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The analytical method developed by the authors for the determination of the expectation value
of single-particle operators W= g; W(r&} correct to second order is employed in both the first
and second decoupling approximations to obtain analytic expressions for. the coherent x-ray
scattering factor E(k) for the ground state of the helium isoelectronic sequence valid for all
values of momentum transfer. The trial wave functiori go& employed is an energy-minimized
Hartree product of hydrogenic states. For helium the results for the form factor in the second
decoupling approximation are found to be superior to those of the first, and are within l.2%of
the highly accurate values calculated using a 120-parameter configuration-interaction wave
function and have an accuracy equivalent to that of an analytical Hartree-Fock treatment. This
error is further reduced as the atomic number is increased. In order to demonstrate the in-
ternal self-consistency of the technique, we prove that the expectation value of any single-
particle operator as obtained by direct use of the analytical method is the same as the expecta-
tion value obtained employing the form factor provided that the latter has also been calculated
by the analytical method employing the same trial wave function. Finally, we extend our cal-
culations to the infinite-momentum-transfer range and study our results in this limit by em-
ploying a cusp condition for the exact ground-state wave function of two-electron atomic sys-
tems written in terms of the logarithmic derivative of the electron density at the origin. We
observe that in the infinite-momentum-transfer limit our results for helium are in error by
0.57% and that this error is further diminished for each successive element of the isoelectronic
sequence. In addition, we note that the cusp condition is exactly satisfied via the formalism
of the second decoupling approximation and is independent of the variational parameter em-
ployed.

I. INTRODUCTION

The highly accurate results obtained via the
analytic method~' developed by the authors for the
determination of the expectation value correct to
second order of radially dependent single-particle
operators

W(r, . . . , r )=Z; W(y;)

further motivate one to a calculation of the com-
plete charge density of a spherically symmetric
atom as a function of the continuous radial vari-
able r. However, during the course of the inves-
tigation it was determined that it is analytically
simpler to obtain instead the Fourier transform
of the electron density.

'Ihe Fourier transform of the electron density
is, however, exactly equivalent to the coherent
x-ray scattering form factor which for an N-elec-
tron system is defined as

N

F(k) =Z (go ~

e'" ' ~
~ go)

where go is the ground-state wave function, r& is
the radius vector from the nucleus to the ith elec-

tron, and k(Ii= I) is the momentum transfer. The
coherent scattering form factor is of importance
first in the theory of scattering, where it is re-
lated to (i) the differential cross section for co-
herent scattering of photons by an atom in lowest-
order time-dependent perturbation theory via

iF(k) i'
dA

where ITh is the Thomson cross section for scat-
tering of radiation by a free electron, and (ii) to
the differential cross section for elastic scatter-
ing of charged particles by an atom in the first
Born approximation via the relationship

elastic
] i i

g F(k)
~

2

dn ~aors j
where ao is the Bohr radius and Z the number of
protons in the nucleus. In addition, the coherent
form factor, being the Fourier transform of the
electron density, is of further importance as it
may be employed in the determination of the ex-
pectation value of any nondifferential single-par-
ticle operator W=g~ W(r, ).

Now for a spherically symmetric atom the
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Fourier transform of the electron density may be
written as

J e'" ' ' p(r) dr = fp(r) [(sinkr)/kr]dr

where p(r) is the electron density. This implies
that the form factor F(k) as defined above is just
the expectation value of the operator S', where %'

is given by

W =2& (sinkr, )/kr,

As W may be written as a sum of single-particle
operators dependent on the radial distance only,
our technique for the determination of the ex-
pectation value of single-particle operators is
immediately applicable.

