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Effect of the variation of electric-dipole moments on the shape
of pressure-broadened atomic spectral lines
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We derive a classical path expression for a pressure-broadened atomic spectral line shape that allows for an
electric-dipole moment that is dependent on the position of perturbers. The theory is applied to the atomic
hydrogen Lyman-a and Lyman-b lines broadened by collisions with neutral and ionized atomic hydrogen. The
far wings of the Lyman series lines exhibit satellites, enhancements that may be associated with quasimolecular
states of H2 and H2

1. The sizes of these features depend on the values of the electric-dipole moments at the
internuclear separations responsible for the satellites. Profiles are computed with and without spatial depen-
dence of the dipole moment, and are compared with astronomical and laboratory observations. We conclude
that in the present case the variation of the dipole moment is an important factor that cannot be neglected.
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I. INTRODUCTION

The aim of this paper is to provide a classical path the
for the shape of pressure-broadened atomic spectral lines
takes into account the variation of the electric-dipole m
ment during a collision. Anderson and Talman@1# developed
a theory of spectral line pressure broadening in which
profile is given by the Fourier transform of an autocorre
tion function. Their formalism has been widely followed
neutral atom line broadening theory, usually with the
sumption that the electric-dipole moment during a collisi
is the same as it is for infinite separation of the emitting at
and its perturber. However, the electric-dipole moment isnot
constant. Accurate calculations of atomic hydrogen inter
tions show, for example, that the electric-dipole transit
moments in H2 may differ from asymptotic values by a fac
tor more than 2 at interatomic separations of a few Å. F
thermore, both observations and theory of alkali atom spe
broadened by noble gases show that collisions alter the t
sition probability of forbidden transitions@2–7#. There is
therefore theoretical and experimental evidence that
quantitative comparisons of line shape theory and obse
tions to be meaningful, it is necessary to include the dep
dence of the electric-dipole moment on interatomic sepa
tion.

The far line wing generally does not decrease monoto
cally with increasing frequency separation from the line c
ter. When the difference between the upper and lower in
atomic potentials for a given transition goes through
extremum, a relatively wider range of interatomic distanc
PRA 601050-2947/99/60~2!/1021~13!/$15.00
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contribute to the same spectral frequency, resulting in
enhancement, orsatellite, in the line wing. Satellites in alkal
atom spectra have been known since the 1930’s@8#. The
importance of this effect is highlighted by the recent disco
ery that the wings of Lyman-a and Lyman-b seen in stars
and in laboratory plasmas show satellites associated with
molecular interactions of H2 and H2

1. The quasimolecular
states that give rise to these satellites are transient, they o
during binary collisions with another neutral atom or a pr
ton. With theoretical line models based on statistical ar
ments, Stewart, Peek, and Cooper@9# predicted that a satel
lite due to quasimolecular H2

1 would enhance the Lyman-a
wing at 1405 Å, and Sando, Doyle, and Dalgarno@10#
found a satellite due to quasimolecular H2 at 1623 Å.

The satellite lines at 1405 and 1623 Å were identified
Nelan and Wegner@11#, and by Koesteret al. @12# in ultra-
violet spectra of white dwarf stars obtained by the Intern
tional Ultraviolet Explorer~IUE! satellite. More recently, in
1995 high-quality spectra covering the range 820–1840
were obtained with the Hopkins Ultraviolet Telesco
~HUT! for white dwarfs hotter than about 20 000 K. Absor
tion features in the wing near 1060 and 1078 Å were id
tified in the Lyman-b profile of the DA white dwarf Wolf
1346 as satellites due to quasimolecular H2

1 @13#. The
strengths of these satellite features and indeed the e
shape of wings in the Lyman series are very sensitive to
degree of ionization in the stellar atmosphere, because
determines the relative importance of broadening by ion
neutral collisions. When the spectral line profiles for the L
man series are included as a source of opacity in mode
1021 ©1999 The American Physical Society
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1022 PRA 60ALLARD, ROYER, KIELKOPF, AND FEAUTRIER
mospheres for a white dwarf, a comparison of the predic
spectrum with the observed one permits an accurate dete
nation of the temperature of the star.

The spectrum of light escaping from a white dwarf al
controls the rate at which it cools. This rate may be predic
from a model for the atmosphere and opacity of the star,
consequently the temperature of a white dwarf star indica
its age@14,15#. This bears on issues of importance for co
mology because white dwarfs in our galaxy may be a sou
of microlensing events@14#, and because the ages of th
oldest white dwarfs may be used to set an upper limit on
age of the universe@15#.

It is then very important to get an accurate quantitat
determination of the satellite profiles. The approach we
is based on the quantum theory of spectral line shape
Baranger@16,17# that were developed in anadiabatic repre-
sentationto include the degeneracy of atomic levels@18,19#.
However, because we are mostly interested in the line win
we neglect transitions between asymptotically degene
atomic states; that is, we perform an adiabatic approxima
at the binary collision level. This approximation is expect
to induce errors mostly in the shift of the line center, whi
is largely due to weak collisions involving the region whe
different ~but asymptotically equal! potential curves merge
together@20#. We then perform a classical path approxim
tion within that framework. We apply this theory to the Ly
man series of atomic hydrogen, and present calculation
profiles for Lyman-a and Lyman-b that take into accoun
the dependence of the electric-dipole moment on internuc
distance during the collision. The resulting profiles show t
the amplitude of satellites depends on the strength of
dipole moment in the region of internuclear distance wh
the satellite is formed.

