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Ensemble averages are used to define energy functionals for open-shell atoms. Orbital
equations and effective potentials for a Hartree-Pock procedure are derived and compared to
the hyper-Hartree-Pock method. Total energies and orbitals have been calculated for the
atoms Cr, Fe, Co, and Ni. Effective interaction parameters for valence-shell electrons are
defined and evaluated.

I. INTRODUCTION

Self -consistent-field calculations for transi-
tion-metal atoms are presented in this paper.
They are based on energy expressions obtained
as ensemble averages allowing a convenient treat-
ment of several open shells. The results re-
semble those obtained by Slater and co-workers
within the so-called hyper-Hartree-Fock method'
but differ in certain aspects. Particularly, it is
not borne out in the present calculations that con-
figurations with fractional occupation numbers
are more stable than normal configurations.

Atomic central fields have been studied since
the conception of quantum mechanics and numer-
ous different calculational schemes have evolved.
The remarkable simplicity of the Fermi- Thomas
statistical model of the atom and the success of
its predictions concerning the electronic structure
of all elements in the periodic system provides
strong support for the concept of a universal cen-
tral field and the independent particle model for
the electrons. The theory of complex spectra as
originated by Slater' is similarly founded on the
idea of a central field, which defines a set of one-
electron states transforming according to the
three-dimensional rotation group, common to a
number of terms derived from the same config-
uration. Such a central field is defined by the
statistical model and by the self-consistent-field
procedure designed by Hartree. 4 The latter field
is obtained from a spherical average of the elec-
tronic charge distribution in the atom excluding
the contribution from one electron in the subshell
for which the potential applies. This prescription
results in a potential for a neutral atom which has
a Coulombic asymptotic form at large distances
from the atomic nucleus.

A defect of the statistical central field and of
Hartree's self-consistent field is the lack of an
exchange potential accounting for the Fermi sta-
tistics of electrons. This is remedied in the
Hartree-Fock method where an energy functional
is calculated from an antisymmetric wave function

corresponding to a term of a configuration. The
calculation of the functional involves symmetry
and equivalence restrictions on the one-electron
states as discussed by Nesbet. These restrictions
lead to the occurrence of off-diagonal Lagrangian
multipliers in the integrodifferential equations de-
termining the one-electron states, and to certain
complications when applying many-electron per-
turbation theory with Hartree-Fock solutions as
the zeroth-order unperturbed states, since Bril-
louin's theorem is not applicable.

Atomic orbitals are extensively used for the
calculation of molecular and crystalline electronic
properties and it has been a matter of discussion
what atomic basis set to use in such applications.
Slaterv has argued that it would be appropriate to
use orbitals obtained from an energy functional
formed as a weighted mean over all multiplets
arising from a given configuration. This may be
interpreted as a simulation of an "atom in a mol-
ecule" where the surrounding atoms cause per-
turbations which destroy the multiplet structure;
the total orbital and spin angular momenta are no

longer good quantum numbers. The averaging pro-
cedure does not remove the necessity for off-
diagonal Lagrangian multipliers.

The notion of an atom in a molecule leads one
to consider the possibility of energy functionals
which are obtained as averages over multiplets
from configurations with varying number of elec-
trons in the different subshells. The number of
electrons in the atom is then no longer a good
quantum number and ionic states are contributing
to the average. Section II contains a discussion
of such average formation based on the statistical-
mechanical concept of an ensemble. Variation of
the energy functionals is discussedin Sec. III, and
it is shown that off-diagonal Lagrangian multipliers
can be eliminated for a particular type of ensem-
ble. Calculational results are presented for
chromium, iron, cobalt, and nickel in Sec. IV.
These results are used in Sec. V to discuss the
concepts of differential ionization energies and

effective interactions in a valence shell. Our
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concluding remarks are collected in Sec. VI.

II. ENERGY EXPRESSION FOR ENSEMBLES

= fdx u,*(x)u, (x) = (s
~

f) = 5„.
The Hamiltonian for a system of noninteracting

electrons is

Hp ~ +s~@Qt ~

t
st

or, if the basis is chosen approyriately,

If,=Z, ~.n. ,

(4)

where the occupation number operators ps= a, as
commute with one another and are idempotent,

2=
s +s ~

The statistical mechanics of such a system can
be determined by a study of the grand canonical
partition function

g Tre (H 0 P Nap) / o

where 8 is the absolute temperature in energy
units, p, is the chemical potential, and N„ is the
number operator

&Op= s&s ~

The related density operator is
g-1 -(H{)-y N ) /O

and the average value of an operator A is calcu-
lated as

(A& = TrAp . (lo)

