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An approximation method is developed which yields very simple and general analytical re-
sults for electromagnetic bound-bound or bound-free transitions for any arbitrarily high or-
der of interaction with the electromagnetic field. The approximation is perturbative in the
sense that transition probabilities are proportional to the field intensity raised to the power
N, where N is the order of the interaction. Limiting values of electromagnetic field strength
are given within which the approximation is valid. These limits depend upon the binding po-
tential which produces the bound states. A feature of the results is that they show the onset
of high-order dominance effects which can occur at high-field intensities.

I. INTRODUCTION

The method to be described below applies to
the description of transitions in bound quantum
systems subjected to relatively intense electro-
magnetic fields. As used here, relatively in-
tense" refers to fields sufficiently intense that
high-order multiphoton processes can occur to
measurable extent, but not so intense that per-
turbation theory fails. The domain of intensities
thus delineated is the same as that appropriate
to high-order perturbation calculations' of elec-
tromagnetically caused transitions. The method
given here is nonperturbative in origin.

We shall find results which can be called "per-
turbative" in the sense that for a process of order
N (i.e. , one which proceeds with N photons), the
transition probability is proportional to the elec-
tromagnetic field intensity raised to the power ¹

This is a fundamental feature of perturbation the-
ory. However, the results do not exactly duplicate
perturbation theory. They are approximations to
perturbation theory with a validity which improves
as N increases. The method given here is of ex-
tremely simple analytical form in contrast to the
very great difficulty posed by high-order perturba-
tion theory. ' The present method is also simpler
in application than the momentum-translation
method, ~-4 from which it follows as a limiting
case.

In Sec. II below, the mathematical formalism
will be developed for the case when only an in-
tense field is present, as well as for the case
when an additional weak electromagnetic field also
exists. Section III is devoted to an examination
of the limits of validity of the approximation, using
three-dimensional C oulomb and harmonic- oscilla-
tor problems as models. A qualitative discussion
of the results is given in Sec. IV with emphasis
on the prediction that lowest-order processes
cease to be dominant when the electromagnetic
field becomes intense.

II. DEVELOPMENT OF APPROXIMATION

We shall employ as a starting point the momen-
tum-translation approximation, which is an
analytical method valid for transitions caused in
bound systems by an external plane-wave electro-
magnetic field, subject to the conditions

&/E«1, eaa0(&/E) «1,
where + is the frequency of the electromagnetic
field, E is a characteristic energy of the bound
system, a is the amplitude of the vector potential
A of the electromagnetic field, a is the "size"
parameter of the bound system, and units with
a= e= 1 are employed. Equation (1) imposes only
a weak limitation on the intensity of the field. Of
most immediate interest for present purposes is
the fact that the inequalities of Eq. (1) can be
satisfied for high-order multiphoton processes.

The T matrix for a transition of order N caused
by the electromagnetic field is given' by

T&", ' =i"(E» —E&)(P.z, J„(eax ~ Z) P,),
where P, and Qz are the stationary-state wave
functions for the initial and final states (of ener
gies E, , E&) in the absence of the electromagnetic
field, J'„(z) is the Bessel function of the first kind
of order N, 7 is the polarization vector of the
electromagnetic field, and x is a radius vector.
When the transition involves not only the absorp-
tion or emission of N photons of energy , but
also the absorption or emission of a single photon
of energy from a field of low intensity, then
the T matrix is given4 by

T '""= —' i ""(E —E ) e" (ea')

X(yq, x ~ e' J„(eax ~ e) P&) . (3)

In this expression, Z is the polarization vector
and a is the amplitude of the vector potential A
for the weak field. The quantity n is a pha, se dis-
placement between the A and A fields.
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The matrix elements in Eqs. (2) and (3) can be
simplified by the approximation

J,(z) =(N!)-'(-,'z)". (4)

We shall presume the system described by the
wave functions P» and Pz is a central-force sys-
tem, so that the matrix element in Eq. (2) can be
written

(P~, J„(eax ~ Z) P,)

=( /IN!)(,'ea)"—f r drR&(r)R, (r)
0

x f d& I'»~&* (8, p) Y»t(8, p)(x ~ Z)~, (5)

with the help of Eq. (4), and where R(r) and I'"»

(8, p) are the radial and angular parts of the wave
function P. It is convenient to choose the axis of
the spherical coordinates along Z, so that

(x ~ Z)"= r" cos"8.
The angular part of this can be expressed in terms
of spherical harmonics by the expansion

N

cos"8= g b, P, ( c8o)s

N 4 1/2
= Z b, 2. , I", (8, V) . (6)

)0 ~ 2j+1
The angular integral in Eq. (5) now contains three
spherical-harmonic factors. The solid-angle in-
tegral of the product of three spherical harmonics
is well known, ' and leads to the result

f »f!1 y'» &*(8,y) I'", » (8, y) cos"8

= Q b»(—)"»» (2l»+ 1)' (2ly+ 1)'

Equation (4) is both a small-argument approxima-
tion for the Bessel function and an asymptotic
result when N- ~ for fixed argument. Both points
of view will be considered when the conditions
under which Eq. (4) is valid are examined in Sec.
III.