Previous calculations of profiles used the approximat
of replacing the electric-dipole transition moment by a co
stant@21–23#. They have been used successfully to evalu
synthetic spectra in the range of effective temperatures f
about 20 000 down to 9000 K, which fit UV spectra of whi
dwarfs andl Bootis stars quite well@24–27#. They also
account for the spectra of laser-produced hydrogen plas
@28,29#. However, the assumption of a constant dipole m
ment is questionable for allowed transitions, and does
even include the effects of collision-induced transitio
which are asymptotically forbidden. To take this into a
count, we develop a general unified theory in which the
pole moment matrix element varies during a collision. T
theory of the spectrum is presented in the following secti

We then evaluate the theory for Lyman-a and Lyman-b
wings of H perturbed by protons. Both lines should really
treated simultaneously because the blue wing of Lymaa
and the red wing of Lyman-b overlap. However, we neglec
interference terms between the two lines. The Lyman profi
and satellites are calculated for the physical conditions
in the atmospheres of white dwarfs, where low densities
low us to use an expansion of the autocorrelation function
powers of density as described in@30#. The profiles presented
here use accurate theoretical molecular potentials to des
the interaction between radiator and perturber. H2

1 poten-
tials are taken from the tables of Madsen and Peek@31#.
Dipole transition moments are those calculated by Rama
and Peek@32#.
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We also apply the improved theory to the Lyman-a line
broadened simultaneously by H-H and H-H1 collisions. A
comparison with laboratory experiments and astronom
observations demonstrates that the dipole moment varia
is an important effect. The H2 potentials contributing to
Lyman-a are taken from Sharp@33# and Wolniewicz and
Dressler @34#. The dipole moments of Dressler an
Wolniewicz @35# were used for the transitions between t
singlet quasimolecular states, andab initio results of Drira
@36# were used for the transitions between the triplet stat

II. GENERAL EXPRESSION FOR THE SPECTRUM

We consider a gas of atoms interacting with the radiat
field. The power radiated at the frequencyv is written

P~v!5
4v4

3c3
I ~v!, ~1!

wherec is the velocity of light andI (v) is referred to as the
spectrum@37#. In the dipole approximation, and neglectin
Doppler effects, it is given by

I ~v!5 (
n,n8

d~v2vnn8!u^n8uDun&u2rn . ~2!

The summations extend over all states of the gas, each
weighted with the probabilityrn for the initial state.D is the
total dipole moment~we use bold notation for operators!. un&
are eigenstates ofH, the total Hamiltonian of the gas,

H5Tnucl1Telec1V~x,R!, ~3!

where Tnucl and Telec are sums of nuclear and electron
kinetic-energy operators, respectively, andV(x,R) is the in-
teraction between particles. Herex denotes collectively the
set of electronic coordinates~position and spin! plus spin
coordinates of the nuclei, whileR denotes the set of positio
coordinates of all the nuclei of the gas.r is the density ma-
trix,

r[
e2bH

Tr e2bH
, ~4!

whereb is the inverse temperature (1/kT).
The spectrumI (v) can be written as the Fourier tran

form of the dipole autocorrelation functionF(s),

I ~v!5
1

p
ReE

0

1`

F~s!e2 ivsds. ~5!

Here,

F~s!5Tr rD†eisH/\De2 isH/\ ~6!

5^D†~0!D~s!& ~7!

is the autocorrelation function of the dipole moment in t
Heisenberg representation@8#,

D~s![eisH/\De2 isH/\. ~8!
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PRA 60 1023EFFECT OF THE VARIATION OF ELECTRIC-DIPOLE . . .
We use the notation

^~ !&[ Tr r~ !, ~9!

where Tr denotes the trace operation.

III. ADIABATIC REPRESENTATION

The adiabatic or Born-Oppenheimer representation c
prises expanding states of the gas in terms of electronic s
xe(x;R) corresponding to frozen nuclear configurations.
the Schro¨dinger equation

@Telec1V~x,R!#xe~x;R!5Helec~R!xe~x;R! ~10!

5Ee~R!xe~x;R!,
~11!

R appears as a parameter, and the eigenenergiesEe(R) play
the role of potential energies for the nuclei. The electro
statesxe(x;R) form a complete orthonormal set inx space at
each value ofR. These states are calledadiabatic because
xe(x;R) follows adiabatically the motion of the nuclear co
ordinateR. We precedeR with a ‘‘;’’ to emphasize its role as
a parameter. Any wave functionC(x,R) can be expanded a

C~x,R!5(
e

ce~R!xe~x;R!, ~12!

ce~R![E dxxe~x;R!* C~x,R!.

~13!

As the nuclei get further away from each other, which
denote byR˜`, the electronic energiesEe(R) tend to
asymptotic valuesEe

` , which are sums of individual atomi
energies. Since atomic states are usually degenerate,
are in general several different energy surfaces that tend
same asymptotic energy asR˜`. Let us denote byEj

` the
asymptotic energies and call« j the subspace of electroni
statesxe(x;R) such thatEe(R)˜Ej

` asR˜`.
From now on, consider specifically a single radiati

atom, theradiator, immersed in a gas of optically inactiv
atoms, theperturbers. For a transitiona5( i , f ) from initial
statei to final statef, we haveR-dependent frequencies

ve8e~R![@Ee8~R!2Ee~R!#/\, eP« i , e8P« f , ~14!

which tend to the isolated radiator frequency

va[v f i[~Ef
`2Ei

`!/\ ~15!

as the perturbers get sufficiently far from the radiator:

ve8e~R!˜v f i as R˜`, eP« i , e8P« f . ~16!

Let us introduce projectorsPe , which select theeth adiabatic
component of anyC(x,R) according to@19#

PeC~x,R!5ce~R!xe~x;R!. ~17!

Let Pj5(eP« j
Pe be the projector onto the subspace« j of

electronic states of asymptotic energyEj
` . We write the di-

pole moment as a sum over transitions
-
tes

c

ere
a

D5(
a

Da , ~18!

Da[(~a!

e,e8
Pe8DPe . ~19!

