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A method for calculating static dipole polarizabilities of atoms within a multiconfigurational
self-consistent-field (SCF) framework is presented. The method involves the direct solution of
the multiconfigurational SCF equations of an atom in the presence of a perturbing field which

is simulated by a charged particle. The use of a multiconfigurational framework allows this

technique to be applied straightforwardly to any given state of both degenerate and nondegenerate

atoms, and also allows the explicit introduction of correlation effects. Sample calculations are
reported for the static dipole polarizabilities of the carbon atom in its S, g), and Sp states
with partial inclusion of correlation. The results are compared with those obtained from
many-body perturbation theory, and other techniques. In addition, a prescription for
specifying a sufficiently flexible set of polarization basis functions is described.

I. INTRODUCTION,

Static dipole polarizabilities of atoms have been
calculated from the coupled Hartree-Fock (CHF)
method, the coupled Hartree-Fock per-
turbation (CHFP) method, ~ 8 the double perturba-
tion theory, 9"~' and the many-body perturbation
theory (MBPT). ' '~ Essentially, the perturbation
techniques normally use Hartree or Hartree-Fock
atom solutions as zeroth-order functions from
which the first-order perturbed function for the
atom in a field may be obtained. The polarizabil-
ity is then expressed as a function of the change in
the second-order energy of the isolated atom. "
On the other hand, the CHF method consists of
variationally solving the HF equations for an atom
in the presence of a finite field. The polarizabil-
ity may then be expressed either as a function of
the induced dipole moment or as a function of the
second-order change in the energy. In the limit
of a vanishing field, the CHF method becomes
equivalent to the CHFP method.

In the present work, we report a scheme for the
calculation of atomic polarizabilities within a mul-
ticonf igurational self-consistent-field I (MCSC F}
framework which we shall call the coupled multi-
configurational (CMC) method. This technique,
while similar to the CHF method, has several pow-
erful advantages by virtue of its MCSCF formal-

ism: (i) Degenerate atoms are as easily treated
as nondegenerate atoms; (ii} all states of the
atom, including excited states, may be considered;
and (iii) correlation effects may be included if
desired.

As is common practice in CHF and other varia-
tional techniques, we employ the linear combina-
tion of atomic orbitals (LCAO)" scheme, utilizing
Slater-type orbitals (STO's)' as basis functions,
to solve the MCSCF equations in the CMC method.
The normal procedure involves choosing a good
Hartree-Fock atom basis and then augmenting it
with a number of polarization functions. This im-
mediately raises the problem of choosing proper
basis functions for calculating the polarizability.

The polarization of an atom by an external field
is, in effect, a distortion which is most prevalent
at. large distances from the atom in the tail of the
wave function. Hence, the polarization functions
must span this region in a sufficiently flexible
manner in order to prevent any restrictions being
imposed on the distortion process. Sitter and
Hurst' have set forth rules for inclusion of the
proper principal quantum number and spherical
harmonic functions, but there appears to have
been no systematic attempt to formulate rules for
choosing exponents for the radial portions of these
functions. Indeed, considering that the radial ex-
ponent determines the relative region of space
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spanned by the function, it is obvious that the po-
larizability should be sensitive to exponent varia-
tion of the polarization orbitals. Cohen solved
this problem in CHF calculations on helium and
beryllium by simply optimizing the exponents of
the polarization functions, but such a procedure
can be costly when large numbers of functions
are present.

The goal of the present paper is thus twofold:
(a) to present the CMC formalism for calculating
atomic polarizabilities of both degenerate and non-
degenerate atoms, and (b) to develop rules for
choosing a flexible set of exponents for the radial
portions of the polarization functions. As an ex-
ample, we report calculations on the 'S, 'D, and
P states of the neutral carbon atom, including a

limited amount of correlation.

II. CMC METHOD

A. General

as a function of the induced dipole moment or as a
function of the second-order change in the energy.
In this section, we derive the appropriate relation-
ships used to obtain the polarizability in the CMC
formalism.

Following Dalgarno, "let go be the wave function
for an N-electron system with Hamiltonian Ho, so
that

(Ho —Eo) 4o = 0 . (1)

In the presence of an electric field P the perturbed
wave function may be written as

(2)

where g, is the well-behaved solution of

(Ho —Eo) 6+ hgo= 0

with

The theory and computational details of the
MCSCF method have been adequately described
elsewhere. ' The calculations were performed
with the BIsON STO integral program' and the OVC
(optimized valence configurations) MCSCF system'o
developed and made available to us by Wahl and
Das of Argonne National Laboratories. To use the
OVC program for the calculation of polarizabilities,
we solve the equations for an atom in the presence
of a finite field. For simplicity, this field is sim-
ulated with a charge particlea placed at varying
distances from the atom. In this manner the OVC
program was usable without requiring any modifi-
cations. Another attractive feature of this tech-
nique is that the distance between the charge and
the atom may be varied inexpensively since the
only basis-function integrals that change from
point to point are the two-center, one-electron
nuclear attraction terms. The other one-electron
integrals and the two-electron integrals remain
unchanged since all of the basis functions are cen-
tered on the atom.

The charge is placed at a distance R from, and
along, the z axis of a coordinate system centered
at the atom. The MCSCF equations for this sys-
tem are then solved in C„„symmetry. For a giv-
en state of an atom, we use those configurations
required to obtain the asymptotic HF state of the
spherical atom, and then add any correlation con-
figurations that are desired. We shall have more
to say concerning the asymptotic behavior of C„„
functions approaching the corresponding state of
the spherical atom in a subsequent section.

