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Spontaneous-radiation processes associated with a number of multiatom systems are
studied. Green's-function techniques are used in conjunction with a model of N two-level
atoms interacting with a quantized radiation field to investigate the assumption of the inde-
pendence of the spontaneous-radiation properties of a given atom from the states of the other
atoms in the system. It is shown that the natural linewidth of an excited atom in the presence
of a deexcited atom is different from that of an isolated excited atom. For interatomic sepa-
rations smaller than a critical separation, the two-atom system is best considered as a col-
lective unit with regard to its spontaneous-radiation properties. The influence of these
"radiative cooperative effects" is studied also for the systems of two initially excited atoms.
Also the influence of radiative cooperative effects in the scattering of a photon by a system
of two deexcited atoms is studied. It is shown that the frequency distribution of the scattered
radiation exhibits. a double-peak structure for interatomic separations smaller than @~g. The
techniques of Green's functions are then applied to the study of radiative cooperative effects
in several many-atom systems. It is shown that within the context of the model certain in.-
formation is obtained exactly via the Green's-function techniques as applied to the many-
atom problems of a single excited atom in the presence of N»1 deexcited atoms and the
scattering of a photon by a system of N»1 deexcited atoms. The necessity of treating many-
atom systems from a "collective" point of view is easily seen from our results.

I. INTRODUCTION

The emission of radiation by a single excited
atom is one of the classic problems of quantum
electrodynamics. An approximate quantum-me-
chanical solution was given quite early by Weiss-
kopf and Wigner (WW). ' The approach of WW has
by now become a standard approximation method for
computing the lifetime of an excited atomic state,
not only for an isolated excited atom but also for
systems of many atoms. That is, the usual treat-
ment of the spontaneous radiation emitted by an
extended system of atoms is based on the assump-
tion that the individual atoms in the system emit
radiatiori at a rate characteristic of the spontaneous
emission rate of a single isolated atom. Conse-
quently, implicit in these treatments is the assump-
tion that the radiation emitted by the individual
atoms is independent of the state of the other atoms
in the system.

Spontaneous emission of radiation from many-
atom systems has been considered by Dicke who

recognized the analogy between a system of two-
level atoms and a system of spins, and used it
to describe a many-atom systeminteracting through
a common radiation field. He showed that under
certain conditions the atoms may cooperate in a
manner so as to emit radiation at a rate much
larger than what would be expected assuming in-
dependent emission. Recently, in an impressive
work, Rehler and Eberly' have reviewed and ex--
tended virtually all of the previous results of Dicke
and others with regard to the treatment of super-
radiance. On a much smaller scale, Stephen and

Hutchinson and Hameka investigated the problem
of a pair of two-level atoms interacting with each
other via their common radiation field when one
atom is initially excited and the other is deexcited.
By extending the methods of the perturbation theory
of Heitler to this two-atom system they were able
to draw the conclusion that the excited atom radi-
ates at a rate different from that of an isolated
atom. In a similar spirit Ernst and Stehle and

Ernst "extended" the WW theory of the natural line-
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width to a system of N identical nonoverlapping
two-level atoms and discussed the time evolution
of the system from various initial states for the
atoms and radiation field.

In this paper we present a unified approach to
many of the above problems utilizing Heisenberg
picture Green's functions and the equation-of-
motion method of solution. In contrast to most
previous treatments, this technique does not re-
sort to perturbation methods. The results of our
approach are in general accord with the results
derived by other methods, thus substantiating the
use of previous perturbation schemes. A recent
paper by Chang and Stehle' '" has treated the prob-
lem of the resonant interaction of two neutral atoms
using a Bethe-Salpeter equation. The solution of
this problem using the equation-of-motion method
is given in this paper and was carried out indepen-
dently before this author was aware of this result.

We make use of a model Hamiltonian which in-
corporates all of the assumptions used by previous
authors ' ' ' ' ' to describe the interaction of a
quantized many-mode radiation field with a system
of N two-leve) atoms located at fixed points in space.
Having established the model in Sec. II, we next
give a definition of the kinds of Green's functions
that are relevant to spontaneous-radiation processes
and discuss briefly the physical information that
may be obtained once a Green's function, or set of
Green's functions, is known. We then proceed in
Sec. III with the solution of problems in which there
are two atoms centered around fixed positions in
space. Since we are interested in the properties
of spontaneous radiation that would be emitted by
the two-atom system, we limit our considerations
to those Green's function which serve to answer
questions concerning the role of "radiative coopera-
tive effects" in the modulation of the decay of one
or both atoms. First we consider the case when
one atom is initially excited while the other is
deexcited. It is found that the initially excited atom
does not decay at the rate characteristic of an iso-
lated atom, in agreement with the results of
others, ' ' ' '" but rather the decay rate is a
sensitive function of the interatomic separation.

The next problem considered is that for which
the initial state of the two-atom system is such
that both atoms are excited. In this case, we find
that we must resort to approximation methods,
since the equations for the Green's functions are
not exactly soluble. A graphical technique" is em-
ployed to find an expression for the two-atom
Green's function which includes to lowest order the
radiative cooperative effects. We close Sec. III
by presenting a solution to the problem of the
scattering of a photon by a system of two deexcited
atoms. Here we are interested in the frequency
spectrum of the outgoing radiation as a function of

the interatomic separation. We solve this problem
and interpret the results for several values of the
interatomic separation.

Section 97 is devoted exclusively to systems with
a large number of atoms. We generalize the one
excited one deexcited problem to the case in which
initially we have a single excited atom located at
some point inside a system of N deexcited atoms
and ask what the lifetime of the excited atom be-
comes under these conditions. Second, we gener-
alize the scattering problem to the case when a
photon is scattered by a system of N deexcited
atoms. Finally, in Sec. V, we discuss the results
of our approach with regard to its novelty and
usefulness.

