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The application of Delves's variational principle for the calculation of the expectation value
of single-particle operators 8' is investigated in the Hartree approximation. In this approxi-
mation the auxiliary function is taken to be of the form g,r =

g&f&(r&) gpr, where gpr is the trial
gxeund-state wave function. For a given /pe, a set of coupled integrodifferential equations
satisfied by the f&6'&) is derived by minimizing an auxiliary functional containing gpr i/fear W,
and the Hamiltonian of the system. . The resulting equations are uncoupled in two different
sppxeximatmne each valid for one- and two-particle systems and are compared to those em-
ployed by others and to these previously suggested by us on the basis of certain self-consis-
tency cemsiderations. The uncouyled equations are solved exactly for single-particle operators
that deyend on the radial distance only. The utility of the technique is demonstrated by show-
ing that for a modeI hetdrolen-atom problem it leads to highly accurate results for the electron
density at the origia and the Fourier transform of the electron density even when the calcula-
tion of these quantities employing /pe alone is substantially in error. The results of applying
the technique to the helium atom for the calculation of (v'), a =-2, —1, 1, 2, snd the electron
density at the origin employing an energy-minimized product of hydrogenic wave functions for
/pe are reviewed and compared with those of Pekeris and found to have an accuracy equivalent
to a numerical Haxtxee-Fock calculation. Finally, the decoupling approximations are extended
to systems containing more t;han two particles.

The use of the Bayleigh-Ritz variational princi-
ple' rvith a many-parameter era,ve function for the
determinatiom of the ground-state energy of a
quantum-mechanical system has two important
characteristics. First of aQ, the calculated ener-

gy always overestimates the exact ground-state
energy of the assumed Hamiltonian and thus en-
ables us to determine which of two calculations
for the energy is more accurate. Second, if the
trial wave function is in error by O(5), the cal-
culated energy is in error by only O(5z) which
leads to the result that good estimates of the en-
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ergy can be obtained by employing wave functions
which can be substantially different from the exact
wave function.

However, if one employs the resulting wave
function to calculate expectation values of observ-
ables other than. the energy the results have in
general an error of O(6) of unknown sign. In the
past few years considerable progress has been
made in overcoming these two difficulties.

Techniques have been developed '3 for the rigor-
ous calculation of upper and lower bounds for the
expectation value of a Hermitian operator for a
system described by a given Hamiltonian. While

these methods are indispensable for determining
which of two calculations is more accurate, the
results are not in error by O(5 ) and thus require
trial wave functions which closely approximate the
exact ground state or else the bounds may be sub-
stantially different from the exact result and thus
not very useful. Since our ability to calculate ac-
curate wave functions for systems containing in-
teracting particles decreases as the number of
particles increases, these techniques can be ex-
pected to have less utility for many particle sys-
tems.

On the other hand, variational principles for the
calculation of expectation values have been de-
veloped ' which yield results correct to second
order with an error of unknown sign. Although

these methods do not provide a rigorous bound the
results are usually more accurate than those ob-
tained by simply calculating the expectations with

the trial wave function.
These variational methods generally employ two

functions, (or, the approximate ground-state wave

function, and g», which is an approximation to a
function g, satisfying a certain differential equation
discussed in Sec. II. The parameters in a g~r of a
given form can be determined by minimizing the

energy, but it is generally not possible to deter-
mine the parameters in a g» of a given form by
making the variational estimate of the expectation
value stationary with respect to their variation.
This is due to the property that this estimate does
not provide a bound and hence its extremum is gen-
erally a saddle point which is difficult to find nu-
merically. Moreover, there may be several such
extrema and it is not clear which one is physically
significant. This problem has been circumvented
by constructing a functional involving the trial wave
function for, the auxiliary function g», the Ham-
iltonian, and the operator representing the observ-
able- in question which when minimized leads to the
best estimate of g» for a given for. ' This tech-
nique has previously been employed to calculate the
best P» in terms of both linear and nonlinear varia-
tional parameters. In Sec. II we minimize the
functional for single-particle operators by varia-

