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We analyze the phase modulation, or chirping, of coherent lossless light pulses propagating
without distortion through resonant absorbers. In order to do this, we generalize the pioneer-
ing work of McCall and Hahn in two different directions. In the first place, of course, we
abandon their assumption that the phase of the pulses has no temporal dependence. We prove
that for slowly varying single pulses, chirping is not possible. However, we describe many
multiple-pulse trains which are necessarily chirped, even under the slowly varying envelope
restriction, and also describe the envelope modulations which produce large chirps. We
show that certain zero-r chirped pulse trains are contained as special cases of our general

results. Our second generalization of the McCall-Hahn work concerns the background mate-
rial inwhichthe two-level resonant atoms are suspended. We allow the host medium to pos-

sess significant nonresonant nonlinearities.

We find that undistorted lossless single pulses

are possible in such a medium and that they are necessarily chirped.

I. INTRODUCTION

The discovery of self-induced transparency (SIT)
by McCall and Hahn! has focused attention again on
the very old problem of light propagation in dielec-
trics. Even before 1920 the classical investiga-
tions of Sommerfeld and Brillouin, 2 among others,
were sufficiently complete and in accord with ex-
perimental observation to discourage further seri-
ous study. However, the Lorentz linear model of
dielectrics, the model used in those early studies,
is adequate only if the light intensity is low, or if
the light frequency is far from any of the atomie
resonances of the dielectric medium.

It is only in the past decade that intense and
practically monochromatic laser light has been
available as a strong probe of optically resonant
systems. The response of such systems, when
strongly probed at resonance, is not well described
by the Lorentz model of harmonically oscillating
charges. Important nonlinearities arise in the
light-dielectric interaction, and these are instru-
mental in producing a wide range of nonclassical
effects, such as SIT, ! photon echoes, optical nuta-
tion, and others.® The very recent achievement of
continuously operating and continuously tunable dye

lasers® promises to add further impetus to modern
experimental studies of light propagation in reso-
nant dielectrics. '

One of the most interesting of the' new phenomena
observed in high-intensity coherent light propaga-
tion is frequency modulation of the electric field.
By analogy with similar phenomena which are com-
mon at much lower frequencies, a frequency-mod-
ulated electromagnetic wave is said to be “chirped,”
and we will use this terminology frequently.

In this paper we analyze situations in which
chirped optical waves may occur in SIT. In addi-
tion to a time-varying field phase we also allow
nonresonant nonlinearities of the host medium in
which the resonant atoms are imbedded.

We imply several restrictions on our work by
the words chosen to describe it. By SIT we mean
the propagation without distortion of an electric
wave’s envelope and phase through a medium con-
taining resonant atoms. Because we will always
work close to resonance, we assume, along with
MccCall and Hahn, that the resonant atoms may be
treated as if they had only two energy levels sep-
arated by a transition frequency almost equal to
the field-carrier frequency. In the most general
case, these atoms are embedded in a host medium
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which is not resonant but which nevertheless may
have important nonlinear features.

In addition, the resonant atoms may have an in-
homogeneously brvoadened absorption line. That is,
the various resonant atoms may have slightly dif-
ferent values for their transition frequency because
of slightly different local environments in the host.
We assume, however, that homogeneous broaden-
ing is absent. In other words, we are interested
in times short compared with, for example, colli-
sion times or the times of other effects which in-
terrupt the individual atoms dipole-phase coher-
ence, but in times which may be long compared
with the macroscopic dipole-phase coherence of the
entire collection of resonant atoms. In the language
of magnetic resonance,® we may say T§ < Tj= .

We investigate first the limitations on chirping
imposed by the special assumptions of McCall and
Hahn in their development of the theory of SIT.
There we confine ourselves to the restricted case
that we call “bare” SIT. By this we mean that only
the collection of near-resonant atoms is allowed to
interact with the electromagnetic field. We find
that chirping is not possible in this context.

However, in Sec. III we show that by lifting the
explicit McCall-Hahn assumptions of time-indepen-
dent ¢, it is possible even in “bare” SIT to have
chirped steady-state pulses. We find that such
pulses are inevitably multipulse wave trains, ® and
never single pulses. We give the general dipole
spectral-response function, as well as the pulse
velocity and dispersion, and exhibit analytic ex-
pressions for atomic variables and pulse envelope
and phase which are free of redundancies intro-
duced in earlier work.” The natural interpolation
between the results of Crisp®®™ and Eberly®® is
presented.

We are also able to study, using our analytic ex-
pressions for electric field phase, those situations
in which the phase changes very abruptly. As a
special case we discuss the instantaneous phase
jump A¢ =7, and its connection with certain zero-
m pulses.

We devote Sec. IV to an experiment-oriented in-
terpretation of the very complicated general re-
sults of-Sec. 11,

In Sec. V the restriction to bare SIT is lifted.
That is, we now allow the resonant atoms to be
embedded in a background host medium which may
also interact nonlinearly (although nonresonantly)
with the electromagnetic field. We show in what
sense chirping is then not only possible but inevita-
ble, and extend related results already reported
briefly by us.® A sample analytic solution is given
of a single pulse, which propagates without shape
change and which is chirped. Undistorted multi-
pulse trains also occur in this context.

We conclude with a short summary in Sec. VI and

an appendix which discusses the nonlinear suscep-
tability of Sec. V as a function of frequency rather
than time.

II. EQUATIONS OF MOTION
A. Schrodinger Equation for Active Atoms

In this section we state the basic equations of
motion for the interaction of two-level atoms with
resonant radiation. We will follow the Feynman-
Vernon-Hellwarth® formalism in describing this
interaction.

The interaction Hamiltonian of the active reso-
nant atoms is taken to have the usual form
V=-E.P. Here P is the electric dipole moment
of the atom and E is the electric field of the radia-
tion. For Am=+1 transitions, for example, be-
tween states |a) and | b), the matrix elements of
V are

Veo=—-p&-i9).E . @.1)

Following Feynman et al. ® we may construct two
real vectors r and w, whose components along
three fictitious Cartesian axes are defined by

V1= Pab + Ppa s V2= i(pab - pba) sy V3= Paq = Pop »
(2.2)
w3 =Wg -
(2. 3)
The p’s are the elements of the density matrix in
the Schrddinger picture, and w, is the atomic tran-
sition frequency. When Schridinger’s equation is
expressed in terms of these two vectors, it takes
the following form:
dr - =
Frl Xr .

w1=(Vap+ Vo) B, wa=i(Vg = V) /70,

(2.4)

It follows immediately from (2. 4) and the normal -
ization of the wave function that the magnitude of
r stays constant and that its end point describes a
curve on the surface of the unit sphere. *°

B. Maxwell’s Equation and Nonresonant Polarization

The complete description of our model of light-
matter interaction will require in addition to the
Schrédinger equation, Eq. (2.4), the Maxwell equa-
tions describing the field.

We first assume that, in the ideal case, the field
is a plane circularly polarized wave propagating in
the z direction, and may be described adequately
without quantization. Thus we write it as the pro-
duct of an envelope and a carrier as follows:

E(z, 1)=8(z, t)[2 cos®(z, {) + § sin®(z, nl,
oz, )=wt - (k+AR)z+p(z, 1) .