A. Problem with Intense Field Only

A particularly simple special case arises if
either the initial or final state is an s state, since
the sum in Eq. (6) then reduces to a single term.
Suppose we set l;=0, which, in turn, implies rn;
= Q. Then both of the Wigner 3-j coefficients in

Eq. (8) are the same, and each has the value

~

~

o l&i (-)'
OO O (2q+I)'" ~»~'

The matrix element for this case is

1 ea 1
(4'y &iv(eax ' &) 4'»)» =p -

N» 2 b»& 2l I)»/2~ (2l~+1

x f r™dry(r) R;(r) . (9)

Had the case l&= 0 rather than l, = Q been con-
sidered, the result is given by Eq. (9) with l, in
place of l&. If both l;=0 and l&=0, then the mat-
rix element is

ea N

( Qf » ZN(ea ' e)Q»)»»»~ 0(„
X

w 0
dr Rz (r) R,(r), (10)

where we have used the fact that bo= (N+ 1) ',6

and note that N must be even.

B. Combined Intense and Weak Fields

p OO

r& dr R+~ (r) R»(r)
1 eaN

N! 2

In most physical problems an integer number of
photons from the intense field will not be resonant
with the transition energy of the bound system, so
a photon of appropriate energy to conserve over-
all energy conservation must either be emitted
or be present initially so that it can be absorbed.
The relevant T matrix is given by Eq. (3).

We again use the approximation given in Eq.
(4), which leads to

(Pz, x ~ e'J~(eax e) P»)

ypg, -my 0 0 o o
(7) x f d& I'» ~*(8, p) Y'p~(8, y) (x ~ e ') (x . e)". (11)

Equation ('7) contains within it the requirement that

m, = m&. The result for Eq. (5) is given by

(yq, Z„(eax ~ e)»t»;)

N

(—,'ea)" P b (—)"» (2l;+1) (21»+1)
NI /=0

x « ~ ' ~~ ' r"'drR,*(r)R,(r).l l l l

m; —m]0 0 00 „'0

(6)

The term (x Z)" leads again to Eq. (6), but now
x 4 = ~cose must also be considered. The ad-
dition theorem can be used to relate cose to the
8, p coordinates. With P and y as the 8 and y co-
ordinates of e with respect to e we have

cos8' = s+»» Q y'," (p, y) Y, (8, p) .
m=-1

The angular integration of Eq. (11) now contains
four spherical-harmonic factors. The number of
spherical-harmonic factors can be reduced by
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using the expression

)„~
I

(2l;+1)(2l~+1)(2L+1)
I)

I

f) lg L
It

f(lgI
(m, —m~u (00 0

The final result for the angular integral in Eq. (1.1)
is then

1

f «1'"&*(8,V)1' (~, V)( e')( ~ e) = "(~ )'"Z&",*(P,~)lg t l] p

f5"=1

N /+1
x g b)(-} s' Q (2L+1)[(2l,+ l)(2lg+1)]1/, g L l; l)' L

I

g 1 L j 1 L
(12)

g=o m& -m&m 0 0 0 (Om —m' 000

Equation (12), when substituted into Eq. (11),
gives the general result for the two4ields case for
a central potential.

As in thy. single-field problem, the result sim-
plifies considerably when either l; or /& is zero.
As before, the result is symmetrical with respect
to these two special cases. This time, the l&=0
case will be presented explicitly. The 3-j coef-
ficients in Eq. (12) take on the values

(1& i, L f& 0 I )

(m, -m~ m m, 0m&

( )l(+mt(2f + l)-1)'2 6

and

The matrix element in this case is
N

(Pq, x ~ e'J'„(eax ~ e)P,), 0~ —, — (+v)'~'(-)"&

x ~P' (P, r)(24+ ~)"' Z b, ('0 ') (0 o o)

x f r"'~ dr R~&(r)R, (r). (13)
0

The 3-j coefficients remaining in Eq. (13) imply
the constraints

f(+1 j ~ lf, -ll, Im,

which means that Eq. (13}is really much simpler
than it appears to be.