8. Computation of Polarizability

Tt was stated in Sec. I that in CHF treatments
the static polarizability could be expressed either

V= —Q'Q —o+ o- + '. Ol ~z, (Sz, —r, ) (1
k=1 ~R

V can be rewritten as

(6)

V =Eh(R),

where E= Q'/Ro and

h(R)= —Q z + ' ' +. . .0
5=1

(6)

which renders it to a form consistent with the
wave function defined by Eg. (2). Under these
circumstances, the polarizability is field depen-
dent and assumes the form

o'(R) = —2 ((o lh (R)
I &~ &,

The desired static polarizability comparable to
that given by Dalgarno in Eg. (5) then becomes
the limiting value of a(R) as the field strength
approaches zero, or in the present case, as R
approaches infinity, i. e. ,

&=lim~(R) as R-~ . (10)

Thus, in the CMC formalism, the MCSCF equa-
tions are solved for an atom in the presence of a
perturbation given by Eg. (I), yielding a wave
function of the form shown in Eq. (2) which will
be hereafter ref er red to as +«C.

In this framework, the static polarizability o. is
then a function of the second-order change in the
energy of the atom as shown in Eq. (5):

n= —2((olhlg~) .
For the case of the electric field being induced

by a charge of magnitude Q', the perturbation may
be expanded in a series of inverse powers of R as
given by Eq. (6):
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and this result may be substituted into Eq. (9)
yielding

g2
(ft) = —,&e.„.l le-.&' "o (13)

the quantity &@cMc I z I @cMc& is readily calculated
from the final MCSCF wave function and corre-
sponds to the induced dipole moment of the atom
due to the field.

C. Energy Relationships

The total energy of interaction for the charge-
atom system may be written as

@CMc(&)= &+cMc I
Ho+ &h(&)

I +cMc& ~ (14

Expansion of Eq. (14) using Eqs. (2) and (6), with

subsequent application of the interchange relation
Hgg = hgo [from Eq. (3)], gives

EcMc(ft)=Eo —
fto &kolz Iti& —

2fto 0'ol3z —r lko&
Ql+ 2 2

Q I+8 t'1't
2R Pi'

If one now makes use of the equality derived in
Eq. (12), and a similar expansion and treatment
for the expectation value &+cMc 3z —r

I @cMc&,

Eq. (16) becomes
Ql+E = —~a &@cMc I

z
I
+cMc&

r I@cMc&
t'1

(16)
where hE =E«~ -ED. Finally, substitution of Eq.
(13) into Eq. (16) gives

o!(R)=—,p hE+~o &4' cl3z —r I+ Mc&
2 2

t' 1 lt
+ ~ ol ~~ I

. (1v)«~)
Thus, we have two formally equivalent routes to
the polarizability based on quantities obtainable
fromthe MCSCF wave function, one in terms only
of the induced dipole moment [Eq. (13)]and the
other in terms of the energy [Eq. (1V)]. Also,

It is now necessary to examine the means of ob-
taining the polarizability from 4'«c. Consider the
expectation value (@cMc I zI +cMc). This may be
expanded using Eq. (2) to give

&+cMc Iz I +cMc ) =
& II'o

I
z lto&+ 2F 8'ol z

I It&&

+&'&0i ziti&

where the first term and the leading member of the
last term vanish because of the odd parity of z.
Thus,

Eq. (16) provides a useful self-consistent check,
between the computed energy of interaction and
that based on the expansion of Eq. (6).

It should be pointed out that computing the po-
larizability from the induced dipole moment using
Eq. (13) is preferable to obtaining it from the
energy due to the unsatisfactory numerical un-
certainties associated with manipulating the very
large and very small numbers in Eq. (1V). Cohen
and Boothaan reached a similar conclusion in their
presentation of the CHF method.

In Sec. III, we present the results of CMC cal-
culations of the dipole polarizabilities of the '8,
'D, and 'P states of the neutral carbon atom. The
relations derived above will be examined in detail
for these systems, particularly with regard to
convergence as R approaches infinity.

HI. APPLICATION TO CARBON

A. Choice of Basis Functions

The first step in using the CMC method for cal-
culating the dipole polarizability of the carbon
atom is the choice of proper basis functions. As
mentioned in Sec. I, the polarizability is quite
sensitive to the type of polarization functions aug-
menting the normal atomic basis. Sitter and
Hurst have recently reported rules for specifying
the principal quantum number and spherical har-
monic portions of the polarization orbitals, and
while such rules are certainly valuable in that they
determine the proper spherical harmonic and nodal
structure for the polarization functions, they do
not yield any specific information concerning the
appropriate exponents for the radial terms. In
CHF calculations on helium and beryllium, Cohen
variationally optimized the polarization-function
exponents and found them to be considerably small-
er than the unperturbed atomic-function exponents.
This result is certainly reasonable since the dis-
tortion due to the field is largest in the tail of the
wave function and hence should require relatively
diffuse functions for a proper representation.

