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The analytical method developed by the authors for the determination of the expectation value
of single-particle operators W= ; W(E,) correct to second order is employed in both the first
and second decoupling approximations to obtain analytic expressions for the coherent x-ray
scattering factor F(k) for the ground state of the helium isoelectronic sequence valid for all
values of momentum transfer. The trial wave function y,r employed is an energy-minimized
Hartree product of hydrogenic states. For helium the results for the form factor in the second
decoupling approximation are found to be superior to those of the first, and are within 1.2%of
the highly accurate values calculated using a 120-parameter configuration-interaction wave
function and have an accuracy equivalent to that of an analytical Hartree-Fock treatment. This
error is further reduced as the atomic number is increased. In order to demonstrate the in-
ternal self-consistency of the technique, we prove that the expectation value of any single-
particle operator as obtained by direct use of the analytical method is the same as the expecta-
tion value obtained employing the form factor provided that the latter has also been calculated
by the analytical method employing the same trial wave function. Finally, we extend our cal-
culations to the infinite-momentum-transfer range and study our results in this limit by em-
ploying a cusp condition for the exact ground-state wave function of two-electron atomic sys-
tems written in terms of the logarithmic derivative of the electron density at the origin. We
observe that in the infinite-momentum-~transfer limit our results for helium are in error by
0.57% and that this error is further diminished for each successive element of the isoelectronic
sequence. In addition, we note that the cusp condition is exactly satisfied via the formalism
of the second decoupling approximation and is independent of the variational parameter em-

ployed.
1. INTRODUCTION tron, and E(h’ =1) is the momentum transfer. The
coherent scattering form factor is of importance
The highly accurate results obtained via the first in the theory of scattering, ® where it is re-
analytic method''? developed by the authors for the lated to (i) the differential cross section for co-
determination of the expectation value correct to herent scattering of photons by an atom in lowest-
second order of radially dependent single-particle order time-dependent perturbation theory via
operators o .
WEy, ..., Fy)=D, W) o= mlFE®
further motivate one to a calculation of the com- where I, is the Thomson cross section for scat-
plete charge density of a spherically symmetric tering of radiation by a free electron, and (ii) to
atom as a function of the continuous radial vari- the differential cross section for elastic scatter-
able . However, during the course of the inves- ing of charged particles by an atom in the first
tigation it was determined that it is analytically Born approximation via the relationship
simpler to obtain instead the Fourier transform 2
of the electron density. A% astie _ (_2_) |z-F®|? ,
The Fourier transform of the electron density ag agk
is, however, exactly equivalent to the coherent where ag is the Bohr radius and Z the number of
x-ray scattering form factor which for an N-elec- protons in the nucleus. In addition, the coherent
tron system is defined as form factor, being the Fourier transform of the
- X s electron density, is of further importance as it
F(k) =? W’o' e " | Yo) » @ may be employed in the determination of the ex-
- pectation value of any nondifferential single-par-
where ¥, is the ground-state wave function, ¥; is ticle operator W=y, W(F,).
the radius vector from the nucleus to the ith elec- Now for a spherically symmetric atom the
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Fourier transform of the electron density may be
written as

[ &% F p(®)aF= [ p)[(sinkr)/kr]dF | @)

where p(7) is the electron density. This implies
that the form factor F(k) as defined above is just
the expectation value of the operator W, where W
is given by

W=2; (sinkr;)/kr; . (3

As W may be written as a sum of single-particle
operators dependent on the radial distance only,
our technique for the determination of the ex-
pectation value of single-particle operators is
immediately applicable.

In this paper we begin, after briefly reviewing
the analytical method to be employed, by deter-
mining in Sec. II an analytical expression for the
coherent x-ray scattering factor F(E) for the
ground state of the helium isoelectronic sequence
valid for all values of momentum transfer k and
for all elements of the isoelectronic sequence. As
in the case of our previous! work on the expecta-
tion values of other operators for the ground state
of helium (henceforth referred to as I) we choose
our trial wave function ¥y, to be an energy-opti-
mized product of hydrogenic states. On com-
parison of our results for helium with those in the
literature we find that our results are equivalent
to the analytic Hartree-Fock values of Kim and
Inokuti* and no more than 1. 2% in error over the
entire momentum-transfer range considered when
compared with the highly accurate results of a
120-term configuration-interaction wave-function
treatment due to Brown.® The results for the
other elements of the isoelectronic sequence are
found to improve consistently for each increase
in the nuclear charge Z. We thus find that em-
ploying the technique discussed in the previous
paper, highly accurate results for the form factor
may be obtained without the necessity of employing
very precise wave functions.