(2.5)
(2. 6)

Here 8(z, t) is the real envelope of the field and
®(z, t) the total field phase. The real quantities
8 (z, t) and ¢(z, t) are assumed to be slowly varying
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functions of z and ¢, changing very little over many
wavelengths 27/k and periods 27/w. We have set
k=myw/c, where 7, is the linear part of the index
of refraction of the host medium [see Eq. (2. 9)],
w is the carrier frequency, and ¢ is the velocity
of light in vacuum. - The quantity Ak reflects the
possible existence of dispersive effects arising in
the interaction between the light and the resonant
atoms. It is usually much smaller than 2. We
will see that Ak can be defined in such a way that
w can be interpreted as the pulse-carrier frequen-
cy, ¥ independent of amplitude or phase modulation.

The theory is obviously not restricted to circu-
larly polarized waves. A linearly polarized wave
can always be decomposed into two circularly po-
larized waves rotating in opposite senses. The
rotating-wave approximation® then sanctions the
elimination of the off-resonance component.

The electric field (2. 5) must satisfy the Maxwell
wave equation

s> 1 8% = - =
v E=Z§ 32 [E+47(Py + PLes)] » 2.7

where the total polarization that drives the electric
field E has been written as a sum of two parts:
P which is the polarization due to any nonreso-
nant dielectric present and ﬁr“ which is the po-
larization due to resonant, or “active,” atoms em-
bedded in the nonresonant dielectric. Although the
description of resonant atoms embedded in a di-
electric may be literally valid (in the case of ruby,
for example), the active atoms might just as well
constitute a gas, in which case the background di-
electric is simply the vacuum.

In the theory of linear dielectrics, ﬁm is related
to B through the following relations:

E+4TT§W=(1+41TX“)E=€E=TIZE. (2. 8)

Here X, is the electric susceptibility of the ma-
terial, ¢ its dielectric constant, and 7 its index
of refraction. In linear optics 7 is assumed inde-
pendent of the field strength E. This is, of course,
only an approximation, although an excellent one
whenever the fields involved are not too strong.
For high-intensity fields, the response of the di-
electric is actually nonlinear. We translate this
fact into our theory by allowing 7 to depend on E.
Since we are interested in the qualitative effects
on SIT which may arise due to anonlinearn, rather
than in accurately modeling pulses in a specific
material, it should be sufficient to choose a simple
form for the nonlinear part of 7. For the purpose
of this paper we assume 7 is given by

n=no(1+B8?. 2.9

An analogous dependence of the index of refraction
on the field strength arises in studies of the Kerr
effect. By analogy we will refer to gin Eq. (2. 9)

as the Kerr constant. In all materials 8 is a very
small quantity of the order of 10! esu or less, so
that the term 8&? is smaller than unity even in
strong fields. For the field intensities used in ex-
periments on bare SIT! it is justified to neglect
this term altogether. Only in high-intensity ultra-
short pulses, !! or perhaps in self-trapped fila-
ments, does the term &2 become sizable. In any
event we will assume that g is small enough that
its higher powers may be neglected.

We now substitute (2. 8) into (2.7) to arrive at
the following form of the wave equation:

®E 1 #® , ,= 47 82D,
2 T E R MR =7 — (2.10)

In linear theories 7 is usually defined as a func-
tion of frequency, while in our theory 7 depends on
space and time through the solution for E of the
wave equation itself. The consequences for 7 in
the frequency domain are investigated in the Ap-
pendix.

C. Resonant Polarization and Coupled Nonlinear Dynamics

First let us turn our attention to the resonant
part of the polarization appearing on the right-hand
side of (2. 10). We will express _ﬁ,“ in terms of
the expectations of the dipole moments of the indi-
vidual active atoms, and will explicitly allow for
inhomogeneous broadening. Let 91 be the number
of resonant atoms per unit volume of the sample
and let their resonant frequencies w, exhibit a dis-
tribution about the field-carrier frequency w given
by g(y)=g(wy —w), with [ g(y)dy=1. The quantity
¥=wp — w indicates how far an individual atomic
frequency w, is detuned from the field-carrier fre-
quency w.

The number per unit volume of these atoms in a
frequency range dy is 91g(y) dy, and the corre-
sonding dipole moment is %p(R7, +§75) g(y) dy.
Therefore, the macroscopic polarization density
of resonant atoms is given by

Prog=01p [, (Rry+972) g(y) dy . (2.11)
We return now to Schrodinger’s equation (2. 4)
and transform from the laboratory system (%, 9, 2)
to a rotating coordinate system whose unit vectors

2; and &, rotate about 2,=2 with angular speed ®.
In this rotating frame the components of ¢ are
quasistationary and always lie in the (&,, &,) plane.
Equation (2. 4) itself becomes

("—r) -G -hé)xE.
rot

= (2.12)

If we write #, v, and w for the components of r
along the axes &;, &,, and &;, respectively, then
Eq. (2. 12) can be written in component form as
follows:



[}
u=-(y-9)v, (2.13)
v=(y-Plu+kSw, (2. 14)
w=-k8v, (2. 15)

where x=2p/h. Since r had magnitude unity, its
components in the rotating frame must also satisfy

wlr¥rul=1, (2. 16)

which is seen to be consistent with Egs. (2. 13)—
(2. 15).

Finally, it is easy to show that the resonant po-
larization E" has the same form in the rotating
as in the laboratory system, namely,

E,,,, =qp f_: (Z1u+2yv) g(y)dy . (2.17)

Since E = 2,6 we see that u is the in-phase or dis-
persion component of the polarization and that v is
its out-of-phase or absorption component.

We are especially interested in studying the
propagation of undistorted shape-preserving
pulses. By shape-preserving pulses we mean so-
lutions of (2. 10) and (2. 13)—(2. 15) in which the
quantities 8, ¢, u, v, and w depend on their argu-
ments z and ¢ only through the combination ¢=¢#
—-z/V. Vis the velocity with which these shape-
preserving pulses travel through the medium. Al-
though such pulses are not the most general loss-
free pulses (see Lamb, Ref. 1) they are, in a cer-
tain sense, the most basic, since other loss-free
pulses gradually evolve toward a shape-preserving
state. Physically speaking, they are asymptotic
pulses in the sense that we expect an experimental
pulse to travel many absorption lengths before its
shape stops changing and settles down to its steady
form. Because all parts of such pulses move at
the same velocity V, we will frequently refer to
them as “steady-state” pulses.

The existence of such undistorted solutions of
the quantum system, (2. 10) and (2. 13)-(2. 15),
representing single pulses, as well as pulse trains
of a variety of shapes, is of obvious interest from
both physical and mathematical points of view. It
is well known, ? according to the classical theory
based on the Lorentz model of harmonically oscil-
lating charges, that only pure sinusoidal waves can
propagate without change in shape.