tion of the auxiliary function g» having assumed

(or to be a Hartree product of single-particle
states, and we derive a set of coupled differential
equations for the elements of g» in terms of the
elements of )or without the introduction of any ad-
ditional parameters to describe g». In a certain
approximation the equations are uncoupled and

shown to be equivalent to those employed by oth-
ers. ' The equations are also uncoupled in a sec-
ond approximation for one and two particle systems
which leads to equations previously suggested on the
basis of certain self -consistency considerations.

In Sec. III the accuracy of the method in the two

decoupling approximations is investigated for the
model hydrogen-atom problem employing for for
an approximate hydrogenic-type wave function with
Z= Z& instead of Z= 1. Both the electron density
at the origin p(0) and the elastic form factor E(k)
are considered. We find that for p(0) the second
decoupling approximation yields an error of ap-
proximately one-half that given by the first de-
coupling approximation and is, for example, with-
in 0. 3% of the exact result when the expectation
value computed directly using the approximate
wave function is in error by 13%%uo. The results for
the coherent form factor are still more impres-
sive. We find that for a 10% error in the value of
the parameter Z, (Z, = 1.1) the results of employing
the second decoupling approximation yields a max-
iinum error of only 2. 5%%uq for all values of momen-
tum transfer k and closely approximates the exact
results for large k, while the first decoupling ap-
proximation yields an error of about 6%%uo for large
k compared to the more than 40%%uo error in the ap-
proximate form factor in this region.

In Sec. IV the results of the two decoupling ap-
proximations as applied to the ground state of the
helium isoelectronic sequence for the determina-
tion of the expectation values of the operators r",
n= —2, -1, 1, 2, and the electron density at the
origin are briefly reviewed. A more detailed dis-
cussion is given in Ref. 9 (hereafter referred to as
I). Here the trial wave function (or is taken as a
simple product of energy-optimized hydrogenic
functions and it is found that the second decoupling
approximation yields expectation values with an ac-
curacy comparable to a Hartree-Fock calculation
and always leads to more accurate expectation val-
ues than does the first decoupling approximation
except for n= —1 in which case the results are the
same. A discussion of the analytic calculation of
the coherent form factor for the ground state of the
helium isoelectronie sequence is given in the fol-
lowing paper.

Finally, in Sec. V we give a discussion of the
decoupling procedure for a system composed of
more than two particles in this Hartree approxi-
mation.
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H. VARIATIONAL PRINCIPLE

Consider the functional

(W) = W+ 2 Re (fir I
H —EI ppr &

wave function gpr . The functional M' is given by

M [Ar Ar» w]=&tirlH-@ IA~&.«~. lwle. & (~p. l wl~i, &

with

w=(g
I wig ),

subject to the orthogonality condition

( ~&r I 40T ) (8)
where PV is an arbitrary Hermitian operator and E
the energy eigenvalue of the Hamiltonian:

Hgp=Egp .
Then if gpr =gp,

(4)

where 5'~ is the exact expectation value of the op-
erator 5'independent of the choice of the auxiliary
function g~r . Furthermore, Delves has shown
that if gpr differs from (0 by O(5) and gqr differs
from gg by O(56 w"ere 6 satisfies

This requirement is certainly satisfied by the
exact g& and gp if we interpret 0

P& [from Eq. (5)]
as being a perturbational correction to (0 due to
the perturbation W. Here

Hp kpr = & Ppr

where Ho is some approximate Hamiltonian.
If, with the above interpretation for gq, we

choose a Hartree product of single-particle states
for the trial wave function gpr,

Ppr= ~(e«r~)
(H-Z)y, =(W, —W)qp, (5) with

then it follows directly from the Hermiticity of H
that ( W) differs from Ws by O(6, 56~), whereas
W differs from Ws by O(5).