The language of second quantization will be used
here. Electron field operators ((x) and $'(x) are
expressed in terms of an orthonormal basis,

q(x) =Z, u, (x)a, , (1)

q'(x) =Z, u~(x) a,', (2)

which is adapted to central symmetry. The an-
nihilation operators a, anticommute among them-
selves as do the creation operators a„while we
have the relation

tSa, at+at a, =pa„at q,

e-( - )/.o.

s

We see that the average occuyation of the state s
is given by the Fermi distribution law,

&n, &
= (1+X,)/(2+ X,) = (1+e'~ "~ )

' . (14)

which shows the obvious fact that only for occupa-
tion numbers that are either zero or unity does the
ensemble correspond to a pure state for the num-
ber operator. Otherwise the width is

&(&..—&&..&)'&"'= [~.&n, &(1 —&n.&)]"' (18)
I

The density operator (15) commutes with the num-
ber operator and by means of a complete set of
projectors PN corresponding to eigenvalues N of
the number operator we can write

p =QPN p

where each term can be used, after normalization,
as a type of canonical ensemble, with zero width
for the number oyerator. A convenient realization
of the projectors is the form

It should be noted that Eg. (14) gives a unique way
of defining the density operator (11) from a given
set of occupation numbers (n, &,

p =II,[1-&n,) + (2&n, ) —1)n, ],
and that reference to thermodynamical parameters
is no longer necessary. %'e will in what follows
consider ensembles of the type (15) which cannot
be related to equilibrium situations in statistical
mechanics but are purely formal devices for the
formation of averages over certain manifolds of
many-electron states.

An ensemble of the form (15) will generally re-
sult in a nonzero width of the number operator for
electrons. It follows from Eq. (15)that the average
value of a product of occupation number operators
equals the product of the averages,

&n, n, & =&n, & &n, ),
&N„&= Z &n, &+2 &n, & &'n, &

s

The density operator for a case of noninteracting
electrons in the representation where Hp is given
by Eg. (5) will, due to the properties of the occu-
pation number operators, occur as a product

'p = II,[(1+&,n, )j(2+ &,)] .
I

Each factor is normalized in the two-dimensional
space spanned by the eigenstates of the corre-
sponding n„and thus

2r t t (Nay- N)
1

N
0

which satisfies the required relations

(~., -lv) p„= o,
+N +N ~

2

(2o)

(21)

(22)

Tip=1 .
The parameter A,, is obtained as

(12) as well as being Hermitian.
A projected density operator like
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H= Z a', k.,a, +-,' Z (st~s't')a'. a'..a, .a, , (25)
st its' t'

where the explicit form for electron interaction
matrix elements (stl s't') will be given later and in
detail for central field orbitals. The average value
of the energy, (H& or (H&„, is then expressed in
terms of average values of simple products of
creation and annihilation operators:

&~'.~,&
= 5„&n,&, (26)

(27)

pN +N p/(Tr+N p)

mill no longer have simple relationships, as in the
left-hand equality of Eq. (14), between average
values (n, &„=Trn, p„and the parameters A.„as
mill be seen in the applications to transition metal
atoms. It is a straightforward procedure to cal-
culate the average values from a set of X's using
the given representations of I'N and p, and we note
that the factorization property (16) does not hold
when the projected density operator is used.

Energy functionals can now be derived for in-
teracting electronic systems by taking average
values of the total Hamiltonian with respect to the
density operators given by Eqs. (11), (15), and
(24). The general expression in second quantiza-
tion for the Hamiltonian is

(H&N =Z, k„(n,&N+ —,'Z[(ss
~

tt) —(st ~ts)](n, n, )„.
(31)

We specify in the following our notation in or-
der to make use of the spherical symmetry.
State label s is a compound notation for the set
of four quantum numbers (n/mo), the principal,
orbital angular momentum, magnetic, and spin
quantum numbers, respectively. The ensemble
density operators are invariant under rotations
of the coordinate system only if the parameters
A.&„, ,) are independent of m and 0. We put

(,„,& =q(n/)/(4/+ 2), (32)

so that (/(n/) equals the average number of elec-
trons in the subshell (nl). The one-electron in-
tegrals in the Hamiltonian are similarly such
that

k(.1 .)(n) ) =f(n/), (33)

Off-diagonal elements vanish due to the direct
product form of p and P„but there is no factor-
ization of expectation values in Eq. (29). It obtains
that

(H& =Z, k„(n,).+ —Z[(ss

hatt)

—(sti ts)](n, & (n, & (30)

(a,a, a(.a, &
= (5„5,., ~ —5,4 5, ()(n,&(n; &,

&~.'~:~4 ~(&N=(5~ 5.~ 4 -5~ 5;4 ) &n.n. &N

(26) where Slater's notation~ is employed.
The electron interaction integrals are obtained

in terms of 3j symbols and Slater integrals R as

(n1/(n41o(, na/arna(ra~n4/sm3o4, n4/4n)4g4)