There are a number of possible ways to obtain
an optimized set of polarization functions. First,
one could simply choose the appropriate spherical
harmonics as described above, and then variation-
ally optimize the energy of the system with respect
to the exponents of all the polarization functions
as did Cohen. For small sets of functions as in
helium or beryllium, this is not a particularly
time-consuming process, but for larger atoms it
could become quite expensive in terms of com-
puter time. A second alternative would be to add
several polarization functions of given principal
quantum number and spherical harmonic, with ex-
ponents chosen so as to adequately span the entire
region of space occupied by the wave function with-
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~2=(uI" IH - ~oluI")+ 2 &uI" IhluI"),
where

(18)

and h, is the ith component of h in Eq. (4). The
function u&

' is the unperturbed solution of

(Hg —to) u) ——0(0)

and the functions u&
' may be identified as the

polarization functions employed in the perturbed
wave function. By specifying functional forms
for u', ' and uI", Eq. (18) is easily evaluated and
thus may be used to generate a set of polariza-
tion functions. Specifically, if exponential func-
tions such as STO's are assigned to u&

' and u&",
then the exponent of the latter may be determined
by simply minimizing &2 with respect to this ex-
ponent. To simplify the procedure further, we
use Slater's averaged effective potential' for
Vg(xg), i.e. ,

(20)

V, (r, ) = —r. (0'/r; + n*(n *—1)/r 2, (21)

rather than the true potential which includes the
two-electron interaction terms. Cohen's opti-

out generating linear dependencies. The varia-
tion method would then be allowed to choose which
functions it would use most heavily to properly
represent the distortion due to the field. The
third, and most desirable, method would be to
derive a relation to specify the polarization-func-
tion exponents solely from examination of the un-
perturbed atomic basis set.

In terms of time and computational expense,
the second method described above is probably
the most efficient route to generating a complete-
ly flexible set of polarization functions. The ma-
jority of the integrals are of the one-center variety
for which rapidly executable analytic formulas
exist. However, one of the ultimate goals of the
present work is the determination of basis sets
applicable to the study of van der Waals forces,
hence we desire to keep the basis set as small as
possible without sacrificing any significant flex-
ibility in the ability of the polarization functions
to handle the field-induced distortion in the wave
function. It would thus be advantageous to develop
a semiquantitative prescription to specify opti-
mum exponents for a relatively small number of
polarization functions without having to resort to
brute-force exponent-optimization procedures.

Such a technique can be derived by considering
Dalgarno and Parkinson's polarizability calcula-
tions' within the Hartree self-consistent-field
approximation. Following the formal def initions
given by Eqs. (1)-(5), they arrive at a solution
which requires minimizing the one-electron func-
tional

mized basis-set CHF polarizability calculations
on helium and beryllium provide an excellent test
of this technique. His initial helium HF basis set
has as its largest component a Is STO with g
= 1.45, which yielded an optimized polarization
exponent for the 2P function of 0.971. Using
Cohen's 1s function with f = l.45 for u&

' in Eq.
(18), we obtain a 2p exponent for u'&~'of 1.07, which
is within 10%%uz of Cohen's value. Similarly, for
beryllium, the CHF calculations using unper-
turbed 2s functions with exponents of 1.29 and 0.845
yielded optimized exponents for the 2P polariza-
tion functions of 0.991 and 0.620, respectively.
Use of Eq. (18) produced exponents for the 2P func-
tions of 0. 88 and 0. 58, again, very close to the
numbers obtained by Cohen.

The attractive feature of this technique is that
Eq. (18) is a one-electron function, which means
that approximately optimum polarization-function
exponents may be trivially generated one by one
rather than by the normal simultaneous brute-
force method. Of course, since Eq. (18) is based
on a Hartree wave function, one cannot expect to
obtain exponents that agree quantitatively with
those obtained from the fully optimized HF treat-
ments which include exchange. However, the test
results for helium and beryllium indicate that this
procedure is an efficient tool for obtaining semi-
quantitative estimates of the optimum polarization-
function exponents with a substantial savings in
time and effort compared to the brute-force vari-
ation techniques.

In actual practice then, we use Sitter and
Hurst's' rules for specifying the proper principal
quantum numbers and spherical harmonics of the
polarization functions, followed by application of
Eq. (18) to determine a set of near optimum ex-
ponents. For carbon, we must consider polariza-
tion of the 2s and 2P orbitals, which implies the
inclusion of s-, P-, and d-type polarization func-
tions. The unperturbed atomic HF basis set for
carbon is given in Table I. The dominant functions
for the 2s orbital are those 2s functions with ex-
ponents of 2. 141 and 1.354, and for the 2P orbital,
those 2P functions with exponents of I.625 and
l. 054. Application of Eq. (18) to the two 2s func-
tions yields optimum exponents for the 2p polariza-
tion functions of 1.05 and 0. SO. Since the HF basis
set contains a sufficient number of 2p functions in
this exponent range, no further addition of p-type
polarization orbitals was judged to be necessary.
Polarization of the 2p orbital requires 3s and 3d
functions, which were determined to require ex-
ponents of 1.4 and 1.15 for the 3s function, and
1.2 and 0. 85 for the 3d function. Noting the ap-
proximate nature of this exponent determination
procedure, we included 3d functions to properly
span the predicted optimum exponent range, and
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TABLE I. Carbon basis functions.

Exponent

9.055
5.025
2.141
1.354
6.081
6.827
L 779
1.625
l.054

3
3
3

Exponent

1.300
3.000
2.400
l.800
1.200
0.700
l.625
l.054

~For functions with quantum number / greater than
zero, both 0 and x components were included.

Hartree-Fock atomic basis taken from Ref. 19.

Unperturbed atomic functions Polarization functions

are not constrained to be equivalent but rather are
separated into o, ((, 5, . .. components). These
initially generated potentials determine the even-
tual formal solution of the SCF equations, and
hence there is no reason to expect the cylindrical
and spherical treatments to be in perfect agree-
ment.