In Sec. I we prove the theorem that the expec-
tation value of any radially dependent single-par-
ticle operator W=7, W(r,) as obtained by direct use
of the analytical method involving the specific W
in question is entirely equivalent to the expectation
value of the operator derived using the F(k) ob-
tained here provided that in both cases the same
Por is employed. This theorem not only demon-
strates the internal self-consistency of the tech-
nique but also enables us to discuss and compare
our results for both small and large 2 limits more
meaningfully with those existing in the literature.
The above equivalence in the determination of (W)
via the two formalisms thus implies that it is now
possible to rederive all the results obtained in I.

In order to be more specific we give in addition in
Sec. IO explicit analytic expressions for the expec-
tation values of the operators discussedinl, namely,
Y, n=-2,-1,1, 2, and the electron density at the
origin in terms of the coherent form factor F (k).
Finally we derive an analytic expression for the
form factor for the ground state of the helium iso-
electronic sequence in the infinite-momentum-trans-
fer range. Results due to Brown and Kim and
Inokuti are unavailable in this momentum-transfer
range and the only method by which we may discuss
the accuracy of our results is via a cusp condition
due to Kato® describing the behavior of the exact
wave function of a two-electron atomic system in
the limit of coalescence of one of the electrons with
the nucleus. In addition it is interesting to note
that this cusp condition is exactly satisfied via our
formalism and is also independent of the variational
parameter employed.

II. APPLICATION OF TECHNIQUE AND RESULTS

We begin by briefly reviewing the analytical
method developed in the preceding paper, 2 to be
employed here in the determination of the coherent
form factor for the ground state of a two-electron
atom. For operators which may be written as a
sum of single-particle operators dependent on the
radial coordinate,

W=2, W) @)

the expectation value of W correct to second order
is given by the expression

2Re [YM(H — E) Py rdT
1+Re [ YI%(H - E) Yord7

(W)= W+ (5)

where ¥, is a trial wave function which is assumed
to be a Hartree product of single-particle wave
functions of the form II; ¢, (F;) = IT; @;(r))Y7(6,, @,),
W is the expectation value of the operator W using
the trial wave function, i.e., [¥§; WiyrdT, H is
the Hamiltonian, E is the energy of the system,

and pJr and Yl are auxiliary functions defined by
the relations

Wr=22 127 Yor (6)
Zp}.T=Z)lf%(7’i)w0T ’ (7

where f(r;) and f}(r;), respectively, satisfy the
second-order differential-equations

d (.2 i)\ 2 df ) doslry) 1
dr; (r, dr; )+2h ary dry ¢ (7;)
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=riwr)-w], (8

a4 <,,12 df i(r;) ) 1292 dfilry) doi(r;)

d'ri d?’{ d/l’i d’l’i

FHORS M A IS WA

Aer)= Tl

where the constants C; and C, are chosen so as to
orthogonalize the auxiliary functions yJr and pip to
Yor in order to eliminate the generally unknown
energy E from Eq. (5).

We now apply the procedure to determine the
Fourier transform of the charge density for the
ground state of the helium isoelectronic sequence.
This, as mentioned earlier, is the expectation val-
ue of the operator

2
W=23 (sinkr,)/kr; .
i=1

(12)

As our trial wave function ¥y, we choose an energy-
optimized simple product of single-particle hydro-
genic wave functions

bor=01(7y) Ppa(rs) = (Zi’/ﬂ) e~Z1tryrrg) s (13)
where Z,=Z -7 and Z is the atomic number. The
choice of a real y, leads to real auxiliary functions
3 and yir as well. We write the Hamiltonian for
the two-electron system in atomic units as

J

1 1 1 Vi+7
1 _ - y_1T72
Vir= [4Z1 ("1 * 7’2) 22,

where 7 is the Euler’s constant, ¥=0.577215%, and
1+ [ $0(H - E)dopdt

=1+3(2,-2)/Z,+(2/Z2)( -2m2). @17
The determination of the numerator in the cor-
rection term to W is, however, not as straight-

forward because it is not possible to obtain the
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x1/d;r)=7ri. (9)

The solutions of the two differential equations (8)
and (9) are

qb,z(V,”)[W('}’,")—VV,]d?’{'}dT{+Cl s (10)
{2 () )ar{ lari+C, , (11)
—

H=Hy+H' ,
where
Hy==-V,2-V,2-22,/v,-2Z,/75 , (1)
H'=Z(ZI—Z)/7‘1+2(Z1—Z)/1’3+2/’)’12 3
so that
Hobor=Eo¥dor - (15)
Now
W= [ Yop Wihopdr=322%/(423+£2)? . (16)

The denominator expression in the correction term
to W in Eq. (5) is the same for all operators since
the auxiliary function zj)iT is independent of the par-
ticular operator whose expectation value is being
determined. The expression is thus the same as
derived in I. The solution of Eq. (9) is

frr)=1/4Z%r; +v/22, - (1/2Z3) v, + C;, .