( )-m1-m4 g /1 k la l4 k /4
~

l1 k /31~ l4 k ls
-m, /(m, -)n4 p, )n, EO 00i 0 00

)4[(2l1+1)(2/a+1)(2ls+1)(2l4+1)]' // (n1l1n4/s, na/an4/4) . (34)

There will only occur E and 6 integrals in
the energy formula since either is (n1l, ) equal
to (na/()) and (nsl s} equal to (n4/4) or similar rela-
tions hold with 2 and 4 permuted. The two-elec-
tron operator average value (n, n(&„will be given
in terms of a new quantity

&n( 11 1)n( ) ) &N

0(nl/lna/2)/[(4/1+ 2)(4/a+ 2)], (35)

where it should be noted that the definition of
Q(n/, nl) derives from a case where (m1&r1) differs
from (m()oa). The term corresponding to equal
indices occurs in the energy expectation value
with zero coefficient so we can sum freely over
m's and 0's after having introduced the expres-

These parameters equal the ones used by Slater
and denoted (nl, n'l') ' apart from intrashell inter-
actions where they differ by a factor such that

V (nl, nl ) = (4 l + 1)(nl, nl )/(4 l + 2) . (37)

The final formulas for the energy functionals are
then

I

sion (35).
The summation in the electron interaction term

in the energy functional over magnetic and spin
quantum numbers leads to the definition of average
interaction parameters that we will denote
V(nl, n'l') and which are defined as

V(nl, n'l') = & (nl, n'l') - 2 Z„(ooo ) G (nl, n'l') . (36)
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(I = Z I(nl)q(nl)+- Z q(nl)q(n'l') V(nl, n'1')
nln' l. "

(36)

is not an eigenoperator to the subshell number

operator,

+(«& ~ n&«~) (41)

(H), = & f(ni)q(nl)+-.' & Q(nl, 'l') V(nl, n'l'),
nl nln' l '

(39)
where q(nl ) in the last expression refers to an
ave~age ( )„ in Eq. (32). The main difficulty in
the computation of the Q(nl, n'l') arises from the
rather complex relations between them and the
q(nl). Only in the case of one partially filled sub-
shell is there a simple relation,

q(a, n'l') = q(nl) q(n'l')

5„„5-„.q(nl) [4l + 2-q(nl)]/(4l +1), (40)

which in this case makes the energy expression
identical to the one given by Slater for one open
subshell. It should be noted that for the case of
several open subshells, even if the corresponding
q(nl) are integers, the energy expression differs
from that of Slater since the density operator p„

We feel that the energy functional (H)„ is par-
ticularly suited for the discussion of configurations
with fractional occupation numbers since in such
cases one cannot use density operators which are
eigenoperators to subshell number operators.

The basis functions have the form

(42)

in polar coordinates and the spin variable f. Po-
tential functions are given in the notation

p (nl, n'l';r) =r ' f dr'(r') P„,(r')P„, (r')

+r' f dr'(r') " 'P„,(r')P„, (r'), (43)

and we obtain the functional derivative of the first
energy expression (H} of Eq. (38) in atomic units
as

5(H&/5P«(r}=q(ni) [-2P,'f(r)+2 l(l+1)r 'P«(r) —(Z/r)P«(r)

=q(nl) F, P„,(r),

+ + q(n'l') po(n'l', n'l';r)P„, (r) -~2 + q(n'l')(Ooo) y~(n'1', nl;r)P„, (r)]
n'l ' n'l 'k

(44)

F, P«(r)= e(nl) P«(r)+ Z e(nl, n'1) P„., (r) . (46)

The off-diagonal Lagrangian multipliers e(nl, n'l)
can be eliminated by choosing P„,(r) as the eigen-
functions of E, .

The functional derivative 5 (H)„/5P„, (r) is
conveniently expressed in terms of E„y„and
auxiliary parameters

A(nl, n'l') = Q(nl, n'l')/q(nl) -q(n'l'), (46)

so that the Hartree-Pock:equations for the radial
factors becomes

F, P«(r)= e„(nl) P«(r)+ Z e(nl, n'1) P„~&(r)
n '&n

—Z A(nl, n'l') +0(n'l', n'1'; r) P„,(r)
n 'l'

+& Z A(nl, n'l')(000} q~(n'l', nl;r)P„, (r) . (4V)
n'l 'k

where the notation E, is used for the integrodif-
ferential operator. It is the effective operator of
the Hartree-Fock equations determining the radial
factors P„,(r). The orthonormality constraints
on the orbitals brings in Lagrangian multipliers
&(nl) and E(nl, n'l) such that the final equations
read

In this case it is not possible to disregard the off-
diagonal Lagrangian multipliers and we find that
since

q(a) ~(e, n'l) = q(n'l) ~(n'1, nl),

then

(46)

e(nl, n'l) = 2 B(nl, n'l, n" l")[8 (n'ln "l",nln "l")

-A(n'l, n" l")]/[q(n'l) -q(nl)] . (60)

These expressions are the general ones but it
shou1d be noted that A(nl, n'l ') equals zero when-
ever one of the subshells (nl) or (n'l') is either
completely occupied or empty, so that the summa-
tion in Eq. (49) extends only over the partially
filled subshells.