A further specialization occurs if /, is set equal
to zero as well as lz. The 3-j coefficients in Eq.
(13} imply that j= 1 and m; = 0, and each 3-j coef-
ficient has the value -3-' . The final result is
then

1 ea N

(gz, x tJ~(ea f)4xg)'g« ~ M(~ 2)(
- -'f"r"' dr RP(r) R, (r), (14)

where we have used b, = 3(N+ 2) ~, and N must be
odd. This matrix element can be checked against
a sample calculation in Ref. 4 for transitions be-

tween the 1s and 2s states in hydrogen. When hydro-
genic 1s and 2s radial wave functions are substi-
tuted in Eq. (14), the result is the same as that
given by Eq. (32) of Ref. 4, which is a low-intensity
limiting case of a more general expression.

III. LIMITS ON VALIDITY OF APPROXIMATION

The validity of the above work depends upon the
accuracy of the approximation of Eq. (4). The
conditions for validity of the approximation will be
estimated first for Eq. (4) as an asymptotic limit
for N- , and then for the small-argument limit
z- 0. The conditions for validity depend upon the
radial wave functions. Two cases will be discussed
which have somewhat different properties. One is
the problem of bound-bound transitions in a Coulomb
potential, and the other is the harmonic-oscillator
problem.

A. High-Order Limit

The basic conditions for this case are twofold:

N»1 (»)

Ieax ~ el &N. (16)

The difficulty with the condition (16) is that the
magnitude r = l xi enters into a volume integration,
so that all values of ~ must be considered, and Eq.
(16) appears to be meaningless. However, bound-
state wave functions have the property that they fall
off sharply for large x, and little error occurs if
the radial integral is truncated beyond some value
of x. This truncation will be illustrated by a spe-
cific example.

The radial eigenfunctions for hydrogenlike atoms
can be written asv

R(r) = a„,e-'"p' L"' (p)

where B„& is a normalization factor, n is the prin-
cipal quantum number, l is the angular momentum
quantum number, and

p = 2 Zr/Filo 1

with Ze the nuclear charge. When a solution of the
type of Eq. (17) is inserted into the radial integral
which occurs in Eq. (8),
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f dh r "'2R
&~ (1)R,(r) = —1 dr I(l ), (18)

the integrand I(r) goes to zero at r = 0 and ~.
There are, therefore, extremaencompassedbetween
the limits of integration. Equation (17) is a finite
sum of terms of the type e ' p~, each of which has
zeros at p= 0 and and a maximum at p= 2P. The
largest value of x which will be considered to make
a significant contribution to the integral in Eq. (18)
is that value corresponding to the last extremum
which can occur in the terms constituting I(r). This
last extremum arises from the term of highest
power in L„",, (p), namely, p" ' . Consider the
case of bound-bound transitions in a Coulomb po-
tential, that is, the case where R/(r) and R, (1') are
both of the form of Eq. (17). The term containing
the highest power of 1 in the 1(1) of Eq. (18) is thus

R(1,) C e-n /2 lL1+(1/2)( 2)

where

p = (nz&a, )'/'r

(24)

and the energy eigenvalues associated with the n
and E quantum numbers are

E= (2n+l+-2')(uO.

Now the term containing the highest power of x in
the integrand of Eq. (18) is

I (+) em+ r2+N+2n/+ 2nl+1 f+l 1+2

which has an extremum at

1' = (2m+2) (N+ 2n/+2nl +1/+f1+ 2) .
The condition eaF &N now leads to

)
+ / l p l n/-l/ 1 nl caro& 2 N(N+ 2n/+ 2nl +l&+l1+ 2) (25)

where p/ ——2Zr/ll/a2, pl ——2Zr/nla2. When written
directly in terms of x, this is

gy 1 1T(r)- exp ———+ — r"'"/'"' .
ap ny n]

The extremum of Eq. (19) is at

where rp is the radius characteristic of the har-
monic -os cillator problem,

1,=(m(u2) '".
From the radial integral of the two-fields problem
of Eq. (13), the trivially modified:. esult

eal'2& 2'/ N(N+2n/+2n, +l/+l, +3) ' 2 (26)
r = ~ (N+ n/+ nl)Z ny+ ng

(20)

Beyond this va, lue of 1, exponential damping of I(r)
occurs, and little contribution to the radial integral
is to be expected. The condition (16) will be inter-
preted as ear &N, with i given by Eq. (20). This
yields directly the intensity-parameter limitation

