Lymang lines broadened by collisions with neutral and ionized atomic hydrogen. The
far wings of the Lyman series lines exhibit satellites, enhancements that may be associated with quasimolecular
states of H and H,". The sizes of these features depend on the values of the electric-dipole moments at the
internuclear separations responsible for the satellites. Profiles are computed with and without spatial depen-
dence of the dipole moment, and are compared with astronomical and laboratory observations. We conclude
that in the present case the variation of the dipole moment is an important factor that cannot be neglected.
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[. INTRODUCTION contribute to the same spectral frequency, resulting in an
enhancement, a@atellitg in the line wing. Satellites in alkali
The aim of this paper is to provide a classical path theoryatom spectra have been known since the 1988]s The
for the shape of pressure-broadened atomic spectral lines thianportance of this effect is highlighted by the recent discov-
takes into account the variation of the electric-dipole mo-ery that the wings of Lymam+ and Lymang seen in stars
ment during a collision. Anderson and Talnfdr developed and in laboratory plasmas show satellites associated with the
a theory of spectral line pressure broadening in which thenolecular interactions of Hand H". The quasimolecular
profile is given by the Fourier transform of an autocorrela-states that give rise to these satellites are transient, they occur
tion function. Their formalism has been widely followed in during binary collisions with another neutral atom or a pro-
neutral atom line broadening theory, usually with the aston. With theoretical line models based on statistical argu-
sumption that the electric-dipole moment during a collisionments, Stewart, Peek, and Coop@f predicted that a satel-
is the same as it is for infinite separation of the emitting atorrite due to quasimolecular # would enhance the Lymaa-
and its perturber. However, the electric-dipole momemiois ~ wing at 1405 A, and Sando, Doyle, and Dalgarfi®]
constant. Accurate calculations of atomic hydrogen interacfound a satellite due to quasimoleculas Bt 1623 A.
tions show, for example, that the electric-dipole transition The satellite lines at 1405 and 1623 A were identified by
moments in H may differ from asymptotic values by a fac- Nelan and Wegnefrl1], and by Koesteet al. [12] in ultra-
tor more than 2 at interatomic separations of a few A. Furviolet spectra of white dwarf stars obtained by the Interna-
thermore, both observations and theory of alkali atom spectraonal Ultraviolet Explorer(lUE) satellite. More recently, in
broadened by noble gases show that collisions alter the trai995 high-quality spectra covering the range 820-1840 A
sition probability of forbidden transitiong2—7]. There is were obtained with the Hopkins Ultraviolet Telescope
therefore theoretical and experimental evidence that fofHUT) for white dwarfs hotter than about 20 000 K. Absorp-
quantitative comparisons of line shape theory and observaion features in the wing near 1060 and 1078 A were iden-
tions to be meaningful, it is necessary to include the depentified in the Lymang profile of the DA white dwarf Wolf
dence of the electric-dipole moment on interatomic separat346 as satellites due to quasimoleculas™H13]. The
tion. strengths of these satellite features and indeed the entire
The far line wing generally does not decrease monotonishape of wings in the Lyman series are very sensitive to the
cally with increasing frequency separation from the line cendegree of ionization in the stellar atmosphere, because that
ter. When the difference between the upper and lower interdetermines the relative importance of broadening by ion and
atomic potentials for a given transition goes through ameutral collisions. When the spectral line profiles for the Ly-
extremum, a relatively wider range of interatomic distancesnan series are included as a source of opacity in model at-
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mospheres for a white dwarf, a comparison of the predicted We also apply the improved theory to the Lymariine
spectrum with the observed one permits an accurate determdroadened simultaneously by H-H and H-Hollisions. A
nation of the temperature of the star. comparison with laboratory experiments and astronomical
The spectrum of light escaping from a white dwarf alsoobservations demonstrates that the dipole moment variation
controls the rate at which it cools. This rate may be predicteds an important effect. The Hpotentials contributing to
from a model for the atmosphere and opacity of the star, anlyman- are taken from Sharp33] and Wolniewicz and
consequently the temperature of a white dwarf star indicateBressler [34]. The dipole moments of Dressler and
its age[14,15. This bears on issues of importance for cos-Wolniewicz [35] were used for the transitions between the
mology because white dwarfs in our galaxy may be a sourcginglet quasimolecular states, aald initio results of Drira
of microlensing event§14], and because the ages of the [36] were used for the transitions between the triplet states.

oldest white dwarfs may be used to set an upper limit on the
age of the universgls. Il. GENERAL EXPRESSION FOR THE SPECTRUM
It is then very important to get an accurate quantitative
determination of the satellite profiles. The approach we use
is based on the quantum theory of spectral line shapes off

We consider a gas of atoms interacting with the radiation
Id. The power radiated at the frequenwyis written