The orthogonalized auxiliary function 11){1- is

1 1
272 (1m'1+1n'rz)] Por + 7 [‘Z— —7—1n221]¢OT s
1 1

r
ever, the principal point of interest is not so much
to obtain 9, in some simple form, but rather to
obtain a value for the integral [$3.(H - E)¢ordr.
What we do, therefore, is to leave the function
Fr,) in its integral form and substitute it directly
into the numerator integral [$3,(H — E)¥ord7 and
then solve for this quantity.

The analytic expression for the f7(»;)(i=1, 2
since the two electrons are equivalent) employed’

auxiliary function in simple analytic form. How- in determining [¥)(H - E)ypdT is
|
4z, (coskr, ) 1 (4z2- 1% ( sinkr; sink
7;) = - 1 i
1) [(4Z¥+k2)2 eSOk )+ agT g e ( " ) ) ]
. ( 4zk® 5 tsinky | 2Z; "t sinky dr 822 i cosky dr)
azi+k% )y Ry 4zi+r% )y R @zi+e®? ), 7
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where

1 4Z,cosk  (4Z3-F% sink  4Z;kSi(k)
Ci= 47T ~ Gz B0 T R kT G

and where Si(?) is the sine integral defined by
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2Z,(4Z%- 1% .
_22,82,-F) tant
R@azE s Y A
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7 o 1 ) c
2z, "2zt T 4zZ%, )T

162% < 7
+
(4Z% + k%)%

_k_823(4zi-k?
2z, (4z¢+F%°

jk< 4 __1 cost ar
o \B'(4Z%+¥%~ 2% #

1622
+ 2
(472 + %%

8z}
(4Z%+1%2

Si(k) = fok (siny/y)dy .

The various components in the analytic expression for (W)=F(k) are

[ 90(1/% bgrdr= [ B(1/7)ordT= - 16Z2/A,

(18)
1 323 44 3 Z%4z%-1rP E k 3225822 - k?)
0 - 2 L3\F4y -1 — tan-1 Y=
I*”” 7oy YordT= = Ingm+ g =y (t"m iz, ~ " 3z, ) AT
) 4z3(4z2-k? 623 32z 9623 9 z3 10z3(4z:-k
—1 - - ___1_9_1_._._
*TATB *AB *ABL A "2 AT Y A ’

where
A=(4z%+1%), B=(16Z%2+F% .

We note that the above analytic expression for the
form factor is valid for all values of momentum
transfer and for all elements of the isoelectronic
sequence.

In Table I we compare our results for F(k)= (W)
for He I over the range of momentum transfer con-
sidered by Brown® together with those of (a) W,
employing the same ¥or, (b) (W), the form factor
without the denominator expression in the correction
term to W [see Eq. (5)] using the same trial wave
function o7, i.e., of the first decoupling approxi-
mation, #%° (¢) a three-term (six-parameter) ana-
lytic Hartree-Fock calculation due to Kim and
Inokuti, 4 and (d) a 120-term configuration-inter -
action wave-function treatment due to Brown.’

We observe, first, that our results for (W), and
(W) are equivalent to the analytic Hartree-Fock
values of Kim and Inokuti. This is easily explained
on the basis of Brillouin’s theorem!® according to
which the expectation value of single-particle
operators for closed-shell systems employing Har-
tree-Fock wave functions is correct to second
order.!! The expressions for both (W), and (W)
are correct to second order? and thus lead to es-
sentially equivalent results as those due to Har-
tree-Fock.