The trial wave function gpz, may be taken as one
containing parameters chosen to minimize the en-
ergy. The use of Eq. (1) therefore depends on our
ability to determine a good approximation to g~.
For a given gpr, Eq. (5) suggests we determine
the auxiliary function g~r from

(H E))fr (W—W) gpr (8)

However, if this equation were solved exactly we
immediately obtain from Eq. (1)

(W)= W,

which is still in error by O(5).
The problem of finding a technique for the de-

termination of the auxiliary function g|r for a given

gpr and W has been considered by both Delvesp and

Aranoff and Percus. ' According to them the auxil-
iary function may be obtained by minimization of a
certain functional M involving g», gpr, the Ham-
iltonian H, and the operator 5' whose expectation is
to be determined. However, in all these tech-

',niques, the choice for the auxiliary function is
strictly arbitrary and there is no systematic pro-
cedure for the determination of g,r once the trial
wave function Ppr for a particular system has been
chosen. Considering the functional M'[Ppr
H, W] in the form given by Aranoff and Percus, '
we wish to derive a systematic method for the de-
termination of P,r having assumed a gpr . By this
method g~r will be found to be dependent on the op-
erator whose expectation value is being determined
and independent of any further parameters other
than those involved in the initial choice for the trial

for arbitrary variations in the f&(r&) The res.ult of
the variational minimization is

~~«A(r~)cori(H ~)~afp(~. )&pr+(W ~)&pr&

+c.c. =0. (I, I, )

Since the 5f~(r~) are all independent, Eq. (11) will
be satisfied for each particle provided

(40T I
(H- &)~0fp(rk)Alr+ (W ~)~pr &5

1y 2y ~ ~ ~ (12)

where the symbol ( && means integration over aH

variables except the variable r&. Integration of
Eq. (12) over r& leads to the N identical equations
for the Lagrange multiplier &:

x= W+(P IH —6
I Z„f (r )g )

then from first-order perturbation theory the only
states coupled to gpr by the single-particle opera-
tor

W(rg, . . . , r„)=Z) W(rq)

are those states with only one single-particle wave
function different from those in Qr. Hence, for
the auxiliary function we choose the form~'~

Ci, =~,f,(,)C- .

Including the orthogonality constraint of Eq. (8)
by the introduction of a Lagrange multiplier &, we
can obtain the appropriate differential equations
for the individual f&(r&) by minimizing the real
function
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which on employing the orthogonality constraint
may be written as

= —
q )(rq)V~ fz(r~) 2-V~y~(rs) V~ fz(rs)

where

& for I
H

I
~, fk (rk)POT ) (14)

+ y~ (r, ) W(r, )y, (r,), .

where the primed sum implies that the term i =j
is excluded and where

W&
= f Pt'(r&)W(r&)p&(r &) dr&

and

& for I

H ~
I
~» fk &» &~

0'f(rf) &40r I
H —~

I
~« fk (rk)for &~ 4~(&~)

+ 0j (rj) &PQT I
H ~

I for &gfg (rg)4 g(r;) (1~)

where )or = )or /p&(r&). And finally

& & tor I for &g
= & eg(rg)eg(rg) .

Equation (12) for each particle may thus be re-
written as

(is)

Z, W, gq (r))Pq(r~)+Pf(rq) [W(rq) —y]yq(r))

+e)(r()&torIH &I~kfk( -«)A'r&g4g( g)

+ Qf(rd) ( (or I
H —~

I y(lr )J f9(rJ)pg(rd)
(19)

Substituting the value of ~ derived above,

Equation (12) thus represents N coupled differential
equations satisfied by the f&(r&). Performing the
indicated integrations for each term in Eq. (12)
we have

wlqo &, ~) w~y~&(r~)y, (r~),

Furthermore it is clear that if the p, (r, ) satisfy
single-particle equations of the form

