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The contributions from the three spin-dependent Breit operators in second-order perturbation
theory are calculated when the symmetries of the intermediate states are odd P or D. Standard
Hylleraas expansions with up to 165 terms are used for the perturbations of the wave functions.
The large interval of the fine structure of the 2 3P level in helium is increased by 2.17(2)x10 4

cm by P, and by 0.0089(6) &&10 cm ~ by D. Two methods for handling angular integration
over D tensors are described.

I. INTRODUCTION

In an earlier paper, ' hereafter referred to as I,
the contributions to the fine structure of the 2 P
level of helium from second-order perturbation
theory with intermediate SP states were calculated.
This fine structure consists of two intervals whose
experimental values are r to= 764. 2606 (17) cm
and r&o, = 9879. 121 (12) cm '. ' The relative accu-
racy of the large interval is thus better than for
the small interval (1.2 ppm vs 2. 2 ppm), and the
results of I came much closer to the desired ac-
curacy (which is to match the absolute experimen-
tal accuracy) for the large interval than for the
small; so, in this paper the remaining second-
order contributions to the large interval are cal-
culated. These come from intermediate states
with 'P and D symmetries. There are also con-
tributions from 'D and I' states to the small inter-
val which have not yet been calculated. As in I,
one solves an inhomogeneous Schr5dinger equa-
tion for the odd 'P and SD perturbations of the 2 P
wave function by the variational method; the sec-
ond-order perturbation energies are then given by
integrals. We emphasize that this is but one of
many theoretical contributions to the fine struc-
ture. A summary of the complete calculation of
the fine-structure intervals, including quantum-
electrodynamic and nuclear-motion effects, with
detailed comparison with experiment, will be re-
ported. '

I ~ I' EXPANSION

The two spin-orbit, operators which connect sin-
glet and triplet states are (Z= 2 for neutral heli-

2 Xpo
o

where

Urban( Pr, Mz ——1)

(2)

(So [rr) —Sr '[rrjo ')u, „„(1,2),

P12 exchanges coordinates ri and r2

2 & l& m& ne-{ e/2)~g -(fr/2)r2
12 1 &2e

as in 1 (r&=4. 62 and g=0. 29), and

- rr) r s'$ &r —&o ~i
H2 ~+

I 2 I o + (Pl+Ps) I&
&ro

which follow from the well-known operators with
just one a. The equation for the 'P perturbation
to the 2 P wave function is

(Ho -&o) +t'" ( Pr) = -&r"'
@o ( Pr)

(1)
which differs from the basic equation [Eq. (6) of
Paper I] because the expectation value of Hr"' is
zero in a state of definite multiplicity. Hp is the
nonrelativistic Hamiltonian in atomic units:

2 y 2 g Z 1
HP= —g Vi —g V2 ————+—.

+1 +2 +12

The unperturbed wave function with total angular
momentum J= 1 and M ~ = 1 is

l+m n~~fs)'

(Por&M~=1)= C Ur~ (rP»r&M~=1),
l oms n"-0
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{rl}k) (+) + ay))/(+ ~2) {rl}o a)

In this paper, curly brackets are always used to
denote spherical tensor components. S 1 p1"' and
Sp' ' are the usual spinors for two electrons having
total spin 1 or 0. 4p is the eigenfunction of Hp with
odd P symmetry which has the lowest-lying eigen-
value, and this eigenvalue is Ep=Eo(&o). The cal-
culation of C,„„and Ep (for &o= 1, 2, . . . , 8) was de-
scribed in I.

The P perturbation is now expanded in similar
basis functions:

l+m+n=)fa)

&ll, ' ( P), M~= 1)= Z Xlm„"'U&m„('P), M~= 1),
l, dna n=P

&=1, 2 (3)

U)m„(P»M~=1)=So' '
~2' {r,j&' 'u)mn(1, 2) .