III. VARIATIONS OF ENERGY EXPRESSIONS

The functional derivative of the energy expres-
sions derived in Sec. II with respect to the radial

& Q (lan''}RHN( Il rslzz tilir~)] (49)
k

where

B(nl, n'l, n"l")= q(n'l) [A(nl, n" l ")
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part of the basis orbitals leads to equations that
are very similar to those obtained from average
of configuration energy expressions. The latter
are obtained from Eq. (39) by means of Eq. (40);
thus it is only a simple matter of computing new

coefficients for the Coulomb and exchange poten-
tials in the integrodifferential equations for the
radial factors in the orbitals and of using available
computational programs for the evaluation of op-
timum orbitals. It is a consequence of the form
(38) that there is no need for off-diagonal La-
grangian multipliers to ensure the orthogonality
of the basis set since the potential will be the
same for all orbitals. The same does not hold
for the form (H) N of Eq. (39), but the calcula-
tions for the orbitals are as simple as those for
average of configuration functionals, while it is
a slightly more complicated matter to compute
the Q(n/, n'/').

We will now assume that the orbitals have been
determined such that variations of (H) in Eq.
(38) with respect to the radial factors vanish and

study the partial derivatives with respect to oc-
cupation numbers q(n/):

s(H)
=/(n/)+ Z q(n'/') V(n/, n'/') = e(n/) .

sq / Ig I

(»)
The parameters &(n/) which occur as eigenvalues
for the radial equations are the orbital energies
and are thus obtained as derivatives rather than

energy differences as in Kooymans's ' interyre-
tation of orbital energies. Optimization of
(H —gN„) leads to the conditions that

which is different from the partial derivative with
respect to occupation number of energy functional

(H)„. Thus there is no simple relation between
the order of the orbital energy levels and the
magnitude of the occupation numbers for the min-
imum-energy configuration. Neither is there a
unique way of defining modified orbital energies,
as is done in Ref. 1, from partial derivatives
S(H)N /Sq(n/) since the different q(n/) are not in-
dependent parameters.

We explore here the detailed calculation of the
Q(n/, n'/') for the case of a transition-metal atom
with partially filled 3d and 4s subshells. Thus
we choose a density operator of the form (19)
where Aj„X2„X@„X3„andA.» all are infinitely
1arge, XM and X4, are independent variables, and
all other A. 's have the value —1. Then we obtain
that

q (ls) = q(2s) = q(3s) = 2,
q (2p) = q(3p) = 6,
q(3d)+q(4s) = N —18= v,

(57)

(58)

(59)

and that all other q(n/) vanish. It also follows, as
was pointed out above, that whenever one of the
subshells (n/) and (n'/') is empty or completely
filled the corresponding Q(n/, n'/') is given by the
formula

the energy average (H) „of Eq. (39) we have that
the orbital energies which are derived from the
radial equations are

tN(n/) =I(n/)+ Z Q(n/, n'/') V(n/, n'/')/q(n/), (56)

s((» —
/ (N..&)

sq(a)

while

(52)
Q(~, n'/') = q(n/) q(n'/') . (6o)

In order to calculate the remaining quantities,
Q(3d, 3d), Q(3d, 4s), and Q(4s, 4s), we define the
generating function

0 & q (n/) & 4/ + 2 . (53)

and

q(a) =4/+ 2, ~(n/) & ~

q(a) = o, e(n/) & p,

0 & q(n/) & 4/ + 2, e(n/) = )((

Zq(n/) =(N„)=N .

(54)

(55)

These relations are seen to lead to several open
subshells only in the case when the corresponding
orbital energies are degenerate.

For the case that the orbitals are optimized for

The Lagrangian multiplier p, appears similarly as
the chemical potential in statistical mechanics
and we see that it has a value such that it separates
occupied from unoccupied orbital energy levels.
The minimum total energy (H) is obtained when

1
Z„= Tr dt exp[2)lit(N(34) +N(4» —v)

+ a(3d) N(, + o.(4s)N(„, j, (61)

which is proportional to TrP„p with

(62)

q(n/) = (63)

and

g-1 g2 g
( (nl) (n'l') N s&( /) ()(l(nI/t)

o.(n/) = ln(1+ x~),
which should be compared to Eq. (13). This gives
us
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We find that

(N(„,& N(„, &
)„=Q(nl, n' l ')

sq (Sd) sq (4s)
s u(3d) s u(3d) (Vl)