II. MODEL AND GREEN'S FUNCTIONS

A. Model

Consider a collection of two-level atoms centered
around fixed positions 5, &= 1, . . . , N enclosed
in a volume of finite extent but otherwise of arbi-
trary configuration. We assume that the atoms
are separated from one another by distances suffi-
ciently large such that there is no appreciable
overlap of the spatial wave functions between any
given pair of atoms. Thus we shall treat the atoms
as distinguishable objects and neglect any require-
ments of symmetry. We shall represent the crea-
tion and destruction of an atom in a state In, u)
centered about the point 5, by the boson creation
and destruction operators bt (t) and b„(t) in the
Heisenberg picture. These operators are assumed
to satisfy the following equal time commutation re-
lations:

[b„, (t), b„., (t)]= 5„„.5 g,

[b, (t) b, (t)1= 0, [b„(t), b„. (t)]= 0

for all o.', P=1, . . . , N and n, n'= 1, 2.
We take as our model Hamiltonian

N

H= ~ '(bs. be, o -b~.eb~, e)+ ~~"fa~ea~e

N

+ Q Z [gq, Uf (R )b, b af
e=1 gg

t+ g„Ug(R,)b„,b„,af, ] .

Here the subscripts e and g stand for the excited
and ground states,

'
respectively. The energy of

the excited state is chosen to be+ &, while the
ground-state energy is chosen to be —&. The
second sum represents the free electromagnetic
field Hamiltonian. The operators ag and ah repre-
sent, respectively, the creation and destruction
of a photon with wave vector % and polarization o.
The a „-, and a„-, satisfy the following boson commu-
tation relations:
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[+k ~ +«urer j = 0,
(3)

We shall throughout this payer always work in
the Heisenberg picture. Let A («-, «(t) be a product
of arbitrary combinations of atom and photon
destruction operators. Similarly, let B ««",.«(f) be
an arbitrary combination of atomic and photon
creation operators. We define a Green's function
to be

G~(-„«a(„-,«(f, f') = &oli"(&( «(f)B( «(f'))lo& (4)

where the state 10& is the vacuum of photons and
atoms. That is

a (f) Io)=0, b„, (f)lo=o.

The symbol T refers to the usual time-ordering
symbol:

T(X(t) Y(t')) = 8(t —t') X(t) Y(t') ~ 8(f' —t) Y(t') X(t),
where the plus sign is chosen when the operators
constituting X and Y satisfy boson commutation
relations. The minus sign is chosen when the
operators satisfy fermion commutation relations.
Here we choose the plus sign since both the atomic
and photon creation and destruction operators
satisfy the boson commutation relations (1) and (3).

Green's functions have the following physical
interpretation. From the definition (4), G~(t, t )
represents the probability amplitude that if a
system of atoms is prepared in a state (B&e.
—= B(t') l 0& at time t', it will be found in a state
IA&, at time t. That is

Cr~e(t~ f')= 8(t —t') (&4 IB&e

We shall employ the equation-of-motion method for

The coupling between atoms and field is taken to
include only "resonant" interactions between the
atoms and the field. Terms proportional to b', b~
&a& and b, b, a& are neglected as are terms that
would be proportional to A~. Thus our model is a
version of what is historically called the "rotating
wave approximation. "' This model has been used
as a basis for a number of semiphenomenological
laser theories, ' usually, however, in a version
which does not explicitly include the dependence of
the interaction upon the positions of the two-level
atoms. This dependence is reflected in our model
by the explicit appearance of the atomic centers
R in the mode functions U«", (R ). In the present
work we choose the mode functions Ug(R ) = e("'"~
appropriate to running waves. However, other
choices may be made depending upon the geometry
of the problem.

S. Green's Functions

the determination of the Green's functions in all
the problems we consider. This method is by now

a standard method for determining Green's func-
tions. The relation of our approach to the usual
perturbation expansions is also well known. ' We
shall have occasion to consider this connection in
relation to the exact solutions we obtain.

III. TWO-ATOM SYSTEMS

In the usual treatment of the emission of radiation
from excited many-atom systems it is assumed
that the individual atoms emit spontaneous radia-
tion at a rate which is independent of the states of
the other atoms in the system. This assumption is
usually justified by arguing that as a result of the
large distance between atoms and subsequent weak
interactions, the probability of a given atom emit-
ting a photon should be independent of the states of
excitation of the other atoms. We shall demonstrate
quantitatively in this section by studying the Heisen-
berg picture Green's functions pertinent to the prob-
lem that such an "independent emission hypothesis"
is in principle incorrect. While such effects have
been considered before, ' it is noteworthy that our
conclusions are based on a nonperturbative ap-
proach. We are able to demonstrate what radia-
tive processes are taken into account in the de-
scription of these effects.

A. One Excited One Deexcited Atom System

Let us consider a two-atom system prep red
initially so that one atom is excited and centered
around a point 5, and a second atom is deexcited
and is placed at some fixed point g. We desire
to find how this system propagates in time. In
particular we are interested to see what effect the
presence of the second deexcited atom has on the
natural linewidth of the excited atom, relative to
the natural linewidth of an isolated excited atom.
This leads us to consider the following two-atom
Green's function:

Ge.(f, f') = &o I T(fie.a(f) he, i(f) I 'f. 2(f') be, i(f')&
I
0&.