The variational approximations to 4,"' of (1) are
obtained by solving

N(~. )

Q [&U„,~Ho~ U, &-E,(~') &U„, ~U„)]X,&"=f „,"),

k'=1, 2, . . . , N(o)) (4)

where N(&d) is the number of terms in these ex-
pansions, (&o+ 1) (o)+ 2) (&o+ 3)/6, and

Here the three indices (f, m, n) in the expansions
(2) and (3) have been mapped into one, k or k'. The
matrix elements of H p in the left-hand side of (4)
are calculated as in I; the only difference is that
the exchange-type integrals are added to the di-
rect type instead of subtracted. The action of H1
and H, "' on +p( P»Mz 1) is given by--

H, "'
(So {r)j) —S) "{r)jo"')ulm„(1,2) .

2

Fori=1 this is equal to

a &o) {r)j)
4&a Zv2So a

—
a

2/12

-=- i/2{r„ra j„'",
r2 1 2 +1 r21 r1 r2 r11

Spherical tensors are combined by Clebsch-Gordan
coefficients using the well-known formula

:{{Aj&, {Bj a }u =Q~C(N, 1Vi —N; j)ja J)

Notice that expression (5) and (6) are pure 'P;
there is no 'D part when H, ' acts on 4'o( P, ). Only
when H, )) acts on )1'o( Pa).does one get a 'Da part;
i. e. , only the J= 2 level is shifted by perturbations
from intermediate D states.

The evaluation of the matrix elements ( U, ,„,„, [

x H,"IU, „)in terms of the standard integrals of
I now proceeds very much like the calculation of
matrix elements of H, " and H, ' ' between P terms
in Appendix B of I.

III. ~D EXPANSION

The operators that give 3D parts when they act
on 4'o( P) are the spin-dependent operators of I:

(1) & 2g 1+ ~2 I, ri 1 2rz1 = 4Q
2 i +

&a) & a 6)+ Ga .I (rl ra) x (p) —pa)
IH1 ———4 n

2

(3) g 2 1 ~ ~ 3+1 ™~ +1 +2 (+1 ~ll) (+8 +f2))&12 &12

It is now more practical to let these operators act
on the "stretched" state with J=M~= 2, 4'o(aPa, M~
= 2). After some algebra, one obtains the D part
of

For i = 1 it is given by

4 o. Z&3 a ~-~~Ta' '(1, 2)ul „(1,2),
+12 +2 +1 )

where
&a)(1 2) [~2S ){{r} ) { }))j a):

x [{r,}',"(r&.ra) —{ra}i )') ] ul..(1, 2) (6) &
&1) {{rj&1) {r r }&1)j &a) ]/~3

and for i = 2 we obtain

g &aa&2Sp {r)—raj)
m ~o1 n It. 1

2 + r
1 2 X2 X2 2r2

so that the odd D tensors have just the form sug-
gested by Schwartz, ' and are similar to the D func-
tions used by Doyle et aE: 6 For i = 2 we obtain

[{rl }i'"(r) ra) {ra}l"' l') ] ~u lm. (1 2) (6)
&12

where the following tensor identities have been
used:

a- ——— a+ ——
a Ta (1 2)ul .(1 2)

m Ko 1 n v1 1 (2)

and for i = 3 the result is

—g &a &3(2/)'&a) [Ta (1, 2)+ Ta '(2, l)]u, „(1,2) .

Notice that with r, —r2= r»,
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(1+P„)([r,)"'i (r„ra))„'"

r12 r12 r2

r12, r1 r12 g

The corresponding P parts were given in Appendix
B of I. For completeness we also note that

E part of H, ' 'S,'"(r,)1'"u,„„(1,2)

1 ~2( 3/y5 ) (
/ )1/2 [(

5 )1/2S (1)X (2)

—(5)1/2S (»X» (1)1/2S &1'X '2&]u, „(1,2),
(7)

where the Clebsch-Gordan coefficients C(M, 2-M;
1, 3, 3) in (7) appear as the result of lengthy manipu-
lations and

The following expansion is chosen for the D per-
turbations to 40.