Barangef16,17] that were developed in adiabatic repre- dot
sentationto include the degeneracy of atomic levEl8,19. P(0)= —|(w), 1)
However, because we are mostly interested in the line wings, 3¢t

we neglect transitions between asymptotically degenerate
atomic states; that is, we perform an adiabatic approximatiowherec is the velocity of light and () is referred to as the
at the binary collision level. This approximation is expectedspectrum[37]. In the dipole approximation, and neglecting
to induce errors mostly in the shift of the line center, whichDoppler effects, it is given by
is largely due to weak collisions involving the region where
different (but asymptotically equalpotential curves merge _ _ / 2
together[20]. We then perform a classical path approxima- (@) % 8= o) |{n’[DIm)%pn. @
tion within that framework. We apply this theory to the Ly-
man series of atomic hydrogen, and present calculations ofhe summations extend over all states of the gas, each term
profiles for Lymane and Lymang that take into account weighted with the probability, for the initial stateD is the
the dependence of the electric-dipole moment on internucledotal dipole momentwe use bold notation for operatorgn)
distance during the collision. The resulting profiles show thaire eigenstates d¢i, the total Hamiltonian of the gas,
the amplitude of satellites depends on the strength of the
dipole moment in the region of internuclear distance where H=Thucit Telect V(X,R), €)
the satellite is formed. )
Previous calculations of profiles used the approximatioy?N€ré Tnuci @nd Tejec are sums of nuclear and electronic
of replacing the electric-dipole transition moment by a con-Kinetic-energy operators, respectively, ai,R) is the in-
stant[21-23. They have been used successfully to evaluatderaction between particles. Hexedenotes collectively the
synthetic spectra in the range of effective temperatures fromét of electronic coordinateposition and spin plus spin
about 20 000 down to 9000 K, which fit UV spectra of white coord!nates of the nuclei, w_hllé denotes_ the set of posmon
dwarfs and\ Bootis stars quite wel[24—27. They also cQordlnates of all the nuclei of the gasis the density ma-
account for the spectra of laser-produced hydrogen plasm&réxv
[28,29. However, the assumption of a constant dipole mo-
ment is questionable for allowed transitions, and does not
even include the effects of collision-induced transitions
which are asymptotically forbidden. To take this into ac-
count, we develop a general unified theory in which the diwhereg is the inverse temperature KITj).
pole moment matrix element varies during a collision. The The spectrum (w) can be written as the Fourier trans-
theory of the spectrum is presented in the following sectionform of the dipole autocorrelation functich(s),
We then evaluate the theory for Lymanand Lymang
wings of H perturbed by protons. Both lines should really be .
treated simultaneously because the blue wing of Lyman- (w)= ;Refo ®(s)e”'*ds. (5
and the red wing of Lyma# overlap. However, we neglect
interference terms between the two lines. The Lyman profilegjgre
and satellites are calculated for the physical conditions met

e MM

p 4

Tre A%

+ oo

in the atmospheres of white dwarfs, where low densities al- d(s)=TrpDe'sH ipeish/t (6)
low us to use an expansion of the autocorrelation function in
powers of density as described[B0]. The profiles presented =(D'(0)D(s)) (7)

here use accurate theoretical molecular potentials to describe

the interaction between radiator and perturbes.” Hboten-  is the autocorrelation function of the dipole moment in the
tials are taken from the tables of Madsen and PEHK. Heisenberg representatif8],

Dipole transition moments are those calculated by Ramaker

and PeeK32]. D(s)=e'sH/hpegisH/t, (8)
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We use the notation
D=2 D,, (18
(()=Trp(), €) “
where Tr denotes the trace operation.
P D,=> (@ p_DP,. (19
Ill. ADIABATIC REPRESENTATION &
. . . . In the Heisenberg representation
The adiabatic or Born-Oppenheimer representation com- g rep
prises expanding states of the gas in terms of electronic states _ _
Xe(X;R) corresponding to frozen nuclear configurations. In D,(t)= > () ¢tHip Dp e ith/h (20)
the Schrdinger equation ee’
[Telect VIX,R) Ixe(X;R) =Hejed R) xe(X;R) (10 EZ(a} Do/ o(1). (21)
=Eo(R)xe(%:R),
1D The sung“g, is over all pairs é,e’) such thatwe ¢(R)

R appears as a parameter, and the eigenendg(@® play — ®a aS R—. Thus D, connects all pairs of adiabatic
the role of potential energies for the nuclei. The electronicStateés whose electronic energy differences become equal to
statesyo(x;R) form a complete orthonormal setispace at @« @R—. In the absence of perturbeis,, would be the
each value oRR. These states are calledliabatic because component ofD responsible for the radiative transitions of
Ye(X;R) follows adiabaticallythe motion of the nuclear co- fréquencyo, . _

ordinateR. We precedd® with a *;” to emphasize its role as The (R—) degeneracy of a subspaegis usually due

a parameter. Any wave functioﬁ(x R) can be expanded as to rotational invariance, and is therefore of multiplicity
(2J;+1), whereJ; is the total angular momentum of the

radiator asR— oo (when perturbers are close to the radiator,

V(x,R)= g Pe(R)xe(X;R), (12)  the angular momentum of the radiator is not a good quantum
number, and it can be defined in only an approximate man-
nern. We note that the projection operators account for the

l//e(R)Ef dxxe(X;R)* ¥ (x,R). weighting factors discussed in R¢23].
(13

IV. CORRELATION AND SPECTRAL MATRICES
As the nuclei get further away from each other, which we ] . )
denote byR—, the electronic energie€.(R) tend to Introducing the expansion E(L8) for D into the expres-

asymptotic value€> , which are sums of individual atomic Sion Eq.(7) for ®(s), we obtain
energies. Since atomic states are usually degenerate, there