H, y, (r, ) = [-V, '+v, (r, ) ]y, (r, ) = ~,y, (r, ),
then the second term of Eq. (1) may be written as

2Re(gzz, lH-Z)H)l gpr&

=2Re~, jf j*(~g)Por U(rz) ~, mr)gordT

V& f&(rz)+2V& f&(r&)
'

[V&pz(rz)/p&(r&)]

= [y, (r, )]-'[W(r,) —W, ]y,(r,), (23)

where U(r„. . . , r„) is a real function. Thus only
the real part of the f&(r,.) contributes to the correc-
tion to W and we can, without any loss of general-
ity, consider only real f&(rz). Substituting Eq. (21)
into Eq. (20) and using f&=fz«, we obtain

[W(ri) —W~ —~] y, (r, )

—p (r, ) V, f,(r;) —2V, f,(r ) 'V 0 (r )

+&~ f(
(22)

Equatzon (22) represents the coupled integrodif-
ferential equation for the f&(r&) which we now pro-
ceed to decouple in two different approximations.

First Decoupling Approximation

In this approximation we replace the coupling
term by its value averaged over P&(r&), i. e. , by

&Zk fk(rk) go1' I
H ~

I (Or &4J(rJ) +If(rz)

where we have used Eqs. (8) and (20) and f~(r, ) as
real There. fore, in this approximation Eq. (22)
becomes

into Eq. (19) and then dividing the equation by

Pf(r~) yields

[W(r, ) —W, —~] y, (r, )

+ & (Oz' I
H ~

I (oz' &9 ff (r~)(f&~(r&) = 0 .

which includes the case where W(r~) may be a dif-
ferential operator. Equation (23) is essentially the
same as that employed elsewhere'8 but was pre-
viously obtained as the approximation to an equa-
tion which, if solved exactly, would yield no cor-
rection to 5'.

If for the case of nondifferential radially de-
pendent single-particle operators of the form

Now assuming a nonrelativistic Hamiltonian of the
form

H= -Z) V ) + P'(rz, . . . , rg),

the last term of Eq. (20) may be expanded as

&for lH-~l d'or&sf'( s)4s( y)

w(r, ) = w(«)

we choose our single-particle wave functions

P, (r, ) to be

e«r~)=e««) FI (ez 4i»

then owing to the orthogonality of the spherical

(24)
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harmonics the only states that are coupled to the
original state by the perturbation W are those
single-particle states having the same angular de-
pendence as the original state, and thus we seek

solutions to Eq. (23) of the form

f,(.,) =f, (r, ) .
The solution to Eq. (23) is thus

(28)

where the constant C may be chosen to orthogo-
nalize the auxiliary function which is now defined
as

=[y,(r,)]-'[W(r,) —W, ——,'((W) —W)]y, (r,) .
(29)

4» =~yfg(ry)for (28)

For nondifferential single-particle operators the
solution to Eq. (29) is

to the trial wave function )or . This then elimi-
nates the generally unknown quantities E and S.
The expectation value of the operator W (to be
designated in this approximation as ( W)o) may now

be obtained via Eq. (1).

Second Decoupling Approximation

fg(rg)=f g (rg) -o(( W) —W)f y(rg), (30)

where the fo&(r&) and f&(r&) satisfy, respectively,
the differential equations

V& f&(r&)+2V&f& [V&p&(r&)/Q&(r&)]= W(r&) —W&

(31)

In this second approximation, for one- and two-
particle systems, we treat the coupling term as
a perturbation and initially neglect it. By em-
ploying the orthogonality of p» to Ilier, the reality
of the function f&(r&) and Eq. (1), we may rewrite
Eq. (22) as

Vg fg(rg)+ ~fg(rg) [V»~(r~)/eg(rg) ]

V&of&~(r&)+ 2V& f&~(r&)
'

[V& g&(r&)/p&(r&)] = 1.
(32)