[Q( &, I)/(41+ 3) -q(&)], (66)
and the properties of second derivatives guarantee
that

and that the final results are

Q(Sd, 4s) = q(Sd) q(4s) +
sq(Sd)

and

(66)

sq(4s) sq(Sd)
su(Sd) su(4s)

We have in terms of interaction integrals
(&tl, n'l') of Ref. 1 and E(I. (3V) that the hyper-
Hartree-Fock (HHF) total energy formula is

Z(HHF) =(H)„

Slater's energy expressions are retrieved from
these expressions when the second derivatives of
the logarithm of the generating function are dis-
carded but there seems to be no acceptable en-
semble for which this is justified except for in-
teger occupation numbers q(Sd) and q(4s). The
ensemble-average procedure used here for the
calculation of Q(&tf, nl) leads always to positive
values and ensures that (H)„ is an upper bound
to the ground-state energy for the N-electron
atom.

It can be made plausible that (H) is also an up-
per bound to the ground-state energy E(&(N) for
a fixed value of N = gq(nl). For integer values of
q(nl) it follows readily that

~,(N) &(H) --.'Z q(nf)[41+ 3-q(nf)]

x V'(nl, nl)/(4/+1),

while (H) is greater for integer values of the
q(nl)'s than for the optimal choice of them for a
fixed ¹

The explicit form of Z„ is readily obtained as

—[(4s, 4s) —2(Sd, 4s)+ (3d, Sd)] 4
. (VS)

The derivative is positive and its coefficient
turns out to be positive and E(HHF) will generally
be lower than the variational bound (H)„of E(I.
(39).

IV. RESULTS

The calculations that we present in this section
were performed for a set of varying occupation
numbers for the 4s and Sd orbitals. We give in
Fig. 1 a display of the variation of the orbital en-
ergies e(3d) = 8( H) /Bq(3d) and e(4s) = s(H)/&q(4s)
as functions of q(Sd) for a few fixed values of
q(4s) and for the nuclear charge of Fe. This shows
the monotonic increase in orbital energies as the
number of electrons in the 3d subshell increases.
The orbital energy e(4s) is always larger than the
corresponding e(Sd). A similar display occurs in
Fig. 2 but here the sum of the occupation num-
bers q(4s) and q(Sd) is kept constant and equal to
8, the number of valence-shell electrons in iron.

g un(M& [(10) S(1(& )
a (1(& )

Ra ]

with

u= u(4s) —u(M) .

(68)

(69)

fK (Ry)
0.0

-1.0-

-29-

-3.0-

sq(Sd) sq(4s)
su(4s) su(4s) (VO}

The actual calculation of q(nl) and Q(nl, &1'l') is
conveniently done in complex arithmetic in the
computer starting from the integration formula
(61) which is easily generated. The form (68)
shows that only for I u I » 1 will one term dominate
and thus second derivatives of ln Z„be negligible.
This happens for nearly full or nearly empty sub-
shells.

The difference between Slater's energy expres-
sion and the form (H)„ is conveniently expressed
in terms of Sq(4s)/Su(4s) when we realize that
relation (59) gives

-4.0-

%.0-

-60-

-7.0-

-8.0-

0.0 1.0 2P 3.0 Q) 5.0 fg 7.0 Q.O

FIG. 1. Orbital energies in By for the valence shells
in Fe ions as a function of the number of 3d electrons
found by the energy functional (H). Full line means that
the 4s shell is almost empty (q4, = 0.001) and dotted line
that the 4s shell is full (q+ = 2).
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Q.O
fe(Ry)

-01-

-0.2-

-0.3-

Fe ((H&

-0$-

-0.6-

-0.7
6.0 6.4 6.8 7.2 7.6 8.0

q3d

FIG. 2. Orbital energies in Ry for the valence shells
in neutral Fe as a function of the number of 3d electrons
found by the energy functional (H).

energies for Fe, Fe', and Fe" based on the or-
bitals that are optimal for the minimization of (H)
gives the result that Fe" has the ground-state con-
figuration 3d, that Fe' is described as 3d64s, and
that Fe in the ground state is given as 3d 4s .
Thus it seems that the orbitals obtained from Eq.
(45) are equally appropriate as starting functions
for detailed calculations as are those calculated

by traditional or hyper-Hartree-Fock methods.
Minimum values of some energy functionals are
given for comparison in Table IG. The differ-
ences between the entries for a given configuration
in Table III are mainly the effect of different co-
efficients for electron repulsion integrals and to
a smaller extent from the fact that different en-
tries are calculated with different orbitals.

Again we see that e(4s) lies above e(3d) and that
both are increasing functions of q(3d).