We now write the wave equation, Eq. (2. 10), in
the rotating coordinate system, perform the indi-
cated differentiations and apply the slowly varying
approximation (by neglecting second derivatives of
&, ¢, and 7, as well as the products of their first
derivatives), and express the space and time de-
rivatives in terms of ¢ derivatives. Finally, we
equate the coefficients of the orthogonal rotating
vectors &; and &, separately to arrive at the fol-
lowing pair of scalar equations, sometimes called
the reduced Maxwell equations:
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8= (/m® [~ v(e, Vgl dy , (2.18)
($ -~ wBE/cod + AR/8)E =+ (k/m?) [ ult, v) g() dy

where (2.19)
1/m®= 7 9hw/cngd

and
6=1/V- l/co .

Thus, Maxwell’s wave equation for the electric
field driven by both resonant and nonresonant di-
pole sources, together with the Schrddinger equa-
tion governing the resonant dipoles, can be cast
into the relatively simple forms exhibited in
(2. 18), (2.19), and (2. 13)—(2.15). Of course we
must keep in mind the restrictions to steady-state
pulses, and slowly varying envelopes and phases.

Despite the deceptively simple form of (2, 13)—
(2. 15) and (2. 18) and (2. 19), they are obviously
thoroughly nonlinear and tightly coupled. One of
the real achievements of McCall and Hahn was to
present analytic solutions even in the simplest
special case when <2>= 0 and B3=0. Building on their
lead, we will exhibit a much wider class of analyt-
ic solutions, and interpret the new solutions phys-
ically.

III. CHIRPING IN BARE SIT
A. Solution of Equations of Motion

We will recall that by “bare” SIT we mean SIT
of the asymptotic steady-state type described by
the original McCall-Hahn equations, unmodified
by additional nonlinearities, higher-order effects,
or dissipative losses. Bare SIT includes the 27-
sech pulse of McCall and Hahn, and the «r-pulse
and O7-pulse trains described subsequently. Still
more general steady-state fields are possible
within the framework of bare SIT if one merely al-
lows for the possibility of a time-varying phase. 12
Equations (2. 13)-(2. 15), (2.18), and (2.19) are
equivalent to the original McCall-Hahn equations
when ¢ =0, and when the Kerr constant 8 is ig-
nored.

The difficulty in solving this system, even when
B=0, lies in the fact that the pulse Eis supported
by an inhomogeneously broadened atomic line g(y).
In the search for solutions, one may first assume
that the line is very sharp, in effect unbroadened,
so that it can be represented by a § function cen-
tered at some particular value of v, say y;=wy;
—w. Then g(y)=6(y - y;) and the solving of the
system is intrinsically simplified. The solution is
now easily obtained and one observes that the re-
sult for »(¢, ;) appears in a factorized form:
F(y;)v(g, 0). We have retained this factorization
as a basic assumption even for the case of an ar-
bitrary, continuous atomic line-shape function
g(y). To the best of our knowledge, only under this
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special assumption or its equivalent” have analytic
solutions been found for arbitrary g(y). Let us
also remark that this assumption does not always
work, as we will see both in this section and in Sec.
V.

Therefore, we start by assuming that

v(, v)=F(y)v(g, 0) (3.1)

with an implied normalization F(0)=1. We will
call F(y) the dipole spectral-response function.
Using Egs. (3.1), (2.15), and (2. 18), we arrive at
the following first integral:

82%=[2/ P F()] [w(t, v) —wo(M] , (3.2)

where w, is an integration constant smaller than

or equal to 1, since |wl <1 and w —wy>0, and
where we have set 1/u®= (1/m? [=, F(y)g(y)dy.
This first integral expresses the conservation of
energy which is exchanged between the field and the
atomic system. It is merely a manifestation of

the Poynting theorem. Despite appearances, it does
not depend on the detuning frequency 7y, of course
[cf. Egs. (3.19)-(3. 23)].

Note that one can determine already the maxi-
mum modulation of intensity possible in the SIT
wave. (A8%),,, is 4/u%F since the maximum ex-
cursion in w is from -1 to +1 [cf. Eq. (2. 16)].

By differentiating Eq. (2. 19) with 8=0 and using
Eaq. (2. 13) as well as Eq. (3. 1), we obtain the fol-
lowing important relation between the envelope of
the field and the modulation of its phase:

268+ $8 = (y - AR/5)E . (3.3)

The existence of some such relation is necessary,
of course, since the phase ¢ and envelope § were
introduced in place of the single variable E. Here
Y=wo — w is an average of the detuning frequency
with respect to a weight function F(y) g(y), i.e.,

Y=/ vF()gt)dv/ [ F(y)g(y)dy .

From (3.3) we see immediately that for any un-
chirped pulse we must have Ak=76. To see that
corresponding solutions indeed exist we observe
that &2 is an integrating factor for Eq. (3.3), and
that it can be integrated with the result

b=3(-ar/6)+Cy/8%, (3.9

C, being a new integration constant which we eval-
uate in (3. 20) and interpret in Sec. IV.

Recall the discussion following Eq. (2.6). Our
interpretation of w is as the carrier frequency.
By this definition, those parts of d®/dt depending
on the envelope & in any way are not associated
with w, but with ¢. Similarly, the parts of d®/dt
independent of § must add up to w. Therefore, we
have to have

Ak=75
and

(3.5)
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¢‘)=C1/ga. (3.6)

Thus, the chirp in bare SIT, when it is present,
is inversely proportional to the intensity. This re-
sult appears already in Eberly, ** Matulic, 1
Barone, ' and Dialetis.” We will sometimes refer
to the constant C, as the “chirping constant” be-
cause only when it does not vanish do we get non-
trivial phase modulations, ¢ #const, in bare SIT.

Substitution of Egs. (2. 18) and (3. 6) into (2. 13),
followed by an integration, yields another first in-
tegral:

2 2
i d fyg+—cl"‘cF L 3.7)

:g" + Ca N
where C; is another constant of integration, one
that has apparently been overlooked altogether in
other work on the subject. 713

We now show that one may proceed directly to
expressions of interest. We first obtain an equa-
tion for & itself. In this way we avoid the apparent
multiplicity of cases to be considered separately
which have unnecessarily complicated previous
work (cf. Ref. 7, for example). By differentiating
(2. 18) once, and using (2. 14) for v, as well as
(3.2), (3.6), and (3.7) for w, ¢, and u, we find a
nonlinear differential equation for §:

. 2 2
§--Lg _(%“-;hf)g +C28

CIC;;K -2 CsK'}’ 3.8
FTE 8 I (3.8)

The relation (3. 8) is the most general for distor-
tionless propagation in bare SIT.!* An integration
of Eq. (3. 8) followed by a multiplication by &2
yields

é’aga=§x2(—§6+M84+R53+N82+T5 +Q),

where 3.9
M= - (4/k% (KPwo/ u’F +77) ,

R=-8Cyy/ku’F

N=4C,/x?,
T=-8C,Cy/ku’F ,
Q= —4C§/K2 ’

and where C,; is still another integration constant
which remains to be interpreted.