In this paper we begin, after brieQy reviewing
the analytical method to be employed, by deter. -
mining in Sec. II an analytical expression for the
coherent x-ray scattering factor F(k) for the
ground state of the helium isoelectronic sequence
valid for all values of momentum transfer k and
for a/l elements of the isoelectronic sequence. As
in the case of our previous' work on the expecta-
tion values of other operators for the ground state
of helium (henceforth referred to as I) we choose
our trial wave function (or to be an energy-opti-
mized product of hydrogenic states. On com-
parison of our results for helium with those in the
literature we find that our results are equivalent
to the analytic Hartree-Fock values of Kim and
Inokuti and no more than 1. 2%%uo in error over the
entire momentum-transfer range considered when
compared with the highly accurate results of a
120-term configuration-interaction wave-function
treatment due to Brown. ~ The results for the
other elements of the isoelectronic sequence are
found to improve consistently for each increase
in the nuclear charge Z. We thus find that em-
ploying the technique discussed in the previous
paper, highly accurate results for the form factor
may be obtained without the necessity of employing
very precise wave functions.

In Sec. III we prove the theorem that the expec-
tation value of any radially dependent single-par-
ticle operator W= 5', W(r, ) as obtained by direct use
of the analytical method involving the specific +'

in question is entirely equivalent to the expectation
value of the operator derived using the F(k) ob-
tained here provided that in both cases the same

for is employed. This theorem not only demon-
strates the internal self-consistency of the tech-
nique but also enables us to discuss and compare
our results for both small and large k limits more
meaningfully with those existing in the literature.
The above equivalence in the determination of (W)
via the two formalisms thus implies that it is now

possible to rederive all the results obtained in I.

In order to be more specific we give in addition in
Sec. III explicit analytic expressions for the expec-
tation values of the operators discussedin I, namely,
r", n = —2, —1, 1, 2, and the electron density at the
origin in terms of the coherent form factor F(k).

Finally we derive an analytic expression for the
form factor for the ground state of the helium iso-
electronic sequence in the infinite-momentum-trans-
fer range. Results due to Brown and Kim and

Inokuti are unavailable in this momentum-transfer
range and the only method by which we may discuss
the accuracy of our results is via a cusp condition
due to Kato~ describing the behavior of the exact
wave function of a two-electron atomic system in
the limit of coalescence of one of the electrons with
the nucleus. In addition it is interesting to note
that this cusp condition is exactly satisfied via our
formalism and is also independent of the variational
parameter employed.

II. APPLICATION OF TECHNIQUE AND RESULTS

We begin by brieQy reviewing the analytical
method devel. oped in the preceding paper, 2 to be
employed here in the determination of the coherent
form factor for the ground state of a two-electron
atom. For Operators which may be written as a
sum of single-particle operators dependent on the
radial coordinate,

W=+) W(r))

the expectation value of W correct to second order
is given by the expression

2Re f g~&(e E)g»dr-'1 Rejig"(H-E)q d

where g» is a trial wave function which is assumed
to be a Hartree product of single-particle wave
functions of the form II, y, (r, ) = H, y, (r, )F", (8», y~),
S' is the expectation value of the operator S' using
the trial wave function, i.e. , f ggr Wgo&dr, H is
the Hamiltonian, Z is the energy of the system,
and g» and $,'r are auxiliary functions defined by
the relations

&sr = +~~f~(r~) &or

&'»=~~f «(«)&or

where f,(r, ) and f,'(r, ), respectively, satisfy the
second-order differential-equations

d o df', (r, ) 2 &df&(r&) dQ, (r, ) 1
r& +

dr& dr, dr~ dr& P, (r,)
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= r, [W(r, ) —W, ]

a df', (,) 2, df,'(r;) dy;(r;)

(s) &&1/Ai(r() = r& ~

The solutions of the two differential equations (8)
and (9) are

fio(r, ) = f ' [y a pa(r, ')] i(f "i r,"a pa(r,")[W(r,")—W, ]dr,")dry'+Ci

f (r )=f '[r' p (r')] '[f"' r" P (r". )dr" ]dr'+C

(10)

where the constants C~ and C2 are chosen so as to
orthogonalize the auxiliary functions (ioT and $'iT to
$0T in order to eliminate the generally unknown

energy E from Eq. (5).
We now apply the procedure to determine the

Fourier transform of the charge density for the
ground state of the helium isoelectronic sequence.
This, as mentioned earlier, is the expectation val-
ue of the operator