In the Heisenberg representation

Da~ t ![(~a!

e,e8
eitH/\Pe8DPee

2 i tH/\, ~20!

[(~a!

e,e8
De8e~ t !. ~21!

The sum(e,e8
(a) is over all pairs (e,e8) such thatve8,e(R)

˜va as R˜`. Thus Da connects all pairs of adiabati
states whose electronic energy differences become equ
va asR˜`. In the absence of perturbers,Da would be the
component ofD responsible for the radiative transitions
frequencyva .

The (R˜`) degeneracy of a subspace« j is usually due
to rotational invariance, and is therefore of multiplici
(2Jj11), whereJj is the total angular momentum of th
radiator asR˜` ~when perturbers are close to the radiat
the angular momentum of the radiator is not a good quan
number, and it can be defined in only an approximate m
ner!. We note that the projection operators account for
weighting factors discussed in Ref.@23#.

IV. CORRELATION AND SPECTRAL MATRICES

Introducing the expansion Eq.~18! for D into the expres-
sion Eq.~7! for F(s), we obtain

F~s!5(
a,b

Fa,b~s!, ~22!

where

Fa,b~s!5Tr rDa
†eisH/\Dbe2 isH/\ ~23!

5^Da
†~0!Db~s!&. ~24!

The line shape is then

I ~v!5(
a,b

I a,b~v!. ~25!

It is convenient to think of theFa,b and I a,b as elements of
two matrices, which we may call the correlation and spec
matrices, respectively. The off-diagonal termsI a,b(v), a
Þb, represent interference between different spectral li
@17#, arising, for instance, from avoided crossings betwe
potential curves with different valuesEe

` . We shall neglect
these interference terms. Then

I ~v!5(
a

I a~v! ~26!

and



io

d

e

e

b
e
e

sity
mo-

mity

as

1024 PRA 60ALLARD, ROYER, KIELKOPF, AND FEAUTRIER
F~s!5(
a

Fa~s!, ~27!

where

Fa~s!5^Da
†~0!Da~s!&. ~28!

A. Zero-perturber spectrum

Using superscripts (0),(1), . . . ,(N) to mean that
0,1, . . . ,N perturbers are present in a~large! volume V
around the radiator, we write the zero-perturber correlat
function as

Fa
(0)~s!5fa

(0)eivas, ~29!

where

fa
(0)5Fa

(0)~s50!5^Da
†Da& (0) ~30!

5(~a!

e,e8
reuDee8

(0) u2

~31!

is the line strength, and where(e,e8
(a) sums over pairs (e,e8)

such thatve8,e(R˜`)5va , the frequency of the isolate
radiator.

B. Interaction representation

The time dependence ofFa(s) is determined byDa(s),
the part of the dipole moment which, in the absence of p
turbers, oscillates at the frequencyva . It is convenient to
expressFa(s) in a kind of interaction representationby
dividing out its zero-perturber behavior. We thus write

Fa~s!5fa
(0)eivasCa~s!, ~32!

where the interaction representation correlation function

Ca~s![
Fa~s!

Fa
(0)~s!

~33!

contains all the influence of the perturbers on linea. Note
that in the absence of perturbers we have

Ca
(0)~s!51. ~34!

V. UNCORRELATED PERTURBERS APPROXIMATION

We now assume that the effects of the different perturb
on the line shape are uncorrelated~see Ref.@19# for a general
discussion!; that is, we approximateCa

(N)(s) by

Ca
(N)~s!5@Ca

(1)~s!#N, ~35!

whereN is the number of perturbers in the large volumeV,
andCa

(1)(s) corresponds to the presence of a single pertur
in V. Now, Ca

(1)(s) differs from the zero-perturber valu
Ca

(0)(s)51 only if the single perturber interacts with th
radiator during the time interval (0,s), the probability for
which is proportional to 1/V. So
n

r-

rs

er

Ca
(1)~s!511

1

V f a~s!, ~36!

where

f a~s!5V@Ca
(1)~s!21# ~37!

is well defined asV˜`. We thus get

Ca
(N)~s!5S 11

1

N

N

V f a~s! D N

. ~38!

In the limit N˜`, V˜`, with N/V5n, the perturber num-
ber density, we get

Ca
(N)~s!5en fa(s). ~39!

Let us now denote

da~s![Da~s!e2 ivas, ~40!

wherein the free evolutione2 ivas is factored out. Then,

f a~s!5VS Fa
(1)~s!

Fa
(0)~s!

21D ~41!

5VS ^da
(1)†~0!da

(1)~s!2da
(0)†da

(0)&

fa
(0) D ,

~42!

where we used Eq.~30!. We note thatCa(0)Þ1, and cor-
respondingly

f a~0!5V@Ca
(1)~0!21# ~43!

5V^
da

(1)22da
(0)2&

^da
(0)2&

Þ0. ~44!

Thus the perturbed line strengthfa
(0)en fa(0) differs from the

free line strengthfa
(0) by the factoren fa(0). This density-

dependent factor expresses the fact that the total inten
radiated increases or decreases according as the dipole
ment is increased or decreased, on average, by the proxi
of perturbers@en fa(0) corresponds to the factoren^d221& in
Eq. ~2.15! of Ref. @38#, where the nondegenerate case w
treated#. Let us write

f a~s!5 f a~0!1ga~s!, ~45!

where

ga~s!5 f a~s!2 f a~0! ~46!

5V^
da

(1)†~0!@da
(1)~s!2da

(1)~0!#&

^da
(0)2&

.

~47!

Noting thatga(0)50, we define anormalized lineshape

Ja~Dv!5
1

p
ReE

0

1`

enga(s)e2 iDvsds, ~48!
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PRA 60 1025EFFECT OF THE VARIATION OF ELECTRIC-DIPOLE . . .
whereDv5v2va is the frequency measured relative to t
unperturbed line. Combining the above results for a pair
lines, such as Lyman-a and Lyman-b, we have

F~s!5Fa~s!1Fb~s! ~49!