However, as the results due to Brown are con-
sidered to be correct to three significant figures,
we wish to compare our results with his. We note
that for low values of momentum transfer our re-
sults for (W)are correct to the third and, at times,

r
to the fourth significant figure. The reason for
such accuracy may be understood as follows: For
low values of momentum transfer, the form factor
F(2) is given by the expansion® ¥
F(k)=~Z - (#¥/31)(r%) +O(RY) . (19)
Thus for small %, the leading correction term is
directly proportional to (r?). As our technique
gives! (#?) to an accuracy of 99%, the correction
term to Z is extremely small and hence our results
for F() for small k are excellent. In having sub-
stituted our value for (#%) into the above equation
we have inherently assumed (in order that our con-
clusions be self-consistent) that the expectation
value of the operator 72 as obtained via our tech-
nique is equivalent to the (%) obtained using the
form factor. This assumption, however, is true
as shown in Sec. III, where we prove a general
theorem demonstrating the equivalence of the ex-
pectation value of any single-particle operator as
obtained using our form factor to that of the expec-
tation value determined using the technique directly.
On comparison of our results for (W) for small
momentum transfer with those of (W), we note that
our (W) values are superior. This of course is a
consequence of the fact that the expectation value
of 72 as obtained by Shustek and Krieger® employing
a technique similar to ours but using the analytic
expression for the expectation value as obtained in
the first decoupling approximationz is in error by
2.7%. (The equivalence theorem mentionedabove
and discussed in Sec. III holds for their technique
as well.)
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The maximum error in our results of approxi-
mately 1% occurs for certain values in the median
range of momentum transfer considered in Table
I and diminishes again for larger values of k. For
example, at a momentum transfer of 1 A"%, the
error_in (W) is 0.9%. However, the improvement
over W is quite striking since at the above value of
momentum transfer W is in error by 13%. Ata
momentum transfer of 2 A*'a 24% error in W is
reduced to a 0. 85% error in (W).

Except for a small range of momentum transfer
between 0. 35 and 0. 55 AL, our results for (W) are
superior to those of (W), over the entire medium-
and high-momentum-transfer ranges considered.
At the momentum transfer of 1 A}, (W), is in
error by 1.3% and at 2 A™ the error in (W), is
3.1%. This behavior of (W), for the helium atom,
of increasing error with increasing momentum
transfer, ‘is entirely similar to its behavior for
the hydrogen atom as discussed in the preceding
paper? where it diverged further from the exact
result the greater the momentum transfer. (W)
on the other hand tends to converge to nearly the
correct answer for large values of momentum trans-
fer for both the hydrogen and helium atoms.

Here again as in the case of the results of I for
the expectation values of other single-particle op-
erators, we expect our results for the form factor
to improve for each heavier element of the isoelec-
tronic sequence as the interelectronic potential
ferm in the Hamiltonian becomes less and less
significant in comparison to the electron-nuclear
potential terms, thereby making correlation terms
which are neglected here less significant. On com-
parison of our results for (W) with those of Brown,
this is found to be the case. Similar results obtain
for LilIl. 7 Here, for low values of % our results
are the same as his to four and, at times, to five
significant figures. In the median range again
there is a maximum error of approximately 0. 4%
and for the largest value of momentum transfer
considered by Brown (3. 0555 A™!) a 16% error in
W is reduced to a 0.25% error in (W). Our re-
sults for the remaining elements of the isoelec-
tronic sequence improve for each heavier ele-
ment, 37

Womack and Nickerson!® have also performed an
approximate analytic calculation of the form factor
for the helium isoelectronic sequence using large-
Z perturbation theory through order Z-!, We find
their calculation accounts for less than half of the
difference between our lowest-order term W and
the results due to Brown for He, and is in error
by approximately 10% for a momentum transfer of
1 f\", the largest value tabulated by them. For
larger values of Z, the accuracy of their results
improves as expected, but are not generally sub-
stantially better than W alone.
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1II. EXPECTATIONS OF SINGLE-PARTICLE OPERATORS
FROM COHERENT ATOMIC SCATTERING FACTOR
F(k)

As the form factor F(%) is the Fourier transform
of the electron density, the electron density is
given by

plr)=(1/87% [ F(R)e~®Fak . (20)

The expectation value of an arbitrary single-par-
ticle operator W which is a function of the radial
distance in terms of the electron density is

(W)= | Wp(r)d¥ (21)

so that on substituting for p(7) from (20) into (21)
we have

Wy=[ wol(1/87% [ F®) e aklaF .  (22)

Thus knowledge of the form factor permits the de-
termination of the expectation value of any such
operator W. Now the technique discussed in I and
the preceding paper? is essentially a method for
the determination of the expectation values of
single-particle operators W=3; W(r;,). What we
wish to prove here is that the expectation value of
any arbitrary single-particle operator W as de-
termined via this technique is entirely equivalent
to the expectation value of the operator as given in
terms of the form factor F(k) by Eq. (22), where
the form factor itself has been obtained via our
method as the expectation value of the operator
V=3;l(sinkr;)/kr;] with the same choice for Yyp.
Thus we seek to show that

2Re [ (H=E))grdT

W) =W+ T Re [955(H - B)bopdr

= [w)[/8n%) [ (vye®FaklaF | (23)

where 7y, in the above expression is the auxil-
iary function ¢J, which may be obtained by direct
use of the analytical method involving the specific
operator W in question and where (V) =F(%). The
auxiliary function for the operator V is similarly
designated ().