The present calculations can be compared to the
results of the hyper-Hartree-Pock method and we
list in Tables I and II orbital energies obtained by
several different arguments. The differences are
relatively small for inner-shell energies. It is
seen that the modified orbital energies E' defined
in Ref. I do not compare well with 9(H)/Sq. This
reflects the difficulty in the generalization of the
hyper-Hartree-Fock energy functional to contin-
uously varying occupation numbers. Total en-
ergies as functions of occupation number q(3d) are
given in Fig. 3 for atomic Fe and for Fe' as cal-
culated from the functionals (H) and (H)„. It
holds that the minimum energy (H) is obtained
when the 4s orbital is empty. The energy func-
tional (H)„attains its minimum for a full 4s sub-
shell for Fe but has its smallest value for an

empty 4s subshell for Fe'.
In view of these results it is clear that a de-

scription of transition-metal states as simple con-
figurations is ambiguous and that a more complete
account has to be taken of the electron interaction
terms in the Hamiltonian than what is possible in
a central-field idea. A direct calculation of term

V. EFFECTIVE INTERACTIONS IN VALENCE SHELL

dq(nl) = q(nl) -qo(nl) (74)

Etotal
(Ry)
-2521.0

-2522.0-

We study more closely in this section the energy
expression (H) from Eq. (38) with a view of using
it as a starting point for a description of the mul-
tiplet structure in the valence shell and for a dis-
cussion of the implications for calculations on
molecular and crystalline electronic structure.
The average value (H) is appropriate for gener-
ating a model which may simulate the properties
of an atom in terms of its valence-shell atomic
orbitals since the average formation includes all
possible states that can be obtained with the given
set of orbitals.

The total energy (H) can be expanded in a Tay-
lor series around a standard configuration speci-
fied through a set [qo(nl)]. We define

TABLE I. Orbital energies obtained from variations
of energy functionals for hyper-Hartree-Fock; derivative
with respect to occupation number of hyper-Hartree-
Fock I'); projected ensemble and unprojected ensemble
average for ¹i3d 4&2 in Py.

HHF

-2523.0-

-2524.0-

Fe

Fe

Fe'

-Fe'

&(2s)
e(2p)
&(3s)
e (3p)
~(3d)
~(4~)

-611..2537
—75. 8529
—65. 90006
—9.7871
—6.5661
—1.3942
—0. 5536

—594. 1117
—72. 1913
-61.8391
—8.5838
—5.4605
—0.4516
—0. 2567

—611.254
—75. 853
—65.901
-9.787
-6.566
—l.394
—0. 554

—611.448
—76. 056
—66. 102
—9.912
-6.683
—l. 106
-0.565

-2525,0
5,0 6.0 7.0 8.0

q3d

&H& (H&„

FIG. 3. Total energies in Ry for Fe and Fe' as a
function of the number of 3d electrons. Full line means
found by the energy functional (H) and dotted by (H)N.
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TABLE II. Orbital energies in Ry for valence orbitals of Fe, Co, and Ni for different configurations found by
different methods.

Ze 3d"'4s2 o

Co 3d7.04 2.0

d7'24s
3d7.44 i.6

3d7.54 i.5

3d7.64 i.4

s
3d8.04 i.0

3d8.54 0.5

3d ' 4s0'
3ds'

3d8.04S2.0

3d8.24S i.8

. 3d8.44S i.6

3d8.54 i.5

3d8.64 i.4

3d8.84 i.2

8d9.04 i.0

d 4 0.5

3d9.84 0.2

3df0. 0

EHHF
3d

—1.2157

—1.3061
—1.2094
—1..115V
—1;0700
—1.0251
—0. 9379
—0. 8540
—0.6610
—0.5578
—0.4948

—1.3942
—l.2931
—1.1949
—l. 1469
—1.0997
—l. 0077
-0.9190
—0.7131
—0.6014
—0.5324

—0. 5203

—0. 5372
—0. 5204
—0. 5037
—0.4953
—0.4869
—0.4701
—0.4534
—0.4116
—0.3870

—0. 5536
—0.5361
—0.5185
—0. 5097
—0.5009
—0.4832
—0.4653
—0.4203
—0.3929

—0.3769

—0.41,49
—0.3303
—0. 2489
—0.2095
—0.1709
—0. 0965
—0. 0259
—0.1325
—0.2138
—0.2616

—0.4516
—0.3622
—0.2761
—0.2342
—0. 1932
—0.1138
—0.0380
—0. 1341
—0.2244
—0.2786