If we again restrict ourselves to radially depen-
dent operators of the form of Eq. (24) and to
single-particle wave functions as given by Eq.
(25), then following the same argument as above,

f,(r&) =f~(r&), and the solutions to Eqs. (31) and

(32) are

r'
f,(r,)= J '[r~ P&(rI)] (f ~ r& P&(r& )[W(r& ) —W&]dr&')dr, +C& (33)

(34)

where C& and C~ are arbitrary constants of inte-
gration. The auxiliary function is therefore

4» =~( fg(&g)for

-Z, [f',(r, ) ——,'((W) —W)f', (r,) ]yor

= q'„--,'((W) - W) y», (35)

where we define

0» ~/f J(rJ)40T s

4xr =~yfg(ry)for ~

(38)

(37)

The auxiliary function may now be substituted into
Eq. (1) and solved for ( W) to obtain

2Re (ggr I H —E I (or )
1+Re (ger I H —E I /or )

(38)

This is, of course, the same expression for ( W)

as obtained through the self-consistency consider-
ations of I. The integration constants C& and C

may be chosen to orthogonalize the functions go»

and gqr to )or. Also, since the function f,(r, ) is
independent of the operator whose expectation
value is being sought, the denominator in the cor-
rection term to W in Eq. (38) is the same for all
operators.

%e note therefore that the expectation value of

any operator W= g, W(r, ) calculated by the analyt-
ical method in both decoupling approximations is
very much a function of the specific property of
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interest and the only parameters required in the
calculation are those involved in the description
of the trial wave function (or. Finally we note
again that since the error in ( W) is O(6, 55t),
where P» is in error by O(5t), then even if we
carried out our procedure without making any
approximation in calculating g,r for a given )or,
the results would be in error by O(5 ).

III. APPLICATION OF TECHNIQUE TO HYDROGEN ATOM

In order to illustrate the application of the tech-
nique and demonstrate its utility we now apply the
analytical method to the model hydrogen-atom
problem for the determination of the electron den-
sity at the origin p(0) and the coherent form factor
E(k). We write the Hamiltonian in atomic units as

H= -V'-2/r

and for both cases we assume our trial wave func-
tion to be of hydrogenic form with a variable pa-
rameter Z&, i. e. ,

y„= (z'"/Mw) e ""
Electron Density at Origin

The electron density at the origin p(0) is the
expectation value of the operator W=6(r). The
analytic expressions for the components of ( W)o
and ( W) (the expectation values in the first and
second decoupling approximations) are

W= Z', /v,

& &tr IHI &or &
= -(3/») Zt(Zt - I)'

[I+ & |,'r lHl (or &] = I+-', -2/2Z, .

(Note that the correction term to W for ( W)o is
the same as the numerator expression in the cor-
rection term to Wof ( W). )

When for is the exact wave function (i. e. , when

Zt= 1) the correction terms to both & W)o and ( W)
vanish and the result reduces to the exact value

Ws = I/v. In order to study the two decoupling ap-
proximations for the determination of expectation
values we plot in Fig. 1 the variation of W ( W)o,
( W), andthe energy 8 =&for!Hll(or) as a function
of the variational parameter Zz. As may be ob-
served the results for both ( W)o and ( W), being
correct to second order, are substantial improve-
ments over the results of the first-order approx-
imation and for a given Z& are essentially as ac-
curate as the average energy 8. We note for ex-
ample that a 1% error in Zt leads to a 2% error in

W, whereas ( W) is exact to four significant fig-
ures. A 6% error in Z„on the other hand, leads
to only a 0. 5%%uc error in ( W) but to a 16% error in

W. The error in ( W)o is, however, usually double
the error in ( W). For the last example quoted the

2 zt(z, —1)+z,(z, —1)'
1 + 2 [(Zt I)/Zt ] + a [(Zt I)/Zt ]