Since we ensure the orthogonality of the auxili-
ary functions ¥z, Wz, and dir to Yor We may
replace the generally unknown energy E in Eq.

(23) by any suitable quantity. If we replace it by
the expectation value of the Hamiltonian in the

state Yz, i.e., by 8=(dr |H|§y), then the addi-
tion of any orthogonality terms to the unorthogon-
alized auxiliary functions ¥ry, Wrevy, and iy
leads to no net contribution to the integrals in the
correction terms to W and V. This implies there-
fore that if we substitute §for the energy E then
these integrals are independent of the constants re-
quired to orthogonalize the auxiliary functions to
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TABLE I. Comparison of form factors F () for He I. Here
W= [Yop Whopdr, (W) ,=W+2Re [$lk H —E) o dr,
(W) =W+[2Re [¥ir (H—E) Yoy d7/(L+Re [9if (H~E) § o7 ar)].

(sindo)/n &Y kag w (W (W) AHF® cr
0.0 0.0 2.0000 2.0000 2.0000 2.0000 2.0000
0.025 0.166243 1.9903 1.9894 1.9892 1.9892 1.9891
0.050 0.332485 1.9617 1.9579 1.9572 1.9571 1.9569
0.075 0.498728 1.9154 1.9073 1.9058 1.9057 1.9052
0.100 0.664971 1.8533 1.8399 1.8373 1.8372 1.8364
0.150 0.997456 1.6916 1.6668 1.6621 1.6626 1.6612
0.200 1.32994 1.4985 1.4650 1.4587 -1.4604 1.4585
0.250 1.66243 1.2952 1.2579 1.2508 1.2522
0.300 1.99491 1.0984 1.0625 1.0557 1.0602 1.0586
0.350 2.32740 0.91859 0.88813 0.88233 0.886 26
0.400 2,659 88 0.76102 0.73812 0.733176 0.7383 0.73794
0.450 2.99237 0.626 92 0.61210 0.609 28 0.61313
0.500 3.32485 0.51508 0.50775 0.506 36 0.5089 0.50953
0.550 3.65734 0.42305 0.42201 0.42181 0.42420
0.600 3.98981 0.34794 0.35181 0.35255 0.3529. 0.35416
0.650 4.32231 0.286 93 0.294 36 0.295177 0.296 71
0.700 4,654 80 0.23745 0.247 27 0.24914 0.2481 0.24952
0.750 4,98728 0.19733 0.208 59 0.21074 0.21067
0.800 5.31977 0.16472 0.176 71 0.178 99 0.1772 0.17860
0.850 5.65225 0.13816 0.150 34 0.15266 0.15203
0.900 5.98474 0.116 45 0.128 44 0.13073 0.1288 0.12995
0.950 6.31722 0.098 611 0.11019 0.11239 0.11154
1.00 6.64971 0.083 913 0.094 905 0.096 997 0.095 23 0.096123
1.05 6.98219 0.071742 0.082062 0.084026 0.083167
1.10 7.31468 0.061 617 0.071 227 0.073 054 0.07152 0.072239
1.15 7.64717 0.053155 0.062 046 0,063 739 0.062983
1.20 7.97965 0.046 052 0.054 242 0.055 801 0.054 53 0.055114
1.25 8.31214 0.040 061 0.047582 0.049014 0.048398
1.30 8.64462 0.034 988 0.041878 0.043 189 0.04216 0.042643
1.35 8.97711 0.030672 0.036 976 0.038176 0.037695
1.40 9.30959 0.026 987 0.032747 0.033 844 0.03302 0.033424
1.45 9.64208 0.023 826 0.029088 0.030 090 0.029725
1.50 9.97456 0.021106 0.025912 0.026 827 0.02617 0.026511
1.60 10.6395 0.016 717 0.020 730 0.021 494 0.021257
1.70 11.3045 0.013 395 0.016 754 0.017 395 0.017216
1.80 11,9695 0.010 849 0.013 669 0.014 206 0.014071
1.90 12.6344 0.008 8723 0.011 250 0.011703 0.011599
2.00 13.2994 0.007 3213 0,009 3351 0.009 7185 0.0096363

Column AHF refers to the analytic Hartree-Fock calculations due to Kim and Inokuti (see Ref. 4).
PColumn CI refers to the 120-term configuration-interaction result due to Brown (see Ref. 5).

