
N. C. DUTTA AND C. M. DUTTA

~Work partially supported by the National Science
Foundation under Grant No. GP7907X.

~See the reviews in Advances in Chemical Physics,
edited by I. Prigogine and S. Rice (Interscience, New

York, 1969), Vol. 14.
J. Goldstone, Proc. Roy. Soc. (London) A239, 267

(1957); H. P. Kelly, in Advances in Theoretical Physics,
edited by K. A. Brueckner (Academic, New York, 1968),
Vol. 2, p. 75.

SJohn H. Miller and H. P. Kelly, Phys. Rev. A 3, 578
(1971).

T. Lee, N. C. Dutta, and T. P. Das, Phys. Rev. A 4,
1410 (1971).5¹C. Dutta, C. Matsubara, R. T. Pu, and T. P.
Das, Phys. Rev. 177, 33 (1969).

R. K. Nesbet, T. L. Barr, and E. R. Davidson, Chem.
Phys. Letters 4, 203 (1969).

'Jimmy W. Viers, Frank E. Harris, and Henry F.
Schaefer, Phys. Rev. A 1, 24 (1970).

Terry L. Barr and Ernest R. Davidson, Phys. Rev.
A 1, 644 (1970).

Carlos F. Bunge and Eduardo M. A. Peixoto, Phys.
Rev. A 1, 1277 (1970).

Attention is drawn to the work by O. Sinanoglu and co-
workers who examine the magnitude of many-electron
correlations as compared to the pair correlation. See,
for example, O. Sinanoffiu, J. Chem. Phys. 36, 706
(1962); 41, 2683 (1964); O. Sinanoglu and I. Oksih, Phys.
Rev. Letters 21, 507 (1968).

~~R. K. Nesbet, Phys. Rev. 175, 2 (1968).
Oscar R. Platas and Henry F. Schaefer III, Phys.

Rev. A 4, 33 (1971).
The Hartree units are defined in which the reduced

mass in nitrogen is taken to be unity.
'4M. H. Cohen, D. A. Goodings, and V. Heine, Proc.

Phys. Soc. (London) 73, 811 (1959).
~ R. K. Nesbet, in Ref. 1, Vol. 9, p. 321.
~ V. Heine, Czech. J. Phys. 13, 8619 (1963).
'H. A. Bethe, Phys. Rev. B 138, 804 (1965).

~ E. Clementi, J. Chem. Phys. 38, 2248 (1963).
~L. D. Landau and E. M. Lifshitz, Quanhgm Mechanics

(Addison-Wesley, Reading, Mass. , 1958), p. 125.
E. Clementi, IBID J. Res. Develop. 9, 2 (1965}.

2~A. Veillard and E. Clementi, J. Chem. Phys. 49,
2415 (1968).

N. C. Dutta and M. Karplus (unpublished).

PHYSICA L RE VIEW A VOLUME 6, NUMBER 3 SE PTE MBER 1972

Correlation Energies of Ten-Electron Molecular Systems by a United-Atom
Many-Body Perturbation Procedure: H30, NH3, and CH4~

Taesul Lee and T. P. Das
Department of Physics, State University of Nero York, Albany, Nese York 12222

Q,eceived 24 November 1971)

The linked-cluster many-body perturbation theory has been applied to the calculation of the
correlation energies of the molecular systems H20, NH3, and CH4. The Hartree-Fock and
correlation energies are obtained separately by combining the contributions from the pertinent
diagrams. The calculated Hartree-Fock energies are in satisfactory agreement with the best
previous theoretical results. The correlation energies (in a. u. ) that we have obtained are
-0.338, -0.317, and -0.312 for H20, NH3, and CH4, respectively. These latter energies are
utilized for two purposes. One is to combine them with the total Hartree-Fock energies to
obtain the total energies to compare with experiment. Secondly, they are subtracted from the
"experimental" total energies to obtain reference Hartree-Fock energies with which to compare
the energies from theoretical one-electron calculations.

I. INTRODUCTION

Recently, with advances in computing techniques,
accurate variational molecular orbitals approxi-
mated as a linear combination of atomic orbitals
(LCAOMO) wave functions approaching self-con-
sistent Hartree-Pock character have become avail-
able in a number of diatomic molecules. ' Corre-
lation effects have also been included by variational
techniques, using the configuration-interaction (CI)
approach. a Corresponding calculations in poly-
atomic molecules involving three, four, and five
atoms are much more time consuming, hence rela- .

tively few such molecules have been investigated
for both HF and correlated wave functions and en-
ergies.