(»)
We note that the iteration procedure does not im-

0322-

0.32I—

0.320-

0.3I9-

Q3I8-

p(O)
0.317— —-Q995

0.3I6- —-0,996

--0.997 g03I5— /
/

/ —-0.998
/

/
/
/ —-0.999

0 3]2 I I I I & I ~ I I I I

0.92 0.94 0.96 Q98 1.0 I.02 l.04 l.06 1.08

ZI

FIG. 1. Density at the origin p(0) and the energy 8
for hydrogen vs the parameter S& assuming $02 = (&~ /
v v) e t". Here W=(Zt/v), (W)o and (W) are the re-
sults for p(0) calculated using the first and second de-
coupbng approximations, respectively, and (W)«~«~
is given by Eq. (39).

0.3l4—

0.3I3—

error in ( W)o is 1.2%. Thus over the large range
of Zt, when for is significantly different from the
exact wave function, the second decoupling approxi-
mation leads to better results than the first and

tends to make the expectation value more insensi-
tive to variations in Z&.

In Fig. 1 we also plot the variation of the ex-
pectation value ( W)«„,«„under a first itera-
tion. By the iteration procedure we mean the de-
termination of the auxiliary function by solution of
the approximate coupled integrodifferential equa-
tion (22) in the second decoupling approximation,
i. e. , we solve the approximate equation

gorV f(r)+2Vf(r) ' Vgor

= [W(r) —W- —,'(( W) —W) +f (r)(H —8) ]&or,

where f' (r) satisfies the basic differential equa-
tion [Eq. (29)] of the second decoupling approxi-
mation. The analytic expression for ( W)tt tt„
in this case is

Z 3

( W)tteration
7r
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In Fig. 2 we plot the variation of the form fac-
tors normalized with respect to FE(k) as a func-
tion of the momentum transfer for Zz= 1.1. We
observe that over the entire range of momentum
transfer the maximum error in ( W) is 2. 5/g at
which value of momentum transfer 5' is in error
by 20/o. For large values of k the results for ( W)
converge towards the exact result, the error being
only a few tenths of a percent, whereas the error
in ( W)s is about 6% and W is in error by more
than 40/p. The convergence of ( W) towards and
the divergence of ( W)s from the exact result for
large values of momentum transfer is also ob-
served in the case of the ground state of the he-
lium isoelectronic sequence. " There, even for
small values of momentum transfer, ( W) is
superior to ( W)p. This behavior of convergence
of ( W) towards the correct result for large mo-
mentum transfer thus leads to a highly accurate
value for the derivative of the electron density at
the origin.

IV. APPLICATION TO GROUND STATE OF HELIUM ATOM

I I I I I I I I I I I I

0 I 2 3 4 5 6 7 S 9 )0 ll 12

MCMENTUM TRANSFER ks(4Ir @II e/&)4

FIG. 2. Fourier transform of the electron density in
hydrogen normalized with respect to the exact result
EE(k} vs the wave number k assuming lctpr = (Z~& '/Wr)e Ei".
Here W(k, Z&) =[16Zf/(4Z~&+kt) ], EE(k) = [16/(4+k ) ],
and (W(k ZI))p and (W(k Zq)) are the results for the
Fourier transform using the first and second decoupling
approximations, respectively.

prove substantially on the results of ( W). This is
not surprising in view of the fact that ( W) is al-
ready correct to second order and that all that
Delves's principle guarantees is a second-order
error even if the equation for f is solved exactly.