are in general several different energy surfaces that tend to a d(s)= 2 D, 4(9), (22)
same asymptotic energy &—«. Let us denote b)EJ?" the ap
asymptotic energies and call the subspace of electronic h
statesye(X;R) such thatE¢(R)—E;” asR—. where
From now on, consider specifically a single radiating ® (S):TrpDTeisH/hD g isH/A (23)
atom, theradiator, immersed in a gas of optically inactive «hp “ A
atoms, theperturbers For a transitionae= (i, f) from initial _/nt
statei to final statef, we haveR-dependent frequencies {Do(0)D4g(s)). 24)
0o o R)=[Ea(R)—E(R) /A, ece;, e cs;, (14) The line shape is then
which tend to the isolated radiator frequency |(w)22 | p(). (25)
a,B '

w,=oi=(Ef —E)/h (15

as the perturbers get sufficiently far from the radiator:

weo(R)—mw;; as R—x, ecg;, € eg;. (16
Let us introduce projector,, which select the'" adiabatic

component of any’ (x,R) according tg19]

PeW (X,R) = #e(R) xe(X;R). (17)

Let szieesjPe be the projector onto the subspaeg of

electronic states of asymptotic enel‘ﬁ?. We write the di-
pole moment as a sum over transitions

It is convenient to think of theb, ; andl, ; as elements of
two matrices, which we may call the correlation and spectral
matrices, respectively. The off-diagonal termss(w), «

# B, represent interference between different spectral lines
[17], arising, for instance, from avoided crossings between
potential curves with different values; . We shall neglect
these interference terms. Then

I(w)=§ | (o) (26)

and
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D(s)=2, D(s), 27)

where

D ,(s)=(D}(0)D,(s)). (28)

A. Zero-perturber spectrum

Using superscripts(0),(1),...,(N)
0,1,... N perturbers are present in @arge volume V
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v ()= 1+ fo(s), (36)
where
fo(s)=V¥P(s)-1] (37)
is well defined ag’— . We thus get
1 N
TM(s)= 1+——fa(s>) (39)

around the radiator, we write the zero-perturber correlation

function as
DP(s)= D6l wes, (29
where

p0=0(s=0)=(D!D,)® (30)

= E Pe| Dgg
(31)

is the line strength, and Whe%( o sums over pairsg,e’)

such thatwe o(R—=*)=w,, the frequency of the isolated

radiator.

B. Interaction representation

The time dependence @ ,(s) is determined byD(s),

the part of the dipole moment which, in the absence of per-
It is convenient to

turbers, oscillates at the frequenay, .
express® ,(s) in a kind of interaction representatiorby
dividing out its zero-perturber behavior. We thus write

® ,(s)=¢pVelwasP (s), (32
where the interaction representation correlation function
@ ,(s)
®P(s)

Y o(s)= (33

contains all the influence of the perturbers on lmmeNote
that in the absence of perturbers we have

In the limit N—o, V—oo, with N/V=n, the perturber num-
ber density, we get
W (N(s)=enfal®), (39
Let us now denote
d,(S)=D,(s)e™ 'S, (40)

wherein the free evolutior™'®«S is factored out. Then,

LS

®P)(s)
(dP(0)dP(s) ~dDTdD)

Y ¢y ’

fo(s)=V (41

(42

where we used Eq30). We note that¥ ,(0)+# 1, and cor-
respondingly

f,(0)=VP(0)-1] (43)
(dD° - g7y
= VW #0. (44)

Thus the perturbed line strengthf®e"«(%) differs from the

free line strengthg(®) by the factore™«(®), This density-
dependent factor expresses the fact that the total intensity
radiated increases or decreases according as the dipole mo-
ment is increased or decreased, on average, by the proximity
of perturbers[e"’«(®) corresponds to the fact@™ %=1 in

Eqg. (2.15 of Ref.[38], where the nondegenerate case was

(0) _
Ve(s)= (34 treated. Let us write
V. UNCORRELATED PERTURBERS APPROXIMATION fa(S)=F4(0)+0.(s), (45
We now assume that the effects of the different perturbersvhere
on the line shape are uncorrelaisee Ref[19] for a general
discussioit that is, we approximat& (V) (s) by ga(s)=fa(s)—1,(0) (46)

TN (s)=[wP(s)IN, (35) <d‘1”<0 [d®(s)—d™(0)])

(d)

whereN is the number of perturbers in the large voluie 47)
and\I'E})(s) corresponds to the presence of a single perturber

in V. Now, ‘Iffj)(s) differs from the zero-perturber value Noting thatg,(0)=0, we define anormalized lineshape
‘IIEYO)(S)=1 only if the single perturber interacts with the
radiator during the time interval (§), the probability for