5fa
(0)eivasen fa(s)1fb

(0)eivbsen fb(s), ~50!

and

I ~v!5fa
(0)en fa(0)Ja~v2va!1fb

(0)en fb(0)Jb~v2vb!.
~51!

Elimination of center-of-mass motion

Consider the zero-perturber quantity

fa
(0)5FTr e2bHda

†da

Tr e2bH G (0)

. ~52!

Since hereH is a sum of the electronic Hamiltonian and th
nuclear kinetic energy for the radiator alone, thenuclear
components in Eq.~52! factor out in both the numerator an
denominator, and cancel one another. Likewise, in Eq.~47!,

^da
†~0!@da~s!2da~0!# (1)&

5FTr e2bHda
†~0!@da~s!2da~0!#

Tr e2bH G (1)

, ~53!

which refers to the radiator and a single perturber. T
center-of-mass motion of the radiator-perturber pair fact
out in both numerator and denominator, and cancels. He
forth, we consider that Eq.~52! refers to the electronic mo
tion of the radiator, and that Eq.~53! refers to the electronic
andrelative nuclear motion of the radiator-perturber pair.
other words, we can consider that the radiator is fixed at
origin with an infinite mass, and that the perturber has a m
equal to the reduced massm of the radiator perturber pair
where

m[
mradmpert

mrad1mpert
. ~54!

The electronic basisxe„x; r¢… in the case of a single perturber

We let rW be the position vector of the perturber relative
the radiator. Thexe(x;rW) are stationary electronic states f
fixed rW:

@Telec1V~x,rW !#xe~x;rW !5Ee~r !xe~x;rW !. ~55!

The different electronic states correspond to different co
ponents of the electronic angular momentum about the in
nuclear axisrW. Now the total Hamiltonian is

H5Helec1Tnucl , ~56!

where

Helec5Telec1V~x,r¢!. ~57!
f

e
s
e-

e
ss

-
r-

Here,r¢ denotes the relative position operator, and

Tnucl5
p¢2

2m
, ~58!

wherep¢ is the momentum operator for the relative motion
the radiator-perturber pair, so that

†r i ,pj‡5 i\d i j . ~59!

Let uxe(r¢)& be a ket in the electronic subspace, and anop-
erator in the nuclear subspace~hencer bold!, defined by

^xuxe~r¢!&5xe~x;r¢!, ~60!

so that

^xe8~r¢!uxe~r¢!&5de8e , ~61!

and

(
e

uxe~r¢!&^xe~r¢!u51. ~62!

We have, in view of Eq.~55!,

^xe8~r¢!uHuxe~r¢!&5Ee~r¢!dee81K xe8~r¢!U p¢2

2m
Uxe~r¢!L .

~63!

Now

^xe8~r¢!up¢2uxe~r¢!&5(
e9

^xe8~r¢!up¢ uxe9~r¢!&^xe9~r¢!up¢ uxe~r¢!&

~64!

and, in view of Eq.~59!,

^xe9~r¢!up¢ uxe~r¢!&5de9ep¢1^xe9~r¢!u@p¢ ,xe~r¢!#& ~65!

5de9ep¢2
i\

m
^xe9~r¢!u¹W xe~r¢!&

~66!

[de9ep¢1pW e9e~r¢! ~67!

so that@39#

^xe8~r¢!up¢2uxe~r¢!&5(
e9

@p¢de8e91pW e8e9~r¢!#

3@p¢de9e1pW e9e~r¢!# ~68!

5$@p¢1pW ~r¢!#2%e8e . ~69!

The operator

pW e8e~r¢!52
i\

m
^xe8~r¢!u¹W xe~r¢!& ~70!

leads to the usual radial and rotational coupling ter
@40,41#. As we said above, theuxe(rW)& are referred to as the
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1026 PRA 60ALLARD, ROYER, KIELKOPF, AND FEAUTRIER
internuclear axis, so they depend onrW even at large dis-
tances, at which the electronic states are just product
atomic states. Letr c be a distance beyond which electron
states are essentially products of atomic orbitals. Wher

.r c , it is better to use a basisuxe(rW)z& which is referred to
as a fixedz axis. LetR be the rotation which rotatesrW to the
z direction ~that is, a rotation by some angle about the a
perpendicular to bothrW andz). The electronic bases,uxe(rW)z&
and uxe(rW) rW& ~referred to the internuclear axisrW) are con-
nected to one another by means of the rotation oper
Relec, which effects the rotationR in the electronic sub-
space. We thus choose the basisuxe(rW)& as follows:

uxe~rW !&5uxe~rW !rW& for r ,r c

5Relecuxe~rW !rW& for r .r c .

Note that bothEe(rW) anduxe(rW)& become independent ofr at
larger. In this way, forr .r c , we havepW ee8(r

W)50, and Eq.
~63! becomes, forr .r c ,

^xe8~rW !uHuxe~rW !&5S 2
\2¹ r

2

2m
1Ee

`D de8e ~71!

or

~H2Ee
`!uxe~rW !&5uxe~rW !&

p¢2

2m
, ~72!

sinceuxe8(r
W)& is a complete electronic basis. At smaller va

ues of r , pW e8e(rW)Þ0. However, it is effective at inducing
transitions only where the potential differenceEe8(r )
2Ee(r ) is small; that is, near inner potential avoided cro
ings, and in the vicinity ofr c , where the different potentia
curves merge together.