In recent work, we have applied the linked-
cluster many-body perturbation-theory (LCMBPT)
procedure, which has been very successful for
properties of atomic systems, to calculate the en-
ergy of hydrogen fluoride molecule using as a basis
set the eigenfunctions of the corresponding united
atom, namely, neon. The result for the energy
obtained there agrees very well with experiment
and the most detailed CE calculation available.
The result of the hydrogen fluoride work indicates
that the many-body perturbation approach is cer-
tainly comparable in accuracy to the variational
two-center method and involves a comparable
axnount of computational effort. The effort involved
in calculating two-center integrals in the latter
procedure is substituted by that for calculating
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perturbation diagrams resulting from the multipole
expansions of the perturbation potential, represent. -
ing the difference between the one-center and xno-
lecular Hamiltonians. Correspondingly, the effort
needed to solve the secular equations in the varia-
tional method is substituted by the need for evalu-
ating perturbation sums for each diagram over ex-
cited states. In addition, the many-body perturba-
tion procedure has a number of attractive features.
As has been shown in atomic calculations, the per-
turbation diagrams give information on various
physical effects such as, for example, the role of
pair correlation, pair-pair correlation, and three-
particle interactions. Secondly, with this proce-
dure, one can separately obtain both the Hartree-
Fock one-electron energy as well as the correla-
tion energy. The important point in this respect
is that the latter is not evaluated as a difference
of large energies, namely, the total and the Har-
tree-Fock energies, but directly in terms of rel-
atively small numbers, corresponding to the par-
ticular diagrams representing correlation effects.
In addition, the united-atom model for many-body
perturbation calculations has the advantage in
terms of computing efforts in Lhat the same basis
set of states can be used for a number of isoelec-
tronic molecules. The present paper. is concerned
with. I CMBPT united-atom calculations of the en-
energies of H~O, NH„and CH4 molecules. In ad-
dition to the interest in the energies of these mole-
cules itself, there is interest in the present cal-
culation as it provides a more severe test of the
perturbation approach, since the perturbation po-
tential with respect to the neon atom ae a refer. -
ence becomes increasingly stronger in going from
HF to CH4 molecules. Also the results in this
series of molecules isoelectronic with neon provide
information on the trend of correlation energies in
going from the truly one-center-system neon to
systems with the electronic distribution extending
over increasing numbers of atoms.

In Sec. II we discuss the diagrams and their
physical implications, and the process of evaluating
them. In Sec. III, the contributions of.the various
diagrams and results for the net Hartree-Fock,
the correlation, and the total energies are pre-
sented for the three molecules. The detailed re-
sults are compared with those for the isoelectronic
systems Ne and HF, and the total energies are
compared with experiment. The significance of the
results will be discussed and comparison will be
made with other available calculations. Finally,
conclusions are listed in Sec. 1V.

H. THEORY AND DIAGRAMS

The nonrelativistic Hamiltonian for a ten-elec-
tron molecular system XH„with fixed nuclear co-
ordinates is given by (in a. u. )

(ID —e)e n(e —1)
)~xH 2~HH

In Eq. (1), r, and r, are electronic radius vectors
measured with respect to the X and the eth H nu-
cleus, respectively, as the origin, and v&& is the
electron-electron interaction between two elec-
trons i and j. The summation over u extends from
I to n., with e=1, 2, 3, and 4 for HP, H~Q, NH3,
and CH4. Rx„and R» in the last term of E@. (1)
represent the internuclear separations. ' Since
the last term in Eg. (1) is taken to be a constant,
this term will be omitted until we discuss the final
results for the total energy of XH„. For the pres-
ent analysis, it is convenient to rewrite Eg. (1) in
the form

'0
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i
+Zv„+Z

i

) f', &g g, a E rg rag

where Xp is the zeroth-order Hamiltonian given by

BC =Z ( ——' V, —10/r, + V", )

and is the V" ' Hamiltonian for the neon atom
which is also the pertinent united atom for the sys-
tems discussed in the present investigation, This
choice of Rp gives rise to two terms Xi and 3C& to
be treated as small perturbations. We define X 1

and Xa as follows:

R 3Ci+XP K Xp p

In Eqs. (3), 3C~ represents the usual perturbation
due to the difference between the actual electron-
electro~ interactions and the averaged interaction
represented by the V" potential. Xa represents
the perturbation due to the difference in the nuclear
interactions in the molecule and the united atom.
It is this perturbation that restores the multicenter
nature of the molecules which is absent in the
united-atom Hamiltonian Xp. It is thus appropriate
to refer to Ka as the molecular deformation poten-
tial. The complete set of basis states associated
with $C0, namely, the neon-atom basis set, was
the same as that used in earber work on neon.