48
which is proportional to 2. So “8

1 o .
Jo(Aw)=— Ref e"%(Sg iAusgg
0
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whereAw= o - w, is the frequency measured relative to the Here,r denotes the relative position operator, and
unperturbed line. Combmlng the above results for a pair of

lines, such as Lyman-and Lymang, we have 52
Tnuclzz_, (58
D(S)=D ,(S)+ D 4(S) (49) K
o . wherep is the momentum operator for the relative motion of
= ¢l vasen el 1 el e 49, 50 the ragiator-perturber pair, 20 that
and [ri.pjl=i%d;. (59
— 4(0)anf,(0) _ (0)anfp(0) — > . .
Hw)=¢ " (0= w,)+ ¢p e F g0 —wp). Let | xo(r)) be a ket in the electronic subspace, andogn
(51 erator in the nuclear subspacbencer bold), defined by
Elimination of center-of-mass motion <X|Xe(F)>:Xe(X'F) (60)
Consider the zero-perturber quantit
P g y so that
Tre #Rd'd, | s e
(ﬁ&o): _— (52 <Xe'(r)|)(e(r)>:5e’ea (61)
Tre AH
and
Since hereH is a sum of the electronic Hamiltonian and the
nuclear kinetic energy for the radiator alone, theclear 2 Ix (f Wy (F)|=1 (62)
e e "

components in Eq52) factor out in both the numerator and
denominator, and cancel one another. Likewise, in(Ed),
We have, in view of Eq(55),

(di(0)[d,(8) ~da(0)]V) _,
. - - - | P

1) <Xe’(r)|H|Xe(r)>:Ee(r)5ee’+<Xe’(r) 5.

G o

xe<F)> :
(63)

[ Tre PHdl(0)[d(s)—d,a(0)]
- Tre AH

which refers to the radiator and a single perturber. Thé\IOW
center-of-mass motion of the radiator-perturber pair factors
out in both numerator and denominator, and cancels. Hencet . (r)|p? xe(r)) = E (xe (D)|Plxer (M) xer (NPl xe(r))
forth, we consider that Eq52) refers to the electronic mo-

tion of the radiator, and that E¢53) refers to the electronic (64)
andrelative nuclear motion of the radiator-perturber pair. In
other words, we can consider that the radiator is fixed at the
origin with an infinite mass, and that the perturber has a mass VBl v (F)) — > MIE v (7

equal to the reduced mags of the radiator perturber pair, (XN Plxe(r))= Serep + (xer(DIP.xe(T)]) (69
where

and, in view of Eq.(59),

Y . s s
= OgreP— ;<Xe”(r)|VXe(r)>

my,gm
rad'''pert (54) (66)

mrad+ mpert

M

N = Opr 5"‘7_1)' /" (F) (67)
The electronic basig(x;r) in the case of a single perturber ee ee

We letr be the position vector of the perturber relative to S0 that[39]

the radiator. The(e(x;F) are stationary electronic states for

fixed 7 (Xe (DI xe(N) =2 [PSerert Teren(T)]
eH

[Terect VOOD Ixe(XiT) =Ee(N xe(Xir). (55 X[PSeret TerelT)] (68)
The different electronic states correspond to different com- ={[p+ (N} ere. (69)
ponents of the electronic angular momentum about the inter-
nuclear axis. Now the total Hamiltonian is The operator

H=Heect T
etec’ Tnuct, (58 Tere(F)=— —<xe (7 xelF)) (70

where

leads to the usual radial and rotational coupling terms
Hetec= Telect V(X,T). (57  [40,41. As we said above, th(r)) are referred to as the
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internuclear axis, so they depend oneven at large dis- Now,

tances, at which the electronic states are just products of

atomic states. Let, be a distance beyond which electronic Tre ~B(p IZM)_f dﬁefﬁ(ﬁz/zﬂkm& (75)
states are essentlally products of atomic orbitals. When

>r., it is better to use a basis(e(r)z) which is referred to

as a fixedz axis. LetR be the rotation which rotatesto the _ v J dﬁe‘ B(p%/2u) (76)
z direction (that is, a rotation by some angle about the axis (27h)3 '

perpendicular to both andz). The electronic baseb(e(F)z>
and |Xe(F)F> (referred to the internuclear axi§ are con-
nected to one another by means of the rotation operator

Relec, Which effects the rotatiorR in the electronicsub-  (p|py= | dr(p|r)(r|p) (77)

space. We thus choose the bdgig(?)) as follows:

where we used

xe(N)=|xe(N))y for r<re zfd; t _ v 79)
) (2mh)® (27h)°
:Reletlee(r)F> for r>re.
Thus
Note that bottE(r) and| x(r)) become independent ofat
larger. In this way, forr>r, we haver.y (r)=0, and Eq. Tre-AHy (1= (j d*e—,g(ﬁZ/z,L)) o FEe
(63) becomes, for>r., ( ) (2mh)? P g :
h2v?2 79
- - p "
<Xe’(r)|H|Xe(r)>:( oy +Ee|dere (7)) we also need the results
or (Tre P O=3 e FE (80)
L )
(H_EZ)lXe(r)>:|Xe(r)>mr (72) and
since|Xe/(F)) is a complete electronic basis. At smaller val- (Tr efﬁHdea)(O): 2 2 e PEe|doy|? (81)
ues ofr, %e,e(F)aﬁO. However, it is effective at inducing €eei el ceg
transitions only where the potential differendg.(r)
—Eg(r) is small; that is, near inner potential avoided cross- =S (@ g BE, |2 82
ings, and in the vicinity of ., where the different potential _e = '
curves merge together. '
A more explicit expression for g(s) =e FEY (@) |d |2 (83

Let us first evaluate the quantity (&F#H)() appearing e

in Eq. (53), where the superscript (1) signifies as before thaicombining Eqs(83), (80), (79), (53), (52), with Eq.(47), we
there is only one perturber present. Breaking up the trace mt@et
nuclear and electronic parts, we have