The manifestations of this situation for the car-
bon atom may be determined by considering the
energy expressions for the various asymptotes.
Following Roothaan, the energy of an open-shell
species can be divided into three portions; that
due only to closed shells, E„' that due only to
open shells, E„and that due to the interaction be-
tween the closed and open shells, E„. Thus,

E=E,+E +E, (22)

also added several additional M functions to en-
sure sufficient flexibility. The final set of polariza-
tion functions for carbon is listed in Table I. This
basis was tested against a smaller set of polariza-
tion functions possessing only three 3d functions
and no 3s function. The small 5-V/p increase in
polarizability observed for the larger basis was
attributable almost completely to the lack of a
3s in the smaller set. Examination of the polarized
wave function indicated that further augmentation
of the basis would produce at most a I-2% increase
in the polarizability.

B.Asymptotic Considerations

As pointed out in Sec. II, our basic computa-
tional scheme consists of solving the MCSCF equa-
tions for the C„„charge-atom system using those
configurations necessary to produce the asymptotic
HF state of the atom (base configurations), and
then any correlation configurations as desired. In
the limit of a vanishing field as R approaches in-
finity, a region of discontinuity is encountered on
passing from the C„„atom to the spherical atom,
and it is appropriate at this point to examine the
situation.

For carbon, the spherical '8, 'D, and 'P states
project into several C„„states as given in Table
O. The question that immediately arises is wheth-
er the solutions for the spherical and corresponding
cylindrical states are formally equivalent, and if
not, what manifestations are observed. In the so-
lution of the SCF equations for either a spherical
or C„„species, the basic procedure involves speci-
fying an initial set of configurations, vectors, oc-
cupancies, and coupling schemes which in turn are
used to generate an effective potential with which
to start the iterative process. For the spherical
atom, this potential is spherically averaged,
whereas in the C„„case it is not (i.e. , the poten-
tials for electrons in degenerate atomic orbitals

where

Eo= 2~Ha+~(2~2( —Kp() ~

0'2 1

E,=f[2ZH +f Z (2aJ'„„—bK„„)]
m m, n

E„=2Z(u„„-K,„),
k, m

(23)

(24)

(25)

TABLE II. Carbon asymptotic states.

Spherical

is
ig)

P

&-v
ig+

ig+ iII f~
3g 3Q

and the constants a, b, and f depend on the specific
case. The running indices over k and l are for
closed shells, m and n are for open shells, and
H~, J&&, and K&~ are the normal one-electron,
Coulomb, and exchange integrals, respectively.
Inspection of E(ls. (22)-(25) reveals that E, and
E„will be equivalent for both the C„„and spherical
cases if the corresponding orbitals are the same.
Any formal difference will thus occur in E,.
Using Roothaan's tables for the a, b, and f con-
stants, we can derive the open-shell energy of the
'P spherical carbon atom to be

E'o~I ) 2H2p(1) + ~2p(1),2p(-1) Kap(1&,2p(-1»

where the subscripts indicate the 2p vector with
the m, quantum number in parentheses. Similarly,
the energy of the corresponding Z and SII cylin-
drical states may be obtained as

Eo( & ) = Eo( II) = 2Hap, + cT2p„app —Kap, pp-, .
Comparing E(ls. (26) and (27), we find that the
solutions for the 3Z and 3II states are formally
equal to that of the 3P asymptote providing the
corresponding orbitals are equivalent. On the
other hand, the 'D open-shell energy can be derived
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TABLE IG. Carbon base configurations. ~

State

(fg)

'fZ+ (fD)

Configurations

1g22g23g2(fZ+)& fZ+) +1g22g21~2(fZ+)& fZ+) b

1g22g23g2(fZ+g fZ+) +1g22g21~2(fZ+ &( iZ+) e

(iD) 1g22g21 2( Z+ )& fg)

fII (iD) 1g 220.23@1g( Z+ x II)

( P) 1g 2g lg ( Z' && Z )

&II ( P') 1g 2g 3g].jp(fZ+ x II)

'Quantities in parentheses indicate coupling scheme
for the four valence electrons taken two at a time.

MCSCF calculation performed by minimizing energy
of the second CI root.

MCSCF calculation performed by minimizing energy of
the lowest CI root.

Eo( D) = 2H@,&»+ 0.4Z+, &» sp «&+ 0. 6Jsp
1

+ 0. 2Ksp&t &,s p& a &
~ (28)

The corresponding expression for the '4 C „state
1S

E,( 4) = 2Hsp„+ 0. 5'„a,p+ 0. 5Jap, spy. (29)

Clearly, Etls. (28) and (29) are not the same, in-
dicating that the formal solution for the '& state
is not equivalent to its 'D asymptote. Analogous
equations can be derived for the other cylindrical
states, and one finds that the 'Z' state originating
from the 'S asymptote and the Z and II states
originating from the 3P asymptote have solutions
that are formally equivalent to that of their spher-
ical analog, whereas the 'Z', 6, and II states
coming from the 'D asymptote do not.

To illustrate this effect, we have tabulated in
Table nt the computed energies for the C „and
spherical carbon asymptotes using the basis set
given in Table I and the base configurations for
the molecular states as presented in Table III.
It is immediately obvious that the conclusions
derived above are borne out by the results in Table
1V, except that even the 'Z'( S), SZ, and sII state

TABLE V. Comparison of C„„and spherical
asymptotic 2s vectors for carbon.