EI
4s

—0.2407

—0.2488
—0.2378
—0.2268
—0.2214
—0.2160
—0.2053
—0. 1.948
—0.1694
—0. 1551

—0.2567
—0.2451
—0.2336
—0.2279
—0.2222
—0.2109
—0. 1997
—0. 1723
—0. 1563

(H&N

—l.216

—1.306
—1.179
-1.066
—1.014
—0.965
-0.873
—0. 790
—0.617
—0.537
—0.494

—1.394
—1.264
—1..148
—1.094
—l. 043
—0.947
—0.859
—0.669
—0.580
-0.532

(a)„
4s

—0.520

—0.537
—0.536
—0.532
—0.530
—0.528
—0.525
—0.522
—0. 526
—0. 536

—0. 554
—0. 552
—0. 546
—0.544
-0.541
—0.536
—0.531
—0.535
—0.548

&II&

3d

-0.694

—0. 894
-0.850
—0. 806
—0. 785
—0. 763
—0.719
—0.675
-0.563
—0.488
—0.416

-1.1.06
—1.055
—1.004
-0.979
-0.953
-0.902
—0. 850
—0.715
—0.623
—0.532

(a)
4s

—0. 544

—0.555
—0.484
-0.416
—0.383
—0.351.
—0.288
—0.227
—0. 092
—0. 026

—0.565
-0.492
—0.422
—0.388
-0.354
—0.289
-0.227
—0.089
-0.023

and obtain

(~)=(~),+Z~(ni) ~q(ni)

+ s ZY, ff (nl, n'l') &q(nl) 5q(n'l')+ (75)

with the notation

s'(a& e~(a)
iefr(nl&n l) —

e (l)s (,l )
—

s ( l)
which anticipates the interpretation of the second
derivatives as effective interaction integrals.
Landau uses a similar expression in order to de-

fine an effective Hamiltonian for Fermi liquids. "
Jgrgensen has introduced the concept of differen-
tial ionization energy for an atom' as a function
I(z) of a continuous charge parameter z which is
such that the n'th ionization energy I„ is given as

I„=f" I(z)dz.

The function I(z) is approximated as a polynomial
with a few terms which are obtained by compari-
sons to experimental data. These results cannot
directly be compared to the orbital energies
«(nl)= s(H)/sq(nL) since (H& is an average over

TABLE III. Total energies in By for Cr, Fe+, Fe, Co, and Ni found by different methods.

Fe

Fe

Co

Ni

04s

(H)g

&a&„
(a&

&a&„

EHHF

EHHF

0. 5

—2086. 075
—2084. 615

—2524. 026
-2522. 212

—2524. 316
—2522. 994

—2762. 361
—2761.406
—2762. 490 02

—3018.387
—3013.041
—3013.523 80

1.0

—2086. 156
—2084. 595

—2523. 918
—2521. 942

—2524. 392
—2522. 842

—2762. 434
—2761.175
—2762. 608 VV

—3013.464
-3012.727
—3013.641 87

1.5
—2086. 243
—2084. 617

-2523. 777
—2521.699

—2524. 474
—2522. 716

—2762. 511.
—2760. 961
—2762. 654 94

—3018.582
—3012.422
-3013.681 57

2. 0

—2086. 353
—2084, 685

—2523. 689
—2521.489

—2524. 582
—2522. 608

—2762. 617-2760. 775
—2762. 61713

—3013.632
—3012.139
—3013.631 90
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state energies for many different degrees of ion-
ization. An analysis can be made which permits
us to calculate theoretical parameters of I(z) from
the orbital energy of the Sd level for some transi-
tion metals and to compare these with the ones
derived by Jg(rgensen. The energy of a configura-
tion with N electrons in the 3d subshell will be de-
noted E(N). The definition (77) then leads to the
relation that

Ve«(calc)
V,ff (expt)
V

Fe

0. 581
0.955
l.219

Co

0.668
0.976
1..342

0.751
1.026
1.460

TABLE V. Comparison of calculated and experimental-
ly derived effective interaction parameters V,ff(3d, 3d) and
unmodified parameters V(3d, 3d) in Ry.

E(N v)—=E(N)+ f I(z)dz .
0

We put

I(z) = ap+ag z+apz + ~ ~ ~

and obtain for the average energy

(H) =Z„w„E(Ã —v)

=E(N)+ap(v)+2aq(v )+pap(v )+'''

(78)

(So)

teraction parameters may be used instead of the
integrals calculated directly from the orbitals in
a description of the multiplet structure in a cen-
tral-field model. There does not seem to be a
corresponding procedure for the separate evalua-
tion of the E' and G integrals.

Jgfrgensen noted that the coefficient ap is ap-
proximately equal to the electronegativity of the
atom according to the definition by Mulliken":

&(nl) = —&(H&/&z =ap+a~ z+apz + ~ ~ ~ (S2)

and a comparison between a yolynomial fit to the
calculated orbital energies and the derivation
from Jgfrgensen's parameters is made in Table
IV.