Yor. In proving the above theorem we may thus
only consider the unorthoganalized auxiliary func-
tions. In addition, since the operators W and V
are sums of single-particle operators, it is suf-
ficient to prove the theorem for a single term
3%y of the auxiliary function y§;. (The subscript
i is thus dropped. )

Let us first consider V={(y, | (sinkv)| k7| yyz) of
(V). As a consequence of the Fourier integral
theorem it may be seen that

W= [wnl/sr%) [VeiiaklaF . - (29)

The denominator expression in the correction
terms to W and V of both (W) and (V) is the same
and is independent of k since the auxiliary function
z[:},. is independent of the operator in question,
Thus we next have to consider the numerator in-
tegral in the correction term to V. For this term
of (V) in Eq. (22) we have (here d7 refers to inte-
grals over the configuration space of all the elec-



934 V.
trons in the system)
S W (1/87) [ [ f 835 = 8Ybord’]
e"i‘;dﬁ}df s
Bro=fy@Wor (25)

where f 3(r) is the f %) function taken with respect
to the operator V= (sink»)/kr and ¥Q,y, the cor-
responding auxiliary function. Now the function
7%(r) as given by Eq. (10) is a sum of two terms.

|
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Let us consider the first term, i.e., the part of
£3(7) defined as

r
8=\ —rr
\4 . ,},I ¢ (,rl)
2(,.11 smk'r 112 12 ’
q’) (r"")——— dr ar’ ,
(26)

where a is some arbitrary lower limit. For this

part of f3(#) the integral in Eq. (25) is

] | e

sinky

xz/)’gT(H—S)lPOTdT’} N kzdk) s . (27

By consistent and repeated changes in the order of integration we may reduce the previous integral to

2 v 1 (™ ) ” sinkr sinkr’’’
;J‘( Ia W{J‘” ¢2(1, ")y 1112 [JO W(T)<I o Fr B B2 dk)’i’ad'r] ar'’ }d,’.u)

X V3 (H = 8)op d1’ . (28)

Now it may be shown using distribution theory!* that for physically realizable systems

fo “sinkr’ sinkvdk=

zmo(r’ -7) ,

so that on substitution of this integral, expression (28) reduces to

A

J‘[J‘r —/y',—,'falg(—’;';‘,T (J‘ ¢2(,;,III)W(1,HV).rlllad,rllt) dy”]f%T(H_g)poT ar’ , (29)

©

where the integral from a to »’ within the square
brackets may be recognized immediately as £3(7),
the first part of %) derived for the operator W(7),
i.e., expression (29) is simply

[ E(r) U’ - 8)pr dT’ . (30)

The second part £%(7) of £ 3(v) defined as

§3(V)=j- W(g ¢2(1'")I_/r"2d1'”)d1"

may be treated in exactly the same manner to prove
that

f W('r){(l/ﬁwa)f [ f §3 IIJ’ST(H—é' WordT' ]e-l;'; di;} dr

=f gg’ %T(H_g)d"or dar’ . (31)

Therefore Eq. (23) holds and the theorem regarding
the eguivalence of the two techniques for obtaining
(W) is thus proved.

[

The statements of the previous few paragraphs
are general in that they apply to any operator of
the form W=¥%,; W(»,). Moreover, we give below
specific analytic expressions for the eperators con-
sidered in I, namely, 7", n=2,1,~1, -2, and the
electron density at the origin in terms of the co-
herent form factor F (k) employing Eq. (22)'*":

72y =~ VEF(®)| oo » (32a)
(ry=@/m [7 -VPF k) dr , (32b)
ry=(2/n) [ F () dk (32¢)
r3y=["rFR) & , (324d)
(OF)=(1/2r% [ ¥*F (&) dk . (32e)

We may thus employ the analytic expression for

F () derived in Sec. II to rederive our results of I
via the above formulas; i.e., it is no longer neces-
gary to calculate the expectation value correct to
second order of each single-particle operator sep-
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arately since they can all be obtained from the
Fourier transform of the charge density calculated
correct to second order.