(5)
In order to find G„(f, f'), we employ the equation-
of-motion method. That is, we compute i(«,Ge, (t, t')
using the Heisenberg equations of motion for the
atom and photon creation and destruction opera-
tors. This leads us to introduce a new Green's
function. We find its equation of motion. The pro-
cedure is continued until the set of equations for
the Green's functions closes. In the present model
closure occurs, while in general it does not. After
some manipulations we find
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(is~+ 2e —~.)A~.(t, t') = g~ e'"'"'G.,(t, t')

tk R~G

iS,G«(t, t') = Z g+, e '" z'A„, (t, t'),
1 1

(8)

Z(z)= A(z) —2i I"(z),

with

r( )=~("/")Idl',

(15)

(18)

(z+ 2e —~ )A„,(z) =gg, e' &G (z')

+g..e'"'"'G,.(z), (»)

zG (z)=Qg), e ' ~A~(z). (13)

where

Ai(t t') = &0l&(br, ~(t)&f (t)b~, a() ~,3(') s, i(t'))I0)
(9)

G«(t t') = &0l&tb~, ~(t)b..a(t)bg, a(t')b,', ~(t'))Io).
(1o)

The two new propagators that have appeared may
be interpreted as follows. The Green's function
A;, (t, t') describes the process whereby the initial-
ly excited atom emits a photon, while G«(t, t') is
the amplitude that the initially excited atom at 5,
becomes deexcited and the initially deexcited atom
at 5, becomes excited. These propagators de-
scribe the only other physical processes that may
occur within the context of our model.

Thus, in order to find G«(t, t'), we proceed to
solve the equations of motion as follows. First
we take the Fourier transform of all the propaga-
tors. The equations of motion become

~t

zG„(z ) = 1+ P g~ e ""~A;,(z),

A(z) = P
"" d~ r(&o)

2g Z+ 2E'-

Ne also have
""

d(1) r((1))g((dB ()/c)
A ()z

Jo 217 z+ 2e —(1)+ i1J

with

(18)

The function g(x) is defined as

X(x) = 3[sin(x) —x cos(x)]/x' . (19)

A '(z)= A '(z) ——,iI" '(z), (20)

It should be noted that in solving the Fourier-
transformed equation of motion for G„(z), we have
transformed all sums over wave vector to the con-
tinuum limit. Also it may easily be seen that
y(x) as defined in (19) is an even function of x.
Consequently, A' (z)= A~ (z). We assume at this
point that since we are interested in the behavior
of A ~(z) for values of z near physical values, i. e. ,
for z around the unperturbed energy z= 0, when z
is in the neighborhood of z = 0 the integral (18) has
a pole near &= 2e-iq. If we further assume that
r((()) is also peaked about &u = 2e and falls off rapidly
away from the point, then we may extend the lower
limit of integration to —~ with only a small error.
Thus we may write (18) as

After some manipulation, we find that these equa-
tions may be solved exactly for G«(z) (and all the
other Green's functions). The result is

where

(z)=P
""

d&u r(&u) g((ua. , /c)
2% z+2E-

G„(z) =(z —E(z) — . z (1) . (14)
A"(z) A" (z)
z —Z(z)+ i p,

Here

r"(z) = r(z)q(za. ,/e) .

Using (15) and (20) in (14), we have

(22)

z —Lh, + ~i I'+iX
[z —A —A" + 'i(r+ r")+—iX] [z —A+ A' + —'i(r —r")+in] (23)

At this point we make the usual "slowly varying"
assumption with respect to the behavior of the
functions A(z), &' (z), 1(z), and r'z(z) near the
unperturbed energy z = 0. Vfe denote these func-
tions evaluated at z = 0 by 6, 4, I' and I", respec-
tively. Performing the inverse Fourier transform
we find

G«(t, t') = ~ e(t —t') [exp [-i(~+ a) (t - t') ]
x exp[- —,

' (I'+ r) (t —t')]

+ exp[-i(A- A) (t —t')]

xe~[- —,'(r-r)(t-t )]} . (24)

It is apparent that (24) is considerably different
from what would be obtained if there were just a
single isolated atom, or if we assume that the
presence of the second deexcited atom has no in-
fluence upon the decay properties of the excited
atom. It is clear that the effect of the second
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- .2-
FIG. 1. Plot of the function XQ)

atom is to introduce a further energy shift and a
new linewidth. From a consideration of the prop-
erties of the function y(x), a plot of which is shown
in Fig. 1, we may conclude in the limit that R&z- 0 that I'- F, while in the limit that R&3- that

Thus in the small separation limit, we have
from (24)

lim Gt, (t, t') = —,'8(t —t') {exp[-t(26) (t —t')]
R(2 ~0

x exp[- l"(t —t')]+ 1] (25)

while in the large separation limit

llm G (t tl) e(t ts) e tk&t t ) 8 &-/r2)( tt'&

R()~ oo

(26)
Thus we conclude that strictly only in the infinite-
separation limit does the effect of the second de-
excited atom completely disappear. Note that (25)
indicates that in the small-separation limit the
linewidth of the radiation that would be emitted is
doubled. In addition, by computing the probability
IG«(t, t') I, we find there is a probability of 2 that
the system does not radiate at all after a long time.
These effects have been considered by many au-
thors. The Green's-function approach of the pres-
ent work shows that radiative processes have been
taken into account in other treatments. Within
the context of our model, the results of the
calculations of the Fourier-transformed Green's
functions are exact. Ne may, however, easily
make contact with other approaches. In particular,
it is instructive to demonstrate the connection be-
tween the Heisenberg Green's-function approach
and the usual Feynman —Dyson expansion. ~ The
results for the case of the one-excited, one de-
excited atom system is illustrated in the graphs
of Fig. 2.

In Fig. 2 the propagators are represented by
straight vertical lines with a label e or g to denote
the state. The propagation of a photon in an inter-
mediate state is represented by a wiggly line.

That the only kinds of diagrams which may occur
are the "bubble" and "ladder" diagrams is a con-
sequence of the model. ~4 In the absence of the sec-
ond deexcited atom, the bubble diagrams would
contribute alone to the interactions of the excited
atom with the field. It is thus clear that the extra
linewidth and level shifts F and 4 are to be under-
stood as arising from the "ladder" diagrams ex-
clusively. When the two atoms are close together
the effects due to photons shuffling back and forth
between the atoms become comparable to the
pure self-energy effects.