The coefficient ai corresponds to the V,«(nl, nl)
for the valence subshell and we see in Table V a
comparison between these parameters and the
integrals V(nl, nl). It is clear that a considerable
modification results in going from V to V,«and
this is a reflection of the adjustment of the orbital
form upon change of occupation numbers q(nl),
A large amount of screening of the electron inter-
action is thus accounted for and the effective in-

TABLE IV. Comparison of differential ionization ener-
gies in Ry from calculational and experimental data.

ao (calc)
ao (expt)
a~ (ealc)
a& (expt)

a2 (calc)
a2 (expt)

Fe

0.314
0.211
0.581
0.925
0. 177
0.059

Co

0.416
0.635
0.668
0. 976
0. 1.66
0. 066

Ni

0.532
l. 117
0.751
1.026
0.151
0.072

where we can identify the formal charge g of toe
atom as (v). We find that for an ensemble of the
type (15) for one open subshell it holds that

&v) =z,
(v') = z'+ (N —z)(4 f + 2+ z —N)/(4 l + 2),
(v') = z'+ (N —z)(4 f + 2+ z -N)

x [3z(2l+1)+N-z —2l -1]/(4&+2)(2I+1) .
The orbital energy &(nl) can now be calculated

X= p (Ip+ Ii) = ap + p az+ ~ ~ ~ (83}

Two alternatives to the hyper-Hartree-Fock
method for atoms with open shells have been dis-
cussed here. Both alternatives are derived em-
ploying ensemble averages, and they allow frac-
tional occupation numbers in the subshells. The
total energy for a fixed value of N=gq(nl) is an

upper bound to the ground-state energy in one case
((H)z) and probably is such a bound in the other
case as well ((H)).

The procedure, employing the functional (H),
admits consideration of noninteger total number of
electrons in the system in the sense that the
average formation involves states with varying de-
grees of ionization. This method is formally re-
lated to the Hartree-Fock method for extended

It is thus a close resemblance between the elec-
tronegativity parameter X and the calculated or-
bital energy &(nl). The derivative relation (51)
indicates that a chemical potential for an atom may
be defined as the negative of the electronegativity
parameter X, which only is a confirmation of the
concept of electronegativity as being the power of
accepting electrons.

A model for an atom may now be constructed
as having basis orbitals from the valence shell
with matrix elements computed from e(nl) and

V,~, (nl, n'I') rather than from I(nl) and V(nl, n' l').
Such a model is similar to conventional ones
where empirical values for integrals are used,
and offers a well defined functional form of the
orbitals„which may be used for the calculation of
overlay integrals and other multicenter integrals
which are used in a theory of molecular electronic
structure. We are in the process of exploring
these possibilities.

VI. CONCLUSiONS
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systems using temperature-dependent averages.
The numerical results of the three methods are

not very much different for inner-shell orbital
energies, total energies, and wave functions.
There is a distinct difference in the description
of the ground-state configuration obtained from
the three methods applied to transition metals.
The energy average (H)„has its minimum for the
configuration Sd'4g for the four atoms Cr, Fe,
Co, and Ni that have been studied here, while the
average (H) has its minimum for sd"', and the
hyper-Hartree-Fock method points towards an in-
termediate situation. We feel that wave functions
obtained from Eq. (45) and the corresponding po-
tential functions are those best suited for molecu-
lar or solid-state applications since the treatment
of Coulomb and exchange terms is here similar
to the ones used in a tight-binding formulation of
the Hartree —Fock method for a molecule or crys-
tal. The valence-shell orbitals are in this case
somewhat more diffuse than those obtained by the

other procedures and it is necessary to subject
this point to a careful analysis with regard to pos-
sible "overlap catastrophies. "

The connection between the electronegativity
concept and the valence-shell orbital energy as
defined by Eq. (51) is a satisfying feature of the
Hartree-Fock procedure based on ensemble
averages without restriction to fixed number of
electrons. A further study of the significance of
this relation for the discussion of chemical bond-
ing and molecular electronic structure is needed.
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Molecular-Beam Magnetic-Resonance Measurements of the Anisotropies
of the Electric Polarizabilities of 82 and D2~
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The anisotropies y= e„—nj of the static electric polarizabilities of H2 and D2 were measured
in a molecular-beam magnetic-resonance experiment. The quadratic Stark shifts of the sepa-. ,

rated-oscillatory-field resonances in the ground electronic and vibrational and J =1 rotational
states were measured in parallel electric and magnetic fields. The results are y(H2) =0.3016
+.0005 A and 7(D2) =0.2917+.0004 A, which agree very closely with theory. A previously
measured combination of the spin-rotation and quadrupole-interaction constants of D2 was
independently remeasured, and the dependence upon orientation of the nuclear magnetic
shielding of D2 was found to be 0~&-00=-11+9 ppm. An efficient electron-bombardment de-
tector was constructed for this experiment.

I. INTRODUCTION

We report here the first direct measurement of
the anisotropy of the static polarizability of H& and

an improved measurement for D2, each in the
ground electronic and vibrational state and the J= jL

rotational state. The method is basicany that used
by English and MacAdam, namely, the measure-


