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The line shapes of absorption spectra of trapped electrons in metal-ammonia solutions,
water, and alcohols are compared in detail with photodetachment spectra of spherical poten-
tials, which have been applied extensively in liquid helium. A qualitative discussion is pre-
sented to point out some uncertainty in the role of the bound-bound transition 1s —2p, which

is predominant in the dielectric continuum model.

Apart from the uncertainty related to the

effective mass of the polaron, the coherence of the 2p state in the more realistic fluctuation
potential is likely to be small. A molecular model for the trapped electrons is briefly de-

scribed.

I. INTRODUCTION

In this paper, we propose a phenomenological
model for the absorption spectra of solvated elec-
trons in noncrystalline polar media. The essential
feature of the model is the use of a finite-range
potential with only one bound state, in contrast to
the more familiar polaron potential with a screened
Coulomb potential. ! Although the polaron model
predicts the transition energies corresponding to
absorption maxima with reasonable choice of pa-
rameters, the broadness and asymmetry of the
spectral profile could not be generated without in-
troducing additional parameters such as a distribu-
tion of cavity size. Judging from the stability of
the line shape with respect to the decay time and
also to the temperature in systems such as metal-
ammonia solutions and liquid water, it is difficult
to believe that a distribution of the trap depths or
vibronic couplings, which undoubtedly contribute
to the spectral profiles to some extent, is the
major factor for the observed spectral profiles.

The spherical potential well, which is the sim-
plest model for finite-range potentials, has been
applied for photodisintegration of deuteron® and for
the trapped electrons in liquid helium. 3<% The
photodetachment spectra of spherical potentials,
however, have not been compared in detail with the
absorption spectra of the trapped electrons in mo-
lecular liquids. Although the basic elements of the
spherical potential are well known” and quite
straightforward, the actual computation is rather
complicated because of the interference effect of
the virtual states (p-wave resonance in particular)
with the plane-wave states. The line shapes of the
photodetachment spectra turn out to be sensitive
functions of the parameters: the range and the
depth of the potential. The spherical potentials
studied by Breit and Condon? and by Wang® were
found to be either too shallow or too deep for met-
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al-ammonia solutions, water, and alcohols.

Clearly, the spherical potential is a drastic sim-
plification of very complicated real potentials.

But the choice of other forms of potentials, such
as a rounded potential proposed by Springett, ® does
not seem to have a definite advantage over the
spherical potential, at least in our problem, be-
cause of the unknown factor associated with the use
of less accurate wave functions and also with the
physical meanings of additional parameters.

As long as a finite-range potential contains only
one bound state, the optical response of the trapped
electron in the potential is always a broad band
regardless of the detailed difference in the form of
the potential. As discussed inSec. IV of this paper,
the range and the depth of the potential arise from
fluctuation in transfer and polarization energies
within the framework of tight-binding approxima-
tion. In polar systems, with which we are con-
cerned, there is additional potential which arises
from relaxation of permanent dipole moments. The
latter is approximated by a smooth Coulomb po-
tential in the dielectric continuum model.® In this
model, the 2p state in the long-range Coulomb po-
tential is the most important state in determining
the absorption maximum. ! It has been pointed out
by Frohlich? that the Coulomb potential alone does
not necessarily localize an electron and also the
actual potential is more flat than a Coulomb poten-
tial when the excess charge is regarded as a par-
ticle rather than a source of a field. The role of
the Coulomb potential depends upon the effective
mass of the polaron,which is beyond the scope of
this article. In Sec. I, we examine the physical
significance of the smooth Coulomb potential in
terms of more realistic fluctuation potentials and
indicate that the coherence of the 2p state is too
small to be meaningful for further elaboration, such
as a detailed consideration of the vibronic linewidth

of the 2p state.

808



| o

II. ROLE OF BOUND STATES IN ABSORPTION
SPECTRA

Let us begin with the description of a localized
electron in the conventional dielectric continuum
model. The electron feels a Coulomb potential at
large distances from the center of localization be-
cause of the difference in the optical and static di-
electric constants. Because of the finite extension
of the electron distribution, the short-range inter-
action is of a non-Coulombic type which can be
quite complicated, but could be approximated, for
example, by a square well potential for computa-
tional purposes. This type of potential in general
accommodates a large number of excited states in
addition to the ground state because of the long-
range character of the Coulomb potential. In this
case, the optical response of the ground-state
electron can be described as a sum of all transi-
tions to the excited states and the ionized states.
Unless one introduces additional parameters be-
sides the shape of the short-range potential, the
largest oscillator strength is taken up by the tran-
sition corresponding to 1s~ 2p. The peak of the
absorption spectrum is likely to correspond to the
transition energy 1ls- 2p, while the line shape or
the broadness might be “explained” by vibronic in-
teractions or by a distribution of the trap depths
arising from fluctuation of the short-range poten-
tials near the center of the localization.