Coherent Form Factor

The coherent form factor for a spherically sym-
metric system may be defined as the expectation
value of the operator W=(sinkr)/kr, wherekisthe
magnitude of the momentum transfer. The ele-
ments of the expectation values ( W)s and ( W) are

W= 16Z',/(4Z '+ k')'

f g'„(1/r)its, d ~ = —16Z ', Q'/(4Z, '+ k')' .
(For details of the calculation, see the succeeding
paper. ") As in the previous example

since the auxiliary function (» is independent of
the operator whose expectation value is being de-
termined. The exact form factor is

FE(k)= 16/(4+k )

The fact that ( W) is essentially insensitive to
the variations in the parameter S& and that the ac-
curacy of the results is essentially unchanged by
iteration in the model hydrogen-atom problem en-
courages one to attempt calculations for systems
containing interacting electrons by employing sim-
ple products for (sr . Any parameters appearing
in the trial ground-state wave function can be de-
termined by minimizing the energy. The constants
of integration Ct and C& in P,r are then obtained by
orthogonalization to /sr . This has been done in I
for the ground state of the helium isoelectronic
sequence where we apply the above procedure em-
ploying an energy-minimized product of hydro-
genic wave functions for the determination of the
expectation values of the operators r&+ r&, m= -2,
—1, 1, 2, and the electron density at the origin.

There we presented analytic results for ( W) of
the second decoupling ayproximation for the ex-
pectation values of these operators together with
those of (a) W obtained employing the same trial
wave function, (b) ( W)s of the first decoupling ap-
proximation also using the same /sr, (c) the Har-
tree-Fock results, and finally (d) the "exact"
results due to Pekeris, employing a 10V8-term
Hylleraas variational wave function.

As. is the case for the hydrogen atom the im-
provement of ( W)s and ( W) over W was always
significant except for r in which case they were
equivalent and reduced to the value as given by W.

This is due to the fact that if one employs wave
functions that satisfy the virial theorem, then the
expectation value of the operator r is automati-
callycorrecttosecond order for a first-order er-
ror in the wave function. Since our energy-min-



926 J. B. KRIEQER AND V. SAHNI

imized trial wave function (or satisfies the virial
theorem, the correction term to 5' is zero, al-
though for other values of the screening param-
eter, this would not be the case. ~ Moreover, ex-
cepting (r ) the results for ( W) were consistently
superior to those of ( W}o for all operators. The
least accurate of our results for ( W) was for (r )
which was in error by 1/o for He. For this opera-
tor ( W)o is in error by 2. 7%.

In addition our results for ( W) were essentially
equivalent to and in fact, except for (ro), were
slightly more accurate than those due to a Hartree-
Fock calculation. This high accuracy of the Har-
tree-Fock calculation is a consequence of Bril-
louin's" theorem according to which the expecta-
tion values of single-particle operators for closed-
shell systems employing Hartree-Fock wave func-
tions are correct to second order. A more de-
tailed discussion of the results for the entire iso-
electronic sequence including the hydride ion is
given in I where it is shown that for the one-elec-
tron operators considered above, the results for
( W) and those of a Hartree-Fock calculation have
approximately the same accuracy for all elements
of the isoelectronic sequence heavier than helium.

The fact that an entirely analytic calculation
yields results as accurate as those given by a Har-
tree-Fock calculation suggests that the techniques
developed here may be particularly useful in those
cases where Hartree-Fock calculations are dif-
ficult and unavailable as in the cases of molecules
and solids. For these cases, however, it is nec-
essary to derive the appropriate equations for the

f, (r, ) assuming an antisymmetric d'or. We are cur-
rently investigating this problem.

V. DECOUPLING APPROXIMATIONS FOR
MANY-PARTICLE SYSTEMS

pletely neglect the coupling term since its con-
tribution to the integrodifferential equation tends to
be of the same order of magnitude as 4 which in-
creases as the number of particles increases.

