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The Brueckner-Goldstone many-body perturbation theory is applied to stu the electronic
structure of the atomic nitrogen in its ground 4$ state. A complete orthonormal set of the V"
single-particle states with angular symmetry up to ) = 5 is explicitly used to calculate the cor-
relationmnergy diagrams. The contribution from higher l (& 5) is estimated by a hydrogenic
approximation of the continuum wave functions. Our final correlation energy is —0.1895
+ 0.003 a.u. , as compared with -0.1886+ 0.0094 a.u. from the semiempirical estimate made
by Veillard and Clementi. The sum of the exchange-core-polarization and pair-correlation-
energy diagrams give a total of -Q. 207 28 a.u. , which is 110% of the semiempirical estimate.
This contains a contribution of -0.00610 a.u. (3.2 %} from L &3 states and -0.05825 a.u.
(31 %) from the excitations into the valence 2p orbitals, the latter arising from the open-shell
nature of the nitrogen atom. The overestimate (10 %) of the correlation energy is remedied by
the pair-pair correlation of 0. 01137 a. u. (6%) and the many-electron (three and four) effect
of 0.00642 a.u. (3.4 %). A comparison with earlier configuration-interaction results is also
made.

I. INTRODUCTION

The Hartree-Pock (HP) theories are known to
yield accurate total energies of the neutral species
of light atoms and molecules in the one-electron
approximation. However, the total energies are
usually of little physical or chemical interest.
For example, the chemical dissociation energies
of molecules or spectroscopic excitation energies
of atoms are usually small numbers arising out of
differences between the large total energies in
which the role of correlation energy is vital. The
correlation energy is customarily defined as the
difference between the exact nonrelativistic energy
and the restricted Hartree-Pock (RHP) energy.
Recently, considerable efforts have been made in
calculation of the correlation energies of many
atoms. Basically, these could be classified into
two broad categories. First is the variational
approach in which the many-electron Schrodinger
equation is solved by configuration-interaction
(CI) method using a finite and discrete basis set.
This is usually carried out in the framework of
single and double excitations of electrons starting
from the RHF wave function. However, in order
to obtain quantitatively accurate results, such
approaches usually need to employ a very large
and sufficiently flexible basis set, which is often
computationally difficult and expensive. Also, the
criterion for choosing a proper basis set is not
always clear cut as one can not always meet fully
the demand for the completeness of a basis set.

An alternate approach which circumvents these
difficulties is the many-body perturbation theory
(MBPT). ' This has been successfully applied to
compute the correlation energies ' as well as other
properties of atoms. An attempt was recently
made to establish a direct contact between these
two approaches for the case of correlation energy
in the atomic neon. In the present work, we
analyze the correlation energy of the atomic nitro-
gen in its ground S state by MBPT. There are
several reasons for undertaking this calculation.
First, it has been demonstrated that the sum of
independently calculated pair-correlation energy
e(P, q) by either variation or perturbation approach
usually yields an overestimate of the correlation
energy, the main reason for this being the neglect
of the pair-pair interaction. ' ' A full CI calcu-
lation will of course include the pair-pair interac-
tion automatically. This is, however, very seldom
performed even for light atoms, because of obvious
computational limitations.

Secondly, inclusion of orbitals of higher angular
symmetry (I &3) is found by no means negligible. st

However, a considerable amount of cancellation is
observed between these two contributions in the
case of the atomic neon. It is interesting to in-
vestigate whether this kind of cancellation occurs
in general. A study of the electron correlation in
the atomic nitrogen can provide a clue to these
questions and help to understand the electronic
structure of neutral atoms in general. In addition,
nitrogen being an open-shell atom provides other
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interesting features occurring due to mixing of the
single- and double-excitation conf igurations. Also,
the earlier calculation of Nesbet by the Bethe-
Goldstone method" and the recent result of Platas
and Schaefer by a symmetry-adapted pair-cor-
relation calculation (SAPCI) will enable us to carry
out comparisons of the results obtained by differ-
ent methods. Finally, we can make use of the same
basis set and matrix elements which were utilized
in our earlier work on the hyperfine interaction of
this atom. '

In Sec. II, a brief review of MBPT and analysis
of diagrams are presented. The computational
aspect of the problem together with the results
is given in Sec. III. Comparison of the present
work with earlier CI calculations is carried out
in Sec. IV. Section V contains the summary and
conclusions obtained from the present work.