H = Ho+H'

where

Ho= —V, —Va —2Z,/r, —2gi/ra2 2

H' = 2(gi —Z)/ri+ 2(gi —Z)/ra+ 2/ria,
so that

H0 ~OT E0 ~OT

(14)

2

W =5 (sinkr, )/kr, (12)
Now

W=f $0T W~OTdr=32goi/(4gai+k )

As our trial wave function $0T we choose an energy-
optimized simple product of single-particle hydro-
genic wave functions

(OT ——Pi(ri) Pa(ra) = (Zi/o) e i "i'"a'

where Z, =Z- |'6 and Z is the atomic number. The
choice of a real $0T leads to real auxiliary functions
$» and g,'~ as mell. We write the Hamiltonian for
the two-electron system in atomic units as

The denominator expression in the correction term
to W in Eq. (5) is the same for all operators since
the auxiliary function tt)» is independent of the par-
ticular operator whose expectation value is being
determined. The expression is thus the same as
derived in L The solution of Eq. (9) is

fi(r,.) = 14/Zri;+r, /2gi —(1/2Zi) lnr, +Ca

The orthogonalized auxiliary function $» is

1 1
4Z'1 i

+ — —
a (lnr, +lnra) $0T+ a [a —y-ln2Z, ]$0T,r, +r,

r2 1 1

where y is the Euler's constant, y=0. 5772157, and

1+f g', „(H- E)g„dT

=1+3(g, -g)/Z, +(2/Z, )(~oao-ao-ln2). (17)

The determination of the numerator in the cor-
rection term to 5' is, however, not as straight-
forward because it is not possible to obtain the
auxiliary function in simple analytic form. How-

l

ever, the principal point of interest is not so much
to obtain giT in some simple form, but rather to
obtain a value for the integral fg»(H —E)$0Tdr.
What we do, therefore, is to leave the function

f, (r, ) in its integral form and substitute it directly
into the numerator integral fgioT(H- E)$0Tdr and

then solve for this quantity.
The analytic expression for the f, (r,.)(i= 1, 2

since the two electrons are equivalent) employed'
in determining fgi T(H —E)tdtioT d T is

4Z, ccskr, i (4Z, —k ) sinkr; sink

)(4Z', + k')' r; 4Z', (4Z', +k')' kr; k

4Zck ( & sinks 8Zi i

' sinkr 8Z,
~

"i cnskr
)(4gi+k ) l i kr (4g +k ) lo kr (4Z +k )
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where

16Z, ( r& lnr, 1
(4sf»k')' 'iaz, mg' 4Z*» )

1 4Z, cosk (4S~~ - k ) sink 4z,k Si(k) 2S)(4zo, - ko) ) k SZ~(4Z~ —k ) 16zg

4Z (4Z +ko) (4Z +k )o k (4Z +ko)o k(4zo+ ko)o 2S (4Z + k ) (4zo+k )

and where Si(k) is the sine integral defined by

1 cosk'
(4S', +k')' o k'(4S'+k") S' k'

Si(k)= fo (siny/y)dy

The various components in the analytic expression for (W)—= E(k) are

f kyar(l/&g)(or«= f Pgr(1/&o)&or«= —16 ~
'/ '

4zi(4zi —k ) 6zi 32zq 96Z, 9 S, IOZ, (4zi —k )

where

& = (4zg~+ ko), B= (16Z~~+ko)

We note that the above analytic expression for the
form factor is valid for al/ values of momentum
transfer and for all elements of the isoelectronic
sequence.

In Table I we compare our results for E(k) =- (W)
for He I over the range of momentum transfer con-
sidered by Browno together with those of (a) W,

employing the same (or, (b) (W)„the form factor
without the denominator expression in the correction
term to W [see Eq. (5)] using the same trial wave
function $0~, i.e. , of the first decoupling approxi-
mation, o o'o (c) a three-term (six-parameter) ana-

lytic Hartree-Fock calculation due to Kim and

Inokuti, o and (d) a 120-term configuration-inter-
action wave-function treatment due to Brown. '

We observe, first, that our results for (W)o and

(W) are equivalent to the analytic Hartree-Fock
values of Kim and Inokuti. This is easily explained

on the basis of Brillouin's theorem according to

which the expectation value of single-particle
operators for closed-shell systems employing Har-
tree-Fock wave functions is correct to second
order. " The expressions for both (W)o and (W)

are correct to second order~'~ and thus lead to es-
sentially equivalent results as those due to Har-
tree- Fock.