In addition, we note that for the one-excited-one-
deexcited atoms system the equation which deter-
mines the two-atom Green's function is also easily
expressed in the form indicated in Fig. 3. The
Green's function is thus seen to be determined by
solving a Bethe-Salpeter-type equation. '~ In

this language it is clear that the "interaction op-
erator" for the two-atom Green's function G«(t, t')
is simply that part of the irreducible kernel which
includes only the infinite subset of "ladder" graphs.

B. Two-Excited Atoms

Let us now consider an initial state for which
both atoms are excited and placed at points 5, and

%2, respectively. As with the one excited one
deexcited atoms system, we pose the same ques-
tions with respect to the spontaneous-emission
properties. We begin by defining the two excited
atoms Green's function as follows:

G-(t t') = (OI7'(b. .l(t)ftt 2(t)fte t(t')&t. 2(t')) Io) .
(27)

Employing the equation-of-motion method, we find

the following set of equations must be satisfied:

(tat —2e) G„(t, t') =i5(t- t')+ Q g„e'"'"&ay(t, t')

FIG. 2. Graphical representation of G~. The vertical
lines represent the one-atom propagators with initial
and final states indicated at the bottom. The wiggly line
represents the propagation of a photon.
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~ g~, e'" H& ~ (t, t ) + g z~ e "'
B&~ (t, t )

+g,*,~ e'"""&Bf,(t, t'), (31)
where

B„,(t, t') = (o
I
&(ti..i (') '"(') fi.,z (t) foal. i(t') fi', z(t'))

I
o&

(3a)

Ht;. (t, t') =&oI 1(f..i(t) b..a(t) &f.(t) fr i(t') f'.,R(t'))
I

o&

(33

FIG. 3. Bethe-Salpeter-type equation satisfied by G~~.
The heavy vertical line represents the sum of all graphs
including the "bubble" diagrams only. I' is that part of
the irreducible kernel which contributes to the time evo-
lution of the one excited one deexcited atoms system.

+ g g,.e-'"'"'H-„.(t, t') (aS)

('8, —,) B;,(t, t ) =g,", " ' G„(t, t )

+ Q g„., e-'""&If... „-.(t, t'), (a9)
k' o'

(ta, —~,) H-„.(t, t') = g,.e'"'&G„(t, t')

+ g g„...e-'"""iI-„,q.(t, t'), (3O)
kz pi

(te, +ae —~„-id, ,)I-„., q. (t, t')= g„*~e'"'"&H„;(t,t')

The Green's functions B.„,(t, t ), H-„,(t, t ), and
I-„... .„,(t, t ), respectively, describe processes
whereby the atom at 5, emits a photon, the atom
at 5R emits a photon, and both atoms decay, emit-
ting photons. These Green's functions are the only
ones that may contribute to the time evolution of
the two excited atoms system. Recall that in the
previous section there appeared Green's functions
describing amplitudes for final states consisting of
a photon and both atoms deexcited, along with a
Green's function describing the excitation of the
initially deexcited atom and deexcitation of the
initially excited atom, with no photons present. In
the present case, the situation is more complicated
in the sense that in the final state of one atom ex-
cited and one deexcited a photon accompanies the
one excited one deexcited atoms system. Con-
sequently, it is possible in the present system for
a photon emitted by one of the excited atoms to con-
tribute to the amplitude that the other atom decays
by "stimulating" .the other atom to decay or by
being absorbed by the other atom.

%e proceed as before by taking the Fourier
transform of the equations of motion (as)-(31).
Then solving for I„... ~, in terms of H-„,(z) and

B„;(z), we find that the Fourier-transformed
Green's functions B;,(z) and H„,(z) must satisfy

B„-.(.) = g~ e'""iG„(z)+5 ""' " . B;. (z)' r~ z+ae-~. -&.~ +t~ "' " " C" z+a&-~.-".~ +''I

2 -fk' C)4g) -!k' ~ Rg 4~'%)
~ gk'o '

~ e
H ( ) g gk'a ' e tie H ~ (z)

kr ~i Z+ 2E' —+y —+g + gg "
ke~r Z+ 2E —&y —+y~+ lg

(
&aa" ~' -fk' Ny g ~ &k'I].

H-„,(z) =g,*.e""RG (.)+ Q ""' " H-. .(z)Z+26 —+y- +g,.+ gg
" " k.~ ~ Z+2f —y- +g+$g

e-ik' Ri g eglt Iz
) )

2@-ik' '(Ri-R2)
gi a'e giee B. () g gaa' ~ B (z)Z+ 2E —~ —~. + jg "

p ~ Z+ 2E' —g, —I, .+i/ (3s)

After proceeding to the continuum limit in k, it
is clear by inspection of Eqs. (35) and (36) that in
order to find B-„,(a) and H-„,(z) we must solve two

r

coupled singular integral equations, assuming
G„(z) to be a "known" function. After solving
these equations, we then must substitute the solu-
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1". We include to lowest order the "crossed" in-
teraction as follows. B-„,(z) and H-„,(z) are com-
puted by substituting the expressions

B-„,: gg, e" ~& G„(z)[z-~,- Z(z- ~/+i']

Hp, : g,*,e' '&G„(z)[z- ~~-Z(z —~~)+ig] '

on the right-hand side of (35) and (36), with the
exception of the term in (35) involving Hp, , sum-
med k o and the term in (36) involving Bg...(z)
summed over k'0, which are excluded. We ob-
tain for G„(z)

e t- e

+ e ~ ~

G„(z)= [z-2z —2Z(z) —2I (z) —2I (z)+ip] ',
where, after going to the continuum limit in k:

d~ I'(~)zz=
2z z-~-Z(z-~)+tg '