Since the Xp basis states are centered about the
X nucleus, it is appropriate to expand 1/r, about
the same center, namely,

4g r &'x,=E l+ r&
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~ Z [r,„(n,)Z ~",„(n.)])
m~-l a~1

where r& (or y&) is the lesser (or greater ) of r,
and A«. For purposes of our calculation, it is
convenient to reexpress X3 in the form

N 1
~ 0 ~ \ + ----. V

s

(b)

PIC.. 1. (a) Hartree-Pock zero grand order energy
diagram. (b) Hartree-Pock first grand order energy
diagram.

where for / = 0,

—0

and for l0,

~XH &

for r, &axH

for r, ~ RxH,

+ r( yn=- $ a=i

The total energy of the system is given by

(1O - n)n n(n -L)E~,q
= Zo+ +

+XH 2 ~HH

where the first term on the right-hand side repre-
sents the sum of the one-electron orbital energies
in the neon V" ' potential. The next term repre-
sents the repulsive energy between the central nu-
cleus and the protons in the molecule. The third
term represents the proton-proton repulsion, all
proton-proton distances within a particular mole-
cule being equal due to symmetry. The fourth term
is the usual linked-cluster perturbation expansion
to the energy. Since X is the sum of X, and X3,
one can obtain sets of diagrams involving X,

'

vertices only, X3 vertices only, and combinations
I

of 3C g. and X3 vertices.
The diagrams involving only X& vertices are

identical to the energy diagrams in the neon atom.
The rest of the diagraxns represent the polarization
effect due to the perturbation X2 which converts
the neon atom into the molecule in question. In de-
scribing and listing the diagrams we have felt it
meaningful to divide the diagrams into two broad
classes, according to whether they are one-elec-
tron diagrams or correlation- (many-electron) en-
ergy diagrams. Topologically, those diagrams
which always involve only one electron excited at
a time represent one-electron effects, while dia-
grams which involve more than one-electron excited
at any instant of time represent correlation ef-
fects. There are some exceptions to this rule to be
discussed later in this section. This permits us
to obtain the Hartree-Pock and correlation energy
separately. Within each of these two classes, we

have separated the diagrams according to the num-
ber of orders of X3 that are involved.

Since we shall be combining into groups all dia-
gra. ms which involve the same number of order in
R~ and all order in X& wherever possible and nec-
essary, it is helpful to use the term grand order
to characterize such groups of diagrams. Thus a
group referring to grand order n will have, for
all its diagrams, n X& vertices and any number of
vertices corresponding to X f .

Considering the Hartree-Fock diagrams first,
in zero grand order, we have one group of dia-
grams in Fig. 1(a) which as usual provides the
correction to the sum of the orbital energies in
neon owing to the fact that such a sum counts the
Coulomb and exchange energies twice.

For the first grand order, we have the diagrams
shown in Fig. 1(b). This diagram represents the
net first-order correction due to the deformation
potential.

Under the second grand order, we have the
group of diagrams listed in Fig. 2. These dia-
grams are analogous to the polarizability diagrams
of neon except that our 'deformation potential now
has all orders in y, simultaneously, instead of the
one particular I value that one considers for the
calculation of a particular multipole polarizability.
In general, the two y vertices can refer to dif-
ferent / values in all the diagrams in Fig. 2 ex-
cept for the first one where the / values at the two
vertices have to be equal from angular momentum
considerations. However, since neon has spheri-
cal symmetry, in fact„except for a fewexceptions,
all the diagrams involve two vertices with same

The first diagram in Fig. 2 represents the
direct effect on the neon orbitals of two orders in
the deformation potential. In this diagram, each
neon orbital is individually polarized by the de-
formation potentiaII. and the polarized orbital inter-
acts with the latter just as in the polarizability
problem. The diagrams 2(b) —2(e) represent the
corrections to diagram 2(a) due to the interaction
between the electronic states while they are sub-
ject to the deformation perturbation. Thus these
diagrams essentially correspond to the self-con-
sistency correction terms in the method-A pro-
cedure for polarizability calculations discussed by
I,anghoff, Karplu. », and Hurst. It should be re-
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FIG. 2. Typical second grand order Hartree-Fock
energy diagrams.

marked that although diagrams 2(d) and 2(e) appear
to involve two particles excited simultaneously,
in fact, as shown by Langhoff, Karplus, and
Hurst, they represent perturbation terms in the
energy which arise from taking a determinantal
wave function in the perturbed state. These dia-
grams have therefore to be grouped with one-elec-
tron diagrams. The values of the diagrams 2(b)-
2(e) show that they do provide substantial shield-
ing corrections to the diagram 2(a). The diagram
2(c) is the exchange version of 2(b). We have in-
cluded the effects of these shieldings to all orders
in X~, both within each diagram type [for example,
2(f)] as well as for combinations of the various
types of vertices [for example, 2(g) and 2(h)] in
the four different vertices shown in Figs. 2(b)-
2(e). This was accomplished by the usual geo-
metric-series approximation procedure'~ involving
examinations of diagrams of successively higher
orders in electron-electron vertices.