A more explicit expression for ga„s…

Let us first evaluate the quantity (Tre2bH)(1) appearing
in Eq. ~53!, where the superscript (1) signifies as before t
there is only one perturber present. Breaking up the trace
nuclear and electronic parts, we have

~Tr e2bH!(1)5(
e

e2bEe
`
Trr^xe~r¢!ue2b(H2Ee

`)uxe~r¢!&,

~73!

where we added factorse2bEe
`

andebEe
`
, which cancel one

another. To simplify this notation we drop the superscript`
on Ee

` @Ee[Ee(r˜`)5Ee
`5Ei #. Now the part of

Trr(•••)5*drW^rWu(•••)urW& coming from the interaction vol-
umeVc54pr c

3/3 is negligible compared to the part comin
from outsideVc , which will turn out to be proportional to the
large volumeV. Indeed, in view of Eq.~72! and since

^xe(r¢)uxe(r¢)&51, Eq. ~73! is essentially equal to

~Tr e2bH!(1)5(
e

e2bEeTrre
2b(p¢2/2m). ~74!
of

s

or

-

t
to

Now,

Trre
2b(p¢2/2m)5E dpW e2b(pW 2/2m)^pW upW & ~75!

5
V

~2p\!3E dpW e2b(pW 2/2m) , ~76!

where we used

^pW upW &5E drW^pW urW&^rWupW & ~77!

5E drW
1

~2p\!3
5

V
~2p\!3

. ~78!

Thus

~Tr e2bH!(1)5
V

~2p\!3 S E dpW e2b(pW 2/2m) D(
e

e2bEe.

~79!

We also need the results

~Tr e2bH!(0)5(
e

e2bEe ~80!

and

~Tr e2bHda
†da!(0)5 (

eP« i
(

e8P« f

e2bEeudee8u
2 ~81!

5(~a!

e,e8
e2bEeudee8u

2 ~82!

5e2bEi(~a!

e,e8
udee8u

2. ~83!

Combining Eqs.~83!, ~80!, ~79!, ~53!, ~52!, with Eq.~47!, we
get

ga~s!5
V

fa
(0) S ~Tr e2bHda

†~0!@da~s!2da~0!# !(1)

~Tr e2bH!(1) D ~84!

5
~2p\!3

E dpe2b(pW 2/2m)

3
Tr e2b(H2Ei )da

(1)†~0!@da
(1)~s!2da

(1)~0!#

(~a!

e,e8
udee8

(0) u2
. ~85!

Recalling the definition ofda in terms of the projectors

Pi5 (
eP« i

uxe~r¢!&^xe~r¢!u, ~86!
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Pf5 (
e8P« f

uxe8~r¢!&^xe8~r¢!u, ~87!

putting

va5v f i5
Ef

`2Ei
`

\
, ~88!
d
e

te
and using

e2 isv f i5eisEf /\e2 isEi /\, ~89!

we get
@Tr e2b(H2Ei )da
†~0!da~s!# (1)5Tr e2b(H2Ei )PidPfe

isH/\PfdPie
2 isH/\e2 isv f i ~90!

5 (
e,e-P« i

(
e8,e9P« f

Tr e2b(H2Ei )uxe~r¢!&^xe~r¢!uduxe8~r¢!&^xe8~r¢!ueis(H2Ef )/\uxe9~r¢!&

3^xe9~r¢!uduxe-~r¢!&^xe-~r¢!ue2 is(H2Ei )/\ ~91!

5 (
e,e-P« i

(
e8,e9P« f

Trrdee8~r¢!^xe8~r¢!ue
is(H2Ef )

\ uxe9~r¢!&de9e-~r¢!

3^xe-~r¢!ue2 is(H2Ei )/\e2b(H2Ei )uxe~r¢!&. ~92!
ber
ous,

to
ia-
ar-

ap-

he
t,

to
line

ing
pa-
Here Trr traces overrW alone, and we denoted

dee8~r¢!5^xe~r¢!uduxe8~r¢!&5de8e
* ~r¢!. ~93!

In Eqs. ~90!–~93!, and henceforth, we let it be understoo
that all quantities pertain to the presence of a single p
turber, unless otherwise indicated by a superscript~0! for
zero perturbers.

A. Adiabatic approximation at the one-perturber level

We now neglect the fact thatTnucl induces transitions
between different electronic states; that is, we approxima

Huxe~r¢!&5~Tnucl1Helec!uxe~r¢!& ~94!

.uxe~r¢!&@Tnucl1Ee~r¢!#. ~95!

We thereby neglectu¹W xe(rW)&, or equivalently approximate
pW ee8(r ).0. Denoting then

He5Tnucl1Ve~r¢! ~96!

with

Ve~r¢!5Ee~r¢!2Ee
` , ~97!

we get, for example,

^xe8~r !ueis(H2Ef )/\uxe9~r¢!&.^xe8~r¢!uxe9~r¢!&eisHe8 /\

~98!

5de8e9e
isHe8 /\. ~99!

Equation~92! becomes
r-

Tr e2b(H2Ei )da
†~0!da~s!5 (

eP« i
(

e8P« f

Kee8~s!, ~100!

where

Kee8~s!5Trre
2bHedee8~r¢!eisHe8 /\de8e~r¢!e2 isHe /\.

~101!

As shown numerically by Erikson and Sando@42#, the adia-
batic approximation done in this way at the one-pertur
level does not seem to introduce errors that are too seri
contrary to doing it at theN-perturber level, which effec-
tively constrains all binary collisions in a particular history
all lock onto the same pair potential curve. When the ad
batic approximation is done at the one-perturber level, a p
ticular potential curve is selected onlywithin each individual
binary collision, but differentbinary collisions within a his-
tory choose pair potentials at random.

The main error expected from the above adiabatic
proximation concerns the shift of the line center@20,43#,
which is largely due to weak collisions. These involve t
merging regionr .r c in which transitions between differen
but asymptotically equal, potential curves are easy due
their small separations. No great error is expected in the
wings ~our main interest here!, which are associated with
transitions taking place when the perturber is travel
through regions where the potential curves are well se
rated.