(4O)

(4l)

FIG. 4. Graphical representation of G~~. Note that in
a Bethe-Salpeter equation language the irreducible part
of the interaction is represented by the crossed" graph.

tions into the Fourier transform of Eq. (28) and
then solve possibly another singular integral equa-
tion for G„(z). We have been unable to find the
general solution for G„(z). Therefore, we resort
to an approximation method of solution. We are
interested in obtaining an approximate solution
which includes to lowest order the "radiative co-
operative" effects. In Fig. 4 we have given a
schematic graphical representation of the radia-
tive processes which contribute to the time evolu-
tion of G«(t, t ). We obtain an approximate solu-
tion to Eqs. (35) and (36) as follows. We notice
that if only the terms Q, e'"' ~ G„(z) and Q~e'"' z

x G„(z) on the right-hand side of (35) and (36) are
kept and we subsequently solve for Bt,(z) and

H„;(z), we obtain for G«(z) the following result:

i2
G„(g)=(z-2c —2 Z ",. + ix)l

a z a Zz @+i&

The functions I~(z} and Ia(z} are defined as

( )
i

d&
~

d&
2w „2z

I'(&) X(»/&) I'(" ) X(~ B/c)
[z —&o —Z(z —(dj+ i p](z+ 2z —& —& + ig)'

(42)

dw
~

d(u

lim G„(z)=[z —2e —2Z(z}+ iP] '.
R~~

Second, in the limit of very small interatomic
separation

(44)

I'(&) X(»/o) I'(~ )X(»/o)
[z —&u-Z(z- ~)+ip]'[z+2z —~- ~'+iq]

(4s)
We are interested in the properties of our approxi-
mate expression for G„(z) in two limits. First
in the limit of very large interatomic separation we

may effectively put I, = 0 and I2= 0. Consequently,

where
(37} lim G„(z)=[z —2& —2Z (z) —2I, (z) —2Tz(z)+ jp]-~,

(45)

(36)

If we new make the approximation that Z(z —&„)
may be neglected, then the result (3V) becomes

G„(z)=[z —2z —2Z(z)+ i&] ' (ss)

This approximate expression for G„(z) would yield
a time dependence for G„(t, t ) indicative of two
independent excited atoms with natural line with

where I, and T2 are the B= 0 limits of I, and I,.
Considering the large separation limit, we see
that the Green's function effectively reduces to a
form indicative of two independently evolving ex-
cited atoms. In the very small separation. I.imit,
however, there are extra terms present which

represent the contribution of the radiative coopera-
tive effects. It is seen that the additional contribu-
tions are of "order" I'(I'/&u), whereas Z is of
"order" I'. While these terms are small we can-
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not in principle ignore them»

C. Scattering of Radiation by Two Deexcited Atoms

The system of two deexcited atoms is easily
shown to have a trivial time evolution within the
context of the present model. a' However, if we
consider the scattering of a photon by a system of
two deexcited atoms, then we expect that interest-
ing cooperative effects may be induced by the in-
coming photon ' '"'

Thus consider a system of two deexcited atoms
centered, respectively, around the points 5, and

Let a photon of wave vector k and pol. ariza-
tion o be scattered by the atoms and consider the
amplitude that finally there is a photon with wave
vector k and polarization 0 and again two deexcited
atoms. This amplitude is given by the following
Green's function

P;. -„,„(t,t') =( o
I r(b, ,, (t) b, ,(t) ~,(t} b,'„(t')

xbt (t')(2k' «'))I o) . (46)

Proceeding as before, the equations of motion

are found to be

(i st + 2e —(ek) Pk;„,, (t, t )

=.b„-„. &„,&(t-t') g,*.e'"'"2q„;,, (t, t')

tk'%2ft (t t ) (47)

i{),q;, .(t, t') = p g..., e-"1'"(P;„,,-„. (t, t'), («)
kg~

t&tfik, (&, (t& t ) = F~ g&)2(&28 Pkk(&2, &a'(t& t ) &

ka~a

where

q;. (t, t')

(49)!

= (0I T(b„)(t)b„2(t) b,', (t') b', 2(t ) (22 "(t'»
I
o»
(5o)

It-„...(t, t')

=(oI T(b, , (t) b, ,(t) b,', (t)b,', (t )(2, (t))Io).
(5l)

After taking the Fourier transform of the equations of motion (4V)-(49), we find that P-„, 2... (t, t ) may be
found by solving an integral equation with a separable kernel. After some manipulation, we find

P.„, -„...(z)

&ee &.. g*g, , e-~(k' k) R1 F112(Z)g» e tk R) g e tk' %2-
+ ~, +z+ 2e —~&)+ t)i (z+ 2e —&2+ iti) (z+ 2& —&&). + i)i) (z+ 2z —(dk+ i)i)[(2(z) + iX] (z+ 2z —~k, + i)l ) (z+ jp)

e -f (k' -k) ' Rp P2, 1(z)g» g e-tk' )i( ejk %2

+ )I)[ ()+ l]( +2 — + ti)
'

[ ()+'~]( +2 — +i)i)( +2 — .+'tl)

P1,2(z)gt& e-t{k'-k)')i2 P' (z) P '(z)
+

[ {k(z)+i)(](z+ 2e —(dk+iti)(z+ 2z —~t/+ i)i) i (2(z)+ il/,
()- . + r.(52)

where

( ) l g lgk(»1 l'
-„... (z+2z- ~k, +itl)(z+ip, )

la
~ 'fk» (gt Ng)

P tztQ gka
"„, (z+ 2e —vk+ir/)(z+i it)

' (54)

The inverse Fourier transform of P&, k;~ (z) gives

l e -' "' ' e ' "'-' ' @„„(0,—6' ——,'i F')(A„—6' ——,'i F')
k02k 0 kk' ca' +

2

(t t&e (r/2&(t -t'& y (g -g- t F-)(g /)
- ) ~ F-) tok(t t~) A ( )(g ~~ 1 .Ft)(g 1 .