There are some additional one-particle excita-
tion diagrams in each grand order involving the
ls hole state of neon, which are small compared
to those discussed so far. These diagrams, ex-
amples of which for second grand order are shown
in Figs. 2(i) and 2(j), are analogous to correspond-
ing ones in neon and result from the use of the V

potential, and take account of the smai~ difference
between the true Hartree-Fock energy and the one-
electron energy in a V" ' potential. %e have
included all the contributions from these diagrams
in the present calculation.

In describing higher g order diagrams, it is
necessary for purposes of brevity of notation to
introduce the interaction vertex in Fig. 3, which
shows a screened deformation potential vertex
inserted on a hole line. The solid horizontal bar
will be used to' denote this screened vertex in con-
trast to the dotted bar in Fig. 1(b) which repre-
sents the bare X~ interaction vertex. It should be
remarked that in Fig. 3, the right-hand side should
involve an infinite series representing the contri-
bution from all orders in electron-electron inter-

—e
e

-----0

-~ +

(a)

"~ ---%

+

(b)
-- "0

(c)

FIG. 3. Screened-deforxnation-potential vertex
inserted in a hole line.

actions. This would mean adding successive or-
ders of lenses in Fig. 3(b) and exchange counter-
parts in Fig. 2(c) and combinations of both to all
orders. Also either or both of the dotted lines
in Fig. 3(a) at the extremities of the diagram can
be replaced by solid lines with the same meaning
as that for the middle line. The sum total of the
third grand order diagrams including shielding
effects is represented in a compact form by the
diagram in Fig. 4(a). The middle interaction line
(solid line) indicates the sum of two diagrams, one
with the interaction line on the hole side, and the
other with that on the particle side. This then
gives a convenient notation for representing the
composite of all diagrams representing higher
grand orders as indicated for fourth order in Figs.
4(b)-4(d). In our present work, we have evaluated
the Hartree-Fock diagrams through fourth grand
orders.

For the correlation energies, the typical dia-
grams are shown in Fig. 5. The zero grand order
diagrams shown in Figs. 5(a) —5(d) correspond to
those for the neon atom. ' The first two diagrams
represent the pair-correlation energies which
gave about 106% of the neon correlation energy.
The rest of the correlation-energy diagrams in
neon accounted for the balance of 6/p almost all
of which was accounted for the pair-pair correla-
tion-energy diagrams in Figs. 5(c) and 5(d). The
first grand order diagrams presented in Figs.
5(e)-5(h) form two distinct subclasses. The first
subclass, typified by Figs. 5(e) and 5(f), repre-
sents the influence of the deformation potential
on the neon correlation-energy diagrams. Here
the middle horizontal (solid) line can be attached
to any of the two hole lines and two particle lines
in the diagram. Besides these two diagrams, we
have also included the diagrams that result from
attaching the K~ line to the pair-pair correlation-
energy diagrams in Figs. 5(c)-5(d). The second
subclass of the first grand order diagrams in-
volving Figs. 5(g) and 5(h) is typical of the molec-
ular system and cannot be obtained by attaching

I
an 3C~ vertex to any of the neon correlation-en-
ergy diagrams. Physically these diagrams rep-
resent the influence of many-body interactions
among electrons on the response of individual
electrons to the deformation potential. In this
respect, they are similar to the diagrams 2(b)-



T. LEE AND T. P. DAS

(a) (b) (c) (d)

FIG. 4. Third and fourth grand order diagrams in
compact forms.

In Table I, we have listed our calculated con-
tributions from various grand orders for both the
Hartree-Pock and correlation energies as well as
the total energies for all three molecules studied
in this work. For purposes of comparison, corre-
sponding contributions for HF molecule are also
included from earlier work. 3 The last row gives
the experimental values of the nonrelativistic total
energies. The nonrelativistic total experimental
energies which are the pertinent ones to use here
for purposes of comparison can be obtained by the
same procedure that was adopted for HF molecule.

TABLE I. Summary of the results on the Hartree-rock,
correlation, and total energies.

Grand
orders HF

—123.356
25.398

—1.797
—0.291

0.010

H20

Hartree-Fock energy'
—119.362 —116.578

51.279 77.745
—7.214 —15.854
—0.731 —1.618

0.030 0.154

CH4

—114.489
105.221

—26.734
—4.304

0.485

2(e) which describe the role of one-electron con-
sistency effect on the perturbation due to the de-
formation potential. Diagrams such as 5(i)-5(k)
represent the combined influence of the correla-
tion and consistency effects on the perturbation of
the one-electron states by the deformation poten-
tial. The last two diagrams in Fig. 5 represent
typical third grand order correlation-energy dia-
grams.