1 1
eaap & +

N +n~+n~ n~ n~
(21)

ZN fl
eaap &

I

—+-
N+ng +n(+1 l, ny n]

(22)

which is a trivial change in view of the N» 1 condi-
tion. If, in addition to N» 1, it is also true that
N» n/ and N» n„ then Eqs. (21) and (22) yield the
¹independent result

If the above considerations are applied to the radial
integral of Eq. (13) instead of Eq. (8), substantially
the same results a,re obtained. It is found that Eq.
(21) is to be replaced by

is obtained. Both Eqs. (25) and (26) reduce to

ear, & (2N)'", (27)

when N is much greater than all the n and l quantum
numbers. Note that Eq. (27) is not independent of
N as was Eq. (23), and that Eq. (27) taken together
with N» 1 implies a broad domain of applicability
for the Bessel-function approximation [Eq. (4)].

B. Low-Intensity Limit

The requirement that N» 1 employed in the pre-
ceding section is a natural one to be consistent with
ld/E «1 expressed in Eq. (1). When we deal with
the single-field or resonant case, N»1 is an in-
escapable consequence of ld/E «1; but in the non-
resonant case, when a second field participates in
the transition in addition to the intense field, then
it is possible to have ld/E «1 and also have N be
1, 2, or any other integer. The results following
from Eq. (4) can be sustained without requiring
N»1, if it is required instead that

eaap &Z —+— (23) Ieax ~I«1. (28)

More conservative conditions would be obtained if
it were required that ea~F'&N, with z some con-
stant greater than unity.

Another example with somewhat different proper-
ties is provided by the three-dimensional harmonic
oscillator. The radial wave functions for this
problem may be written

The condition (28) now takes the place of the two
conditions (15) and (16) to provide a justification of
Eq. (4).

The results of the preceding section may be em-
ployed directly if the N which appears in Eq. (16)
is replaced by unity, and the symbol & is replaced
by «. That is, Eq. (22) for the Coulomb case be-
comes
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g 1 1&
eaao« —+— (29)

N+n&+n~+ 1 n~ n» j
and the harmonic-oscillator result [Eq. (26)] takes
the form

is applied to the problem of multiphoton 1s-2s tran-
sitions in hydrogen, the result obtained for the T
matrix is (see also Ref. 4)

ea xo«2 (N+ 2n&+ 2n, +ff +l j + 3) (30)

An explicit example in which these conditions
may be applied is provided by the case of a transi-
tion with m&= 2, n~ —-1, and /, =l&=0 in hydrogen
(Z= 1). The results for this problem with N=1 are
presented in Fig. 1 of Ref. 3, which shows a de-
parture of perturbation theory from momentum-
translation approximation at values of y ~ 0. 2 (where

y is defined as -', eaao) or eaa0~0. 3. The relevant
condition to be applied here is Eq. (29) which, with
the appropriate parameters substituted, yields
eaao«0. 3 as a condition for validity of the low-
intensity approximation. Other comparisons for
larger 6' values also verify the reliability of the
conditions given above.

The differences between the high-order and the
low-intensity case are twofold. The high-order
case leads to a significantly larger range of inten-
sity over which the approximation is valid, as can
be seen immediately by comparing the high-order
conditions (21), (22), (26), and (27) with the low-inten-
sity conditions (29) and (30). However, the constraint
(15) on the multiplicity of the process is absent in
the low-intensity case.

IV. DISCUSSION

The great advantages of the methods presented
here are simplicity and generality. For example,
the matrix element given in Eq. (8) requires only
a knowledge of radial wave functions. If these wave
functions are known analytically or numerically,
the final result requires only a single integration
and the performance of a. finite sum. Equation (11)
when combined with Eq. (12) requires only a single
integration and three finite sums, two of which can
contain no more than three terms each. The re-
sults thus obtained are approximations to perturba-
tion theory of arbitrarily high order. High-order
perturbation theory when done directly presents
truly formidable analytical difficulties, in contrast
to the very simple results presented here.