@"'('Dai Me = 2) = ~ S)mn"' V&~n('Da~ Mz = 2) ~

r am, n=o

(6)
where

V)mn(DaiM/=2)= ~ ' u,„„(1,2) .2 1-P12 Ta' '(1, 2)
9 P'2

(9)
The sum of powers of r» ~» and F12 then has the
same range as in the expansions (2) and (3). Notice
that (6) is not a Hylleraas expansion for an odd (un-
perturbed) D state because of the division by 5,ra
in (9). The equations to be solved are now

N(le )

& l&v, IHolv. &-z,( ')&v, , lv, &]y,"'
0~1

N(fal ' )

c,&v I» 'lv. &. (10)
&1

To evaluate the matrix elements of H(& and 1 in (10),
we require the action of Ha on (9) given by

H ((r,}'",(r„ra)'"))/' 'u)~„(1, 2) ((- )&1) (- -)&))) &2)l& i «2(oa 1)

1 1 1 1
+ [ ~ tm(2m+ 4+ l) —2] —+ [ —,'«(2n+ 2+ l) —2]—+——2(m —1) (m+ l+ 4)—2

&2 &12 +1

1 1 1 2

——,(n —1.) (n+l+2) —
2

—al(m+2l+6+n) 2 + 5 tmi 2 + g «l ~- 4«ol
'y2 &12 +12 +12 &8'12

r2 y2 r2
——,'«l '2 + al(m —1) 2 2 + al(n —1) 2 ', + ((ra)'", {r1,ra)'")„' '

+2+12 +1+12 +2+12 +12 &1&2

To express these matrix elements as linear combi-
nations of the integrals of I, a reduction formula for

"'
'~l

"'P(1 2»)[{{r&)"'{r/ ra)'")u'"]

({ )"',(, .)'")'" (»)
is required. One way of doing this is explained in

the Appendix, where all angles, except the angle

812 between r, and r2, are integrated out. The re-
duction can also be done by using the formula

~ (- 1)"({»"'(»'") '"((C)"',(D)"') "'

= 2(A C)(B D)+ 2(A D)(B C) —2(A B)(C D),
(12)

which can be proved by writing out the left- and

right-hand sides in Cartesian components. Us-
ing (12) we get

[{( )&1) (~r
~ )(1)j (2)] ((» )(1) (r ~r }(2)) (2)

= —,({r,,), {r/, xr„,}).„((r,), (r/Xr„} )„

=~(r&, r, ) [(r/, xra, ) (r/xra)],
where the last two terms of (12) vanish, since i',
j', ~', i, j, and 0 are 1 or 2 and j'+k', j 4Q.
integral (11) can now be written

dV1 dV2

4v 4 ( 1& +at +12)f&'/'2', &/2(+1 +2& 812)
4 4

where the functions f required for this work are
1 4 2 ~ 2

f112,11a= g)2'1)'2 s1n e)a

1 3 3 ~ 2
f221, 112 22)2 12 2 S1n ~12 COS ~12

1 3 3 ~ 2
f112,212 K +) 2 S1n e12 cOS 12

2 4 2
f221, 212 22) 2 1+2 ela ~

(13a)

(13b)

(13c)

(13d)

—2 dQ1 d Q2 y'12
cos8»L+2 „4m „4w

The matrix elements of IIO and unity can then be
evaluated with the help of the formulas

dg1 dg2 ~ 2sin 8»~»
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, dfl, sin 6g2 cos y2 &y2

L+2 2—2 dQ), d02 x)2 1
3

g
&y21+ cos

L+2 „4m „4m xx L+4

obtained by partial integration. The matrix ele-
ments of H~" in (10) between P and D terms are
calculated in the same manner.