It is therefore crucial to understand the role and
the meaning of the 2p state in the context of the di-
electric continuum model. For this purpose, let
us consider the physical meaning of the long-range
Coulombic potential which is “smooth” in the di-
electric continuum model. If one examines the
electron potential on a microscopic or molecular-
scale level, one finds that the potential is by no
means a smooth one, but is fluctuating from site
to site. This fluctuating potential arises from a
short-range and instantaneous interaction of the
electron with its immediate vicinity. To convince
ourselves on this point, consider the potential at
a given distance R from the center of localization.
The potential depends upon the nature of the point
under consideration: whether it is right on top of
a molecule, or whether it is an intermolecular site
of varying surroundings. The order of magnitude
of such afluctuation potential is estimated to be 1
eV. This situation is schematically drawn in Fig.
1. The smooth potential of the dielectric continu-
um model is then considered to be an ensemble av-
erage of these fluctuating potentials whose pat-
terns are different for different electrons. Let the
smooth potential be V, and the fluctuating potential
belonging to the ath electron be V, ; then we have

Vs=<Va>’ (2' 1)

where () means the ensemble average. The po-
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tential V, has a set of eigenfunctions, ¢f,, ®%;...,
which satisfy the Schrédinger equations

‘Ha ¢f=€f ¢‘:’ i=0,1,2,... (2.2)
where
H=-3A+V,, (2.3)

where — ;A is the kinetic-energy operator in atom-
ic units. The transition probability corresponding
to the transition energy, 7w, is given by

| M%) =2 | (98] eT|0D]*0(hw — €+ €3) ,
(2.4)
where ¢g=¢i,.
The eigenfunctions belonging to the Hamiltonian
HU,

Ha=_%A+Va9 (25)

are not simple, but are calculable in principle.
They satisfy

H°‘¢’7=€7¢7’ j=0’1,2,'-- (2.6)

where the subscript j designates the eigenstates in
which the angular momentum may not be a good
quantum number. The transitionprobability for the
ath electron can be written as

| M *w)|2=20| (o8] eT] 92| 60w - €2+ €) .
2.7)
An experimentally observed spectrum corre-
sponds to the ensemble average of (2.7) over a
large number of a.
The basic premise of the dielectric continuum
model is to assert that

| M *(w)] %~ (| M *(w)] ?) . (2.8)
In order to understand the range and the condi-

tion of validity of (2. 8), let us introduce the follow-
ing assumptions. The short-range potential near
the center of localization in each structure « has
the same form and is so étrong that the ground-
state wave functions ¢g¢ and their binding energies
€ are all equal to ¢§ and €5, respectively. With
these assumptions, (2.7) can be written as

| M *w)|2=Z, | @8] eT| 6| 20(hw - €5+ €) . (2.9)

FIG. 1. Schematic electron potentials in polar media.
The smooth solid line is that of the dielectric continuum
model and the dotted line includes the effect of fluctua-
tion potentials of disordered molecular arrangement.
The central part is drawn as that of a square well, but
the argument in the text is independent of the detailed
nature of the short-range potential.
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The ensemble averaging in (2. 8) is reduced to the
problem of finding the average of ¢, which can be
expanded in terms of ¢ as

E ¢k(¢klAV [¢j)

oF=¢i+ R , (2.10)
where

AVy=Vy4-=Vq (2.11)
and

€f=¢€f. (2.12)

Equation (2. 12) can be satisfied for all ¢} because
there are a large number of electrons in the sys-
tem. Using (2. 10) and (2. 12), we get

SR

A\ _ 4S8
(o7)=05+ o (2.13)
It can be seen easily that if
(AVe ) =(aVa)($]) , (2.14)

Eq. (2. 8) is valid because
<Ava>=< Voz) - Vs=0

by (2. 1) and (2. 11).

The validity of the dielectric continuum model,
therefore, depends critically upon the statistical
dependence or correlation between AV, and the
wave function ¢§. The quantitative estimate of the
degree of this correlation is very complicated, but
is closely related to the problem of finding the
mean free path or the cross section for scattering
as a function of the wave number of the electron in
disordered systems. If the effective wave number
k of the state ¢§, which is related to its binding
energy by e}"zﬁzkz/Zm from the virial theorem, is
so small that ka<< 1 (a is the lattice constant or
the intermolecular separation), the wave function
is insensitive to a small variation of the scattering
potential AV,. This is equivalent to the notion that
an electron with a very long de Broglie wavelength
cannot respond to a small fluctuation. This is
known as the optical approximation. For the states
corresponding to high Rydberg series, (2. 14) is
approximately valid.