These analytic expressions also enable us to un-
derstand better some of the results obtained in I.
There, for example, for the ground state of the
helium atom we had overestimated the results for
(r-2) and (6(¥)) on comparison with those due to Pe-
keris.!® This may be explained on the basis of the
fact [see Eqs. (32d) and (32e)] that to obtain the ex-
pectation values (#2) and (6(¥)) we need to integrate
the form factor weighted for large % over an infinite
range of momentum transfer. Note that our results
for F(k)=(W) lie slightly above those due to Brown
for values of momentum transfer above 0.75 A™!
and hence on integrating over all values of & we ar-.
rive at an overestimate for the expectation values
of these operators.

Finally having derived an analytical expression
for the coherent scattering form factor valid for all
values of momentum transfer we are able to extend
our calculations to the infinite- momentum-transfer
limit. However, results for F(Z) due to Brown and
Kim and Inokuti for values of momentum transfer
greater than those considered in Table I are un-
available and thus we can no lbnger compare our
results with theirs. We may, however, study our
results for the infinite-momentum-transfer limit by
employing a cusp condition due to Kato® describing
the behavior of the exact ground-state wave function
of a two-electron system in the limit of coalescence

Z3[128(7 - z) +38-121n4 |

TABLE II. F(&) for large momentum transfer. Com-
parison of coefficients of terms of order B

Pekeris?® Present
Z +cusp condition work % error
1 16.5373 17.1174 3.5
2 364.003 366.091 0.57
3 2066,.48 2071.45 0.24
4 6915.73 6924.87 0.13
5 17471.4 17 486.2 0.09
6 37061.6 37083.2 0.06
7 69781.9 69811.7 0.04
8 120 495.6 120 535.4 0.03
23ee' Ref. 16.
of one electron with the nucleus.
This follows from the fact that!
: dp 1
F ) = (- 82 >~T (33)
P ar |,/ k
and since the cusp condition may be written ag®
dp
il A ==22Zp(0 34
ar | p(0) , (34)

Goscinski and Lindner, using Eqs. (33) and (34), ob-
tained the asymptotic expression for the form factor:

F (&) = 16Z7p(0) —,;1;— . (35)

k= o

Expanding our analytic expression for F () in the
k- limit we obtain

F(r) = <3zz§ -

k=

We may thus compare our results for the form
factor in the infinite-momentum-transfer limit as
given by Eq. (38) with those of an “exact” calcula-
tion by substituting into Eq. (35) the most accurate
value of p(0) available, namely, those due to Pe-
keris.® In Table II we compare the coefficients of
k~* with those involving the results of Pekeris for
p(0). We observe that the error for He is 0.57%
and that this error again decreases for eachheavier
element of the isoelectronic sequence as expected.
The form factor in the infinite- momentum-transfer
1imit for the negative ion of atomic hydrogen H",
whose properties we know are highly sensitive to
the choice of the wave function employed, '® however,
differs by only 3.5% from an “exact” calculation,
whereas W in this case is in error by 57. 8%.
Benesch and Smith, !° employing a 20-parameter
Hylleraas-type wave function not satisfying the Kato
cusp condition, have also calculated the coefficient
of k¥ in the high % limit. For Z=1, 2, 3 their re-
sults, compared to those of Pekeris listed in column

1
1+3(2,-2)/2,+(2/2)(% -3 1n2) ) i

(36)

r

one of Table II, are in error by 1. 5%, 0. 21%, 0. 20%
and are thus more accurate than ours. However,
for Z>5 our results are slightly more accurate than
theirs.

We note also that the cusp condition, as written
in terms of the relationship between the logarithmic
derivative of the electron density at the origin and
the atomic number, Eq. (34), is exactly satisfied on
substitution of our analytic expressions for the ex-
pectation value of the electron density at the origin
from I which is (here the first term eorresponds to
W and the second to the correction to W in the sec-
ond decoupling approximation)

(o)_zzi _ ' ez¥z,-z)+4rZ}]

PR ==7 1+3(Z, - 2)/Z,+(2/Z) (B3 1n2)
-1 4
T2z ar |, (37)

with ¥ =4 - 3 1n2 and where the radial derivative is
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obtained from Egs. (33) and (36). In addition, the

satisfaction of this cusp condition is observed to be
independent of the choice of the variational param-
eter Z,.

SAHNI AND J.

B. KRIEGER

|o

ACKNOWLEDGMENT

The authors wish to thank Professor L. B. Men-
delsohn for many helpful and stimulating discussions.