However, as the results due to Brown are con-
sidered to be correct to three significant figures,
we wish to compare our results with his. We note

that for low values of momentum transfer our re-
sults for (W) are correct to the third and, at times,

I

to the fourth significant figure. The reason for
such accuracy may be understood as follows: For
low values of momentum transfer, the form factor
F (k) is given by the expansion '

F(k)= Z —(k /3!)(r )+O(k ) (19)

Thus for smaQ» the leading correction term is
directly proportional to (ro). As our technique
gives' (r ) to an accuracy of 99/o, the correction
term to Z is extremely small and hence our results
for E(k) for small k are excellent. In having sub-
stituted our value for (r ) into the above equation

we have inherently assumed (in order that our con-
clusions be self-consistent) that the expectation
value of the operator r as obtained via our tech-
nique is equivalent to the (ro) obtained using the

form factor. This assumption, however, is true
as shown in Sec. III, where we prove a general
theorem demonstrating the equivalence of the ex-
pectation value of any single-particle operator as
obtained using our form factor to that of the expec-
tation value determined using the technique directly.

On comparison of our results for (W) for small
momentum transfer with those of (W) o we note that

our (W) values are superior. This of course is a
consequence of the fact that the expectation value

of r as obtained by Shustek and Krieger employing

a technique similar to ours but using the analytic
expression for the expectation value as obtained in

the first decoupling approximation is in error by
2. 7/p. (The equivalence theorem mentionedabove

and discussed in Sec. III holds for their technique

as well. )
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The maximum error in our results of approxi-
mately 1%%uq occurs for certain values in the median
range of momentum transfer considered in Table
I and diminishes again for larger values of k. For
example, at a momentum transfer of I A, the
error in (W) is 0. 9/0. However, the improvement
over N' is quite striking since a,t the above value af
momentum transfer W is in error by 13%%. At a
momentum transfer of 2 A ~ a 24/g error in W is
reduced to a 0. 85/0 error in (W).

Except for a small range of momentum transfer
between 0. 35 and 0. 55 A ~, our results for (W) are
superior to those of (W)0 over the entire medium-
and high-momentum- transf er ranges considered.
At the momentum transfer of 1 A ', (W), is in
error by 1.3/o and at 2 A the error in (W)o is
3. 1'%%uq. This behavior of (W)o for the helium atom,
of increasing error with increasing momentum
transfer, is entirely similar to its behavior for
the hydrogen atom as discussed in the preceding
paper where it diverged further from the exact
result the greater the momentum transfer. (W)
on the other hand tends to converge to nea, rly the
correct answer for large values of momentum trans-
fer for both the hydrogen and helium atoms.

Here again as in the case of the results of I for
the expectation va, lues of other single-particle op-
erators, we expect our results for the form factor
to improve for each heavier element of the isoelec-
tronic sequence as the interelectronic potential
term in the Hamiltonian becomes less and less
significant in comparison to the electron-nuclear
potential terms, thereby making correlation terms
which are neglected here less significant. On corn
parison of our results for (W) with those of Brown, 5

this is found to be the case. Similar results obta. in
for IiG. ' Here, for low values of k our results
are the same as his to four and, at times, to five
significant figures. In the median range again
there is a maximum error of approximately 0. 4'%%uo

and for the largest value of momentum transfer
considered by Brown (3.0555 A ~) a 16% error in
W is reduced to a 0. 25% error in (W). Our re-
sults for the remaining elements of the isoelec-
tronic sequence improve for each heavier ele-
ment. '~