Function Exponent

energies do not agree exactly with their correspond-
ing spherical asymptotes. This is due to higher-
quantum-number functions included in the basis set,
which are allowed to mix in the molecular calcu-
lations, but are symmetry forbidden in the spher-
ical case. On passing from spherical to cylindr-
ical symmetry, even-parity (with respect to the
spherical atomic symmetry) functions are allowed
to mix with the original atomic functions. This ef-
fect is illustrated in Table V, where we have tabu-
lated the 2o (2s) vectors for the sZ and 'II cases
compared to those of the 3P spherical species. Note
that the 3d functions have been mixed with the 2s
functions in both of the cylindrical vectors. A
similar situation occurs in the 2po and 2pm vec-
tors, where the 4f functions are mixed with the
unperturbed atomic 2p functions. This mixture
of higher functions into the vectors should account
for the small discrepancies between the 3Z and
3H energies and that of the 3P energy. Consider-
ing that such a mixture of even-parity functions
will produce a second-order quadrupolar effect
in the energy, and that the ratio of the quadrupole
tensors for Z and II components is —2:1, then we
would expect the energy lowering to be the square
of this ratio, or 4: 1. The energy differences
given in Table 1V for the 3Z- and 3II states relative
to the 3P certainly support this postulate. Also,
one observed in Table V that the coefficients of the
3d functions in the 2s vectors of these states are
in the ratio - 2:1.

In the preceding discussion, we have attempted
to point out the possible discontinuities which may
arise when a degenerate atom passes from spher-
ical to cylindrical symmetry. For the carbon
atom, it has been shown that certain of the C~
states have equivalent formal solutions with their
asymptotes, whereas others do not. It shouM be
recognized that these equivalences are merely
circumstantial and are due entirely to coupling

State Energy

fZ+
fZ+

fg
fII

II

—37.548 902
-37.634 815
—37.631 501
—37.633 143
—37.688 680
—37.688 632

Spherical
State Energy

8 -37.548 901
D —37.631 258
D -37.631 258
D —37.631 258
P -37.688 620

—37.688 620

-0.000 001
—0.003 557

0.000 243
—0.001 885
-0.000 060
-0.000 012

~A= C„„energy minus spherical energy.

TABLE IV. Comparison of C„„and spherical asymptotic
energies for carbon.

as
ls
2S
2$
3S
3S
2p
2p
2p
2p
3d
3d
3d
3d
3d
4f
4f

9.055
5.025
2.141
l.354
1.300
6.081
6.827
2.V79
l.625
1.054
3.000
2.400
1.800
1.200
0.VOO

1.625
1.054

—0.003 30
—0.25412

0.492 76
0.598 25
0.000 10

—0.030 21
0.0
0.0
0.0
0.0

—O. 007 35
0.012 88

—0.00748
—0.003 73
—0.000 11

0.0
0.0

-0.003 30
—0.254 12

O. 492 76
0.598 18
0.000 18

-0.030 21
0.0
0.0
0.0
0.0
0.003 65

—0.006 42
0.003 79
0.001 6V

0.000 06
0.0
0.0

-0.003 30
—0.25412

0.492 76
0.598 18
0.000 20

-0.030 21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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TABLE VI. CMC polarizability and energy results for carbon. ~

861

State
1g+ (ig)

'z ('D)

3g ~(3p)

3II(3p)

12
15
18

12
15
18

12
15
18

12
15
18

12
15
18

12
15
18

&z)

0.085 90
0.054 86
0.037 96

0.095 05
0.060 04
0.041 36

0.073 78
0.047 16
0.032 69

0.085 54
0.054 24
0.037 42

0.069 85
0.044 66
0.03109

0.090 07
0.057 23
0.039 18

&3z'- r')
—0.084 01
—0.033 29
—0.01641

3.480 25
3.356 25
3.300 83

—3.13601
—3.163 63
—3.178 47

1.703 33
1.653 93
1.631 26

—3.029 85
—3.054 61
—3.065 46

1.623 64
l. 579 97
l. 561 99

12.37
12.35
12.31

13.69
13.50
13.40

10.62
10.61
10.59

12.32
12.20
12.12

10F 08
10.06
10.06

12.97
12.88
12.70

0.(m)'
13.07
12.65
12.48

12.36
12.91
12.80

9.93
10.41
10.39

11.87
11.94
12.00

9.82
10.39
10.30

12.49
12.65
12.61

ESCF

—37.549 1-93
—37.549 022
—37.548 959

—37.636 119
—37.635 436
—37.635 159
—37.630 833
—37.631 132
—37.631 277

—37.633 921
—37.633 505
—37.633 340

—37.688 041
—37.688 331
—37.688 471

—37.689 403
—37.688 990
—37.688 826

~SCFd

—0.000 29
—0.000 12
—0.000 06

—0.001 31
—0.000 62
—0.000 34

0.000 67
0.000 37
0.000 22

—0.000 78
—0.000 36
—0.000 20

0.000 64
0.000 35
0.000 21

—0.000 77
—0.000 36
—0.000 19

-0.000 28
-0.00012
-0.000 06

-0.00133
—0.000 63
-0.000 34

0.00066
0.000 37
0.000 22

-0.000 79
-0.000 37
-0.000 20

0.000 64
0.000 35
0.000 21

—0.000 78
—0.00036
-0.00019

~Results obtained using base configurations given in
Table III. All numbers in atomic units.

Calculated using Eq. (13).
'Calculated using Eq. (17).

dCaleulated by subtracting cylindrical energy Eo as
given in Table IV from corresponding EscF.