- (Tre #Mdi(0)[d,(s)—d.(0) )™ @4
_ g > BH-E” > s
(Tre™AMW=2, e PFeTr (xe(r)|e™ M F)]xo(F)), 9l </><°> (Tre—AH®)
73
73 _ (2wh)®
where we added factors #Ee and efFe, which cancel one a dpe A28
another. To simplify this notation we drop the superscript P
on E; [Ec=E¢(r—x)=E_=E;]. Now the part of BH_E) ) W W
Tr.(---)=/dr{r|(---)|r) coming from the interaction vol- XTre 7da " (0)[dg*(s) —dq (0)]. (85)
umeVC=47-rr§/3 is negligible compared to the part coming E(Q) |d(°)
from outsideV, , which will turn out to be proportional to the ee'
large volumeV. Indeed, in view of Eq.(72) and since
<Xe(F)|Xe(F)>: 1, Eq.(73) is essentially equal to Recalling the definition ofl,, in terms of the projectors

(Tre AHD= g~ FEeTy g~ AP20), (74) P= E | xe(N)){xe(D], (86)
e

ESl
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R . and using
Pi= 2 [xer(N)xe (M), 87)
e’ €eg
puttlng e*iSwﬁ:eiSEf /ﬁe*ISEI /ﬁ, (89)
E7—E7
W= W= 7 y (88) we get
|
[Tre  PH-E)d!(0)d,(s)]V=Tre FH-E)p,dpe'sH/"pdp e~ 'sH/f g iswri (90)
= 2 E Treiﬁ(HiEi)|Xe(F)><Xe(F)|d|Xe’(F)><Xe’(F)|eiS(H7Ef)/ﬁ|Xe"(F)>
ee”eei e € e
X(Xer(D)]d] xer(F)){ xen(F)| e sHE) (91)
. . is(H—Ey) N N
= 2 2 Trrdee’(r)<Xe’(r)|e 2 |Xe"(r)>de”e’”(r)
ee”eei e € e
X(xen()|@71SH~Ehe= AH=E) (1)), (92

Here Ty traces over alone, and we denoted

e (1) =(xe(N)|d] xer (1)) =%, (F). (93

Tre P E)d[(0)d ()= 2 2 Kee(s), (100

eeegj of ceg

In Egs. (90)—(93), and henceforth, we let it be understood where
that all quantities pertain to the presence of a single per-

turber, unless otherwise indicated by a supersdi@ptfor
zero perturbers.

A. Adiabatic approximation at the one-perturber level

We now neglect the fact thaf,,. induces transitions

Kee (S)=Tr,e Aed, o (r)e'sHe /id,, o(r)eisHe k.
(101)

between different electronic states; that is, we approximateAs shown numerically by Erikson and San@t?], the adia-

Hxe(1)=(Tnueit Heled | xe()) (94)

=|xe(N)[ Tnucr+ Ee(N]. (95)

We thereby negleckﬁxe(F)>, or equivalently approximate

freer(r)zo. Denoting then
He=Thucr+ Ve(T) (96)
with
Vo(r)=Eq(r)—EZ, (97)

we get, for example,
<Xe’(r)|eiS(H7Ef)m|Xe”(F)>2<Xe’(F)|Xe”(F)>eiSHe’ /ﬁ(98)

isHgr /ﬁ. (99)

= ererre

Equation(92) becomes

batic approximation done in this way at the one-perturber
level does not seem to introduce errors that are too serious,
contrary to doing it at theN-perturber level, which effec-
tively constrains all binary collisions in a particular history to
all lock onto the same pair potential curve. When the adia-
batic approximation is done at the one-perturber level, a par-
ticular potential curve is selected onljthin each individual
binary collision, but differenbinary collisions within a his-
tory choose pair potentials at random.

The main error expected from the above adiabatic ap-
proximation concerns the shift of the line cen{&0,43,
which is largely due to weak collisions. These involve the
merging regiorr =r . in which transitions between different,
but asymptotically equal, potential curves are easy due to
their small separations. No great error is expected in the line
wings (our main interest heje which are associated with
transitions taking place when the perturber is traveling
through regions where the potential curves are well sepa-
rated.

B. Classical approximation

Let us rewrite Eq(101) as
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Kee (5)=Tre” (F2Med, o (r)esHe /g, (1)@ (FAHeg sHe (102

—Tre (,B/Z)Hed ( ) |sH /he iSHo/heiSHo/hde,e(F)e_(B/Z)Hee_iSHo/heiSHo/he_iSHe/ﬁ (103)

=Tr,e”(FMed (1) T- ex;{hj dtV, (ro(t))} ere(fo(s))e™ (BI2[Ho+ VelFo(N7 exr{ - f dtV, (ro(t))}

(104
I
where we denoted e >
o] 74 Pt p> N
7. ()= eitHo/hifgitHo 10 ' M
o(t) (105 (112
and
. .. pt
p =[rp){ r+— (113
HOZTnucI:ﬂ (106

In reality the packet in Eq(109 spreads and acquires a

7. and T- h logical tors, making ti - . g
< anc £ are cnronologica’ operators, making ime argu phas€/44], but these disappear in EGL13). We also have

ments increase from left to right() or from right to left
(>). We next expand the traceTin terms of a complete set BBy VoD (22\ e (D24 V(T4 Bl )]