Womack and ¹ickerson~ have also performed an
approximate analytic calculation of the form factor
for the helium isoelectronic sequence using large-
Z perturbation theory through order Z '. Vfe find
their calculation accounts for less than half of the
difference between our lowest-order term 8' and
the results due to Brown for He, and is in error
by approximately 10%%ug for a momentum transfer of
1 A ~, the largest value tabulated by them. For
larger values of Z, the accuracy of their results
improves as expected, but are not generally sub-
stantially better than W alone.

m. EXPECTATIONS QF SINGLE-PARTICLE OPERATORS
FROM COHERENT ATOMIC SCATTERING FACTOR

E(k)

As the form factor E(k) is the Fourier transform
af the electron density, the electron density is
given by

p(r) = (1/8w') fE(k) e-'"'dk (20)

(W) = f W(r) [(1/8w )f E (k) e ' 'dk]dr (22)

Thus knowledge of the form factor permits the de-
termination of the expectation value of any such
oper ator O'. Now the technique discussed in I and
the preceding paper is essentially a method for
the determination of the expectation values of
single-particle operators W =)'& W(r,). What we
wish to prove here is that the expectation value of
Rny RrbltrRx'y single-pRx'tlcle opex'Rtox' 8 Rs de-
termined via this technique is entirely equivalent
to the expectation value of the operator as given in
terms of the form factor E(k) by Eq. (22), where
the form factor itself has been obtained via our
method as the expectation value of the operator
V=/;[(sinkr;)/kr, ] with the same choice for (or.
Thus we seek to show that

( )
— 2Re Jf~*r(~)(H E)g~rdr-

'1+Re ~q,",(If Z)yord. -
= f W(r) [(1/8w') f (P e "'dk]dr (23)

where /~or&~& in the above expression is the auxil-
iary function $0» which may be obtained by direct
use of the analytical method involving the specific
operator W in question and where (V) =E(k). The-
auxiliary function for the operator V is similarly
designated g~r«&.

Since we ensure the orthogonality of the auxili-
a y fu tions tg,„„g,&„„,and g,

' to g we may
replace the generally unknown energy E in Eq.
(23) by any suitable quantity. If we replace it by
the expectation value of the Hamiltonian in the
state for, i.e. , by g=((or iHi(or), then the addi-
tion of any orthogonality terms to the unorthogon-
aliFed auxiliary functions gr«» g, z, &r» and g»
leads to no net contribution to the integrals in the
correction terms to W and V'. This implies there-
fore that if we substitute gfor the energy E then
these integrals are independent of the constants re-
quired to orthogonalize the auxiliary functions to

The expectation value of an arbitrary single-par-
ticle operator 8' which is a function of the radial
distance in terms of the electron density is

(W) = f Wp(r) dr (»)
so that on substituting for p(r) from (20) into (21)
we have
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(»n-'e)/X (~ ') mao

TABLE I. Comparison of form factors E@) for He I. Here

9 Or WPpr d& ((V) 0= @+'2&eft)fr I &) 0 OT d~

(W) =W+ [2Re f(JIg PI E) gpr dT/(1+Re Jg~r '(H E) /pre)J.