II. METHOD

Since the details of MBPT have been given at
length elsewhere, ' we will present here only the
barest essentials necessary for the subsequent
discussion. The total nonrelativistic Hamiltonian
X for an N electron atom is given by the sum of

the unperturbed Hamiltonian Xo and the perturba-
tion X' defined by

X=Xp+ X

where

Xp=Z(T»+ V») (2)

N

X =Zv„-Z V,
f&j hei

T& is the sum of the kinetic energy and nuclear
attraction terms, and v&& is the Coulomb repulsion
between ith and jth electrons. V& is an appropriate-
ly chosen single-particle potential. Hartree units
are used everywhere. '3 In this work the V" ' po-
tential is employed. ' A complete orthonormal set
of single-particle states f»Io„j is generated by solv-
ing

(T+ V)»»o„= t„y„.
Both bound and continuum states are included. Ex-
plicit equations for the reduced radial wave func-
tions for the s, P, and d states are given in our
earlier work. The f, g, and 1'» states are obtained
by solving the following equation:

dp 2Z l(l+ 1) Fp(lsp, 1sp; r) Yp(2s, 2s; r) Yp(2P, 2P; r)

F~(2P, 2pp;r)l
&

2 F»(ls, nl;r) &, o, F»(2s, nl;r) &,2 p++, I' nl;r + (

2 nl x &2'nl ~»-1( P 1 9 ) Q(2PP )
5»+»'\ P s s ) Q(2PO. )y 1+i (5)

The notations are consistent with those used in our
earlier work. The coefficients in front of the
direct and exchange terms in'E»l. (5) arise out of
the appropriate spherical averaging of the V" ' po-
tential. They are given in Table I. Thus, all s
states are computed in the field of the nucleus, two
1s electrons, one 2s electron, and three 2P elec-
trons, whereas non-s states (f 40) are generated
in the field which includes interaction with the nu-
cleus, two 1s electrons, two 2s electrons, and two
2P electrons. Therefore, the 2s and 2P states are
the HF states, whereas 1s does not correspond to
the HF 1s state, denoted by 1s . Consequently,
the single-particle energy &i, is different from the
HF 1s energy, although the wave functions do not
differ significantly. The unperturbed ground state
40 is taken to be a single Slater determinant com-
posed of the 1s, 2s, and 2P orbitals obtained from
E»ls. (12) and (14) in Ref. 5. The states included
in 4z are called unexcited states and the rest are
called excited states. It is reminded that these

00

q II

E = &o + ~ &4'o
I

X'
neo 0

with

(6)

TABLE I. Coefficients a& and b& in Eq. (5).

al

1.7778 x 10
1.0390 x 10
6.8376 x 10

b

0.274 28
0.217 69
0.179 57

bg i

0.282 18
0.220 39
0.180 74

excited states do not imply the physical excited
states of the system. Following the usual conven-
tion, the unoccupied unexcited states are called
holes, whereas the occupied excited states are
called particles. The exact nonrelativistic total
energy E is given by the following perturbation
series:
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(a) (b) (c)
FIG. 1. First-order corrections to the uperturbed

energy. The dotted line represents v&& interaction,
whereas the dotted line terminating with a cross denotes
the interaction with the single-particle potential V.
Figure (d) represents the net sum of interactions in (a),
(b), and (c), viz. , (a) + (b) + (c) = (d) .

The operator Q removes the 40 component and en-
sures no @0 contribution to the intermediate states.
The subscript I indicates that only "linked" terms
should be included in the sum. If the RHF basis
set is used, the sum of Eo and the n = 0 term in
Eq. (6) will give the RHF energy.

We follow the usual diagrammatic procedure to
evaluate the various terms in Eg. (6). Figures 1(a)-
l(c) describe the first-order diagrams which rep-
resent corrections to Eo due to interaction between
electrons in the passive unexcited states and also
with the single-particle potential V. Since these
three types of interactions appear repeatedly in the
subsequent diagrams, we use the compact symbol
given in Fig. 1(d) to denote the net effect V„t due
to Figs. 1(a)-l(c). The mathematical expression
for the interaction in Fig. 1(d) is then given by

FIG. 2. Second-order correlation-energy diagrams.

up and spin-down core s electrons and the spin-
up 2P electrons. This corresponds to the ex-
change-core-polarization (ECP) effects. ' The ex-
pression for this diagram is given by

1(p I Vef, I +) I

~p- ~a

The summation is understood to include a discrete
sum over the bound excited states and integration
over the continuum states with an appropriate den-
sity-of-state factor in the latter case. The prime
in the sum implies that 0 excludes the unexcited
states. There is a further modification to this
diagram owing to the correlation shown in Fig. 3(h)
and its three other time-ordered versions. This
will be discussed shortly. Figure 2(b) and its ex-
change counterpart Fig. 2(c) represent the second-
order pair correlation between P and q electrons.
The expression for Fig. 2(b) is

where

where

D pq~

pate

= fp+ 6q —fp
—f@g (12)

[pqlv~&lpq]=&pqlvi& lpq)-&pqlv~&lqp)6. ....,
It is observed that whenever P = 1s, we obtain an
additional correction term resulting from Fig.
1(d):

6c„=[ls 2s lv, & l
ls 2s] + & ls is

l
v, & l

ls ls)

—2&is is lvgy lls ls )+ (1818 lvgglls ls) .
(9)

The last three terms in Eq. (9) result from the
difference between the 1s and 1s wave functions.
The sum of Eo and contributions from the first-
order diagrams gives the RHF energy.