. N S s - ro(s ~ - p r+ps
of normalized wave-packet state), centered atr(,p) in e orVelo®Nrp)~[rp)e e ”11
phase space, and satisfying (114

(rplrp)=1, (107~ so that
drdp|rp)(r (108 Kee (S)= fdrd e~ B0 (F)
2 ﬁ)gf plrp)(rpl= ) ce 2 ﬁ)g p
i o ' i (s . pt)le, [- ps
For mst_ancejrp_)lth{jl%/ be a Gaussian wave packet. Under « ex _J’ dtv,., pt 3t (7t ps ,
the action ofe '"o’" the wave packetrp) follows a M 2
straight trajectory, (115
_ |- opt . .
e (tHo/M|rpy=|r+ p_,p> (109  where we defined
o
so that, for example, Vero(F)= Ve (1) —Ve(r), (116
z SO\ nitHo 152 o (itHg 14) | 7 R - . R -
ro(t)|rp> e "ore 0 |rp> (110) dee/(r):dee/(r)ei(ﬂlz)ve(r). (117)
—gitHo /A f & p_t5> (111 Putting this into Eq(85) we get
y72
|

1 (a) B(P221)] Pt lw (-, PS| = -

g,(s)= - > drdpe” Oeer (1)1 €X dtVee r+—| |df, | r+—| —dee ().
jdﬁe‘ﬁ(pz’zﬂ)E(“) |dow|? & m M
ee’
(118
We now assume that the perturbers have a single mean velqdibat is, in
N - T 2 o
J dpe‘ﬁ(pz’2”)=f sin adaf dqﬁf p2e~ AP 21 g, (119
0 0 0

we put

p2eAP*21~ (consi 8(p— v ). (120
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The (cons} appears in both the numerator and denominator of(Etg), and cancels out. We thus get, finally,

1 +oo to i (s ~ ~
09~ ———— 3 [ “ampap [ axiatrion]end 1 [[atvedr01 [Budrion-Geotrion|, u2n
—® 0

E(Q) |dee’|2 e’ °
ee’

wherer (t)=[ p%+ (x+vt)?]? with p the impact parameter electronic state of the Ji molecule. Electric-dipole transi-

of the perturber trajectory. tions between these states are responsible for the line profile.
In the above, we effectively neglected the influence of theWhen the difference\V(R) between the upper and lower

potentialsV(r) and V. (r) on the perturber trajectories, potentials for a transition presents an extremiivig,, the

which remain straight lines. See Ré#5] for a different  unified theory predicts that there will be satellites periodi-

derivation using WKB wave functions. This approximation cally centered af38,47,48

should not cause errors that are too serious for the following

reasons: Awo=kAVqy,, k=123.... (122

(i) The line centefshift and width are mainly determined Here Aw is the frequency difference between the center of
by the phase shifts associated with completed collisions, andhe unperturbed spectral line and the satellite feature, mea-
should not be very sensitive, on average, to the details ofured for convenience in the same units as the potential-
trajectories. energy difference.

(i) The line wings, whichare sensitive to what happens ~ An H," correlation diagram is given in Ref23] for
within collisions, are mainly determined by quasistatic ef-Lyman- and in Ref[49] for Lyman-8. We used the poten-
fects, and the straight trajectomjassical expression[Eq.  tials of H,™ calculated by Madsen and Pegkl] for the
(121)] yields, via a stationary phase approximation, the saméransitions contributing to Lyman- and Lymang; that is,
quasistatic result as does the quantum expression, includirfgr those which asymptotically go, respectively, to the
the correct Boltzmann factofsee Ref[45]). =2 andn=3 state of atomic hydrogen and a free proton.

The existence of minima in the potential differences for

Although we should really drop the Boltzmann factor some allowed transitions leads us to expect the presence of
e PVe() for consistency with our straight trajectories ap- satellite features on the wings of Lymanand Lymang
proximation, by keeping it we much improve the result in the[23,49. For the transition o, —3do the difference poten-
wings. Note that over regions whek&(r)<0, the factor tial minimumis—11080 cm*, which gives rise to a binary
e PVe( accounts for bound states of the radiator-perturbesatellite at 1405 A in the red wing of Lymada- This feature
pair, but in a classical approximation wherein the discretéhas been observed in UV spectra of DA white dwarfs and
bound states are replaced by a continuum; thus, any barldser-produced plasmas. For these very low densities the
structure is smeared out. Note finally that we associated strength of the wing up to the binary satellite is linear with
factor e~ (Y28Vel) with each factord, rather than keeping density.

e AVe) in a single piece associated with the ficsonly. Dipole transition moments have been calculated by Ra-
This has the advantage of making the Boltzmann factor simmaker and Peek32]. To point out the importance of the
ply modulate qr). Also the resulting expression fits better variation of dipole moments we display its variation with
with a Feynman path picturgt5,46), sincee™ (Y28Ve(") js internuclear distance. Figures 1 and 2 show the dipole mo-
the amplitudefor the perturber to be at as opposed to the ment for the transitions that should produce a satellite on
probability e #Ve("), Lyman- at 1405 A and on Lymags at 1078 A. The last
one is due to the transitiongory—2po,. It has been ob-
VI. APPLICATION TO THE LYMAN- a AND LYMAN- B served in DA white dwarf spectra obtained with HUT3].
PROFILES PERTURBED BY PROTONS The transition moment at small internuclear distances dif-
Since our main purpose in the present paper is to studfers notably from _the f_;ls_ymptotic value, in par_ticqlar for
the influence of dipole moment variations, the present calc %rqund the _potent|a| minimum where the satelllt_e 'S formed.