AHF CIb

0.0
0.025
0.050
0.075
0.100

0.150
0.200
0.250
0.300
0.350

0.400
0.450
0.500
0.550
0.600

0.650
0.700
0.750
0.800
0.850

0.900
0.950
1.00
1.05
1.10

1.15
1.20
1.25
1.30
1.35

1.40
1.45
1.50
1.60
1.70

1.80
1.90
2.00

0.0
0.166243
0, 332 485
0.498 728
0.664971

0.997456
1.329 94
1.66243
1.99491
2.32740

2.659 88
2.99237
3.32485
3.657 34
3.989 81

4.322 31
4.65480
4.98728
5.31977
5.652 25

5.98474
6.31722
6.649 71
6.98219
7.31468

7.64717
7.97965
8.312 14
8.64462
8.97711

9.309 59
9.64208
9.97456

10.6395
11.3045

11.9695
12.6344
13.2994

2.0000
1.9903
1.9617
1.9154
1.8533

1.6916
1.4985
1.2952
1.0984
0.918 59

0.761 02
0.626 92
0.515 08
0.423 05
0.347 94

0.286 93
0.23V 45
0.19733
0.164 72
0.13816

0.11645
0.098 611
0.083 913
0.071 742
0.061 617

0.053 155
0.046 052
0.040 061
0.034 988
0.030 672

0.026 987
0.023 826
0.021 106
0.016 717
0.013395

0.010 849
0.008 8723
0.007 3213

2.0000
1.9894
1.9579
l.9073
1.8399

1.6668
1.4650
1.2579
1.0625
0.888 13

0.738 12
0.612 10
0.507 75
0.422 01
0.351 81

0.294 36
0.247 27
0.208 59
0.176 71
0.150 34

0.128 44
0.11019
0.094 905
0.082 062
0.071 227

0.062 046
0.054 242
0.047 582
0.041 878
0.036 976

0.032 747
0.029 088
0.025 912
0.020 730
0.016 754

0.013' 669
0.011350
0.009 3351

2.0000
1.9892
1.9572
1.9058
1.8373

1.6621
1.4587
1.2508
1.0557
0.882 33

0.733 76
0.609 28
0.506 36
0.421 81
0.352 55

0.295 77
0.249 14
0.210 74
0.178 99
0.152 66

0.130 73
0.11239
0.096 997
0.084 026
0.073 054

0.063 739
0.055 801
0.049 014
0.043 189
0.038 176

0.033 844
0.030 090
0.026 827
0.021 494
0.017 395

0.014 206
0.011703
0.009 7185

2.0000
1.9892
1.9571
1.9057
1.8372-

1..6626
1.4604

1.0602

0.7383

0.5089

0.3529.

0.2481

0.1772

0.1288

0.095 23

0.071 52

0.054 53

0.042 16

0.033 02

0.026 17

2.0000
1.9891
1.9569
1.9052
1.8364

l.6612
l.4585
1.2522
1.0586
0.88626

0.737 94
0.61313
0.509 53
0.424 20
0.35416

0.296 71
0.249 52
0.210 67
0.178 60
0.15203

0.12995
0.11154
0.096 123
0.083167
0.072 239

0.062983
0.055 114
0.048 398
0.042 643
0.037695

0.033424
0.029 725
0.026 511
0.021 257
0.017216

0.014071
0.011599
0.009 6363

Column AHF refers to the analytic Hartree-Fock calculations due to Kim and Inokuti (see Ref. 4).
Column CI refers to the 120-term configuration-interaction result due to Brown (see Ref. 5).

In proving the above theorem we may thus
only consider the unorthoganal. ized auxiliary func-
tions. In addition, since the operators 5' and V
are sums of single-particle operators, it is suf-
ficient to prove the theorem for a single term
f, (or of the auxiliary function g». (The subscript
i is thus dropped. )

Let us first consider p'= (g~ J (sinkr) J krl for) of
(V). As a conse(luence of the Fourier integral
theorem it may be seen that

W=fW(r)[(I/8v )f Ve '"'dk]dr (24)

The denominator expression in the correction
terms to W and V of both (W) and (V) is the same
and is independent of k since the auxiliary function

gr is independent of the operator in (Iuestion.
Thus we next have to consider the numerator in-
tegral in the correction term to V. For this term
of (V) in Eq. (22) we have (here dv' refers to inte-
grals over the configuration space of @11 the elec-
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trons in th.e system)

f W(«)[(I/Sv') f [f (lo,*,„,(H S-)q„d«']

Let us consider the first term, i.e. , the part of
f«(r) defined as

&(ogr(«&=I «(&)&or

x e '"'dk)dr
(25)

where f«(r) is the f («) function taken with respect
to the operator V= (sink«)/kr and /~or«& the cor-
responding auxiliary funchon. Now the function

f «o(«') as given by Eq. (10) is a sum of two terms.

jr yo

x Q (r") — --„- «" dy"
~

d«'sinks "
kx" )