In Fig. 2, all second-order diagrams are pre-
sented. Figure 2(a) represents the effect of the
single-excitation contribution to the energy. If
the unrestricted Hartree-Fock (UHF) basis set is
used, the net contribution from this diagram is
zero. However, since we have used the RHF basis
set and because the nitrogen atom is an open-
shell system, this diagram survives whenever the
hole state P is either the 1s or 2s state. The
physical effect represented by this diagram is the
unsymmetrical exchange interaction between spin-

A similar expression for the exchange diagram
[Fig. 2(c)] can also be written down.

In Fig. 3, the diagrams representing the modi-
fications to the parent diagrams 2(a)-2(c) are pre-
sented. Figure 3(a) with p =1s and 2s represents the
effect of the splitting of the energy levels of &»+
and &&,- and similarly &2,.and &~,- on the pair-cor-
relation energy e(p, q). This is again due to the
open-shell nature of the nitrogen atom. Interactions
of the type in Fig. 3(a) are summedto all orders ex-

(a) (b) (c)

».@ 'f'I ~».
--.

'. '» --, I'I"»g-- ~ jI
(e) (f)

FIG. 3,. Modifications to the second-order pair correla-
tion energy of electron pair p, q and ECP diagrams.
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actly by a geometric series sum, which in the pres-
ent case leads to the shift in the single-particle
energies &„and &2, to

e'„, = e„,+ ~ (ns 2p fv;& f2Pns), n= 1 or 2 (13)

where &&, already includes the correction ~&„given
by Eg. (9).

Figure 3(b) is the familiar hole-hole (hh) interac-
tion. Hole-particle (hp) interactions are shown in
Figs. 3(c)-3(e). There are also similar hp dia-
grams in which the middle interaction is attached to
the q-hole side. Considerable cancellation occurs
among these diagrams. For example, if the excited
state k is generated in a potential in which an inter-
action with the hole state P is missing, then Figs.
3(d) and 3(e) cancel. Particle-particl~ (pp) interac-
tions are shown in Fig. 3(f). All possible exchange
counterparts of Figs. 3(a)—3(f) are also included.

The correlation-energy calculation is significantly
improved if a Brillouin-Wigner-type denominator,
namely, the exact energy difference of the ground
and excited states of the system, is used in Eq.
(ll), rather than the bare single-particle energies. "
This is partly accomplished by the inclusion of
Figs. 3(b)-3(f) and their respective higher-order
counterparts. They modify the second-order pair-
correlation energy e (P, q). Figures 3(b)—3(f) in-
cludethediagonalterms, namely, k =k" and k'=k"',
as well as the nondiagonal terms. The diagonal terms
are summed to infinite orders by the shifted energy
denominator" given by

D'„,„,= D~,„., —[Pq fv„ fpq] [pn' fv„ fPu']

+ [qk fv;& fqk]+ [pk fv, , /pa]+ [qu' fv, , fqu']

(~
I
v.„fa) (a'

I
v.„fu') [ua fv, , fan ].

(14)
Thus, the second-order pair-correlation energy
e (P, q) corresponding to Fig. 2(b) is modified to

&a g' l(Pqlv, z
lk'0") I (ep —e~)

P, a 2
gppp p (Dp ~ pn ps ~ )

(18)

and e(P, q) is the final pair-correlation energy ob-
tained in the present calculation.

In Figs. 4(a)-4(g), we present the diagrams
which contribute to the "pair-pair'" interactions
because they describe interactions between the ini-
tial and final states involving different pairs. The
importance of these interactions was discussed in
earlier work on atomic neon. We can only evaluate
the contribution from these diagrams order by or-
der, and in the present case, they are calculated
exactly until the third order. However, since the
"ring" diagrams shown in Figs. 4(d) and 4(e) are
found to be more important than the remaining dia-
grams, especially for electrons in the L shell, we
have incorporated their higher-order effects such
as Figs. 4(h) and 4(i) to all orders, assuming that
the geometric series behavior between the contri-
butions from subsequent orders holds approxi-
mately.

In Fig. 5, diagrams which represent many-elec-
tron (more than two) effects are presented. In this

action between the core and valence electrons, one
introduces an inadvertent amount of correlation. This
effect is demonstrated in diagrams of the type 3(h).
In perturbation theory, it is possible to sum these
diagrams exactly to all orders. When these dia-
grams are combined with Fig. 2(a), we obtain the
modified ECP contribution given by

1(P I V.„I k) I

'
e P =Z

&p- &p+Z.ppe(P q)+Z.pp~p, ,
where

I (pq I v„

leak')

I'

D~;I a'
(15)

(a) (b) (c)

Figure 3(g) and its three other time-ordered ver-
sions violate the exclusion principle and are called
"rearrangement" diagrams. They represent the
self-coupling of the pair (p, q). This effect is in-
cluded to all orders by further shifting the energy
denominator D'p, , » given by Eg. (14) to