)+2
& a&~

b'krak(~k-

~a )

~ '"'" "A,. (~)((&„—~'-!&r')((&. -~ --,'&r, -,))
bk'b&/((()2- ~t/)
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where

4'„~, =g)„g~,~( exp[-i(k -k) ~ if, ]+exp(-ik ~ 5~+ik ~ 5~) + exp(-ik ~ 5~+ik ~ 0,)+exp[ —i (k -k) ~ 53]],
(se)

and

4'-„g=g f,gz...(- exp[ —i(k'-k) ~ 0&]+exp(- ik ~ f~+ ik ~ 5z) + exp(-i k Ã~+ik' ~ 0&) - exp[- i (k -k) ~ %pp,

(sv)

A~„. ((d~} =g~~, g~,. ((exp [-i(k —k) ~ 0,]+exp[- i (k —k) ~ Rz]j (Q~ —6+ —,
' i I') + [exp(+ i k ~ R~ —ik ~ R~)

+ exp(i k ~ R, —i k ~ R,)](& ——,
' i I')}, (Se)

(g tt), -g»)3+ 1[(r+r»}3] g+ g+g» rt: z'~r» (se)

We now consider times long compared with (I")-',
(I" ) ~ and k and k's such that krak . Under these
conditions P„,„,~ (f, f ) becomes

-fQ (t t'}

k k'

where

e-(Qkt(t tt) F ((d ) (60)
k k'

A„-;,(~,) (fI,-~"- —,'i r') (fl, -~-- —,'i r-)
k

(el)
Now expanding F),-„, (&),} in a Taylor series about

(62)

+ other terms, (63)

where the "'other terms" exhibit a time depen-
dence proportional to I; and thus do not dominate
for long times. Thus for long times only the first
term in (63) is important. We may draw the fol-
lowing general conclusions regarding the long-time
properties of ( [P-„„-,l~)„,. There is an anomalous
two-peaked structure for ( ~ P„"„-, ~ ) „„when plotted
as a function of ek. —2E. For small interatomic
separations there are two peaks centered sym-
metrically about the points 2e +4, one peak with
half-width of approximately l"=0. As the inter-
atomic separation increases, the peaks tend to
merge, in the limit of infinitely large separation,
into a single Lorentzian. These general features

where Rpg. denotes the rest of the terms in the ex-
pansion. Using (62) in (60), we then collect terms
and compute ~P„; ~...(f, f ) ~~. After some manipu-
lation we find, upon averaging over the outgoing
photon frequency (considered as continuous) while
keeping k fixed

(~P..(, , )~3) ~ a( a)~'P("a).
k'' k'

are in accord with our previous discussion of the
effects of radiative cooperation in the one excited
one deexcited atoms problem. Thus it is clear
from the present example that the assumption that
the deexcited atoms scatter the photon independent-
ly is not valid. This indicates the ordinary treat-
ment of resonance fluorescence may not be of gen-
eral validity in multiatom systems.

IV. MANY-ATOM SYSTEMS

In this section we extend the treatment from two
atoms to many atoms. In particular, we consider
generalizations of two of the problems treated in
Sec. III. It is of interest, perhaps, to point out
that these problems are solved without recourse
to perturbation theory. It will be seen, more-
over, that a complete solution of these problems
can be of interest in themselves, in addition to
their relevance to the more difficult N-atom prob-
lems which we will not consider in the present
paper.

A. One Excited X Deexcited

Consider a single excited atom centered around
some point 80 in the presence of N deexcited atoms
located at points 0„.. . , 0„. In the light of the results
of Sec. III with regard to the lifetime of the excited
atom in the presence of another deexcited atom,
we now study the effect of the system of N deexcited
atoms upon the lifetime of the excited atom. Here
we do not specify ¹ For N large the present
problem approximates in a crude way a system of
atoms that has been very inefficiently excited by
some means at a time t'. More appropriately we
might consider the present system as constituting
a region of a larger system and consider the actual
system as made up of these subsystems.

Ne define the one-excited- N-deexcited-atoms
Green's function to be

G t t(t, t')=(
~ o(t', t, to( )nttt, (t)tt, ,

(t')
e=i
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ns,',,(~))~o). (64)
/~i

[i()g+ (t(t+1)a] Gg(g), )g)(t, t') =Egg, e' '"~

x M,",.(,)(t, t'), (67)

[i()g + (N —1)f —(()g ]Mg), (g)(t, t ')

where

,(,).)g)(, '), (68)

The equation-of-motion method yields the following
closed set of equations of motion:

[i() - «(t -I)&]G.(,)(t, t') =t()(t -t')
ag

+~ gage +gig(g)(t~ t ) (65)
ie

w

[i(), + (N+ 1)c —(ug ]l(g„(g ) (t, t ') =g f, e'"' 0

N

xGg(g)(t~ t }+~gage' Ggtg(g)g)(t~ t ) ~

a=1

ties of G, (g)(z) and perform the inverse Fourier
transformation to find G, (g)(t, t'). We have been
unable to find a form for ™~~ for arbitrary N which
is useful for obtaining an analytic solution. We

may, however, consider the following limiting
case. We recall that in the limit 8 &- ~ that
X- 0. Consequently, if we have a system of one
excited atom in N deexcited atoms such that 8 0
» g A. then effectively )((&uR 0/c) = 0. With these
assumptions, the inverse Fourier transform is
found to yield

G„„(t, t')=8(t-t')exp(-i[-(l(t-1)~+&](t-t')]

x exp[ —~ I'(t -t')].
This result indicates that in the limit where all the
deexcited atoms are far separated from the initially
excited atom the system evolves as though there
were a single isolated excited atom and N freely
propagating deexcited atoms. Thus, in analogy
with the one excited one deexcited case we see that
an excited atom in a many-deexcited-atom system
only strictly radiates at a rate characteristic of an

isolated excited atom in the limit where the deex-
cited atoms are infinitely separated from the ex-
cited atom.