Note that (3. 9) can be trivially rearranged into
the form of an “energy” integral in classical me-
chanics: 382+ V(§)=const. Thus we already could
consider our job over, because the basic equation
has been reduced to quadratures. However, we
are more interested in the physical nature of the
solutions than in their mere existence.

Equation (3. 9) leads in general to an integral
containing a square root of an “irreducible” poly-
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FIG. 1. General position of zeroes of the polynomial
Py(S).

nomial of degree six in §, and consequently cannot
be expressed in terms of known functions. [Diale-
tis’s claims” of “exactness” and ‘“‘completeness”
are in error because he has found an expression
equivalent not to (3. 9), but only to its most inter-
"esting special case (3.10)] However, there are two
rather general cases in which numerical solution is
unnecessary. One of them is obtained when the
“chirping constant” C, vanishes, which is the case
mentioned by Jaynes.* The integration of (3. 9)
then leads to elliptic functions for § and (3. 4) gives
<}>= 0. From our present point of view the opposite
case, in which C3=0 but C,#0, is more interesting
simply because it allows us to study chirping. What
is more, it can be shown that there is no factorable
solution when C3 #0.

Under this condition, R=7T=0, and the polyno-
mial in (3. 9) contains only even powers of § and is
“reducible” to a cubic in S=&% Thus, Eq. (3.9)
can be written as

L [pss)2as =z, (3.10)
0

where Sy =S(0) and P;(S)= - S*+ MS®*+ NS+Q=~(S
~81) (S =S5) (S -S;). Equation (3. 10) now leads in
general to elliptic functions and furnishes a whole
range of analytic solutions to our problem.

We assume the following ordering of the zeroes
of P3(S): S;<S,, S;. The nature of the solutions
depends on the relative position of these zeroes
which, in turn, depends on the two constants of in-
tegration Cy and C,. Both of these constants, and
especially C;, play important roles in the theory.
Because of this we will investigate separately the
case in which C;=C,=0.

B. Uniqueness of Single-Pulse Solutions

If C;=C,=0, then Eq. (3.6) gives ¢ =0, and only
trivial solutions for the phase ¢ are possible. But
with ¢ =0, Egs. (2.13)—(2.15) and (2. 18) and (2. 19)
are the McCall-Hahn equations and they naturally
give the McCall-Hahn single-pulse solution. Thus
in the absence of the Kerr-effect interaction® or
some other effect that leads to a modification of the
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slowly varying envelope and phase equations (cf.
Marth and Eberly, Ref. 12), a single bave SIT
pulse cannot exhibit chivping.® Moreover, the
McCall-Hahn hyperbolic secant pulse is a unique
solution of the dynamical equations in the sense
that it is the only single-pulse steady -state solu-
tion of these equations.

C. Steady-State Pulse Trains

Let us return to Eq. (3.10). The integral on the
left-hand side of this expression is real only for

' those values of S for which P,(S) >0 and then it

leads in general to elliptic functions. It is known
that the nature of these functions depends on the
zeroes of the\ cubic P4(S).. Since the coefficient of
S®in P4(S) is'~ 1 and $,5,S;=Q = —4C3/k*<0,
either all three zeroes are nonpositive or only one
of them is nonpositive. The first possibility is
ruled out on physical grounds since S=§%>0. Sim-
ilarly, when two of the zeroes are complex, there
are no positive values of S for which P4(S)> 0.
Hence, we must have S;<0<S,, S;. We illustrate
in Fig. 1 one such arrangement.

The square of the field will therefore oscillate
between §2=S, and §2=5;, and the field itself be-
tween §=(S,)/ 2 and § =(S;)'/%. (We make the ar-
bitrary choice of taking the positive sign for these
square roots. The opposite choice will simply give
the symmetric boundary of the envelope.)

When C;=0 and there is no chirping, then S=0
is a root of P4(S) and the curve in Fig. 1 must go
through the origin. The physically meaningful sit-
uations when this can happen are indicated in Fig.
2. The integral in the left-hand side of (3. 10) is
a standard elliptic integral that we can write in the
following way:

S(¢)=Ss[1 - Psn®(¢/7; k)], (3.11)

where the new parameters 7, 2, and [ will be shown
in Sec. IV to have a direct physical meaning for the
pulse train itself. They can therefore be taken to
be independent of any particutar atom’s detuning
frequency. One consequence is the restrictions
given below on Cy, ..., F(y). Interms of the poly-
nomial roots, 7, k2, and [ are

1/’T=%K (Ss —S1)1/2 ’
B=(S3-S,)/(S3-Sy) <1,

(3.12)
(3.13)

(a) (b)

N A

S Mz S

lsl S, \o

FIG. 2. Position of zeroes of the polynomial P;(S) leading
to unchirped pulses.
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12=(S3~S,)/S3< 1 (3.14)

Clearly, the character of our solutions will depend
as much on the parameter 7, which we may call the
chirping parameter, as on the more familiar ellip-
tic modulus % and the “pulse length” 7. We know
that % satisfies the relation |2/ <1. On the other
hand, it is easy to show that the chirping param-
eter [ satisfies the following relation:

k%] < |12] <1. (3. 15)

One may notice at this point that when /=% we have
S;=0, which leads to the first-type solution of
Crisp, 8 and when /=1, then S,=0 and we get Eber-
ly’s solution. ®

Using (3.12)-(3.14), we obtain S; =4%%/12k%r?
with the help of which (3.11) can be rewritten as

8(£)=84(k/1)[1 - Psn(t/T; k)] 2, (3.16)

where §,=2/k7. Equation (3.16) contains as a
special case the envelopes of all undistorted pulses
previously found, including both of Dialetis’s in-
stances of chirped pulse trains,7 one of which cor-
responds to positive and the other to negative val-

ues of 2% and 1%, All the functions given by Eq. (3.16)

are positive and periodic with period 2K [K=K(k)

J. H. EBERLY 6

is the complete elliptic integral of the first kind].
Because of possible phase variations we still have
the possibility of finding “zero-7" pulses even
though § is always positive according to our con-
vention. We will have more to say about this
question at the end of this section.

Corresponding to our solution in (3. 16) for the
real field envelope, one obtains the following ex-
pressions for the components of the atomic po-
larization and for the atom’s energy:

ule, )F<Kk“yu—ﬁmw“
ClTu
f% 1- )”2>, (3.17)

2 2
v(g, y)=F(y) _K%kTLz snendn (1 - [2sn?)1/2
(3.18)

- 212 2. 2
w(g, 7)—wo(7)+T2_2‘l = (1-72sn?) , (3.19)
where the “argument” of the elliptic functions is
understood to be (¢/7; k). Finally, the coefficients
wo(y), F(v), and u, as well as C2, may be given
explicitly as functions of &, I, and 7:

1
c@f% W-B)0 -1, (3.20)
(1 - or%) - K23 - IP)
= , .21
o(7) MPA =) -PQ - PP +4k%[lyr + (1 = P32 - B)Y/ 212 3.21)
FEPA -+ 221+ 22) - 3RA 7% 3.22)
(1 - 227 +21PK2 (1 + %) - 3k* )1/2
- - ) 3.23
F('}’) ([12(1 _ ')/ZTE) _ kz(l _ lz)]z +4k2[er +(1 - 22)1/2(l2 _ k2)1/2]2 ( )
[
These relations embody all of the restrictions liptic integral of the third kind.
needed to ensure that the solutions for § and ¢ are The velocity of these pulses is given by
independent of the detuning frequency v, as is re- 11 ay?
quired on physical grounds. Of course, these F(y )g(y)dy (3.26)
. ; X A . V ¢ 21'rg(0 ’
formidable expressions still require interpretation B
where

in physical terms. The interpretation, which is
equivalent to a prescription for adjusting £ and [
experimentally, will be given in Sec. IV.