(e)

If I
Dpq ». ——Dpq», + e (p, q) . (18) , h

Figure 3(h) and its various time-ordered versions
represent modif ication to the basic UHF diagram
[Fig. 2(a)], because of the coupling between one-
and two-electron effects. It was pointed out by
Heine' that in variational UHF calculations, while
trying to make the spin orbitals different from one
another because of the unsymmetrical exchange inter-

(g)

FIG. 4. Pair-pair interaction diagrams. In these
figures p, q, ~, and s refer to distinctly different hole
states. Figure (a) describes the "nondiagonal" hole-hole
interaction, whereas (b) and (c) are the "nondiagonal"
hole-particle diagrams. Remaining diagrams are termed
as "ring" diagrams.
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(e}

(
~g .I

I

(b) (c}

g

V

purpose of estimating the four-electron contribution.

III. RESULTS

A. Exchange-Core Polarization

The second-order contribution owing to the ECP
effect as described in Fig. 2(a) and Eq. (10) is found
to be -0.00319 a. u. This is composed of
-0.00080 a.u. from 1s -ks and -0.00239 a. u.
from 2s —ks excitations. The modification by the
rearrangement diagram 3(h) and its time-ordered
variations leads the ECP value to —0.003 02 a.u.
This is obtained by using Eq. (17).

B. Pair-Correlation Energy

(k)

FIG. 5. Diagrams representing three- and four-electron
effects.

context, we have followed the convention that an n-
electron diagram will be one in which there are n
distinct hole lines simultaneously present at one
instant. Thus, Figs. 5(a)-5(i) represent the three-
electron contribution to the correlation energy,
while those of the type 5(j)—5(k) represent the four-
electron contribution. Figures 5(a), 5(b), and their
various time-ordered versions are rearrangement
diagrams. Figure 5(a) is the many-body correction
to ECP, while Fig. 5(b) represents a correction to
the correlation energy e(p, q) owing to three-or-
more-particle effects. The latter many-electron
correction is included by further shifting the energy
denominator of Eq. (11) to

D,"„.„.=D,', ,„+Z e'(q, r)+ Z e'(p, r) . (19)

Figures 5(c) and 5(d) are also rearrangement dia-
grams and were first considered by Bethe- in nu-
clear matter. " They contribute to the self -energies
of electrons in the hole and particle states. Figures
5(e)-5(i) and variations describe the screening of
the interactions between electrons in the hole and
particle states. For example, Fig. 5(e) shows that
the single-particle potential V,«excites a hole-par-
ticle pair, which is then annihilated by scattering
a hole. This contributes to the screening of V,«.
to the hole state q. This diagram exists only for
r= ls or 2s. Similarly, Figs. 5(f), 5(g) and 5(h),
and 5(i) represent the effect of screening the inter-
action between hh, hp, and pp states„respectively.
All these diagrams were neglected in earlier cal-
culations on atomic correlation energies. They
are explicitly computed and included in the present
work up to fourth order. Figures 5(j) and 5(k) have
also been calculated up to fourth order, for the

TABLE II. Second-order pair-correlation energy
e (p, q) for various pairs Table is. based on contributions
from Figs. 2(b) and 2(c).

eo(p, q) (a. u. )
Pairs (p, q)

1Ss 1S
1Ss 2S
2S~ 2S
1Ss 2P
2Ss 2P
2P 2P
Total

l:3
—0.046 71
—0.005 88
-0.01584
—0.01171
—0.108 64
-0.04S 34
—0.238 12

All E

—0.046 71
—0.005 SS
—0.01677
—0.01171
-0.11266
-0.05049
—0.244 22

Figures 2(b) and 2(c) represent the second-order
pair-correlation contributions to the energy. Their
contributions are listed in the second and the third
columns of Table II. These values are obtained
from Eq. (11), including the modification given by

Eqs. (9) and (13). In the present work, contribu-
tions from all the excited states until angular mo-
mentum l = 5 are explicitly evaluated. For each /

value, bound excited states until n = 10 are explicitly
calculated and contribution from states with n) 10
are approximated by the n ~ rule. For integra-
tion over the continuum states, the 12-point Gauss-
Laguerre quadrature, scaled to the maximum linear
momentum k ~=20 a. u. , is used. The values given
in the second column include l up to 3, while the
values in the third column include higher l contri-
butions. The contributions from I. & 5 are included
in an approximate manner using hydrogenic continu-
um states as discussed below. We notice that
among all pairs of electrons, those belonging to the
same shell (intrashell) correlate stronger than those
in the different shell (intershell). Thus, the intra-
shell correlation for ls (or 2s) is much larger than
the Is-2s intershell correlation. This is under-
stood from the fact that a 2s electron has a maxi-
mum radial density far from that of a Is electron,
and consequently its correlation with a 18 electron
is small. Among the intershell correlations of Is-
2p and 2s-2p types, the 2s-2p correlation is larger
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TABLE III. Contribution to second-order L,-shell pair-
correlation energy from various excited states.