Calculated using Eq. (16).

schemes which happen to generate potentials
which are the same as the spherically averaged
potential of the asymptote.

Tbe most important point to be realized from
this analysis is simply recognition of the situa-
tion. In the calculation of atomic polarizabilities
from the induced moment, the manifestations of
the discontinuities. are not important since the
field induces dominantly odd-parity transitions
with respect to the unperturbed atomic functions
at large R, whereas the symmetry reduction to
C~ involves only even-parity mixings, which re-
sult in no net dipole moment. However, if the
polarizabilities are calculated from the second-
order energy of interaction by Eq. (17), then the
effect must be taken into consideration. Hence,
for the results presented in Sec. II C, we use the
C „asymptotes for Ea in Egs. (16) and (17). As
will become evident, use of the spherical quantities
would have produced large and unacceptable dis-
crepancies in the results.

C. Base Configuration Results for Carbon

As an initial test of the CMC method, we calcu-
lated polarizabilities for all of the states originat-
ing from the ~S, 'D, and SP asymptotes of carbon
using only the base configurations listed in Table
III. The results are presented in Table VI. The
polarizabilities were calculated in two ways: (i)
from the induced dipole moment at the carbon,
(z) [Eg. (13)], and (ii) from the calculated energy

of interaction EE~F [Eg. (17)j. The agreement
between the polarizabilities from the two for-
mulas is good; however, it is obvious that the
values obtained from the induced moment are
more consistent and exhibit less scatter than
those obtained from the energy. As pointed out
previously, such behavior of the energy quantities
is due to the inherent numerical uncertainties as-
sociated with Eq. (17). The polarizabilities com-
puted from the induced moment are considerably
more stable as a function of R than those based
on the energy, but we should point out that they
are not of sufficient accuracy to allow the extrac-
tion of higher-order effects such as byperpolar-
izabilities and shielding factors. Cohen likewise
found his relatively small basis-set results for
the beryllium series to be of insufficient accuracy
to obtain reliable estimates of these quantities.
This situation is not surprising in light of Sitter
and Hurst's results and discussion' which indicate
that a much larger basis set than that employed
by us would be necessary to obtain reasonable
estimates of these quantities.

To test the self-consistency and convergence
properties of the calculations, we have computed
and listed in Table VI the energy of interaction of
the field with the atom by two independent methods:
(a) from the difference between the calculated
MCSCF total energy and the energy of the cylin-
drical asymptote, which is designated &EscF,
and (b) from the expectation values of the dipole
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TABLE VII. Carbon {~II)2s(0) vectors.

Function

1g
ls
2s
2g
38
3s
2p
2p
2P
2p
3d
3d
3d
3d
3d
4f
4f

Exponent

9.055
5.025
2.141
1.354
l.300
6.081
6.827
2.779
1.625
l.054
3.000
2.400
1.800
l.200
0.700
1.625
1.054

R =12 a.u.
—0.003 25
—0.255 70

0.5Gl 24
0.593 57

—0.003 43
—0.030 90
—0.000 01

0.002 87
-0.003 34

0.014 64
0.003 28

—0.005 11
0.001 62
0.00442
0.000 32

-0.000 16
0.000 51

R=15 a.u.
—0.003 25
—0.255 69

0.500 96
G. 59407

—0.003 65
—G. 030 87.
—0.000 01

0.001 82
-0.00207

0.009 33
0.003 42

—0.005 63
0.00245
0.003 37
0.000 16

—O. 000 08
0.000 23

R=18 a.u.

-0.003 25
-0.25569

0.500 84
0.594 26

—0.003 73
—G. 030 87

0.0
0.001 28

-0.001 39
0.006 51
0.06347-G. 005 82
O. 002 81
0.002 91
0.000 ll

-0.000 05
0.000 13

—0.003 25
—0.255 71

0.500 75
G. 594 52

—0.003 92
—0.030 85

0.0
0.0
0.0
0.0
0.003 55-0.006 10
0.003 27
0.002 30
0.000 04
0.0
0.0

and quadrupole operators as given in Eq. (16),
which are designated 41E . As can be seen in
Table VI, the agreement between 4Escp and 4E
is excellent, particularly at large 8, where the
two sets of figures are nearly identical. Not only
does such a result justify the neglect of higher-
order terms in Eq. (8), but it also establishes the
numerical accuracy and reliability of the CMC
method. Noting the magnitudes of these interac-
tion energies, it becomes apparent that use of the
spherical-atom results for Eo rather than the
cylindrical quantities would have led to large dis-
crepancies between &E»cF and 4E . In fact, it
is evident in Table IV that the differences between
the energies of the cylindrical and spherical
asymptotes are, in certain cases, orders of mag-

nitude greater than the corresponding 4E values
in Table VI.

To illustrate the actual distortion on the wave
function due to the field, we have tabulated the
2s(o), 2p(o) and 2p(v) vectors for the 'll state as a
function of distance in Tables VII-IX. For each
vector, the coefficients of the polarization func-
tions increase with increasing field strength (de-
creasing R) as expected. The 28 vector is polar-
ized by the 2p functions, and the 2p vectors are
polarized by the 3s and Sd functions. One gratify-
ing feature observed for these vectors is that where
the variation principle was given a choice of po-
larization functions it always selected as the domi-
nant term the functions with exponents nearly equal
to those predicted to be optimum from. application

TABLE VIII. Carbon ( II)2P(0) vectors.