Substituting (3.16) and (3. 19) into (3.6), we ob-
tain

1 [(1 lz (lz ]1/2
T 11— lsnz) ’

@)= (3. 24)

the sign of ¢ being as yet undetermined. Integrat-
ing (3. 24) we obtain the phase function itself:

o L=BIE R ),

where T(u, 2, ¥%) is the normal or incomplete el-

(3.25)

Payg
= A < P PP - )~ SRR
ag being the reciprocal of Beer’s length for single
pulses.! The pulse trains are, therefore, also de-
layed in propagation. V may be much smaller than
Co.
The dispersion relation Eq. (3.5) can now be

written as

-~ al Tz N
Ak '—LGg(o) ye()F(y)dy , (3.27)

and in general Ak is different from zero, even for
symmetric g(y).
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The area® of these pulses, defined as 9=«[],
8(¢)dg, i.e., the area under one oscillation of
the envelope, can be expressed as follows:

4k 2 _[r. K lz—kz)“z]
9=z(1-k2)”2{?n[§’k2-1’ (1-k2
2 _ 12 2 _ p2\1/2
—l—;e-z—k— K[(TT%:’) ], (3.28)

I being the complete elliptic integral of the third
kind and K the complete elliptic integral of the
first kind.

The width of these pulses, defined as full width
at half-maximum of one oscillation, may be written
as

Typ=27sn 2+ -2(1 - B)YVE]V%/21 1) .
(3.29)

Some comments on these solutions are in order.
Inthe first place, we have been able to find them only
by assuming that v(¢, v) can be factored into a
product of a function of ¢ alone and a function of y
alone. As far as we know, there have been found
no analytic solutions of inhomogeneously broadened
optical pulse equations which do not satisfy this
factorization condition.

Next, from (3.20) we see that C; =0 only when
I=1or I=k. Then ¢ =0 and these are the only two
unchirped pulse trains. For these values of [ the
general solutions have been reported previously®”
and we give only the expressions for F(y):

F=E/|(R% = Pr2 + 42728 | 1oy (3.30)
F=1/[(1 = /P12 +4k%2r% 2, 1=1. (3.31)
-3
k=04, (=08
-2

If from either of these expressions we eliminate
the parameter % in favor of the constant w, of Eq.
(3.2), then the expression for the spectral re-
sponse function reduces to the inclusive form
given already by one of us®:

F(y)=(k/ pvt )l [wo+ (w0} +£2)1/ 2], (3.32)

where £2=1/(y7)* =1. When lwq! <1 then (3.32)
gives the F in (3.31), and when wy< — 1 one gets the
F of (3.30). The McCall-Hahn solutions are spe-
cial cases of either (3.30) or (3.31) and are ob-
tained by putting 2=1.

From the general expressions of the spectral
response function F(y) [Eq. (3.23)], we see that it
is far from having a Lorentzian shape, as in the
27-sech pulses of McCall and Hahn. In general, it
is not symmetric, and a detailed study shows that
it can have strong maxima for which F> F(0) (see
Fig. 3). At the same points at which F has maxi-
ma, the function Aw(y), which represents the vari-
ation of the energy of an atom whose detuning is v,
also has a maximum. This is consistent with the
existence of a chirp and shows that the notion of an
atom ‘“at resonance” is no longer unambiguous.

The atoms with =0 are not always those which are
most strongly interacting with the field. It is pos-
sible to show that Aw(y) has a strong maximum near
Y=- Iq?) Imax- This fact suggests that the as yet unde-
termined sign of the chirping constant C, in Eq. ‘
(3.20) be given a negative value. This implies that
the instantaneous frequency of the field is d&/d¢
=w=- |<i>|. Thus, the atoms with maximum excur-
sion of their energies are those which are nearest
to this instantaneous field frequency.

FIG. 3. F, wy,y, and wy,, for
k=0.4 and 7=0.8 as a function of
x =+vy7. Heavy lines on the x axis
indicate the excursion of J)T.
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FIG. 4. Plot of M() and m(I) as a function of I, fork=1%.

D. Phase Modulation and Zero-w Pulses

In order to discuss further our results, .especial-
ly those concerning the phase modulation ¢, we
define the following quantities:

MO =Q1/D[(B-r)/Q-1P)]"2,
m(1)= (/1) [(1 - BB -E)]V2,

which are, reSpectively, the maximum and mini-
mum of |7¢| as functions of the chirping param-
eter /. They are plotted in Fig. 4 for a fixed value
of k.

The function M(I) is monotonically increasing
from 0 to « in the interval /=% to /=1. This im-
plies that ¢(¢) is undefined for 7=1. Indeed for
this particular value of 7, ¢(¢)=0 for all £ except
for ¢ = KT, where it has a singularity. This is
precisely the situation for which the envelope §(¢)
vanishes. The fact that the phase must have a
singularity when the envelope vanishes follows, of
course, directly from Eq. (3.2).

In the immediate neighborhood of =1, ¢ is not
a slowly varying function, so, strictly speaking,
our theory would not apply. Nevertheless, it is
interesting to notice that this solution coincides
with those obtained by completely neglecting the
temporal modulation of the phase of the field.?

The =1 case is the only case in which the field
envelope is not smooth. It is the case in which
8 - 0-with a sharp cusp as ¢~ (2z+1)KT. In order
to elucidate this behavior further we calculate the
change in ¢, given by (3. 25), during one period of
oscillation from 0 to 2K. This change is given by

H. EBERLY
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Ad = (2/D[(1 - B)# - A 211(K; 12 k%), which for
I=1 reduces to A¢=7. Inthe case when the field
envelope has zeroes (I=1), there is no chirping
strictly speaking [C,;=0, Eq. (3.20)], and the phase
stays constant during the whole period. The phase,
however, changes abruptly by 7 at the points at which
the envelope has its cusps, a possibility that has
been suggested previously by computer studies of
optical pulse propagation,'® and that can be inter-
preted by saying that § changes sign. Such a
simple interpretation fails, of course, in the ma-
jority of cases, in which a phase change equal to 7
occurs gradually, not abruptly.

Thus we find ourselves able to investigate
analytically one of the interesting phenomena of
computer studies, namely “zero-7” pulses, pulses
in which the envelope becomes negative periodical-
ly, thereby allowing zero net area under the en-
velope. In our approach we can avoid the problems
of interpretation associated with negative envelopes
because we find none. However, the real part
& cos¢ of the complex envelope does become nega-
tive periodically, in just such a way that § cos¢ is
a smooth physically realistic function. Neither
& nor ¢ is always smooth, but no physical signifi-
cance requires smoothness of either of them sepa-
rately.