Interacting
pairs

(2s, 2s)

Subtotal

(2s, 2p)

Subtotal

(2p, 2p)

Subtotal

l, lof
excited states,

s» s
p» p
cf»

f»f
8'» 8
h, h

Higher l

(s,p)+ (p, s)
(p, d) + (d,p)
{d,f) + (f, d)
(f z)+(r./)
(g, k) + (k,g)

Higher l, l'

S» S

p» p

f» f
E» 8'

h, h

Higher l, l'

Contributions
(a.u. )

—0.003 73
—0.004 71
—0.005 93
—0.001 47
—0.000 32
—O. 000 19
—o. ooo 4'
—0.01677

—0.030 22
—0.064 37
—0.01405
—O. 002 42
—0.000 90
—0 00070
—0. 11266

0
—0.019 16
—0.023 64
—0.006 54
—0.000 71
—0.000 34
-O. OOO 1O'
—0.050 49

Total I -shell correlation —0.179 92

~Estimated by using a hydrogenic approximation of the
continuum states.

than the ls-2p correlation, since the overlap be-
tween the 2s and 2p radial functions is larger than
that between the ls and 2p. Further, the 2s-2p
correlation is larger than the 2p-2p correlation by
almost a factor of 2. In order to understand this
qualitatively, it is recalled that the HF method
partially correlates electrons with the same spins
(precorrelation) 'Sinc.e all 2p electrons have
parallel spins, the precorrelation in the HF cal-
culation takes care of most of the correlation be-
tween 2p electrons. Thus, a larger correlation be-
tween the 2s and 2p electrons than the 2p-2p elec-
trons is expected, since no account of precorrela-
tion between the 2s-2p pair has been taken.

In Table III, the second-order pair-correlation
energy for the L-shell- electrons are decomposed
according to the orbital angular momenta l and l'
of the excited states. The most slowly convergent
pair is the 2s-2p pair, which is also found to give
the dominant contribution. The major contribution
in this case arises from (2s, 2p)- (kp, k'd) and (2s,
2p) - (kd, k'p) excitations. Also, the main contri-
bution (more than 90%) to these and as well as other
pairs in each excitation comes from the continuum
wave functions. In view of these, we tried to esti-
mate the contributions from continuum states with
l&5. This is done in the following manner. The

approximate form of the continuum wave functions
can be written as'

2k '
P(kl; r)-

(2
—

—, r '"8 ' "F(i/k+i+1, 2l+2, 2ik»),
2l+1 !

where F(i/k+ l+ 1, 2l+ 2, 2ik») is the confluent
hypergeometric series. Since the major contribu-
tion from continuum states comes from small 4 val-
ues (0-1 a. u. ), we further approximate P(kl; r) by

P(kl ~) - (2~)"'Z (8~)"'
0" 0

This is normalized by noticing

P(kl; r) - (2»/v')'~'sin[(8»)'I' —lv ——,'v] .
k 0

00

Therefore, the radial double-excitation matrix ele-
ments reduce to familiar integrals involving Bessel
functions and hole states for which, in this case,
Clementi's analytic forms~ are used. The esti-
mated contribution from l& 5 states for the L-shell
electrons is found to be -0.00122 a. u. , which is
about 0. 7/0 of the total L-shell correlation energy.

Next we turn to the discussion of the modification
to the pair-correlation energy due to diagonal hh,

hp, and pp interactions shown in Figs. 3(b)-3(f) and
rearrangement interaction of the type 3(g). The ef-
fect owing to the UHF correction shown in Fig. 3(a)
has already been taken account as described earlier.
Numerical results with these additional modifica-
tions are given in Table IV for various interacting
pairs. The values include the net sum of direct and
exchange diagrams. In the second column, for the
sake of compaxison, we have listed the unmodified
second-order contribution taken from Table II. The
modified pair-correlation energies are obtained by
using the energy denominator D~„~. given in Eq.
(16). All numerical values are again obtained by
using states up to E = 5 exactly, and the contribution
from higher / states are estimated in the approxi-
mation described above. Our net pair-correlation
energy is —0. 20426 a. u. This is composed of 68%
from the pair correlation among the L-shell elec-
trons alone, followed by 23/q from the K shell and

Qgo from the mixture. Additionally, about 4. 4/p of
the total L-shell contribution of -0.13916a. u.
comes from excitations beyond I = 3. A comparison
of the individual pair-correlation energies with
earlier CI results will be carried out in Sec. IV.