Function

lg
ls
2s
2s
3s
3s
2P
2P
2p
2p
3d
3d
3d
3d
3d
4f
4f

Exponent

9.055
5.025
2.141
1.354
1.300
6.081
6.827
2.779
l.625
l.054
3.000
2.400
1.8QQ

1.200
G. VQG

1.625
1.054

R =12 a.u.
—O. 000 03

0.005 48
0.01306

—0.065 55
0.048 29

-0.00130
G. 006 98
0.192 06
0.359 64
0.517 94

—0.001 60
0.005 7V

—Q. Qll 35
G. 01140
Q. GOV 12
0.024 90

—0.005 27

R=15 a.u.
—0.000 12

0.003 50
0.008 15

—0.041 49
0.030 58

-0.000 81
G. 00707
0.19128
G. 36433
O. 51388

—G. 00104
0.003 76

-0.00745
O. OOV 53
0.003 96
0.02542

—0.007 16

R=18 a.u.
—0.QGG 01

0.002 45
O. 005 54

—0.028 69
0.021 09

—O. 000 55
O. 007 12
0.19095
0.366 69
0.51174

-0.00072
O. 002 61

-0.005 19
0.005 30
0.002 56
O. 025 59

—0 ~ 007 89

0.0
0.0
0.0
0.0
0.0
0.0
0.007 16
G. 190 56
0.368 16
0.510 60
0.0
0.0
0.0
0.0
0.0
0.025 80

—Q. 008 80
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TABLE IX. Carbon ( II)2P(7r) vectors.
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Function

2p
2P
2P
2P
3d
3d
3d
3d
3d
gf
4f

Exponent

6.827
2.779
1.625
1.054
3.000
2.400
1.800
1.200
0.700
1,625
1.054

R =12 a.u.

0.007 22
0.19032
0.372 58
0.505 86

—0.002 06
0.006 71

—0.006 31
0.008 87
0.00444

—0.040 99
0.01634

R=15 a.u.

0.007 19
0.19045
O. 3VO 85
0.507 58

-0.001 27
0.004 22

-0.00405
0.005 77
0.003 00

-0.040 76
0.01533

R=18 a.u.

0.007 17
0.19068
0.369 53
0.508 78

-0.000 92
0.003 00

-0.002 81
0.003 95
0.002 13-0.040 74
0.01490

0.OOV 14
0.190 84
0.368 11
O. 510 13
0.0
0.0
0.0
0.0
0.0

—0.040 63
0.01428

TABLE X. Correlated polarizability results for carbon. ~

Polarizability
Base' Correlated'State

1g+(|g) 1.82
i++(iD) 1.98
'z('a) 1.57
'ii('n) 1.79
3gm (3P) 1.49
'IIPZ) l.88

'Values in A .
Calculated using only base configurations given in

Table III.
Calculated using base configurations plus s P P4

correlation configurations.

1.77
1.93
1.51
1.76
1.42
1.78

of Eg. (13). For example, the 2s vector is polar-
ized most heavily by the 2p function vrith an ex-
ponent of 1.054, which is virtually in perfect
agreement with that predicted in Sec. III A. This
result further demonstrates the reliability of our
simplified method of determining polarization-
function exponents.

D. Correlation Results

For the first-row atoms, it is well established
that a significant portion of the correlation effects
may be handled by considering the correlation from
the valence shell~ and the most important portions
of the "semi-internal" correlations~ which corre-
spond to terms involving single excitations to or-
bitals outside of the valence shell.

For the purpose of performing an initial explora-
tion of the effect of correlatien on the polarizability
and to illustrate the ease with which correlation
may be handled by the CMC method, we have cal-
culated yolarizabilities for the various states of
the carbon atom including the valence-shell cor-
relation terms corresponding to 2sampa -2p~
double excitations. The results are given in Table
X compared to the base-configuration results. As
anticiyated, the correlated polarizabilities de-
creased between 5 and 10% relative to the base re-

TABLE XI. Comparison of CMC and MBPT results. ~

State Q(MBPT)~ Q(CMC)

3Z (M~ =0) 1.44
'II (M~=~1) 1.59
3P (averaged) 1.54

'Values in A .
MBPT results taken from Ref. 13.

1.42
1.78
1.66

suits which is consistent with a slight contraction
of the valence orbitals due to the correlation.

There are, of course, other correlation con-
figurations for the carbon atom which have been
omitted in the present treatment. The 2p4 terms
were included only to illustrate the versatility of
the CMC method. A more complete analysis of
the effect of correlation on polarizabilities is
forthcoming.

E. Comparison with Other Results

Miller and Kelly' have recently reported MBPT
calculations on the dipole polarizability of the car-
bon atom in its 'P ground state. Their results
are compared to our final correlation figures for
the Ml, = 0 ('Z ) and M~ = + 1 (II) states in Table
XI. The final value for the 3P state is given by the
weighted average of these two components, and
these figures are also given in Table XI. The
MBPT and CMC polarizabilities agree to 10%
which is within the uncertainty Kelly ascribes to
his values; however, a direct comparison with
the MBPT results is somewhat artificial in that
it is very difficult to establish corresponding levels
of equivalence between the two methods. Cer-
tainly in the limit that the MBPT treatment is cor-
rectly carried to infinite order in both the corre-
lation and the field, the results should agree with
CMC calculations including all of the dominant
correlation terms. Caves and Karplus have
compared MBPT to the CHFP method in detail,
and the reader is referred to this paper for an
excellent analysis of the two techniques, the latter
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of which is equivaI. ent to the CMC method in the
limit of a vanishing field and use of only a refer-
ence HF configuration.