HI. RESULTS AND DISCUSSION

This procedure consists of combining experimen-
tal dissociation energy data' for the molecule with
experimental total energies for the separated atoms
using ionization data' for the latter and making
corrections for relativistic effects' to obtain the
nonrelativistic energy.

Before further discussion about the results in
Table I, we would like to analyze some of the con-
tributions from which the various grand orders
are composed. The zero grand order contribu-
tions are a result of combination of neon Hartree-
Fock energy and the nuclear repulsion energies in
these molecules. The first grand order contribu-
tion arises primarily from Fig. 1(b) and includes
small corrections due to screening effects corre-
sponding to the replacement of the dotted line in
Fig. 1(b) by the solid line in Fig. 3, as discussed
in Sec. II. The second grand order results broken
down in Table II illustrate the substantial shielding
effects that result from electron-electron interac-
tions. In Table II, the first row represents the
contribution from diagram 2(a) describing the sec-
ond-order polarizations of the individual orbitals
by the deformation potential. The next four rows
give the contributions from diagrams 2(b)-2(e)
which represent the influence of electron-electron
interactions. The number for diagram 2(b) in-
cludes the effects of diagrams such as 2(f) and its
higher-order counterparts obtained through the
geometric-series approximation. Similarly the
contribution listed for diagram 2(d) includes the
contributions from diagrams 2(g) and 2(h) and their
higher-order counterparts. It should be pointed
out that diagrams such as 2(f)—2(h) have compan-
ions of the same order involving exchange and dif-
ferent time orderings of the various vertices. All
these diagrams were included in the analysis.
Small contributions from diagrams 2(i) and 2(j) are
also included in the numbers quoted for 2(c) and

2(e), respectively. The net screening contribution

EHa. —100.036
+ 0.1

-75.998
+ 0.15

—56.151
+ 0.2

Correlation energy

—39.821
+ 0.4 tI V

(a) (b) (c) (d)

Etot

-0.3878
0.0319

—0.0013
—0.0005

—0.3577
+ 0.01

—100.394b
+ 0.1

—100.4535

-0.3878
0.0576

-0.0053
-0.0020

-0.3375
+ 0.01

—V6.336
+ 0.15

—V6.4347

-0.3878
0.0873

—0.0119
—0.0046

—0.3170
+ 0.01

-56.468
+ 0.2

—56.5601

—0.3878
0.1049

—0.0211
—0.0081

—0.3121
+ 0.01

—40. 133
+ 0.4

—40.5100

(e} (h)

aAtomic units are used (1 a.u. of energy =27.2097 eV).
this number is slightly different from that quoted in

Ref. 3 due to somevrhat different approximation involved
in summing over higher-order diagrams.

(m)

FIG. 5. Correlation-energy diagrams.
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TABLE II. Contributions from the second grand
order Hartree-Pock energy diagrams.

Diagram

2(a)
2(b)
2(c)
2(d)
2(e)

Total

HF

—2.845
0.714

-0.130
0.486

—0.022
—I.797

H20

—11.391
3.099

—0.543
l.989

-0.368
—7.214

—25.660
7.089

—l.289
4.543

-0.537
—15.854

CH4

-45.999
12.564

—2.083
9.951

—1.167
—26.734

TABLE III. Contributions to the diagram 2(a) from
various l-excitations.

due to electron-electron interactions has been
found to be about 40% of the bare diagram 2(a). In
the third grand order, there are a number of dia-
grams as mentioned earlier, the composite of
which is represented by Fig. 4(a). In evaluating
these diagrams, one has to take into account the
screening that accompanies all three y vertices.
Percentagewise, the screening is now more pro-
nounced than for the second grand order, being
about 75% of the bare diagram consisting of three
y vertices (dotted line). This stronger cancella-
tion helps the convergence in orders. In the fourth
grand order, from the diagram represented by
Fig. 4(b) which is a simple extension of the dia-
gram 4(a) with one additional screened y vertex,
there is a small negative contribution. However,
one now has a new topological arrangement of ver-
tices represented by Fig. 4(c) and its various coun-
terparts, a typical example being that in Fig. 4(d).
These diagrams produce positive contributions
larger in magnitude than the negative contribution
from Fig. 4(b).