We will conclude the discussion on the pair-cor-
relation energy by pointing out an important type
of correlation which is characteristic of the open-
shell atoms. We term it as the effect owing to "re-
sidue" diagrams. This corresponds to Figs. 2(b)
and 2(c) plus the usual modifications of the types
shown in 3(a)-3(g), when the participating hole
states p and q are either 1s nr 2s and one of the
excited states is 2p . These diagrams are found to
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TABLE IV. Modified pair-correlation energies in a.u.

Pair @, q)

1Ss 1S
1s, 2s
2gs 2g

lpga 2p
2gs 2p
2p 2p

Total

Unmodified values

—0.046 71
—0.005 88
—0.01677
—0.01171
—0.11266
—0.050 49

—0.244 22

Modified values"

-0.047 70
-0.00587
-0.01380
-0.01153
-0.078 56
-0.046 80

-0.20426

'Second-order pair-correlation energy.
"Includes correction due to higher-order diagrams as

discussed in the text.

contribute about 29% of the total correlation energy.
Additionally, the dominant contribution to this class
of diagrams comes from the excitations (2s, 2p)- (2p-, kd), which is about 68%of the 2s-2p correlation
energy. This demonstrates that the contributions
arising from the excited states (or unoccupied or-
bitals in CI terminology) which are nearly degen-
erate with unexcited HHF orbitals are very impor-
tant. Obviously, these effects are not present for
truly closed-shell systems such as the neon atom
in the 'S state. The sum of the residue and ECP
diagrams may be identified with the orbital correla-
tion energy in the calculation by Platas and Schaef-
er. This will be discussed in Sec. IY.

C. Pair-Pair Correlation

The numerical values for the pair-pair interac-
tion diagrams in Fig. 4 are evaluated exactly using
states up to 1=5 and are shown in Table V. How-
ever, since the ring diagrams, Figs. 4(d) and 4(e),
are found to be important, their higher-order count-
erparts such as Fig. 4(h) and 4(i) are included in the
approximation as described earlier. The net con-
tribution from diagrams in Fig. 4 is found to be

+0.01137 a.u. , which is 6% of the experimental cor-
relation energy ' of -0.1886 a.u. , and is "opposite"
in sign. This demonstrates that the pair-pair in-
teractions cannot be neglected even in a relatively
light atom such as nitrogen. The sum of ECP, pair,
and pair-pair correlation energies in the present
calculation is —0. 195 92 a.u.

D. Many-Electron (n & 2) Effects

Figures 5(a)-5(i) represent three-electron ef-
fects, whereas Figs. 5(j) and 5(k) describe four-
electron effects. Inclusion of these effects in the
CI approach will require use of trial wave functions
including triple and quadruple excitations. The
contributions from Fig. 5 are shown in Table VI.
All possible diagrams with the same structure as
those in Fig. 5 but with different arrangement of
hole, particle lines, and exchange counterparts are
included up to this order. Considerable numerical
cancellations among these diagrams are observed
in Table VI. The net three-electron contribution
is + 0.00840 a. u. , and the four-electron contribu-
tion is estimated to be -0.001 98 a.u.

IV. COMPARISON VfITH THE EXPERIMENT AND
EARLIER CALCULATION

Combining all the effects described so far, we
arrive at our final value of -0. 1895 a. u. We ex-
pect the result to be accurate to within +0.003 a. u.
This error is mainly from the neglect of nondiag-
onal terms in summing up the hp and pp interac-
tions. The exact evaluation of these diagrams re-
quires calculation of two-electron matrix elements
involving at least three and four continuum states,
which is prohibitively expensive in terms of the
computer time.

A semiempirical estimate of the correlation en-
ergy is reported by Yeillard and Clementi to be
—0. 1886 a. u. This value is obtained by subtracting
the corrections due to the relativistic effect and

TABLE V. Contributions from the pair-pair correlation
diagrams shown in Fig. 4.

TABLE VI. Contribution to the correlation energy from
three- and four-electron effects (Fig. 5).

Diagrams

4(a)

4(c)
Subtotal

4(d)
4{e)
4(f)
4 (g)

Subtotal

Total

Contribution
(a.u. )

0.000 99
-0.002 55
-0.003 83
-0.005 39

0.008 30
0.005 16
0.001 65
0.001 65
0.01674'

0.01137

Description of Fig. 5
(Three-electron effect)

a
b

d
e
f

Subtotal
Four-electron effect

Contributions
(a.u. )

0.001 28
O. 005 81

—0.003 90
—0.001 0.2
—0.000 09
—0.000 22

0.00441
0.002 44

—0.000 31
0.008 40

—0.001 98
~Contributions from higher-order ring diagrams included

as discussed in the text.
Total 0.006 42
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TABLE VII. Comparison of pair-correlation energies
(a.u. ) from the present work with those from Bethe-
Golds tone calculation.

Pairs

Single excitation s(p)
e(2p, 2p)
e(2p, 2s)
e(2s, 2s)
L-shell total
e(2p, ls)
e(2s, 1s)
EL-shell total
e(ls, 1s), E shell

Total

~Reference 11.