i i " ' YThis behavior leads us to expect that the variation of the
lations neglect the modulation ai(r) by the Boltzmann  ginole will have an important effect on the amplitude of the
amplitudee” (Y2PVel, which is different in emission and 1405 A sateliite. By contrast, in Fig. 3 the dipole moment
absorption. This is fairly justified if there are no bound statesgy 5 transition contributing to’Lymaa- at 1234 A remains

formed, which seems reasonable in the specific applicationg,t with a value close to the asymptotic dipole.
we have in view, and if we do not consider the very far

wings involving very close collisions inside the repulsive
core. B. Calculation of the Lyman-a and Lyman-g profiles
Figure 4 compares the profiles obtained in the constant
dipole approximation to the new calculations which take into
The adiabatic interaction of a neutral hydrogen atom withaccount the variation of the dipole during collisions. The
a proton is described by potential energlégR) for each  amplitude of the 1405 A satellite is seen to be roughly mul-

A. Diatomic potentials and dipole moments
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FIG. 1. Difference potential energy in crhand the correspond- FIG. 3. Difference potential energy in crhand the correspond-
ing D(R) in atomic units for the 1405 A satellite of Lyman- ing D(R) in a.u. for the 1234 A satellite of Lyman-

t|p||ed by a factor of 2, whereas the other_ sa}elhtes in the]ong. The resulting shock front and postshock gas provide a
wing have not changed much because their dipole momentg,yrce for studying radiative collisions of atomic H experi-
stay close to the asymptotic values and do not vary as drgnentally with time-resolved emission spectroscopy. The
matically in the region of interest. Because of the overlap Ofprompt atomic emission from the plasma arose from a thin
the Lymane blue wing and the Lyma red wing we ot expanding shell in which the primary components were
present the sum of the profiles of Lymanand Lymang in  neytral H, H, and electrons. The observed spectrum re-
Fig. 5. The variation of dipoles also affects the amplitude of,c51ed satellites due to collisions with H and Hncluding

the satellites present in the Lymghred wing[49]. strong satellites close to Lyman-at 1230 and 1240 A, and
weaker ones in the extremely far wing at 1400 and 1600 A.
VII. APPLICATION TO LASER-PRODUCED The satellite observed at approximately 1230 A was
HYDROGEN PLASMA identified as due to collisions with H Figure 3 illustrates

that the difference potential minimum contributing to this
broadened by neutral atom and ion collisions in a Iaserlceature occurs at an atom-ion separation of 10 A, and as

produced hydrogen plasma also has been compared wiﬁ’r‘Ch is a probable collision in a dense plasma. This satellite
some of the calculations discussed He&€J. In those experi- dominates the near wing of _Lymanm the observed spec-
ments, self-focusing of a 1.064m, 6 ns, 600 mJ laser trum, as the theoretical profiles predict. The spectral region

caused most of its energy to be delivered suddenly to a C%;Io?e to;he “.“? core _\{\;]aslm(idlfled_ b):hrad|flt|on transfer elf-
lindrical volume only a fewum in diameter and a few mm ects and coflisions with electrons in thé plasma source. in
the far wing around 1600 A, however, the observed profile

The observation of the shape and far wing of Lyman-

0 5 10 15 20 25 30
6000 0.60 10 r T
-4
4000 | 0.50 107 - 1
10° .
2000 - 0.40
~ E] 10° 1
§ or 0.30° z Variable D
= T a7
g = 10 |
—2000 |- 0.20 R
10 .
-4000 |- 0.10 10° )
6000 el ' ' ; L 0.00 107 ' ; L
0 5 10 15 20 25 30 1100 1200 1300 1400 1500
R (A) A (A)

FIG. 2. Variation of the dipole moments with internuclear dis- FIG. 4. Comparison of Lymam- profiles with and without
tance for one of the main transitions contributing to the red wing ofvariation of dipole momentd.(v) is normalized so thafl(v)dv
Lyman-3. =1.
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10-8 ~/ \ i 1 i
\ Y
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FIG. 5. Profile of the sum of Lymar-and Lymang. |(v) is FIG. 7. Velocity average for the 1600 A satellite of Lyman-
normalized as in Fig. 4. computed for 10 000 K witlm, =10 cm™3 compared to a a laser-

plasma experiment at,=10" cm™2 scaled to fit.

was optically thin and it was possible to make a quantitative
comparison with the theory. The result is reproduced in Figvelocity. The evaluation was done numerically by perform-
6, in which the experimental profile has been corrected foing the calculation for different velocities and then thermally
bound-bound emission. The theory described here allows faaveraging with 24-point Gauss-Laguerre integration. The re-
the increase in the dipole moment at the atom-atom separault for a single trial temperature of 10000 K is shown in
tions contributing to this region of the spectrum. It predicts aFig. 7. Both the constant and variable dipole moment theo-
satellite which is about a factor of two more intense atries predicted an oscillation at 1530 A with a depth of about
1600 A, relative to the continuum at 1500 A, than a con-20% of the continuum. The velocity averaging reduces this
stant dipole theory. As the figure shows, the variable dipold¢o about 5%. The velocity-averaged profile including a vari-
model is in much better agreement with the experiment.  able dipole moment is still in good agreement with the ex-