Table III gives a breakdown of the contributions
to diagram 2(a) from hole states 1s, 2s, and 2P.
For each of these states, contributions from var-
ious particle states of different l are listed to il-
lustrate the l convergence of this diagram. The
contributions from s-particle states for 1s and 2s

and p-particle states for 2p result from vertices
associated with yo and are seen to be of compa-
rable magnitude with 2p the largest followed by 1s.
The P-particle contributions for the s-hole states
and s- and d-particle contributions for the p-hole
state arise from y, vertices in diagram 2(a) and
are indicative of the dipole polarizabilities of the
three types of hole states. It should be remarked
that the 2p-p excitation could also be brought
about by a combination of y2 vertices instead of
two yo vertices. The contribution from the for-
mer was found to be about 1% of the latter. A
similar observation applies to the ratio of (y~, y~)
to (y„y,}vertex-combination contributions for
2p-d excitations. An examination of the contribu-
tions from the various l states as listed in Table
III for all four molecules indicates that satisfactory
convergence has been achieved in terms of the in-
fluence of the various multipoles y, .

The contributions from the zero grand order
correlation-energy diagrams in Figs. 5(a)-5(d)
listed in Table I were taken from the calculation on
neon. Table IV lists the contributions from corre-
lation-energy diagrams in Figs. 5(e)-5(h). As ex-
plained in Sec. II, diagrams 5(e) and 5(f) are the
composites of four sets of diagrams corresponding
to the solid line attached to the two holes and two
particle lines in the diagram. The solid line as
usual represents a screened vertex which is il-
lustrated in Fig. 3. The numbers in the first row
in Table IV represent the net contribution from the
diagram 5(e) due to vertices of the type shown in

Fig. 3(a). The second row is the sum of the cor-
responding contributions from vertices of the types
shown in Figs. 3(b) and 3(c}and their higher-or-
der variations. The next two rows are the counter-
parts of the first two rows for the diagram 5(f).
Again an examination of the relative magnitudes of
the second-row contributions with respect to the
first row and of the fourth row with respect to the
third rom indicates a screening effect from the elec-
tron-electron interactions comparable to that for
Fig. 2, namely, about 35%. The diagrams 5(g) and

HF

-0.712
—0.0

H20

—2. 911
—0.0

NH3

—6.548
—0.0

CH4

—11.638
—0.0

TABLE IV. Contributions from the first grand order
correlation-energy diagrams.

2S S

p
d

f
2P S

p
d
f

Total

—0.464
—0.002
—0.005
—0.002

—0.008
-1.579
-0.063
-0.010

—1.945
—0.003
—0.005
—0.003

-0.012
—6.403
-0.098
—0.011

—2.845 —11.391

-4.396
-0.002
—0.003
-0.002

—0.010
—14.623
—0.070
—0.006

—7.858

~ ~ ~

-0.006

~ ~ ~

-26.467
-0.030

—25.660 -45.999

DiagraIQ

5(e)

5(f)

5(g)

5(h)

Total

HF

—0.0048
0.0017

0.0026
—0.0009

0.0296

0.0037

0.0319

H20 NH3 CH4

0.0066

0.0576

0.0101

0.0873

0.0220

0.1049

—0.0089 —0.0153 —0.0193
0.0028 0.0061 0.0082

0.0053 0.0078 0.0095
—0.0020 .—0.0029 —0.0035

0.0538 0.0815 0.0980
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TABLE V. Summary of earlier works on energies for
ten-electron sys tems.

Reference

One-electron

HF H20 CH4

One-center
15
16
17

Present
calculation

~HF.

—100.005 —75.922

—99.827 —75.934

—100~ 04 —76.00
—100.096 —76.097

—55.972
—56.081
-56.188

-56.15
—56.243

—39.866

-39.971

-39.82
-40.198

Multicenter
18
19
1

20

Many-electron

—100.07

—76.034
—76.0ee ' —56.201 —40. 198

-56.185

One-center
21

Presnet
calculation

—100.40
+0.1

—76.48+0.07
-76.33

+0.15
—56.47
+0.2

-40.13
+0.4

Multicenter
2

22
22
23

—100.356
—76.148(GTO)
—76.145(STO)
-76.144 —56.288 —40.314

5(h) make the contributions listed in the fifth and
sixth rows of Table IV. These diagrams, as men-
tioned earlier, are typical of the molecular sys-
tem and cannot be related to the united-atom dia-
grams. They make substantially larger contribu-
tions than Figs. 5(e) and 5(f). In view of this, in
the higher grand orders, only the diagrams 5(i)-
5(m) which result from additional perturbations of
diagrams 5(g) and 5(h) were included. The third
grand order contributions are estimated from the
diagrams 5(l) and 5(m).