B. Classical approximation

Let us rewrite Eq.~101! as
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Kee8~s!5Trre
2(b/2)Hedee8~r¢!eisHe8 /\de8e~r¢!e2(b/2)Hee2 isHe /\ ~102!

5Trre
2(b/2)Hedee8~r¢!eisHe8 /\e2 isH0 /\eisH0 /\de8e~r¢!e2(b/2)Hee2 isH0 /\eisH0 /\e2 isHe /\ ~103!

5Trre
2(b/2)Hedee8~r¢!T,expF i

\E0

s

dtVe8„r
¢

0~ t !…Gde8e„r¢0~s!…e2(b/2)[H01Ve„r
¢
0(s)…]T.expF2 i

\ E
0

s

dtVe„r¢0~ t !…G ,
~104!
u

t

e

a

where we denoted

r¢0~ t !5eitH0 /\r¢e2 i tH0 /\ ~105!

and

H05Tnucl5
p¢2

2m
. ~106!

T, and T. are chronological operators, making time arg
ments increase from left to right (,) or from right to left
(.). We next expand the trace Trr in terms of a complete se
of normalized wave-packet statesurWpW &, centered at (rW,pW ) in
phase space, and satisfying

^rWpW urWpW &51, ~107!

1

~2p\!3E drWdpW urWpW &^rWpW u51. ~108!

For instance,urWpW & may be a Gaussian wave packet. Und
the action of e2 i tH0 /\, the wave packeturWpW & follows a
straight trajectory,

e2( i tH0 /\)urWpW &5UrW1
pW t

m
,pW L ~109!

so that, for example,

r¢0~ t !urWpW &5eitH0 /\r¢e2( i tH0 /\)urWpW & ~110!

5eitH0 /\r¢UrW1
pW t

m
,pW L ~111!
-

r

'eitH0 /\UrW1
pW t

m
,pW L S rW1

pW t

m
D

~112!

5urWpW &S rW1
pW t

m
D . ~113!

In reality the packet in Eq.~109! spreads and acquires
phase@44#, but these disappear in Eq.~113!. We also have

e2(b/2)[H01Ve„r
¢
0(s)…] urWpW &'urWpW &e2(b/2)[pW 2/2m1Ve(rW1pW s/m)]

~114!

so that

Kee8~s!5
1

~2p\!3E drWdpW e2b(pW 2/2m)d̃ee8~rW !

3expF i

\E0

s

dtVe8eS rW1
pW t

m
D G d̃ee8

* S rW1
pW s

m
D ,

~115!

where we defined

Ve8e~rW !5Ve8~rW !2Ve~rW !, ~116!

d̃ee8~rW !5dee8~rW !e2(b/2)Ve(rW). ~117!

Putting this into Eq.~85! we get
ga~s!5
1

E dpW e2b(pW 2/2m)(~a!

e,e8
udee8u

2
(~a!

e,e8
E drWdpW e2b(pW 2/2m)d̃ee8~rW !H expF i

\E0

s

dtVe8eS rW1
pW t

m
D G d̃ee8

* S rW1
pW s

m
D 2d̃ee8~rW !J .

~118!

We now assume that the perturbers have a single mean velocityv̄, that is, in

E dpW e2b(pW 2/2m)5E
0

p

sinuduE
0

2p

dfE
0

`

p2e2b(p2/2m)dp, ~119!

we put

p2e2b p2/2m'~const!d~p2m v̄ !. ~120!
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The ~const! appears in both the numerator and denominator of Eq.~118!, and cancels out. We thus get, finally,

ga~s!5
1

(~a!

e,e8
udee8u

2
(~a!

e,e8
E

0

1`

2prdrE
2`

1`

dxd̃ee8@r ~0!#FexpS i

\E0

s

dtVe8e@r ~ t !# D d̃e8e@r ~s!#2d̃ee8@r ~0!#G , ~121!
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wherer (t)5@r21(x1 v̄t)2#1/2 with r the impact paramete
of the perturber trajectory.

In the above, we effectively neglected the influence of
potentialsVe(r ) and Ve8(r ) on the perturber trajectories
which remain straight lines. See Ref.@45# for a different
derivation using WKB wave functions. This approximatio
should not cause errors that are too serious for the follow
reasons:

~i! The line center~shift and width! are mainly determined
by the phase shifts associated with completed collisions,
should not be very sensitive, on average, to the details
trajectories.

~ii ! The line wings, whichare sensitive to what happen
within collisions, are mainly determined by quasistatic
fects, and the straight trajectoryclassical expression@Eq.
~121!# yields, via a stationary phase approximation, the sa
quasistatic result as does the quantum expression, inclu
the correct Boltzmann factors~see Ref.@45#!.

Although we should really drop the Boltzmann fact
e2bVe(r ) for consistency with our straight trajectories a
proximation, by keeping it we much improve the result in t
wings. Note that over regions whereVe(r ),0, the factor
e2bVe(r ) accounts for bound states of the radiator-pertur
pair, but in a classical approximation wherein the discr
bound states are replaced by a continuum; thus, any b
structure is smeared out. Note finally that we associate
factor e2(1/2)bVe(r ) with each factord, rather than keeping
e2bVe(r ) in a single piece associated with the firstd only.
This has the advantage of making the Boltzmann factor s
ply modulate d(r ). Also the resulting expression fits bett
with a Feynman path picture@45,46#, sincee2(1/2)bVe(r ) is
the amplitudefor the perturber to be atr, as opposed to the
probability e2bVe(r ).