Our final dipole polarizabilities averaged over
M~ components for the 'S, 'D, and sP states of
the carbon atom are 1.77, 1.68, and 1.66 A,
respectively, to which we ascribe uncertainties of
5-10% due mainly to the lack of including all of
the correlation configurations. Dalgarno and
Parkinson" using the Hartree approximation with
yartial inclusion of exchange effects calculated
the polarizability of carbon to be 2. 1 As for the
sP state which is significantly larger than our
figure and Kelly's value. The only other available
figure is due to Thorhallsson, Fisk, and Fraga, '
who calculate avalue of 1.75 As for the 'P state
from an approximate uncoupled HF theory using
available SCF wave functions.

IV. SUMMARY AND DISCUSSION

In summary, we have described the CMC meth-
od for calculating dipole po1.arizabil, ities of atoms
and applied it to the ground state of the neutral
carbon atom. While this technique is similar to
the CHF method, and, in the limit of a vanishing
field, to the CHFP method, it possesses several
powerful advantages by virtue of its MCBCF for-
malism, including (i) straightforward applicability
to any state, including excited states, of both de-
generate and nondegenerate atoms, and (ii) ex-
plicit introduction of correlation effects to any de-
gree desired. The reported calculations on car-
bon were correlated with only the dominant 2p4
terms to illustrate the flexibility of the CMC meth-
od, and the estimated uncertainties (5-10%) in
the calculated polarizabilities reflect the omission
of other less-important correlation conf igurations.
The results are in good agreement with the sP

ground-state results obtained by Miller and Kelly ~

using MBPT, which is probably the most reliable
of the other theoretical calculations of the dipole
polarizability of carbon. To our knowledge, no
experimental figures are available for compari-
son

The basis machinery for CMC polarizability
calculations is straightforwardly applicable to
most atoms. The most important variable is the
choice of a proper set of polarization functions.
Using Sitter and Hurst's' rules for selecting the
appropriate principal quantum number and spheri-
cal-harmonic functions, we have shown that the
simple minimization of a one-electron function
derived from the Hartree approximation provides
the means for specifying a flexible set of expon-
ents for these functions.

Thus, the CMC method has been demonstrated
to be an efficient and versatile tool for the cal-
culation of atomic polarizabilities. In a future
publication, CMC calculations on the dipole polari-
zabilities of the other first-row atoms will be
presented.
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Second-Order Corrections to the Fine Structure of Helium. II. Contributions from P
and 'D Intermediate States*
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The contributions from the three spin-dependent Breit operators in second-order perturbation
theory are calculated when the symmetries of the intermediate states are odd P or D. Standard
Hylleraas expansions with up to 165 terms are used for the perturbations of the wave functions.
The large interval of the fine structure of the 2 3P level in helium is increased by 2.17(2)x10 4

cm by P, and by 0.0089(6) &&10 cm ~ by D. Two methods for handling angular integration
over D tensors are described.

I. INTRODUCTION

In an earlier paper, ' hereafter referred to as I,
the contributions to the fine structure of the 2 P
level of helium from second-order perturbation
theory with intermediate SP states were calculated.
This fine structure consists of two intervals whose
experimental values are r to= 764. 2606 (17) cm
and r&o, = 9879. 121 (12) cm '. ' The relative accu-
racy of the large interval is thus better than for
the small interval (1.2 ppm vs 2. 2 ppm), and the
results of I came much closer to the desired ac-
curacy (which is to match the absolute experimen-
tal accuracy) for the large interval than for the
small; so, in this paper the remaining second-
order contributions to the large interval are cal-
culated. These come from intermediate states
with 'P and D symmetries. There are also con-
tributions from 'D and I' states to the small inter-
val which have not yet been calculated. As in I,
one solves an inhomogeneous Schr5dinger equa-
tion for the odd 'P and SD perturbations of the 2 P
wave function by the variational method; the sec-
ond-order perturbation energies are then given by
integrals. We emphasize that this is but one of
many theoretical contributions to the fine struc-
ture. A summary of the complete calculation of
the fine-structure intervals, including quantum-
electrodynamic and nuclear-motion effects, with
detailed comparison with experiment, will be re-
ported. '

I ~ I' EXPANSION

The two spin-orbit, operators which connect sin-
glet and triplet states are (Z= 2 for neutral heli-

2 Xpo
o

where

Urban( Pr, Mz ——1)

(2)

(So [rr) —Sr '[rrjo ')u, „„(1,2),

P12 exchanges coordinates ri and r2

2 & l& m& ne-{ e/2)~g -(fr/2)r2
12 1 &2e

as in 1 (r&=4. 62 and g=0. 29), and

- rr) r s'$ &r —&o ~i
H2 ~+

I 2 I o + (Pl+Ps) I&
&ro

which follow from the well-known operators with
just one a. The equation for the 'P perturbation
to the 2 P wave function is

(Ho -&o) +t'" ( Pr) = -&r"'
@o ( Pr)

(1)
which differs from the basic equation [Eq. (6) of
Paper I] because the expectation value of Hr"' is
zero in a state of definite multiplicity. Hp is the
nonrelativistic Hamiltonian in atomic units:

2 y 2 g Z 1
HP= —g Vi —g V2 ————+—.

+1 +2 +12

The unperturbed wave function with total angular
momentum J= 1 and M ~ = 1 is

l+m n~~fs)'

(Por&M~=1)= C Ur~ (rP»r&M~=1),
l oms n"-0