B. Scattering of Radiation by N Deexcited Atoms

x I,', ,(t ') II I,', (t')ll o&, (69)
a=i

' )
a

G,'(„„,)(t, t') =(o
I
Ti t'. .0«}».,.«) I)..-«)

N N

x II I, ,(t) I,', ,(t') II I,',,(t ')
ll o&, (70)

6~a+1 8 ~1 )

Consider now the scattering of a photon by a
system of N two-level atoms all in the ground
state. Thus define the Green's function

s„,&...(t, )t=(ol TII t„.(t)aI.(t)
a=1

x II S, ,,lr')a(,,(~'))~ O&.
/=i

(74)

and
a-i

Mgg, (g)(t, t')=(OlTib 0(t)IIb „(t)b (t)a-, (t)Sg&

N N

x II f, ,(t) f, o(t')II fl, g«'}'llo&
Ga+1 01 )

(71)

x- (=-(.) ')"~"(.) ~
I
', (72)

Proceeding as in previous problems, we find the
following Fourier-transformed Green's function:

N

G„„(e)=le+(Zt-I)e-~"(e)—Z t~ (e)
a,8~1

The equations of motion are

(i(), +t(te —(ug)P„, g.,i(t, t ')

N

= ())-, (i()„.+ Z ~~g,
e'"'""

-„"Q...(t, t'), (75)
a=i

[;(),+(V-2)~]Q'..(t, t'}

= Z gg &e
&' ~&k

&
R...(t, t ') ~ (76)

kiei

Note that the Green's function Q,",~(t, t ') describes
the process whereby the incoming photon has ex-
cited the Xth atom. It is defined as follows:

=-"(z}-=[e+ Pr - I)e] t)" -A" (&},

where the A"(g) with i, j=o, 1, 2, . .. , N were
defined in (18). In order to proceed further, we
must Know the explicit form of the inverse of the
matrix = ~. Only then may we find the singulari-

~ )(,-1 N

Qj".(t t )=(OITi 6 f., (t)f.. (t) II f, .(t)
k a=1 v~X+1

N

II t,',,(t'),'...(t ')
l
lo&.

Proceeding as before, the Fourier-transformed
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z+ NE —co~+ iq z+ NE —e~ +jq

where

x g )k'Ka(L-1( ))aalu-(k' &z

a, l
gkzez

Z +ME —copy + ii)

L"(z)=[z+(N-2)e] P"-~ "(z),
with

)
2 -g& ~ (R~ -~g)

@ax( ) E' gaa
z+N& —~&+ ig

(78)

equations of motion for P„, g,„and Qf... are found
to be separable integral equations in the continuum
limit. We find

This expression for Pg, p... is exact. However, in
order to proceed further, some approximation
would have to be made, as the exact expression
contains the inverse of the matrix L(z). The con-
tribution of L(z) to the singularities of J'g, "„, , (z) in
the z plane must be known before the time evolution
may be computed. This becomes an unmanageable
task for more than three of four atoms. Conse-
quently, we shall consider here certain limits.

First let us consider the "point system" limit.
In this case, the matrix 4 has the property that the
off-diagonal elements are all equal to the diagonal
elements. Thus 4' z(z)- 0 (z) for all o.', p= l,
.. . , N. Using this property of @™z(z),it may be
easily shown that

( )
5f, -„.5 &g'ae g'azoic

z+Ne —(u, +tq (z+Nv —(u„+i@)[z+(N —2)e N4'(z)-+ig](z+N& —&u, . +iq)

Note that 4(z) is just the self-energy. The inverse Fourier transform yields

Ngf g, .„exp[-i(-Ne+2z+Nn)(t -t')]exp[ —yNI'(t-t')] Ng f, g,.~ exp[-i(- N& +&y)( t-t )] (79)
(2z —~„+N~ —~ iNr)(2~ —~„+N~ —& iNr)

' (~„-2z -N~+&iNr)(~„-~, )

From this we note that the probability
~P„», g...(t, t ')

~

z have terms proportional to Nz, in-
dicating an enhancement in the probability due to
the extreme radiative cooperative effects prevalent
in the "point-system" limit. Also, by inspection
of the denominators in (79) we see that the level
shift and linewidth are proportional to N in the

point-system limit. ~7

Next consider the opposite limit. That is, sup-
pose the system is infinitely dilute so that oddly the

I

diagonal 4 's survive: 4 - C5 ~. Recalling the
definition of the matrix I 'z(z) in (78), we find

L"(z) = [z+ (N —2)z —~(z)1 ~" .