(25)
where a is some arbitrary lower limit. For this
part of f«o(r) the integral in Eq. (25) is

t' I,"
j

" 1
. . «(r)

j s „j ' „,,„jp((r'")[(sindr"')/ dr"' rj'"' d'r)dr""

r (Orr(dd d)(),„'dr'
}

—-—d'dd ) dr

By consistent and repeated changes in the order of i@tegration we may reduce the previous integral to

d (r'")r"' W(r)j j
— —,„-d dd jr dr dr"'}dr"

(2V)

x (fr(H-8)for d«' (28)

Now it rnly be shown unpin)g distribution theory' that for physically realizable systems

Jo
sinkr' sinkrdk = —,'v 5(«' —r)

I

so that on substitution of this integral, expression (IS) reduces to

& 4
a

ada a( dd) I( (t) («)W(r )«d«dr Igr(H $)&or d«
s oo

where the integral from, a to x' within the square
brackets xaay be recognized immediately as $)«(«),
the first part of f (r) derived for the operator W(«),
i. e. , ((soya essioa (2Q) is simply

f C(«)gr(H &)for d«'- (30)

The seeend part fo«(r) of f «o(r) defined as

)%

der)=' -:
'j d'(r") Vr"'dr" ) dr

& r o~o(&r )

f W(«)[(I/Sm') f [f t'«o g~(H-8 )ford«']e "'dkj dr

= f to q, (H-Sg„d«' . (3I)

Therefore Eq. (23) holds and the theorem regarding
the equivalence of the bvo techniques for obtaining
(W) is thus paeved.

may be treated in exactly the same manner to prove
that

The statements of the previous few yaragraphs
are gene". al in that they apply to any operator of
the form W=), W(r, ). Moreover, we give below
specific analytic expressions for the operators con-
sidered in I, namely, P, m=2, 1, -1, -2, andthe
electron density at the origin in terms of the co-
herent form factor E (k) employing Kq. (22)' ':

(«') =- V, 'E(k) i.,. . (32a)

(«) =(2/v) f, —&, E(k) dk

(« ') = (2/v) fo E (k) dk

(«-')= f, kE(k) dk,

( (5))r=( / I'2) f, k'E(k)dk .

(32b)

(32c)

(32e)

We may thus employ the analytic exprt. ssion for
E(k) derived in Sec. II to rederive our results of I
via the above formulas; i.e. , it is no longer neces-
sary to calculate the expectation value correct to
second order of each single-parbcle Operator sep-
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arately since they can all be obtained from the
Fourier transform of the charge density calculated
correct to second order.

These analytic expressions also enable us to un-
derstand better some of the results obtained in I.
There, for example, for the ground state of the
helium atom ere had overestimated the results for
(v a) and (&(r)) on comparison with those due to Pe-
keris. This may be explained on the basis of the
fact [see Eqs. (32d) and (32e)] that to obtain the ex-
pectation values (r ) and (&(r)) we need to integrate
the form factor weighted for large k over an infinite
range of momentum transfer. Note that our results
for E(k)-=(W) lie slightly above those due to Brown
for values of momentum transfer above 0. Vs A

and hence on integrating over all values of k we ar-.
rive at an overestimate for the expectation vat.ues
of these operators.

Finally having derived an analytical expressi;on
for the coherent scattering form factor valid for all
values of momentum transfer we are able to extend
our calculations to the infinite-momentum-transfer
limit. However, results for E(k) due to Brown and
Kim and Inokuti for values of momentum transfer
greater than those considered in Table I are un-
available and thus we can no longer compare our
results with theirs. %e may, however, study our
results for the infinite-momentum-transfer limit by
employing a cusp condition due to Kato describing
the behavior of the exact ground-state wave function
of a bvo-electron system in the limit of coalescence

TABLE II. E(k) for large momentum transfer. Com-
parison of coefficients of terms of order k

1
2
3

5
6
7
8

Pekeris~
+ cusp condition

16.5373
364.003

2066.48
69I5.73

17471.4
37 061.6
69 781.9

120 495.6

Present
work

17.1174
366.09K

2071.45
6924. 87

17486. 2
37 083.2
69 811.7

1Ã 535.4

% error

3.5
0.57
0.24
0.13
0.09
0.08
0.04
0.03

See Ref. 16.