On the other hand, when ka=1, the wave function
¢ can respond easily to a variation in the poten-
tial AV,. These two quantities are statistically
dependent and (2. 14) is not valid. In the scatter-
ing picture, this is the region of %k in which the
mean free path drops rather sharply to a length
comparable to the intermolecular separation. For
ka>1, the mean free path increases again, but
such a case is of no interest in our problem.

The binding energy of a 2p electron for ka=1
would be about 1 eV for a=3.5 A. In this case, the
2p state is heavily mixed with other states which
carry little transition moment from the ground
state. The effective transition moment of 1s~2p
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is accordingly depleted. If the binding energy of
2p electron is 1 eV and the mean free path is 3.5
f&, the mean lifetime of the 2p state becomes of
the order of 107! sec,which is less than the time
required for the optical transition. Such a transi-
tion is not observable.

The physical significance of the long-range
smooth potential is then limited only to high Ryd-
berg states in a narrow region of energy just be-
low the polaron conduction band, even if the long-
range potential is at all relevant. In this paper,
we ignore the contribution of these states to the
absorption spectrum and concentrate on the bound-
free transitions.

III. PHOTOIONIZATION CROSS SECTION

The purpose of this section is to outline the
method of calculation for the photoionization cross
section of an electron in a spherical potential well.”
The depth of the potential V, and the binding energy
of the lowest bound S state, E;, will be expressed
as

Vo=AV, (>1), 3.1)

Ey=yV, (>7>0), (3.2)
where

V,= 1% %/8ma’ (3.3)

and a is the radius of the potential.
The wave function for the lowest bound S state is
written as

do (r09)=R(¥) Ygo(6 ) , (3.4)
where
Yoo(b) = 1/(4m*/ 2, (3.5)
ST _ /2
R()=A, sin[37 (A :) (/a)] (r<a) 3.6)
-¢, exp[-3 ;/2 (v/a)] roa). (G.7)

The coefficients A; and Cy and the parameter y
can be determined by requiring the continuity of
the logarithmic derivatives at »=a and the normal-
ization.

The continuum wave function, which is charac-
terized by wave vector &, is written as

Up(rog)= V-2 > i RE (v) Y;.(60) , (3.8)
where Hoo et
Rt (¥)=B,, j;(ax) (r<a) (3.9)
= A [ (cosd,) j (k) - (sind ;) n,(k¥)]

(r>a), (3.10)
a.=(n/2a) (x+ k)2, (3.11)
KV, =1 %%/ 2m , (3.12)
App=41Ql+1)i’' e Y*(6,0,) , (3.13)



(K=

(cosd,) j,(ka) - (sind,) n,(ka)
jl(aca)

Blm'_'Alm
(3.14)
In (3.8)-(3.14), j, and n, are the spherical Bessel
and Neumann function, respectively, 6§, is the
phase shift, 6, and ¢, express the direction of the
ejected electron, and V is the volume of the sys-
-tem which is to be made very large eventually.

The differential cross section of photoionization
into the solid angle d§ is given when the polar axis
(or the z axis) is taken to be parallel to the direc-
tion of electric vector of incident light:

do=5"-522—’:7§’;%z\zw|2dn, (3.15)
where

wro=r+x) V/1, (3.16)

dQ = (sinf,)db. dy, , (3.17)

Zyo=(4(r89)| Z| %(r60)) . (3.18)

The detailed expression for (3. 18) is given in the
Appendix. The dipole approximation, which is as-
sumed in writing (3. 15), is expected to be a good
approximation when the following conditions are
fulfilled:

(2.48%10%) B2 <72 k?/2m(eV) < 108,
(3.19)
7%%/2m(eV) < 1. 24x 10%/a ,

where E; is the binding energy of the ground state,
(3. 2), inunits of electronvolts, ais the radius of the
potential in units of angstrom, and#%22/2m is the en-~
ergy of the ejected electron. These inequalities corre-
spond to the condition that the wavelength of the in-
cident light must be much larger than the magnitude
of the reciprocal wave vector of the ejected elec-
tron and also the reciprocal of the potential radius,
respectively. Since the binding energies and the
transition energies for the systems of our interest
fall in the range of a few electron volts, the dipole
approximation is valid except at the threshold en-
ergy for ionization.