*To see how this comes about, let us consider
the x component of the field equation (2.5),
E(T)=8(T)cos[wt+o(T)] . (3.33)
(For simplicity we have set z=0 and T=¢/7.)
Equation (3. 33) reduces to

E.(T)=8(T)cos¢(T)coswt for I=1,

since then ¢(7) is a step function that increases in
steps of 7, and we choose the originof ¢(7) at zero,
i.e., ¢(0)=0. Now, with reference to Fig. 5, we
see that E,(7) and its derivatives are indeed con-
tinuous for all 7, because the discontinuities in §
and ¢ counteract each other. Thus the imposition
of the physical requirement of smoothness on the
physical field strength § cos¢ eliminates the need
for the introduction of “negative envelope” solu-
tions.

Finally, we show in Fig. 6 the graphs of the en-
velope &, the “real field” § cos¢, and the phase
function ¢ for a near-critical case for which [
=0.991. The envelope is obviously positive, while
the field goes negative at the appropriate values of
¢ (at 47, 37, ...). It is interesting to notice how in
this case the “slowly” varying envelope is modu-
lated by an even more slowly varying function
cos¢. Of course, inside the ‘“total envelope”
£ cos¢ we must still imagine the fast oscillations
of the factor coswt.



6
<)
W -
K 2K 3K 4K $re
4’4;
cosps|
2w —
|
cos ¢ =-| |
- —_—
i |
cos ¢=1 | | ! | .
K 2K 3K aw L,
Leos ¢ |
\ | /1 -

FIG. 5. Envelope, phase, and field for the critical case
1=1.

IV. PHYSICAL MEANING OF PARAMETERS %, /,
AND 7

In this section we give a physical interpretation
of the amplitude modulation parameter 2 and the
phase modulation or chirping parameter 7. We
also indicate a possible way of producing experi-
mentally the amplitude and phase modulated pulse
trains in bare SIT discussed in Sec. III.

Figure 7 shows a period, from ¢ =- K7 to ¢ = KT,
of the pulse intensity §%(¢), where &(¢) is given
by (3.16). As shown in this figure we define

AP=8% - 82 4.1)

£, Lcos ¢

TTTT T 1711
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to be the amplitude of the modulation of the inten-
sity function &%(¢). Then, using Egs. (3.12)—
(3.14), we obtain

k=A/8y, 1=A/8,, 8y=2/kT . 4.2)

In terms of these new physical parameters A,
&,, and &, (or 7), the envelope of our oscillatory
pulses and their chirp [Egs. (3.16) and (3. 24)] can
be written as follows:

8()=8,[1-(A/8,Psn?(/T; A/8)1M%, (4.3)

b(e)=& [(8§—A2)(§%—28%>]"2 _
2 8,[1-(4/8,Psn’(t/T; A/& )]

It is seen, therefore, that the nature of these
oscillatory solutions depends on three physical
parameters which, in principle, can be experi-
mentally controlled: the amplitude of the intensity
modulation, A2, the peak value § u Oof the pulse, and
the pulse width 7=2/k§,. These parameters are
arbitrary except for the limitations implied by Eq.
(3.15), namely,

A<8 <8, . . (4.5)

(4.4)

Thus, if we want to excite only one of these
waves, we must impose on a resonant medium the
dynamical conditions characteristic of this special
wave. Note that it is sufficient to control only the
pulse envelope, since all the atomic variables as
well as the phase are determined by % and [/, and
thus by the envelope parameters A, §,, and §,
(or 7). In practice this might be done by using as
a source a tunable cw dye laser whose output could
be modulated, for instance with the help of a
Pockels cell, the required frequency of this modu-
lation being well inside the realm of experimental
capabilities (of the order of 10° Hz if sodium vapor
is used for the resonant medium). It also seems
possible, once such steady-state pulses are
achieved, to detect directly their phase variation
by interferometric experiments.

5.0

a5 02

4.0
35 FIG. 6. Envelope, phase, and

3.0 “field” for a near-critical case:
2.5 k=0,99, 1=0,991.
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FIG. 7. Pulse intensity 82 as a function of ¢~ z/V. S,
Sy, and S; are the zeroes of P;(S) defined in Sec. III.

Notice that if the envelope modulation can be
made almost complete (i.e., if A=§, can be
achieved), then the maximum chirp can become
very large. In fact, this is the only way large
chirps can be found, in apparent contrast to (3.6)
which suggests that large C;, independent of small
&, also means large é. The explanation is that
C, enters the equation for § and is not independent
of it [see (3.8)].

The exact physical meaning of the parameter 7
can be given by the transcendental expression

ty2/ 27 =sn Y (3V2; 3AKT).

where £, is the full width at half-amplitude of one
oscillation of the intensity pattern (Fig. 7).

V. STEADY-STATE PULSE CHIRPING AND
NONLINEAR INDEX OF REFRACTION

In this section we will discuss the effect on SIT
pulses of the background medium in which the two-
level resonant atoms are embedded. We will as-
sume that we are far from all resonances of this
medium and that we can neglect its linear disper-
sion. Therefore, the dispersion of the host medi-
um is assumed to arise from the field dependence
of its index of refraction. Thus, we are confronted
with a problem that includes two kinds of nonlin-
earities of quite different origin; one due to the
interaction of the electromagnetic field with two-
level resonant atoms and the other due to the non-
linear response of the passive medium.®

H. EBERLY
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For a qualitative understanding of chirping in
such a situation it should be sufficient to examine
specifically the simplest case, typical of isotropic
media, in which the index of refraction 7 is qua-
dratically dependent on the field intensity, and
write n=no(1 + B8%). Assuming that the term g2
is small enough so that its higher powers can be
neglected, the equations of motion for the inter-
action of the light pulse with the two-level resonant
atoms embedded in the nonlinear dispersive medi-
um are only slightly different from the equations
governing bare SIT. Indeed, the only difference is
in the dispersive equation (2. 19) on the left-hand
side of which now appears the term — wB&3/c 6.

A. Chirped Single Pulses in Nonlinear Absorbers

If we assume again, as we did in Sec. III, that
the absorptive component of the resonant polariza-
tion v(g, ) factors into a product of a function of
¢ and a function of y=wy - w alone, we obtain for-
mal “solutions” which contvadict the oviginal equa-
tions. Since the only arbitrary assumption made
in deriving these formal “solutions” is the factori-
zation of »(¢, v), we conclude that this factorization
is not possible in the presence of a nonlinearly dis-
persive medium, as expected.!? One way of avoid-
ing this difficulty is to reduce the problem to one of
an extremely sharp atomic line (i.e., one with
T¥> 1), which we discuss in the remainder of this
section.

We now assume that the separation between the

energy levels of all atoms is the same, w)= (E,
- E,)/i. Then g(y) is described by a 6 function,
g(¥)=6(y = v9)=6(wg—wy). Substitution of this &
function into the Maxwell equations leads to the
following simplified field equations:

8==(k/m*W, (5.1)
(b — wBE% cyd +AR/6)E = (k/mP)u . (5.2)

At the same time we must change y to y, in the
Bloch equations which are unaffected by g.