VI. APPLICATION TO THE LYMAN- a AND LYMAN- b
PROFILES PERTURBED BY PROTONS

Since our main purpose in the present paper is to st
the influence of dipole moment variations, the present ca
lations neglect the modulation ofd(rW) by the Boltzmann
amplitudee2(1/2)bVe(r ), which is different in emission and
absorption. This is fairly justified if there are no bound sta
formed, which seems reasonable in the specific applicat
we have in view, and if we do not consider the very f
wings involving very close collisions inside the repulsi
core.

A. Diatomic potentials and dipole moments

The adiabatic interaction of a neutral hydrogen atom w
a proton is described by potential energiesV(R) for each
e

g

nd
of

-

e
ng

r
e
nd
a

-

y
u-

s
ns
r

h

electronic state of the H2
1 molecule. Electric-dipole transi

tions between these states are responsible for the line pro
When the differenceDV(R) between the upper and lowe
potentials for a transition presents an extremumDVext the
unified theory predicts that there will be satellites perio
cally centered at@38,47,48#

Dv5kDVext, k51,2,3, . . . . ~122!

Here Dv is the frequency difference between the center
the unperturbed spectral line and the satellite feature, m
sured for convenience in the same units as the poten
energy difference.

An H2
1 correlation diagram is given in Ref.@23# for

Lyman-a and in Ref.@49# for Lyman-b. We used the poten
tials of H2

1 calculated by Madsen and Peek@31# for the
transitions contributing to Lyman-a and Lyman-b; that is,
for those which asymptotically go, respectively, to then
52 andn53 state of atomic hydrogen and a free proto
The existence of minima in the potential differences
some allowed transitions leads us to expect the presenc
satellite features on the wings of Lyman-a and Lyman-b
@23,49#. For the transition 2psu23dsg the difference poten-
tial minimum is211 080 cm21, which gives rise to a binary
satellite at 1405 Å in the red wing of Lyman-a. This feature
has been observed in UV spectra of DA white dwarfs a
laser-produced plasmas. For these very low densities
strength of the wing up to the binary satellite is linear w
density.

Dipole transition moments have been calculated by R
maker and Peek@32#. To point out the importance of the
variation of dipole moments we display its variation wi
internuclear distance. Figures 1 and 2 show the dipole m
ment for the transitions that should produce a satellite
Lyman-a at 1405 Å and on Lyman-b at 1078 Å. The last
one is due to the transition 5gsg22psu . It has been ob-
served in DA white dwarf spectra obtained with HUT@13#.

The transition moment at small internuclear distances
fers notably from the asymptotic value, in particular forR
around the potential minimum where the satellite is form
This behavior leads us to expect that the variation of
dipole will have an important effect on the amplitude of t
1405 Å satellite. By contrast, in Fig. 3 the dipole mome
for a transition contributing to Lyman-a at 1234 Å remains
flat with a value close to the asymptotic dipole.

B. Calculation of the Lyman-a and Lyman-b profiles

Figure 4 compares the profiles obtained in the cons
dipole approximation to the new calculations which take in
account the variation of the dipole during collisions. T
amplitude of the 1405 Å satellite is seen to be roughly m
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tiplied by a factor of 2, whereas the other satellites in
wing have not changed much because their dipole mom
stay close to the asymptotic values and do not vary as
matically in the region of interest. Because of the overlap
the Lyman-a blue wing and the Lyman-b red wing we
present the sum of the profiles of Lyman-a and Lyman-b in
Fig. 5. The variation of dipoles also affects the amplitude
the satellites present in the Lyman-b red wing @49#.

VII. APPLICATION TO LASER-PRODUCED
HYDROGEN PLASMA

The observation of the shape and far wing of Lymana
broadened by neutral atom and ion collisions in a las
produced hydrogen plasma also has been compared
some of the calculations discussed here@29#. In those experi-
ments, self-focusing of a 1.064mm, 6 ns, 600 mJ lase
caused most of its energy to be delivered suddenly to a
lindrical volume only a fewmm in diameter and a few mm

FIG. 1. Difference potential energy in cm21 and the correspond
ing D(R) in atomic units for the 1405 Å satellite of Lyman-a.

FIG. 2. Variation of the dipole moments with internuclear d
tance for one of the main transitions contributing to the red wing
Lyman-b.
e
ts
a-
f

f

r-
ith

y-

long. The resulting shock front and postshock gas provid
source for studying radiative collisions of atomic H expe
mentally with time-resolved emission spectroscopy. T
prompt atomic emission from the plasma arose from a t
hot expanding shell in which the primary components w
neutral H, H1, and electrons. The observed spectrum
vealed satellites due to collisions with H and H1, including
strong satellites close to Lyman-a at 1230 and 1240 Å, and
weaker ones in the extremely far wing at 1400 and 1600

The satellite observed at approximately 1230 Å w
identified as due to collisions with H1. Figure 3 illustrates
that the difference potential minimum contributing to th
feature occurs at an atom-ion separation of 10 Å, and
such is a probable collision in a dense plasma. This sate
dominates the near wing of Lyman-a in the observed spec
trum, as the theoretical profiles predict. The spectral reg
close to the line core was modified by radiation transfer
fects and collisions with electrons in the plasma source
the far wing around 1600 Å, however, the observed pro

f

FIG. 3. Difference potential energy in cm21 and the correspond
ing D(R) in a.u. for the 1234 Å satellite of Lyman-a.

FIG. 4. Comparison of Lyman-a profiles with and without
variation of dipole moments.I (n) is normalized so that* I (n)dn
51.
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was optically thin and it was possible to make a quantitat
comparison with the theory. The result is reproduced in F
6, in which the experimental profile has been corrected
bound-bound emission. The theory described here allows
the increase in the dipole moment at the atom-atom sep
tions contributing to this region of the spectrum. It predict
satellite which is about a factor of two more intense
1600 Å, relative to the continuum at 1500 Å, than a co
stant dipole theory. As the figure shows, the variable dip
model is in much better agreement with the experiment.