[L ( )z]"=[ +z(Ã- )2z-~(y) +et]'(4)"',

where I„is the ¹&Nidentity matrix. The inverse
Fourier transform then yields

&g, f, ...(t, t')=bye, 5„.exp[-i(-Nc+&u, )(t —t')]+gf, g&...2 exp[-i(k'-jt) ~ Rz](exp[-i(-Ne+&u~)(t -t')]
S~i

x((u, -2e -a+~ tr) '((u, -(u„) ' e+xp[- (t2z-(u, +&)(t-t')]e x[pgr(t-t')]( ~2-(o„+a+-,' rt)-'

x(2e -~,.+& —yiT) e+x[p-i(- eN~+„.)(t-t')](~, &u, ,) '(&u,-, -2 e& +iF~) 'j . (80)

We note that (80) differs from the amplitude for the
scattering of the photon by a single deexcited atom
only in that the energy of the unyerturbed system
is of course -Xa instead of —e and instead of the
term exp[-i(k'-k) ~ R] we have

Z exp[ i(k --k) 'Rz].
g~l

V. DISCUSSION

In this yaper we have studied the effect of the
state of the other atoms in a multiatom system

1

upon the spontaneous-emission properties of a
given atom. We have utilized Heisenberg-picture
Green's functions and the equation-of -motion
method of solution. The interaction picture has
not been used in the present work. Thus, no re-
course has been made to the standard perturbation
schemes. ' In fact, we have shown that within
the yresent approach certain multiatom systems
may be treated exactly. Herein lies one advantage
of the Green's-function approach employed here.
We point out that we, as well as previous workers,
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have been able to exactly compute the time evolu-
tion of certain systems because of the properties
of the model employed. Incidentally, it is clear
that the application of the Green's-function ap-
proach to the one-atom problem within the context
of the model used here yields results identical to
those of WW. Hence the use of the WW approxima-
tion for a single two-level atom is equivalent to
summing only the laddered se.ries of "bubble"
graphs. ~ Our results for the two atom systems
are generally in accord with the Bethe-Salpeter
treatment of Chang and Stehle. ' We arrive at
results similar to these authors and others for the
one-excited, one deexcited atoms system. '6"9'
However, our results for the tw'o-excited atoms
system constitute a correction to the time evolution
relative to previous treatments. ' O' The correc-
tion takes into account in lowest order the radiative
correlations that are present for the two excited
atoms system. Within the context of the model
radiative cooperative effects for this system are
contained in the "crossed graph" of Fig. 4. Also,

another advantage of the present approach is that
the straightforward application of the equation-of-
motion method allows one to see at each stage of
the calculation just what physical processes con-
tribute to the given system. For more compli-
cated systems it may be possible to make approxi-
mations more systematically by using these
methods. It thus appears feasible to apply these
techniques to systems of more than two atoms
based on our results for the many-atom systems
considered in Sec. IV. We conclude that the re-
sults of the present investigation indicate that the
Heisenberg Green's-function approach can be use-
ful in treating radiative correlations in many-atom
systems. We shall apply these techniques to
more complicated systems in a future publication.

ACKNOWLEDGMENT

The author wishes to express his appreciation
to Dr. Hugh N. Pendleton for his continued guid-
ance and many helpful insights he offered during
the course of this work.

*Based on a thesis submitted to Brandeis University in
partial fulfillment of the requirements for the Ph. D.
degree.

~V. Weisskopf and E. Wigner, Z. Physik ~63 54 (1930).
2R. H. Dicke, Phys. Rev. 93, 99 (1954); in I'roceed-

ings of the Third International Congress of Quantum
Electronics, edited by P. Grivet and N. Bloembergen
(Columbia U. P. , New York, 1964).

N. $. Rehler and J. H. Eberly, Phys. Rev. A 3,
1735 (1971).

4See, for example, Ref. 3.
5M. J. Stephen, J. Chem. Phys. 40, 669 (1964).
6D. A. Hutchinson and H. F. Hameka, J. Chem. Phys.

41, 2006 (1964).
W. Heitler, The Quantum Theory of Radiation, 3rd

ed. (Oxford U. P. , London, 1954).
V. Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).

OV. E.rnst, Z. Physik 218, 111 (1969).
'0(a) C. S. Chang and P. Stehle, Phys. Rev. A 3, 630

(1971); (b) 3, 641 (1971).
~~B. D. Bjorken and S. D. Drell, Relativistic Quantum

Mechanics (McGraw-Hill, New York, 1965).
F. R. Fontana and D. Hearn, Phys. Rev. Letters 19,

481 (1967).
'3I. I. Rabi, N. R. Ramsey, and J. Schwinger, Rev.

Mod. Phys. 26 167 (1954).
~4M. Scully and W. E. Lamb, Phys. Rev. 159, 208

(1967).
M. Lax, IREE J. Quantum Electron. 3, 37 (1967),

and references therein.
~~C. R. Willis, J. Math. Phys. 5, 1241 (1964); 6, 1984

(1965); 7, 404 {1966); Phys. Rev. 147, 406 (1966).

~ A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyalo-
shinski, Quantum Eield Theory in Statistical Physics
(Prentice-Hall, Englewood Cliffs, N. J., 1963).

S. S. Schweber, An Introduction to Relativistic Quan-
tum Field Theory (Row, Peterson, and Co. , Evanston,
Ill. , 1961).

~~See, for example, Refs. 5, 6, and 8.
We have chosen a system of units such that I'=1.
The implications of these approximations have been

investigated in (a) M. L. Goldberger and K. M. Watson,
Collision Theory (Wiley, New York, 1964). See also
the work of (b) M. Levy, in Lectures on I'ield Theory
and the Many-Body I'rowem, edited by E. R. Caianiello
(Academic, New York, 1961).

2See, for example, the discussion in Ref. 21(a).
See, for example, Refs. 11 and 18.

24This is clear by inspection of the terms in the inter-
action Hamiltonian in (2). Of course, in a full quantum-
electrodynamic treatment all possible photon exchanges
should be included.

G. C. Duncan, Ph. D. thesis {Brandeis University,
1970) (unpublished) .

See Fig. 1. Note that for interatomic separations
smaller than the "cooperation length" R~ = ~& the system
is best considered as a collective unit with respect to its
spontaneous emission properties.

2~That this must be is clear, since in this limit the
atom density is unbounded, hence necessitating an "energy
band" with width proportional to +." For recent consider-
ation of the question of the inclusion of level shifts, see
B. R. Mollow, Phys. Rev. 5, 1969 (1972). See also Ref.
10.