As we have already sketched briefly,® steady-
state pulses can be shown to exist under the cir-
cumstances envisioned here. Following the same
method used in solving the bare SIT equations in
Sec. III we arrive at a relation which looks very
much the same as Eq. (3.9). We will write it as
follows:

8282 =11%(1 = 2yqwp/k%ced)

X(-8%+L8°+M8E*+RE® + N2+ TE +Q) .
(5.3)
To first order in g the coefficients of the new “ir-
reducible” sixth-degree polynomial appearing in
this expression are given by the following formulas:

L=2Cwh/m?kced ,
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M=4CwB/kPced — 4/k%) (k2w /m2+12)A ,
R=-8CyveA/mPk , N=4GA/k?,
T=-8C,GA/m*, Q=-4CA/K®, (5.4)

where A=1+2y,wp/k2cqb.
Equations analogous to Egs. (3.5)-(3.7) now
read

Ak='}’05 3 (5.5)
¢ =3wpE% 4ce + C, /82, (5.6)
u=(m2/k)(ye8 — wBE /4ces + C1/8)+Cs . (5.17)

Equation (5. 6) shows that in the presence of a
host nonlinearity we will have chirping even if the
chirping constant C,; is zero. The phase modula-
tion is then directly, rather than inversely, pro-
portional to the intensity of the pulse.

The nonvanishing of C; and G, is again related to
oscillatory envelopes. For the present we are in-
terested only in single pulses and set these con-
stants as well as G equal to zero. We will also
assume the asymptotic initial conditions corre-
sponding to an attenuator, i.e., that there is no
field in the distant past and that all the atoms are
in the ground state: §(—«)=0, w(-»)=wy=-1.
Under these conditions Eq. (5.3) reduces simply
to

8% =51 (1 - 2yqwp/K*cod (M - 8*)87 (5.8)

Equation (5. 8) can be immediately integrated
with the result

8 =(2/k7)( +yqwB/Kk%ced) sech(t/7) , (5.9)
where
1/7=(/m)A —m®5/k®)M? . (5.10)

The solution for the phase is obtained by substi-
tuting Eq. (5.9) into Eq. (5.6) (with C;=0) and is
given by

¢ = (BwT/ced)(B/k?r%) tanh(c/T) . (5.11)

The expressions for the components of the Bloch
vector can easily be derived and we write them
in the following way:

__2yT YowB 4
u——;g—l " oTz (1 +K2005> sech (;)
ol A1) sech Z) s (5.12)
.2 Yow (4 ¢
Ly (1 +;22‘f6_) sech(7_> tanh(_r) , (5.13)

_ 2 2708 2(¢
w__1+1+y§72 <1+ choé) sech (T> .
Equations (5.9)-(5. 14) constitute the solution of
our problem to first order in 8. It is apparent that

(5.14)
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it reduces to the solution of McCall and Hahn
specialized to the case g(y)=6(y - y,) when 8=0.

In Fig. 8, for a very sharp pulse (such that
T >1 would be satisfied for most materials), we
show the solutions for the atomic inversion w and
the pulse envelope § for both =0 and 8#0. In
the same figure we also show the relative frequen-
cy shift qb/ w. Note that the chirp is large enough
to produce a very substantial phase shift. In fact,
or~1.

These results concerning steady-state pulse
propagation in nonlinear absorbers can now be
summarized in the following way: (i) Undistorted
or steady-state pulses can propagate in resonant
absorbers even if the nonresonant host medium is
nonlinearly dispersive. (ii) All such pulses are
inevitably chirped if the most important nonlinear-
ity is of the Kerr-effect type.

The only previous instances known to us in which
analytic expressions for frequency modulation
(chirping) in the solution of the coupled Schrédinger
and Maxwell equations was predicted are an early
study by one of us (J.H. E.) of atoms in external
fields,!% the studies of Crisp and Jaynes!® and
Stroud and Jaynes'® which discuss the frequency
modulation expected to accompany spontaneous
emission, the investigations of Armstrong and
Courtens!” who have found the existence of chirp-
ing in amplifying media, and that of Dialetis.”

Some comments on our solutions are now in or-
der. For “asymptotic resonance,”i.e., for the

- XT 4(B)
5 &

é/0 (1073
kT ,(o0)
> &

05 —

FIG. 8. Sketches of analytic solutions for pulse en-
velopes and atomic inversion for =0 and g =0, and for
time-dependent relative frequency shift ¢/w. For the
purpose of illustration, extreme values have been assigned:
1=10"12 sec, 2ywB/k% =%, voT=%, and 2/kT=6x 10°
V/cm.
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case in which the single atomic transition w, coin-
cides at -~ — « with the field-carrier frequency

&~ w, the only difference between the present
solution and that of the corresponding bare SIT is
the presence of the phase modulation (which is
unaffected by the detuning frequency y), and the
nonvanishing of the in-phase component of the reso-
nant polarization. It is interesting to notice that
the absorption component of this polarization fac-
tors: (g, vo) = Flyev(g, 0).

Inspection of the energy of the atom, Eq. (5.14),
makes it clear that the effect of the pulse is to
take each resonant two-level atom from its ground
state to an excited superposition state and back
again to the ground state. Direct integration of
k8 shows that the pulse is a 27 pulse only on res-
onance, when 7,=0.

By inspection of the expression (5. 10), we see
that 7 is not affected by 8. The same is true for
the pulse velocity V, which is given by

1/V=1/co+ (awkdr®/nee) (1 + 7272

The pulse delay is, therefore, due exclusively to
the interaction with resonant atoms, to first order
in B.

It is useful to compare more closely the varia-
tion of ¢ with that of #. From the equations of
motion it follows immediately that §2=(2/m?)

X (w—wqy). Eliminating § between this equation and
Eq. (5.6) with C,;=0, and differentiating the result,
one obtains

& + (31NHW2B/ 202 . (5.15)

Therefore, if 8> 0 (as is usually the case), the
slope of ¢ is proportional to and of the same sign
as that of w. We may say that chirping follows the
inversion of the atoms and is maximum when this
inversion is maximum (Fig. 8).

Crisp and Jaynes!® and Stroud and Jaynes!® have
obtained similar relations to that of Eq. (5. 15),
although the origin of the frequency modulation in
their theories is different from its origin in our
theory. In the Crisp-Jaynes and Stroud-Jaynes
cases the chirping originates in the reaction of the
emitted field on the atoms, while in our case, as
in that of Armstrong and Courtens, !’ the frequency
modulation appears as a consequence of the dis-
persive characteristics of the host dielectric. The
relationship between ¢ and w corresponding to Eq.
(5. 15) derived by Armstrong and Courtens, written
in our notation, is

b =nkwiAw/ (0 + wiA?), (5. 18)

o being the nonresonant loss parameter.