IV. RESULTS AND DISCUSSION

= —&+i"' IHo —Eo
I

+i"'& (14)

and the results reproduced in Table I. The num-
bers obtained by the different methods in (14)
agreed to the digits quoted. There are four re-
sults to compare when i &j, and two when i = j. As
in I, the difference between these numbers in-
creases with & owing to accumulating round-off
errors. The extrapolation has been done by the
methods of I; i. e. , one tries to fit the difference
between computed energies for successive values
of &u to a" ("fast" convergence) or &u

~ ("slow" con-
vergence), with a or P being determined empiri-
cally. E2 "' has been extrapolated by the slow
rate because more refined calculations of some
of the results of I came much closer to the ex-
trapolated values obtained from the slow rate than
to those obtained by the fast rate. For E2"' ' the
fast and slow rates gave the same results. The

Equations (4) are solved with &u'= &u for
(o= 1, 2, . . . , 8. The matrix of the equations is
nonsingular since Eo((u') is the 2oP level. There
is no non~rivial solution to the homogeneous equa-
tion corresponding to (4), and one does not have
to delete one equation as was necessary in I. The
resulting second-order energies are given by

E ""x&+ol+o&= &+ '"IH "'I+.&=&+.IH "'I+~'"
&

E(cu)

Q x,"'b'„"=—&e,"'IH, -E,Ie,"'&

values obtained for Ez' ' ' are rather puzzling. It
was shown in Appendix C of I that, for the unmixed
second-order energies, the calculated numbers
are upper bounds to the exact value provided Eo,
the lowest 2'I' eigenvalue, is lower than any ap-
proximation to a I' eigenvalue, i. e. , eigenvalues
of the matrices &U~' IHo U~&. The highest value of
Eo is —2. 1294V1 a. u. (for u&= 1), and this is lower
than the best (lowest) 2 P eigenvalue obtained by
Schiff et a/. ,

' which is -2. 123843 (for &u= 13).
But the results for E~' ' ' are fairly constant, so
the extrapolated value has been taken close to the
lowest calculated value with an uncertainty so that
the extrapolation is consistent with all the com-
puted numbers. 'The sum of these contributions
(Eo"'o' =Eo'o' ' enters twice) has been extrapolated
separately; the fast and slow rates were then in
agreement. Notice that the extrapolated sum is
not equal to the sum of the three extrapolated en-
ergies, but they agree to within their assigned un-
certainties. With a conversion factor of & 8
= 3. 11134x10 cm ', where S is the Rydberg con-
stant for infinite mass, we obtain a shift of the
J=1 level by an amount

—2. 1V(2)xl0 4 cm ~.

Pekeris et al. 9 have calculated the shift of the
J= 1 level from the mixing with the nearby 2~I'
state and found

1(@o(2 P, )Iraq' '+Hg ' ll'o(2 Pg)& I

Eo(2 Pg) -Eo(2'Pg)

= —1.58&&10 cm

Since we have calculated the complete second-or-
der sum (over all oP, states) and not just the first
(and presumably the biggest) term, our result is
consistent with theirs. This shows that even if the
first term of a second-order sum is dominating,
it only gives an estimate of the order of magnitude
of the complete sum.

The calculation of the contributions from odd D

TABLE I. Second-order spin-dependent perturbation energies from intermediate P states using the expansion (3)
for +g( &( Pg, Mg = 1).

10
20
35
56
84

120
165

E (f, T)(~4 g)

—0.326 083 150 88
—0.33113117424
-0.350 064 59492
—0.365 3133625
—0.374 772 0
—0.381
—0.3857
—0.388 8

E "o2&(~~0.4N)

-0.18464406408
—0.175 888 934 60
-0.173445 981 91
—0.173757 715 10
—0.173362 96419
-0.17334
—0.173480 3
-0.173572

E (1,2)(x&4 @)

—0.244 726 520 48
—0.239 969 803 08
—0.243 720 589 91
—0.247 748 059 07
—0.249206 7
—0.2500
—0.250 77
—0.251 16

(g (i, i) + 1E (2, 2) +@ (1,2))(~4g)
2 4 2 2

—0.616 97
—0.615 07
—0.637 14
—0.656 50
—0.667 31
—0.674
—0.679 8
-0.683 3

Extrapolated —0.41 (1) -0.18 (1) -0.252 (1) -0.699 (7)
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TABLE II. Second-order spin-dependent perturbation energies from intermediate D states, using the expansion (8)
for 4, "(D»M~=2).