The possibility of obtaining closed-form analyti-
cal results for high-order processes provides an
opportunity to examine nontrivial general features
of high-order processes. For instance, if Eq. (14)

T(N) = Cx "(N+ 3)(N+ 1) (32)

where it is understood that 0—x & 1, and C is inde-
pendent of N (except for the trivial phase factor
i"). Equation (32) has an extremum when

N= —2+ 2( —»)-'+[1+ (-lnx) '+ —', (-lnx)-']'" .
This extremum will occur at N = 1 when y = 2x
= 0. 57, and at N = 3 when y = 2x = 1.03. These in-
tensity values lie outside the region of validity of
the present approximation method, and are not
acceptable as correct predictions. The correct
locations for the extrema come from the complete
momentum-translation approximation results given
in Ref. 4, which exhibit an 8=1 extremum at
y = 0.34 and an N = 3 extre mum at y = 0.78. Never-
theless, Eq. (31) has the general character of
showing an enhancement of large-N effects, so that
low-order processes do not dominate high-order
processes in such an overwhelming way when y is
relatively large [i.e. , when y approaches the limits
imposed by Eq. (22) or Eq. (29)]. The polynomial
in N, which multiplies the (yy)" factor in Eq. (31),
may be regarded as arising from the net effect of
all the "diagrams" which can occur. Such "dia-
grams" can be very great in number, and Eq. (31)
gives (at least approximately) the sum of all such
diagrams including cancellation effects.

x (N+ 3)(N+1)2 (31)

in the notation of Refs. 3 and 4, where Y = —', eaao
and y

' = —', ea ao. As expected this contains a factor
(eaao), which means that the transition probability
depends upon the intensity of the field raised to the
power N -the multiphoton order of the process.
Since ~y is constrained by the intensity limiting
condition Eq. (29), it must be less than unity, and
(yy)" is a factor which declines as N increases.
For any "ordinary" intensity, the transition am-
plitude is so strongly damped by (~y)" that only
low-order processes need be considered. How-
ever, since Eq. (31) is a closed-form result,
another feature appears which is not obvious. When
Wbecomes large, the transition amplitude is en-
hanced by a factor which increases as 1V'. Equa-
tion (31) depends upon N as
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We analyze the phase modulation, or chirping, of coherent lossless light pulses propagating
without distortion through resonant absorbers. In order to do this, we generalize the pioneer-
ing work of McCall and Hahn in two different directions. In the first place, of course, we
abandon their assumption that the phase of the pulses has no temporal dependence. We prove
that for slowly varying single pulses, chirping is not possible. However, we describe many
multiple-pulse trains which are necessarily chirped, even under the slowly varying envelope
restriction, and also describe the envelope modulations which produce large chirps. We
show that certain zero-~ chirped pulse trains are contained as special cases of our general
results. Our second generalization of the Mc Call-Hahn work concerns the background mate-
rial inwhich the two-level resonant atoms are suspended. We allow the host medium to pos-
sess significant nonresonant nonlinearities. We find that undistorted lossless single pulses
are possible in such a medium and that they are necessarily chirped.

I. INTRODUCTION

The discovery of self-induced transparency (SIT)
by McCall and Hahn has focused attention again on
the very old problem of light propagation in dielec-
trics. Even before 1920 the classical investiga-
tions of Sommerfeld and Brillouin, among others,
were sufficiently complete and in accord with ex-
perimental observation to discourage further seri-
ous study. However, the I orentz linear model of
dielectrics, the model used in those early studies,
is adequate only if the light intensity is low, or if
the light frequency is far from any of the atomic
resonances of the dielectric medium.

It is only in the past decade that intense and
practically monochromatic laser light has been
available as a strong probe of optically resonant
systems. The response of such systems, when
strongly probed at resonance, is not well described
by the Lorentz model of harmonically oscillating
charges. Important nonlinearities arise in the
light-dielectric interaction, and these are instru-
mental in producing a wide range of nonclassical
effects, such as SIT, photon echoes, optical nuta-
tion, and others. The very recent achievement of
continuously operating and continuously tunable dye

lasers promises to add further impetus to modern
experimental studies of light propagation in reso-
nant dielectrics.

One of the most interesting of the' new phenomena
observed in high-intensity coherent light propaga-
tion is frequency modulation of the electric field.
By analogy with similar phenomena which are com-
mon at much lower frequencies, a frequency-mod-
ulated electromagnetic wave is said to be "chirped, "
and we will use this terminology frequently.

In this paper we analyze situations in which
chirped optical waves may occur in SIT. In addi-
tion to a time-varying field phase we also allow
nonresonant nonlinearities of the host medium in
which the resonant atoms are imbedded.

We imply several restrictions on our work by
the words chosen to describe it. By SIT we mean
the propagation without distortion of an electric
wave's envelope and phase through a medium con-
taining resonant atoms. Because we will always
work close to resonance, we assume, along with
Mccall and Hahn, that the resonant atoms may be
treated as if they had only two energy levels sep-
arated by a transition frequency almost equal to
the field-carrier frequency. In the most general
case, these atoms are embedded in a host medium