Both theory and experiment show an oscillatory struct
between the satellite and the line, with a minimum at ab
1525 Å. These oscillations are an interference eff
@45,50#, and are expected to depend on the relative velo
of the collision and therefore on temperature. For this reas
we investigated the effect of averaging over velocity in t
theoretical evaluation, rather than using a single fixed m

FIG. 5. Profile of the sum of Lyman-a and Lyman-b. I (n) is
normalized as in Fig. 4.

FIG. 6. Comparison of the observed 1600 Å region with the
retical profiles with and without the variation of dipole momen
The experiment is a measurement of the optically thin emiss
from atomic hydrogen compressed and heated by the shock w
from a laser-produced plasma at a neutral density of approxima
1019 atoms/cm3.
e
.
r
or
ra-
a
t
-
e

e
t
t

ty
n,

n

velocity. The evaluation was done numerically by perfor
ing the calculation for different velocities and then therma
averaging with 24-point Gauss-Laguerre integration. The
sult for a single trial temperature of 10 000 K is shown
Fig. 7. Both the constant and variable dipole moment th
ries predicted an oscillation at 1530 Å with a depth of abo
20% of the continuum. The velocity averaging reduces t
to about 5%. The velocity-averaged profile including a va
able dipole moment is still in good agreement with the e
periment. Averaging over velocity does not significan
change the far wing profile, as one would expect.

VIII. ASTROPHYSICAL APPLICATION

A. Comparison of IUE observation of l Bootis star
with synthetic spectra

Satellite features at 1600 and 1405 Å in the Lymana
wing associated with free-free quasimolecular transitions
H2 and H2

1 have been observed in UV spectra of certa
stars obtained with the IUE and Hubble Space Telesc
~HST! @24–27#. The stars that show Lyman-a satellites are
DA white dwarfs, oldHorizontal Branchstars of spectral
type A, peculiar spectral typeA stars of Population I, and the
l Bootis stars. The last two have the distinctive property
poormetalcontent, that is, low abundances of elements ot
than H and He. In the observed UV spectra of DA wh
dwarf stars,l Bootis stars, and laboratory plasmas, t
strength of the contributions to the Lyman-a wing caused by
neutral collisions relative to the contributions caused
charged perturbers depends very strongly on the ioniza
balance of hydrogen, and thus, through the Saha equation
the stellar parametersTeff and log10g. As a consequence o
its dependence on the degree of ionization, the shape o
Lyman-a wing is a very sensitive tool for determining thes
parameters once accurate absorption coefficients for the
wing are known.

The new theoretical Lyman-a line profiles have been in
cluded in stellar atmosphere programs for the computatio
model stellar atmosphere spectra and synthetic spectral
Bootis stars@51,52#. A comparison of the new calculation

-

n
ve
ly

FIG. 7. Velocity average for the 1600 Å satellite of Lyman-a
computed for 10 000 K withnH51017 cm23 compared to a a laser
plasma experiment atnH51019 cm23 scaled to fit.
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with observations made with the IUE as shown in Fig.
demonstrates that these last improvements are of fundam
tal importance for obtaining a better quantitative interpre
tion of the spectra and for determining stellar atmosphe
parameters.

B. Comparison with a HUT observation
of the white dwarf Wolf 1346

The optical spectrum of the star Wolf 1346 shows tha
is a normal type DA white dwarf with a temperature
20 000 K and no indications of chemical elements other t
hydrogen. While several hotter DA white dwarfs show a L
man series compatible with symmetrically Stark broade
profiles without unexplained features, Wolf 1346 has
Lyman-b line with a strong asymmetry, a very steep r
wing, and absorption features in the wing near 1060 a
1078 Å. In Fig. 9 the comparison for the HUT spectrum
Wolf 1346 shows that the far UV is very well fitted with
synthetic spectrum computed with the profile calculatio
described here@53#.

IX. CONCLUSION

The main objective of this paper was to show the infl
ence of the variation of the dipole moment on line profi
features that are present in the far wings of the Lyman se
lines of atomic H. We first provided a careful derivation
an adiabatic classical path approximation for the spectr
allowing for degenerate atomic states and radiative dip
moments which vary with internuclear distances.

In order to take into account the overlap of the Lymana
blue wing and the Lyman-b red wing we had to sum cor
rectly their respective contributions. Figure 5 illustrates
numerical calculation of the far ultraviolet profile of Lyman
a and Lyman-b based on the theory presented here. La
changes in the intensity of the satellites occur when the
pole moment varies significantly in the region of internucle
distance where the satellite is formed. As a consequence

FIG. 8. Comparison of synthetic spectra with and without
variation of dipole moment and the IUE spectrum ofl Bootis.
ill,
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variation of the dipole has to be taken into account to obt
reliable results if they are used as diagnostics of stellar
plasma parameters.
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FIG. 9. Upper panel: absorption coefficient per hydrogen at
in the ground state due to Lyman-b ~left! and Lyman-a ~right,
dotted-dashed line!. New line profiles with variable dipole moment
for Lyman-b are drawn with a solid line, and old calculations a
the dotted line. The density of perturbers~protons! is 1016 cm23.
The temperature assumed for the calculation is 20 000 K; the
file, however, is very insensitive to the temperature. Middle pan
theoretical synthetic spectra for a pure hydrogen white dwarf mo
atmosphere withTeff518 000, log10 g58. Ordinate is Fl in units of
1016 erg cm22 s21. The solid line is calculated with the new pro
files, the dotted lines with the old profiles with constant dipo
moments, and the dashed line is a synthetic spectrum calcu
with the standard VCS Stark broadening theory. Lower panel:
UV spectrum of the white dwarf WD20321248 ~Wolf 1346! ob-
served with the Hopkins Ultraviolet Telescope~solid line!, and the-
oretical model~dotted line!.
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