Returning to Table I, we like to comment first
on the error limits that we have ascribed to the
Hartree-Fock, correlation, and total-energy re-
sults. Since the fourth grand order diagrams have
not been exhaustively studied, we expect conserva-
tively an error limit from this estimation of about
50% of the results that we have listed under the
fourth grand order contributions. An additional 10%
of the fourth grand order contribution was also
added to the error limit to reflect possible contri-
butions from higher grand orders. Additionally, an
error limit of 0. 1 a. u. has been added as a conser-
vative estimate of the accuracy of the numerical
procedures involved in evaluating the diagrams.
This limit is much larger than what we have esti-
mated in earlier energy calculations of atoms,
because the sizes of the diagrams involved here

—100.454 —76.435 —56.560 —40.510

'The reference HF energy defined in the text.
"This result was obtained from a STO basis set. Neu-

mann and Moskowitz obtained —76.059 from a GTO basis
set [D. Neumann and J. W. Moskowitz, J. Chem. Phys.
49, 2056 (1968)].

are much larger. For the correlation energies,
the main error limits are set by those in the neon
correlation-energy calculation. These error lim-
its dominate the small range of additional errors
that result from the fact that the third grand order
contribution is of the nature of an estimate and
higher grand orders are neglected. The error lim-
its for the total energies are determined by the
corresponding limits for the Hartree-Fock ener-
gies, since the error limits of the correlation en-
ergies are much smaller.

Our calculated total energies for HF, water, and
ammonia are in satisfactory agreement with the
experimental results. For methane, the agree-
ment is somewhat less satisfactory. This trend is
expected, since the perturbation potential X& gets
increasingly stronger as one goes from HF to
methane, leading to relatively larger contributions
from fourth and higher grand orders. We shall
discuss later in this section possibilities for im-
proving the Hartree-Fock results.

The correlation energies ~„„areseen to vary
very little in going from neon (~ = —0. 38914)
to methane. This is a consequence of the fact that
the over-all volume over which the electrons are
distributed does not change drastically over the en-
tire series of these five isoelectronic systems.
Whatever variation there is in ~„,can be phy-
sically understood as follows. The pair-correla-
tion energy reflects the tendency of electrons to
stay further apart beyond what is expected through
the Hartree-Fock potential. The tendency to stay
apart is stronger when the electrons are confined
to a smaller volume and the average pair separa-
tion is expected to increase significantly in going
from neon to HF, since the electrons now spend
part of the time on two separate atoms. This ex-
plains the observed decrease in ~ „. A further
increase in the average pair separation and corre-
sponding decrease in correlation energy is expected
in going from HF to the five-atom-system methane
as is observed from Table I, although the decrease
is less significant than in going from neon to HF,
where the largest relative change in pair separa-
tion is expected.

Finally we would like to compare our Hartree-
Fock and total-energy results with those of earlier
calculations. A number of one-electron calcula-
tions have been performed on these molecules. In

Table V, we have listed the results of only a se-
lected number of one-electron calculations which we
felt were the most extensive of the available ones.
The number of many-body calculations available is
much fewer than one-electron ones. We have listed
all the available results in this case. Included in
the table are our Hartree-Fock and total-energy re-
sults taken from Table I as well as the experimen-
tal total energies and reference Hartree-Fock ener-
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gies. The latter are obtained by subtracting our
calculated correlation ener gies from the experimen-
tal total energies. This is the reverse of what is
usually done in atomic and molecular calculations,
where one subtracts the best Hartree-Fock energy
from the experimental total energy to obtain a cor-
relation energy. With the LCMBPT procedure, it is
however possible to obtain the correlation energy
as a separate entity from an estimation of the cor-
relation-energy diagrams. In the present work, the
correlation energy is obtained with an accuracy
comparable to the experimental total energy and
therefore it is justifiable to use the difference be-
tween the experimental total energy and the calcu-
lated correlation energy as a reference to compare
with theoretical Hartree-Fock calculations.

Considering the one-electron energies first, the
earlier calculations are grouped under two broad
categories —one center and multicenter. Among
the one-center calculations, there is first the
method used by Moccia" which utilizes a variation-
al procedure to obtain one-electron wave functions
for the molecule using a linear combination of
Slater-type orbitals (STO) centered on the heavy
atom. Joshi's calculation" for ammonia is of the
same type except that he used the larger basis set
of 25 STO (instead of Moccia's 21) and optimized
exponents in the variational calculation. Also he
utilized STO's with / up to 5 while Moccia had gone
up to /= 3. The other type of one-center calcula-
tion that has been performed is by Kim and Parr'
who utilized the so-called "molecular puff" Ham-
iltonian for the zeroth-order approximation. This
potential can be best described as a combination
of the neon-atom potential and yo term in X2 except
that the Coulomb and exchange contributions to the
one-electron potential mere determined self-con-
sistently instead of using neon orbitals for this pur-
pose as we have done. Using their zero-order or-
bitals, Kim and Parr obtained the energy up to
second order in the y& terms for /=1 to /=10. In
order to simplify their computational procedure,
Kim and Parr utilized single-exponent nodeless
STO with optimized exponents for the zero-order
wave functions. The use of orbitals of this form
allowed them to obtain the perturbation due to y,
in the one-electron mave functions, by analytic
solution of the corresponding first-order equations.