Present work

—0.003 02
-0.046 80
—0, 078 56
-0.01380
—0.13916
—0.01153
—0.005 87
—0.01740
-0.04770

—0.20728

Bethe-Goldstone~
C —3)

-0.003 194
—0.029 869
—0.083 439
—0.013633
-0.126 941
—0.008 679
-0.005 337
-0.014016
-0.040 362

-0.184 512

E,=Z e(p)+ Z e(p, q) .

The comparison between our result and that of

Lamb shift from the experimental total energy
evaluated by summing the individual ionization
potentials. The error is quoted to be within 5%.

Extensive calculations have been performed by
Nesbet on all first-rom atoms using the Bethe-
Goldstone approach. " In these calculations, the
correlation energy E, is obtained by summing the
contribution due to the single excitations e (P) and
the independent pair-correlation energies e (P, q)
calculated variationally by replacing successively
two spin orbitals of the single determinant HF
function, without imposing the L and S symmetry
restrictions. Thus, in the present case, the corre-
lation energy is given by

Nesbet is carried out in Table VII. The results
in the present work for individual pair-correla-
tion energies are listed in the second column,
whereas those obtained by Nesbet are listed in the

third column. The latter results were obtained by
using Slater-type orbitals including orbitals of
angular symmetry up to l = 3.

It is seen that the individual contributions from
these two calculations are in over-all agreement
with each other except in the case of e(2P, 2P). The
discrepancy between our e (2p, 2p) and that of Nesbet
cannot be explained by the contributions from high-
er l excitations. As seen from Table III, the main
contribution to e(2P, 2P) comes from the excited P
and d orbitals. We think that more flexible radial
functions for those excited-spin orbitals in CI cal-
culation may reduce the existing discrepancy. Our
net pair-correlation energy is seen to overshoot
the experimental value by 10%. The same tendency
was observed in the case of the atomic neon where
the sum of pair-correlation energies gave 110% of
the experiment. This fact shows that the individu-
ally computed pair-correlation energies are not
additive. This point has been discussed at various
places in the recent literature. ' ' It is ob-
served that the difference between the values for
e (2P, 2P) obtained by Nesbet and the present work,
and the contributions from / & 3 to all pair-corre-
lation energy diagrams except e(2p, 2p), namely,
-0.00503 a. u. obtained by us, add up to -0.02196
a. u. This is nearly equal to the difference be-
tween the net pair -correlation energies obtained
by Nesbet and the present work. It will be inter-
esting to see whether the use of more extended
and flexible trail wave functions in his type of
calculation will lead to the overestimate of the

TABLE VIII. Orbital correlation energies. Table is based on contributions from residue and ECP diagrams as discussed
in the text.

Orbital excitation
in SAPCI~

Orbital
occupancy

Corresponding excitations
in MBPT

Contribution (a.u. )
SAPCI MBPT

ls s.
5

ls dg

2s s.
5

2s dg

ls 2ps p5

ls2S 2ps p]
2s ~2p~ p]

'Reference 12.

ls s 52s 2p

ls d;2s 2P

ls 2s s52p

ls 2s d;2p

2s 2p P5

1s2S2p p 5

ls 2pp

ls —k (ECP) and

(ls, 2p')- ~P, ks)

(ls, 2p')-(2p, k'„)

2s-k, (ECP) and

(2s, 2p') (2p, k,')

(2s, 2p') (2p, k&)

(ls, 1s') -(2p, kp)

(1s, 2s")- (2p, kP

(2s, 2s') (2p, ks)

Total

—0.000 26

—0.000 64

—0.004 52

—0.046 29

—0.000 92

—0.00129

—0.003 18

—0.0.57 10

—0.000 25

—0.000 63

—0.003 98

—0.049 60

—0.000 92

—0.000 25

—0.002 62

—0.058 25
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correlation energy in the case of nitrogen, which
is evidenced in the present work.

The overestimate of the correlation energy in
the present work is remedied by the inclusion of
the pair-pair interaction and many-electron effect.
The sign of these contributions is positive as op-
posed to that of the pair-correlation energy, as
explicitly demonstrated in Tables V and VI.

Platas and Schaefer have recently carried out a
symmetry-adapted pair configuration- interaction
calculation (SAPCI) on the nitrogen atom, ' using
a basis of 1633 configurations constructed from
19530 Slater determinants including orbitals up to
E = 3. Their value is —0. 18315 a. u. Unfortunate-
ly, their individual pair-correlation results are
not directly comparable to those from our dia-
grams, since their pair-correlation theory is based
upon configurations. However, their orbital-corre-
lation results can be identified in our calculation.
They correspond to the ECP and residue diagrams
discussed in Sec. III. The contributions from such
effects are given in Table VIII and compared with
the orbital correlation obtained by Platas and
Schaefer. Following these authors' notation, we
have listed the orbital excitations and the orbital
occupancy in the first and second columns, re-
spectively. In the third column, they are identified
with the single- and double-excitation residue dia-
grams in the diagrammatic language. In agree-
ment with their conclusion, we find that most (26%)
of the orbital-correlation energy arises from 2s d&

excitation. Our total orbital-correlation energy is
—0. 05825 a. u. , as compared with their value of
—0. 05710 a. u.