of one electron with the nucleus.
This follows from the fact thy, trav

(
dp & 1 (33)
dt' „p)k

and since the cusp condition may be written ass

dp = —22'p(0),
d1' ~ p

(34)

F (k} = lesvp(0)
Q~ oo

Expanding our analytic expression for E(k) in the
k-~ limit we obtain

Goscinski and Lindner, using Eqs. (33) assi (34), ob-
tained the asymptotic expression for the fw m factor:

,( 2 4 Z, [128(g —S)+M-121n4] 1
1+ 3(&( —Z)/S~+ (2/2', )(+ —-,'ln2) (35)

%e may thus compare our results for the form
factor in the infinite-momentum-transfer limit as
given by Eq. (M) with those of an "exact" calcula-
tion by substituting into Eq. (35) the most accurate
value of p(0) available, namely, those due to Pe-
keris. In Table II we compare the coefficients of

k with those involving the results of Pekeris for
p(0). We observe that the error for He is 0. 5')%

and that this error again decreases for eachheavier
element of the isoelectronic sequence as expected.
The form factor in the infinite-momentum-transfer
iimit for the negative ion of, atomic hydrogen H,
whose properties we know are highly sensitive to
the choice of the wave function employed, however,
differs by only 3. 5/0 from an "exact" calculation,
whereas W in this case is in error by 5V. 8%.
Benesch and Smith, ~9 employing a 20-parameter
Hylleraas-type wave function not satisfying the Kato
cusp condition, have also calculated the coefficient
of k in the high k: limit. For S=i, 2, 3 their re-
sults, compared to those of Pekeris listed in column

2Sfp(0) =
7r

v-&[SZ', (S,—S)+4yS', ]
1+$(X,—S)/Z, +(2/S, )(I-——', ln2)

1 dp
2S dr ~ 0

with y= P~-- —', ln2 and where the radial derivative is

one of Table II, are in error by 1.5%, 0. 21%, G. 20%
and are thus more accurate than ours. However,
for S& 5 our results are slightly more accurate than

theirs.
%:e note also that the cusp conditice. , s,s written

in terms of the relationship bet&veen the logarithmic
derivative of the electron density at the origin and

the atomic number, Eq. (34), is exactly satisfied on

substitution of our analytic exyreseionll for the ex-
pectation value of the electron density at the origin
from I which is (here the first term corresponds to
8' and the second to the correction to %' i@ the sec-
ond decoupling approximation)
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obtained from Eqe. (33) and (36). In addition, the
satisfaction of this cusp condition is observed to be
independent of the choice of the variational param-
eter Sz.
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X-Ray Scattering from Liquid Crystals. I.
Cholesteryl Nonanoate and Myristate

W. L. McMillan
Jjel/ Laboratories, Murray Hill, Nese Jersey 07974

(Received 2 March 1972)

X-ray scattering intensities from unoriented samples of cholesteryl nonanoate and myristate
are reported for several temperatures in the smectic A, cholesteric, and isotropic liquid
phases. The measured Bragg-scattering intensities from the smectic planes are used to test
a recent theoretical model of the smectic A phase. Strong pretransition scattering (short-
range-order or order-parameter fluctuations) are observed in the cholesteric phase and a
Landau theory is constructed to describe this effect.

I. INTRODUCTION

In his classic study. ,of liquid .crystals Friedel
differentiated three tyyes of phases —nematic,
cholesteric, and smectic. The nematics and cho-
lesterics exhibit orientational order with the long
molecular axis oriented preferentially parallel to
an axis in space. In cholesterics this preferred
axis has a helical twist but from the thermodynamic

point of view the two phases are the same. The
nematic is just a cholesteric with infinite helical
pitch. For the smectics then under study Friedel'
postulated and Friedel verified a planar structure.

The nematics and cholesterics have been studied
intensively for the last few years and the theo-
retical situation is well advanced. One has a
microscopic theory due to Maier and Saupe, a
continuum elastic theory4' which has been extended