*Work supported in part by the Air Force Office of
Scientific Research under Grant No. AFOSR 69-1709,

TTaken from the dissertation submitted to the faculty
of the Polytechnic Institute of Brooklyn in partial fulfill-
ment of the requirements for the Ph.D. degree (Physics).

{On leave of absence from the Polytechnic Institute of
Brooklyn, Brooklyn, New York,

y, Sahni and J. B. Krieger, Intern. J. Quantum.
Chem. Symposium 5, 47 (1971).

%3, B. Krieger and V. Sahni, preceding paper, Phys.
Rev. A 6, 919 (1972).

SH. A. Bethe and R. Jackiw, Intermediate Quantum
Mechanics (Benjamin, New York, 1969), p. 241.

%Y. K. Kim and M. Inokuti, Phys. Rev. 165, 39 (1968).
The wave function used by Kim and Inokuti was a three-
term analytic Hartree-Fock wave function due to P. S.
Bagus and T. L. Gilbert (unpublished) given by ¥(ry, 7,)
=@n) ! ¢ lry)) ¢ (r,), where ¢ () =4.75657 ¢~1:450r
—1,40361y¢™2%841r — 1, 26842¢~1.72%,

R. T. Brown, Phys. Rev. A 1, 1342 (1970); EG& G
Technical Reports Nos, EGG-1183-1453 and EGG-1183~
1458, 1969 (unpublished).

T, Kato, Commun. Pure Appl. Math. 10, 151 (1957);
R. T. Pack and W. B. Brown, J. Chem. Phys. 45, 556
(1966); W. A. Bingel, Z. Naturforsch. 18a, 1249 (1963);
E. Steiner, J. Chem. Phys. 39, 2365 (1963).

V. Sahni, Ph.D thesis (Polytechnic Institute of Brooklyn,

1972) (unpublished).

L. M. Shustek and J. B. Krieger, Phys. Rev. A 3,
1253 (1971).

3. C. Y. Chen and A. Dalgarno, Proc. Phys. Soc.
(London) 85, 399 (1965). v

9c. Moller and M. S. Plesset, Phys. Rev. 46, 618
(1934); S. T. Epstein, University of Wisconsin Report
No. WIS-TCI-437, 1971 (unpublished).

13, Goodisman and W. Klemperer, J. Chem. Phys. 38,
721 (1963).

21,. B. Mendelsohn, Sandia Laboratories Report No.
SC-RR-69569, 1969 (unpublished).

B¢, M. Womack and H. W. Nickerson, Z. Krist. 126,
427 (1968).

Uy, Papoulis, The Fouriev Integral and its Applications
(McGraw-Hill, New York, 1962), p. 269.

135, N. Silverman and Y. Obata, J. Chem. Phys. 38,
1254 (1963); R. A. Bonham, J. Phys. Chem. 71, 856
(1967).

8¢, L. Pekeris, Phys. Rev. 115, 1216 (1959).

0. Goscinski and P, Lindner, J. Chem. Phys. 52,
2539 (1970).

®H. A. Bethe and E. E. Salpeter, Quantum Mechanics
of One and Two Electron Atoms (Springer, Berlin, 1957),
p. 154.

BR. Benesch and V. H. Smith, Intern. J. Quantum
Chem. Symposium 5, 35 (1971)

PHYSICAL REVIEW A

VOLUME 6,

NUMBER 3 SEPTEMBER 1972
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X-ray scattering intensities from unoriented samples of cholesteryl nonanoate and myristate
are reported for several temperatures in the smectic A, cholesteric, and isotropic liquid

phases.

The measured Bragg-scattering intensities from the smectic planes are used to test
a recent theoretical model of the smectic A phase.

Strong pretransition scattering (short-

range-order or order-parameter fluctuations) are observed in the cholesteric phase and a
Landau theory is constructed to describe this effect.

I. INTRODUCTION

In his classic study of liquid crystals Friedel®
_differentiated three types of phases—nematic,
cholesteric, and smectic. The nematics and cho-
lesterics exhibit orientational order with the long
molecular axis oriented preferentially parallel to
an axis in space. In cholesterics this preferred
axis has a helical twist but from the thermodynamic

point of view the two phases are the same. The
nematic is just a cholesteric with infinite helical
pitch. For the smectics then under study Friedel!
postulated and Friedel® verified a planar structure.
The nematics and cholesterics have been studied
intensively for the last few years and the theo-
retical situation is well advanced. One has a
microscopic theory due to Maier and Saupe, ® a
continuum elastic theory*® which has been extended