Both theory and experiment show an oscillatory structureperiment. Averaging over velocity does not significantly
between the satellite and the line, with a minimum at abouthange the far wing profile, as one would expect.
1525 A. These oscillations are an interference effect
[45,50, and are expected to depend on the relative velocity VIIl. ASTROPHYSICAL APPLICATION
of the collision and therefore on temperature. For this reason,
we investigated the effect of averaging over velocity in the
theoretical evaluation, rather than using a single fixed mean

A. Comparison of IUE observation of A Bootis star
with synthetic spectra

Satellite features at 1600 and 1405 A in the Lyman-

4 . . . . . wing associated with free-free quasimolecular transitions of
x10® Experiment H, and H" have been observed in UV spectra of certain
——- Constant D stars obtained with the IUE and Hubble Space Telescope

— \ariable D(R)

(HST) [24—-27. The stars that show Lymadm-satellites are
DA white dwarfs, oldHorizontal Branchstars of spectral
type A, peculiar spectral typ# stars of Population I, and the

\ Boatis stars. The last two have the distinctive property of
. poormetalcontent, that is, low abundances of elements other
than H and He. In the observed UV spectra of DA white
dwarf stars,\ Bootis stars, and laboratory plasmas, the
strength of the contributions to the Lymanwing caused by
neutral collisions relative to the contributions caused by
charged perturbers depends very strongly on the ionization

\\\\ balance of hydrogen, and thus, through the Saha equation, on
0 s s s D R, the stellar parametefB.¢ and loggg. As a consequence of
1450 1500 1550 1600 1850 1700 1750 its dependence on the degree of ionization, the shape of the

A A Lyman-« wing is a very sensitive tool for determining these

FIG. 6. Comparison of the observed 1600 A region with theo-Parameters once accurate absorption coefficients for the line
retical profiles with and without the variation of dipole moment. Wing are known.
The experiment is a measurement of the optically thin emission 1he new theoretical Lyman-line profiles have been in-
from atomic hydrogen compressed and heated by the shock wavduded in stellar atmosphere programs for the computation of
from a laser-produced plasma at a neutral density of approximatelgnodel stellar atmosphere spectra and synthetic spectka of
10*° atoms/cm. Bootis starg51,52. A comparison of the new calculations
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FIG. 8. Comparison of synthetic spectra with and without the = =
variation of dipole moment and the IUE spectrumxoBootis. frug 15 g
with observations made with the IUE as shown in Fig. 8 5
demonstrates that these last improvements are of fundamen
tal importance for obtaining a better quantitative interpreta- 100 b W2032:245 100
tion of the spectra and for determining stellar atmospheric : * )
parameters. —~ 075 F 0.75
o _ L 050 | 0.50 =
B. Comparison with a HUT observation
of the white dwarf Wolf 1346 025 \ 0.25
The optical spectrum of the star Wolf 1346 shows that it 1000 1050 1100 1150
is a normal type DA white dwarf with a temperature of *(A)

20000 K and no indications of chemical elements other than

hydrogen. While several hotter DA white dwarfs show a Ly-  FIG. 9. Upper panel: absorption coefficient per hydrogen atom
man series compatible with symmetrically Stark broadenedh the ground state due to Lymah-(left) and Lymane (right,
profiles without unexplained features, Wolf 1346 has adotted-dashed lineNew line profiles with variable dipole moments
Lyman-8 line with a strong asymmetry, a very steep redfor Lyman-8 are drawn with a solid line, and old calculations are
wing, and absorption features in the wing near 1060 andhe dotted line. The density of perturbesotons is 10 cm™°.
1078 A. In Fig. 9 the comparison for the HUT spectrum of The temperature assumed for the calculation is 20 000 K; the pro-
Wolf 1346 shows that the far UV is very well fitted with a file, however, is very insensitive to the temperature. Middle panel:

synthetic spectrum computed with the profile calculationgheoretical synthetic spectra for a pure hydrogen white dwarf model
described hergs3]. atmosphere witfT .= 18 000, logog=8. Ordinate is  in units of

10 ergcm? s 1. The solid line is calculated with the new pro-

files, the dotted lines with the old profiles with constant dipole

moments, and the dashed line is a synthetic spectrum calculated
The main objective of this paper was to show the influ-with the standard VCS _Stark broadening theory. Lower panel: far

ence of the variation of the dipole moment on line profile YV spectrum of the white dwarf WD2032248 (Wolf 1346) ob-

features that are present in the far wings of the Lyman serig¥"ved with the Hopkins Ultraviolet Telescofsslid line), and the-

lines of atomic H. We first provided a careful derivation of °retical mode{dotted ling.

an adiabatic classical path approximation for the spectrum,

allowing for degenerate atomic states and radiative dipo|é/ariation of the dipole has to be taken into account to obtain

moments which vary with internuclear distances. reliable results if they are used as diagnostics of stellar and
In order to take into account the overlap of the Lyman- Plasma parameters.

blue wing and the LymaB red wing we had to sum cor-

rectly .their respegtive contributions._ Figure 5 illustrates a ACKNOWLEDGMENT
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