There is, however, an important difference be-
tween the Armstrong-Courtens result and ours.
While the Kerr constant 8 is usually positive, the
dispersion parameter A turns out to be in general
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negative. Thus the direction of chirping in the
Armstrong-Courtens case is opposite to ours. The
source of this difference can be traced to the fact
that the assumed origins of the host dispersion in
both of these theories are very dissimilar, as we
show in the Appendix. In practice, however, both
kinds of nonresonant dispersion may be expected
to contribute to the frequency modulation. ®

Since the chirping follows the inversion, it is
clear that the frequency sweep in SIT pulses cannot
be monotonic, as it is for the pulses in the Stroud-
Jaynes and Crisp-Jaynes investigations, or for the
7 pulses propagating in amplifying lossy host media
of Armstrong and Courtens.

B. Oscillating Pulses in Nonlinear Absorbers

It is of course possible to obtain analytic solu-
tions of a more general type even in the presence
of the Kerr constant 8. Assuming that the integra-
tion constants C, and C, are different from zero
(but C3=0), we obtain a solution for the field en-
velope that can be written as

8= (k81 -12sn2(/1;R) M2, (5.17)
where
1/T=%K(1 ‘7’0“)6/’(2005)(33 - 51)1/ g, (5.18) V

Here S;<S,, S; are the zeroes of the cubic P,(S)
=-S5+ MS+NS+Q (S=8%. Thevalues of the param-
eters 2 and ! will, of course, reflect the fact that
the coefficients M, N, and @ now depend on the
Kerr constant 8.

The essential difference between these oscillatory
pulses and those of the bare SIT found in Sec. III
is that the oscillatory pulses traveling in nonlinear
host media are all chirped without exception.

The phase function itself can be written as fol-
lows:

o= (3wT/c 0)(B/KETRE(L/ T3 k)
+(1/DIA - - 2L /7;1% k) ,  (5.19)

where E(u, #) and TI(«; 1% k?) are the normal elliptic
integrals of the second and third kind, respectively.
When k=1, E(u, 1)=sn(x, 1)=tanhy and Eq. (5. 19)
goes over to Eq. (5.11).

It is also interesting to observe from Eq. (5.18)
that the width of these pulses, and consequently
their velocities, is affected by B, a situation that
is in contrast to the single pulse in the presence of
of nonzero B.

VI. SUMMARY AND CONCLUSIONS

In Secs. I-V we have given a detailed account of
the phase modulation expected in slowly varying -
shape-preserving pulses propagating in resonant
nonlinear absorbers. We have found as one of our
most general results that the propagation of such
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pulses is universally accompanied by phase modula-
tion of their field vector. The only one of these
pulses that has been experimentally observed so far,
the sech solitary pulse, is not chirped (at least not
in the slowly varying envelope approximation!?),

The only unchirped multiple pulses are those
found previously by Arecchi-Degiorgio-Someda, by
Crisp, and by one of us (J. H. E.). These solu-
tions as well as that of McCall and Hahn, are par-
ticular cases of more general, generally chirped,
shape-preserving pulses in bare SIT derived here
and also given by Dialetis. We have interpreted
physically the extra parameters appearing in these
more general pulses, and have suggested how one
might produce pulses with a desired degree of
chirping by appropriate envelope modulation. We
have obtained a general form for the spectral re-
sponse function, which departs drastically from
Lorentzian shape, and have also established the
equivalence of special forms obtained by Crisp and
by Eberly. Finally, we have shown explicitly that,
in the particular case of those pulses whose en-
velopes vanish periodically, the phase stays con-
stant during a period, but changes suddenly by 7
at all points at which the envelope vanishes. This
behavior is seen to be the natural limit of cases in
which the envelope periodically approaches, but
does not equal, zero.

If nonlinear dispersion is present, the chirping
is then not only possible but necessary. We have
investigated shape-preserving pulses when the host
nonlinearity has a Kerr-effect origin and found that
the pulse envelope has a sech dependence while the
chirp is proportional to sech®/7). The frequency
sweep may be, under favorable circumstances,
quite large in spite of the smallness of the Kerr
constant.

ACKNOWLEDGMENTS

This work was carried out while one of us (L. M.)
was an NSF Science Faculty Fellow at the University
of Rochester. We wish to thank Professor C. R.
Stroud, Jr. for many helpful discussions during the
preparation of this paper, and Professor J. A.
Poluikis, C. S. B., for helping in computing the
data used in preparation of graphs in Figs. 3 and 7.
The final form of Eq. (3. 28) is due to P. W.
Milonni.

APPENDIX: FREQUENCY DEPENDENCE OF
SUSCEPTIBILITY IN TERMS OF KERR CONSTANT

According to Eq. (2. 8) the relation between the
electric field E and the polarization P in the time
domain is

Po(0=L 5y £ 8200 .

a7 (A1)

We will derive the corresponding relation in the
frequency domain when the field E(¢) is that of the
single pulse found in Sec. V. We will write it in
the following form:

E()=8 o(1+BN) sech(t/7)e'™ ®,

where

(A2)

I'=wt+Botanh(t/7), o=3w/TKC,,
50 = 2/KT .

We first compute the Fourier transform of the
electric field in (A2):

E(w')=84(1+8\) [.- sech(t/7)eiT =" t1gs |

The integral in this expression is evaluated through
terms of first order in 8. Making the change of
variables T=¢/7 and letting ¢ = 7(w ~ w’), we have

I=7/.7 sech(T)e a7 +8otanD g |

1
A= 37070,

Writing the exponential in trigonometric form and
keeping terms of up to first power in B, we get

E(w’)= 18 47[1+BN(1 +3q/vyr)|sechi(ng) . (A3)

In a similar manner we obtain the Fourier trans-
form of the nonresonant polarization (Al). The
result is

P () =518 {n&-1)[1+Br(1+3¢/747)]

+B8Y1+¢P)}sechi(ng) . (A4)

Using (A2) and (A4), we derive an expression for
the susceptibility x(w’)=P,(w')/E(w’) which, to the
first order in 8 and near the field frequency w, is
given by

drx(w')=n3-1+B8%[1 +7¥w - w")?] . (A5)

It is interesting to compare the form of the sus-
ceptibility given by (A5) with the one assumed by
Armstrong and Courtens in their studies of pulse
propagation in dispersive amplifying media.!” They
expand the host susceptibility near resonance in
inverse powers of w’ and write

4rxpc(w ) =ay —ay(' /W) +a(w/w' ), (A8)

where ay, a;, and a, are phenomenological constants,
characteristic of the medium. They treat the host
dispersion by linear-response theory in terms of
this frequency-dependent susceptibility.

In order to compare (A5) with (A6), we must
find an expansion of our susceptibility (A5) in in-
verse powers of w'. The required expression is

arx(w')=nf - 1+BEF[(1+w?r?)
- 20373 w/w") + Wi (w/w L. (A7)

It is clear from the inspection of (A6) and (A7)
that the host dispersion in the Armstrong-Courtens
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theory is of quite different nature from the one that
is incorporated in our model of the host dielectric.

H. EBERLY 6

Our susceptibility in (A7) clearly has a nonlinear
term.
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