104E
2

102@(2,2) pot4(g) 105@(3,3)(3~4 (g ) lp38(i 2)(3~4' ) 105@(i,3)(3~4' ) 103+(2&3)(&&4g)

29.324 596 271
—13.459 704 588

9.868 859 497
8.134397 74
V. 2797915
6.865 073

—6.7193636
—6.6547

—6.51(7)

—1.616139772 9
—l.937 306 250 3
—2.069 830 569
-2.161528
—2.215 239
—2.2589
-2.283
-2.303

—2.5(1)

—3.401 061 859 5
—5.099 513877 9
—6.177248 34
-6.916746
-7.42612
—V. 8358
-8.16
—8.36

-9.7(7)

3.280 983461 6
2.771 550 598 0
2.446 496 533
2.258 69900
2.129 620 1
2.0679
2.0417
2.029

2.014(7)

12.557 165 969
12.136 297 508
10.677 123 37
9.788 83
9.16173
8.871
8.750
8.70

8.63(3)

-0.724293 851
-0.950 832 530
—1.064 373 138
—1.1363189
—1.17808
—1.206
—1.228
—1.238

—1.28(2)

intermediate states proceeds in the same way.
Equations (10) are solved with &u' = &u, and the sec-
ond-order energies are given by formulas similar
to (14). The extrapolations are all according to
the slow convergence scheme, but in most cases
the fast scheme gave results close to the ones
quoted. Notice that the eight computed values for
E2 '" increase monotonically with &. However,
in these calculations we cannot expect the com-
puted unmixed second-order energies to be upper
bounds to the true quantities. The eigenvalues of
the matrix (V„, iHOI V~) in (10) do not correspond
to helium energy levels, and some of them could
well be smaller than Eo(&). In fact, at least one
eigenvalue of (V„.IHOI V&, ) is close to Eo. This was
demonstrated by putting y, "'= 0 in (10), deleting
the first equation, and solving the remaining N(&u)
—1 equations for y2"', . . . , yN~„~ as in I. When
one inserted the solutions into the left-hand side
of the first equation of (10) and compared with the

I

right-hand sides, there was agreement to several
digits for the higher values of (d, and the second-
order energies obtained this way agreed with the
results of Table II to the same number of digits.
If one does not divide by r, ra in (9), one would ex-
pect the lowest eigenvalue of the matrix of Ho be-
tween such terms to be equal to the (2p, 3d) D en-
ergy level (at —0. 559328 5 a. u. ) recently reported
by Doyle et al. 6

The results of Table II give directly the pertur-
bation to the J=2 level. Adding up, one gets a
shift of —0. 024(1) x10 cm '. The J dependence
of matrix elements of a contraction of an angular
momentum operator of rank K with a spin opera-
tor of the same rank between states with angular
momenta 1 and 2 and spin 1 on both sides is given
by (-1) W(1112;JK), ' where W is a Racah co-
efficient, and K is 1 or 2. Therefore, the pertur-
bation of the Z= 1 level is given by (as explained in
I)

m(ll) (~ &, » 4E &, ~& E &2 2&) 2a&ot(1 )I~(2E &,, s& E &».,q&)
I

'&0( ) E ($ s& 3 ~4@

= —'& 4Z ""+4Z "" Z ""-6(2Z ""+Z ""&+9E"3&]n'e
24 L 2 + 2 + 2 'L 2 + 2 l+ 2

where I&(JK) =gg(KJ) =W(11 12;ZK). This gives a
perturbation of

—ti 0089(6)x 10 cm

for the J= 1 level. This is also the contribution to
the large fine-structure interval, except for the
sign, since the J=O level does not couple to D
states. All of the uncertainties come from E2' ' ',
but the contribution of D intermediate states to the
large fine-structure interval is well below the ex-
perirnental accuracy. It is not surprising that
these D contributions should be so much smaller
than the 'I' perturbation; if one looks at first terms
in the second-order sums and assumes that all ma-
trix elements have the same orders of magnitude,