The coupling term in Eq. (22) for the determina-
tion of f& can be written

&~fatorl&-~ Ivor}pter-(~ fetor I

&-&
I (or}sty

+ (~ fetor I
&-&I Pox }&4')

+fg (40T I
& ~

I tOT )f 0 J

where K is that part of the Hamiltonian H which
does not involve the jth particle. The first term
on theright-hand side is then a scalar multiple of

P& while the other terms are functions of r& multi-
plying P&. In the spirit of the second decoupling
approximation we neglect the latter terms and at-
tempt to estimate the former. The precise value

of this term will depend on our original choice of
We may, however, approximate it by con-

sidering two limiting cases. In the first we as-
sume that the electron-electron interaction con-
tributions to the correction term to W of Eq (1), .
i. e. , (Z„f~gor I H —EI' gr ), are much larger than
the contributions due to the single-particle opera-
tors in H. Now for a N-particle system, there are
N(N-1) e-e terms, the average value of each one
of these terms being (for ¹ 2) [N(N —1)] ~

&& 2(( W) —W). The first term on the right-hand side
of Eq. (40) is one involving (N —1) particles with
(N —1)(N -2) electron-electron terms. Thus, as-
suming that the e-e contributions dominate, we
have on the average

For systems containing more than two identical
particles, it is not possible to write an antisym-
metric trial wave function )or as a product of sin-
gle-particle position-dependent functions multiplied
by a spinor, i. e. , we require at least a Slater de-
terminant of single-particle states. Nevertheless,
for systems in which exchange effects can be ne-
glected, the Hartree approximation can provide
useful information.

We can again decouple Eq. (22) in two different
ways. In the first decoupling approximation, we
can replace the coupling term by its average value,
in which case the entire formalism already given
for this case in Sec. II is applicable, i. e. , the
average value of the coupling term exactly cancels
4 in Eq. (22) and the f~ satisfy Eq. (23). We have
seen, however, that application of the second de-
coupling approximation for one- and two-particle
systems gives even better results. In the many-
particle case, however, it is not possible to com-

(N-1)(N-2) f ( W) —W

(N —1)

= [(1—2/N)o(( W) —W)]P~,

Using Eq. (41) as our first approximation to the
right-band side of Eq. (40) and substituting into
Eq. (22) yields

p& (r&) V& f&(r&)+2V& f& (r&)
'

V&p& (r&)

(41)

= [ W(r~) —W~ —(( W) —W)/N] P~ (r~), (42)

whose solution is

f, (r,)=f', (r, ) —[((W) —W)/N]f,'(r,), (43)

where f &
and f &

satisfy the second-order differen-
tial Eqs. (31) and (32). Employing this result for
tbe f& in the auxiliary function P» given by Eq. (35)
and substituting g» into Eq. (1) and solving for
( W), we obtain for N» 2
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(f (N —1)'
N ) (4q)

2 Re ( Pgr I H —E I (I( )
1+ (2/N) Re((c(qr I H -El (I(or)

%'e note that for X=2, this expression reduces to
the ( W') of the second decoupling approximation
discussed in Sec. II as it must, since for N= 2 the
contribution given by Eq. (41) is zero and we have
neglected the other contributions to the coupling
term.

If, on the other hand, we consider the possibility
that the choice of (I(or leads to the result that the
contribution of each e-e term is approximately
equal to the contribution of each single-particle
term in the first term of Eq. (40}, we obtain

&~ fa for I
+-~

I for )& 4' ~

Employing the same procedure as above yields the
result that the term 2/N in Eq. (44) should be re-
placed by (2N- 1}/Ns. Thus, inthe limit of large
N both results are identical. Furthermore, since
both the first and second decoupling approxima-
tions yield results for ( W) correct to second order
the additional term in the denominator of Eq. (44}
will generally be small compared to 1 as is the case
for both the model hydrogen- and helium-atom
problems already discussed. Thus replacing
(2N —1)/N by 2/N for ¹ 2 can change ( W) only

slightly and we conclude that Eq. (44) is a good ap-
proximation in either case. Finally, since in any

calculation employing a (or in the Hartree approxi-
mation, we expect the relative size of the e-e and

single-particle contributions to be between the two

extreme cases considered here, it appears rea-
sonable to believe that Eq. (44) is a good approxi-
mation in any case.
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