The multicenter one-electron results which are
listed in Table V mere all obtained through varia-
tional self-consistent-field (SCF) LCAOMO calcula-
tions. The calculations' on water, ammonia,
and methane were performed using Gaussian or-
bitals, while Cade and Huo's calculation' on HF
utilized a linear combination of STO's.

In the case of HF molecule, our one-center per-
turbation calculation gave a lower one-electron en-
ergy than tPe other two one-center calculations.

The two-center SCF calculation by Cade and Huo,
however, gives a slightly lower energy than our re-
sult and is only about 0. 023 a. u. higher than the
experimental Hartree-Fock energy. For water,
again our calculated one-electron energy is lower
than these from the other two one-electron one-
center calculations. The two SCF LCAOMO re-
sults, however, are lower than ours by about 0. 03
and 0. 06 a. u. , respectively, the lower of these be-
ing about 0. 038 a. u. higher than the reference
Hartree-Fock result. In the case of ammonia, our
calculated one-electron energy is lower than both
Moccia" and Joshi, ' but a little higher than Kim
and Parr. ' In Kim and Parr's calculation, the
perturbation effect of X2 is handled somewhat better
than in our treatment because they absorbed yo

in the zero-order Hamiltonian. On. the other hand,
the accuracy of their results suffers somewhat from
the use of the rather simplified one-exponent vari-
ational functions. For ammonia, the perturbation
effect is much stronger than in water and HF, and

their formulation in terms of the weaker perturba-
tion Hamiltonian has a definite advantage over our
calculation and leads to an energy lower than ours.
This feature is even more marked in the case of
methane where the perturbation Hamiltonian in our
treatment is relatively strong and makes our Har-
tree-Fock energy about 0. 15 a. u. higher than Kim
and Parr. For both ammonia and methane, the
multicenter SCF calculations give lower energies
than the best one-center results. For ammonia,
the best multicenter one-electron energy is only
0. 02 a.u. higher than the reference Hartree-Fock
energy. For methane, there seems to be almost
exact agreement between the lowest theoretical
Hartree-Fock energy and the reference Hartree-
Fock energy.

As regards other many-body calculations, these
can also be divided into one-center and multicenter
categories. The only other one-center calculation
beside ours is that on water by Miller and Kelly '
who have also utilized the LCMBPT approach.
However, instead of using the neon-atom potential
as the starting point as we do, they use for their
zero-order Hamiltonian the V" ' potential corre-
sponding to neutral oxygen. Thus their perturba-
tion potential consists of contributions from the
two hydrogen atoms with a substantial cancellation
between the matrix elements involving the poten-
tial due to the protons and those due to the accom-
panying electrons. This cancellation is analogous
to the cancellation that we have found in each grand
order between diagrams involving the bare y,
vertex and those involving in addition, the effects
of electron-electron interaction vertices. The
other many-body results listed in Table V were
obtained through the variational CI procedure us-
ing the occupied and unoccupied orbitals obtained
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from SCF LCAOMO calculations to create deter-
minantal wave functions corresponding to the var-
ious configurations utilized in the calculations.
For HF, the result of our calculation for the total
energy is lower than the available CI results. The
experimental total energy lies within the limits of
error of our results. For water, our calculated
total energy is lower than the results from the
available CI calculations ' listed in Table V. The
experimental total energy lies within the range of
the error of our calculation. It is interesting that
while our calculated total energy is slightly higher
than experiment, that of Miller and Kelly2' is
slightly lower. Since many-body perturbation cal-
culations do not utilize the variation principle,
there is no lower bound on the results and hence
one can obtain an energy lower than experiment by
the LCMBPT procedure. For ammonia, our total
energy is again lower than the available results
from CI calculations. ~3 This is interesting, since
our calculated Hartree-Fock energy was higher
than the SCF molecular orbital results listed in
Table V. The relatively high total energy from
CI calculations could be interpreted as indicating
that all of the correlation energy has not been in-
cluded in the CI calculations.

For the methane molecule, our total energy is
higher than the available CI results. 3 We feel that
this is a consequence of the difference between our
calculated Hartree-Fock energy and the reference
Hartree-Fock energy pointed out earlier. The CI
result is about 0. 186 a. u. higher than experiment,
which may again indicated that the correlation
effects have not been completely incorporated in
the CI calculations.
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