I

then the order of magnitude of the ratio of the 3D

and 'I' perturbations is given by the inverse ratio
of the energy denominators, i. e. ,

E (2 SP) —E(2 &P) —2. 133+2. 123
E(2'P) —E(3(2P, 3d) 'D) —2. 133+0. 559

= 0. 006,

which corresponds to our findings.
The calculations reported here were done in

about 20 sec of computer time on the CDC 7600 of
the Lawrence Berkeley Laboratory.
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APPENDIX: REDUCTION OF INTEGRALS OF THE
TYPE (11)BY ROTATION OF THE COORDINATE

SYSTEM AND INTEGRATION

= ra(sine cosy siny, + sine siny cos8, cosy,

+ cos 8 sine, cosy&),

where 8= 8» and y= y&. There are similar ex-
pressions for y& and z2. We retrieve the usual ex-
pressions for x&, y&, and z& since, for example,

We wish to obtain the function g(8,2) in

f dQ1 f dQaxly&x1x2y2x2F(812)

= f dQ1 f dQagp. ..op. (812)F(812) ~

j Sing(

cos8g cos+g

sin 8, cosy»

—cos pg o

cos8, sing, —sin8, ~, j
sin 8g sing) cos8g

In the new system, r, is along the z" axis, and 8»
= 82 and

xp= rp' 1

= ra(sine cosy i"+ sine siny j "+cose k") i

where E(8,2) is an arbitrary function. To that ef-
fect, first rotate the coordinate system clockwise
&w —y& about the z axis, so that r, is in the inter-
mediate yz plane. Then rotate 8, clockwise about
the intermediate x axis. The new unit vectors are
now given in terms of the old by

+] rf 1 +g k 1 = &y sin8g cos+y

In the integration over the polar angles of r, and

r2~

f dQ, f dQa= f 'dy, f' de, sine, j dy f desin8,

y» 8&, and y can be integrated. Theg functions
necessary to derive formulas (13) can now be ob-
tained by elementary integration and some rather
lengthy algebra. The results are

g400, 00a(8) = 3gaao, ooa= (1+ 2 sin 8)/35 &

g301, 101(8)= 3gall 011(8)= (2 —3 sin'8)/&0,

gaoa, aoo(8) = (3 —sin 8)/105,

g300, 1oa(8) = 3ga10, 01a(8) = cos 8 (1+ sin 8)/35,

g», », (8) = cose (2 —5 sin 8)/210,

g, 02, ,02(8) = cos8 (3 —4 sin e)/105

Formula (13b), for example, is obtained by ex-
plicit calculation:

f dQ f dQ (((r ]&1& g r ](1&j &2&)oc(I'r )11&(r r j(1&] (2&F(8)

= 3 f dQ, f dQ2 (xa —aya) [(xa fya)z,—-xa(x& —ay&)](x, +ay, )[(x,+ ay, )aa-g, (xa+ aya)]E(8)

= 2 f dQ1 f dQa [g201,201(8)+g111,111(8) g120, 102( ) g300, 102(8) ]F(8)

= —~2' f dQ, f dQar, rasin 8coseF(e), (Al)

where use has been made of the relations
gp,...&.(8) =g.o.,p„(8), g p(p &, p( 4.&(8)=gp.„.o.(8)
where P(pqr ) is a permutation of (I&qr) These re-.

lations also showed that the imaginary part of the
left-hand side of (Al) vanished. The other three
formulas (13) can be derived in the same manner.
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