V. SUMMARY AND CONCLUSION

The many-body perturbation theory is seen to
yield an accurate value of the correlation energy
in the atomic nitrogen in its ground 4S state. A
useful result of the present work is a clear picture
of the different effects which contribute to the
correlation energy of open-shell systems. This is
demonstrated in Table IX, where we have summar-
ized our important conclusions. In the first col-
umn, we list the physical effects, followed by their
numerical values obtained by appropriately re-
grouping the contributions from respective dia-
grams given earlier. The relative importance of
these various effects is given in the third column
in terms of percentages computed with respect to
the experiment. All entries include explicitly con-
tributions up to E= 5 states, while those from l &5

are calculated by using a hydrogenic approximation
of continuum wave functions. Vfe find that the net
correlation energy obtained by summing the con-
tributions from the ECP and individual pairs [21
pairs for N (4$)] is 110% of the experiment. This

TABLE IX. Summary of results obtained in the present
calculation.

Description
Contribution Percentage~

(a.u. ) (%)

ECP
H,esidue diagrams
Subtotal (orbital corre-

lation energy)

Pair-correlation energy
Contribution from l ~3
Contribution from l &3

Subtotal
(pair correlation)

Net pair-correlation
energy

Pair-pair correlation

Many-electron effect

Total correlation
energy

Experiment

—0.003 02
—0.055 23"
—0.058 25-

—0.142 93
—0.006 10

—0.149 03b

—0.207 28

+0.01137

+ 0.00642

-0.18949 + 0.003

—0.1886 + 0.0094

1.6
29.3
30.9

75. 8

3.2

79.0

109.9

—6.0

—3.4

~Computed with respect to the experiment.
The sum of residue diagrams and pair correlation in

this table adds up to —0.20426 a.u. as given in Table IV.
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is composed of 79% from the pair correlation out
of which S. 2% arises from states l &3. About 31%
of the contribution comes from the orbital-corre-
lation energies. The pair-pair interaction amounts
to 6%, whereas the many-electron effect is found

to be S. 4/0, which is quite significant. The con-
tributions from the last two effects are opposite in

sign as compared to the pair-correlation energy.
It is also evident that the latter effects could not
be neglected, if correlation energies of high ac-
curacy are desired.

The advantage of the present method is that it
utilizes a complete set of states in a perturbative
treatment of atomic problems. The same basis
set which is used here was already employed to
study the hyperfine structure of the same atom.
Additionally, we have very recently made use of
the same complete set to study the electronic struc-
ture of NH„-type molecules. These will be pre-
sented in future publications.
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Many-Body Perturbation Procedure: H30, NH3, and CH4~
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The linked-cluster many-body perturbation theory has been applied to the calculation of the
correlation energies of the molecular systems H20, NH3, and CH4. The Hartree-Fock and
correlation energies are obtained separately by combining the contributions from the pertinent
diagrams. The calculated Hartree-Fock energies are in satisfactory agreement with the best
previous theoretical results. The correlation energies (in a. u. ) that we have obtained are
-0.338, -0.317, and -0.312 for H20, NH3, and CH4, respectively. These latter energies are
utilized for two purposes. One is to combine them with the total Hartree-Fock energies to
obtain the total energies to compare with experiment. Secondly, they are subtracted from the
"experimental" total energies to obtain reference Hartree-Fock energies with which to compare
the energies from theoretical one-electron calculations.

I. INTRODUCTION

Recently, with advances in computing techniques,
accurate variational molecular orbitals approxi-
mated as a linear combination of atomic orbitals
(LCAOMO) wave functions approaching self-con-
sistent Hartree-Pock character have become avail-
able in a number of diatomic molecules. ' Corre-
lation effects have also been included by variational
techniques, using the configuration-interaction (CI)
approach. a Corresponding calculations in poly-
atomic molecules involving three, four, and five
atoms are much more time consuming, hence rela- .

tively few such molecules have been investigated
for both HF and correlated wave functions and en-
ergies.

In recent work, we have applied the linked-
cluster many-body perturbation-theory (LCMBPT)
procedure, which has been very successful for
properties of atomic systems, to calculate the en-
ergy of hydrogen fluoride molecule using as a basis
set the eigenfunctions of the corresponding united
atom, namely, neon. The result for the energy
obtained there agrees very well with experiment
and the most detailed CE calculation available.
The result of the hydrogen fluoride work indicates
that the many-body perturbation approach is cer-
tainly comparable in accuracy to the variational
two-center method and involves a comparable
axnount of computational effort. The effort involved
in calculating two-center integrals in the latter
procedure is substituted by that for calculating