The total cross section ¢, which can be obtained
by integrating (3. 15) over the solid angle, is re-
lated to the oscillator strength distribution f by

f=(mc/21%%n)0 . (3. 20)

The cross section was calculated as a function of
the transition energy using UNIVAC 418 and the re-
sults weredrawnbya CALCOMP 565 plotter.

The sum of the oscillator strengths for the
ground state should be equal to unity for one-elec-
tronproblems such as ours (the sum rule). This
fact was used to check our computation. We have
also found that our photodetachment spectra be-
come identical with Wang’s calculations when the
magnitude of the parameter ) is increased beyond
the region of our interest. When the potential be-
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comes deeper so that x >4, the potential accommo-
dates an additional bound state of p type. For such
deep potentials, the photodetachment spectra are
quite different from those corresponding to x <4
and consist of more than one peak of comparable
intensities.

In Fig. 2, we compare the spectra in our calcu-
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FIG. 2. Comparison of absorption spectra for the
exact continuum wave function (solid line) and the plane-
wave approximation (dotted line). (a) and (b) are for
A=1.5 and 2.5, respectively. A is a measure of the
binding energy [see Eq. (3.1)]. The radius of the poten-
ial is taken to be 5 A.
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lations with those in which the continuum wave
functions are approximated by plane waves. ! It
can be seen that the plane-wave model is not a very
good approximation for x> 1.5, where the effect of
the p-wave resonance is significant both in the
shape and the peak energy of the spectrum. For
the range of the parameters in which the potential
has only one bound state, the absorption spectra
become more asymmetric for shallow traps: sharp
rise near the low-energy threshold and gradual
“decay” in the higher-energy side of the peak,
while the spectra for deeper traps are less asym-
metric because of the interference effect of the p-
wave resonance, 2

IV. MOLECULAR MODEL

The purpose of this section is to present a mo-
lecular model for the phenomenological potential of
Sec. III. It is convenient to consider the trapping
process in two stages of the time scale—before
and after the dielectric relaxation. The electron
can be localized by inelastic scatterings in the pre-
existing fluctuation potential first and then the di-
electric relaxation effect sets in to increase the
depth of the potential. It is indeed possible to ob-
serve the spectrum of an unrelaxed electron either
by slowing the relaxation effect at low tempera-
tures®® or by studying the time dependence of the
spectrum. * Whether the center of the localization
is an intermolecular site (cavity of a certain di-
mension) or a molecule itself should be decided by
calculation rather than choosing arbitrarily. In the
following, we consider a theoretical model for the
localized states which describes the stage before
the dielectric relaxation.

It has been known that the electronic states in
disordered structures®® could contain localized
states in addition to extended states,provided fluc-
tuation of potentials exceeds a certain critical val-
ue at some locales. An actual quantitative proof
of this statement for a given system is not a sim-
ple matter, but we assume this to be valid for all
the systems in which the absorption spectra have
been observed. In order to find the nature of these
fluctuating potentials, we start by writing a one-
electron Hamiltonian for the excess electron in a
given disordered system a as

Hy=-30+2,0,(F-R,), 4.1

where v, is the electron potential (or pseudopoten-
tial) arising from the nth molecule and ﬁ.,, istheco-
ordinate of its center of gravity. Note that v, is
not spherically symmetric in general. The sub-
script « designates a specific arrangement of

molecules, a(R;, Rjs,..., Ry). The eigenfunctions
of (4.1) are defined by
Hy|tu)=€E,), £=0,1,2,... (4.2)

where € is the £th eigenvalue and at least the low-
est state, 10,), is assumed to be a localized state.

The transition-moment density corresponding to
the transition energy E, | M (E)|% for an ensemble
of disordered structures can be written as

|M(E)| 2= —— 20 [(04]eT|ta(@))[2,  (4.3)

"QAE
where the summation is over a and also all the
states between E and E + AE for a given structure,
and € is the number of structures. The transition
energy is measured from the ground state for each
structure.

One method of calculating (4. 3) is to expand
| £,) in terms of the Wannier function |#) which is
associated with site z:

|£4)=20,Clln) , 4.4)

where the coefficients C;, are to be determined by
the variational procedure. Writing the dipole op-
erator er in (4. 3) as

eF=eZ,,|n)ﬁ,,(nl , (4.5)
we obtain
(04]er|ta)=e 25, R,CS, CL (4.6)

Using (4. 3) and (4. 6), the absorption spectra were
computed for a linear chain of 22 nonspherical mol-
ecules in our previous work. !

The expansion (4. 4) in terms of the single-band
Wannier functions |[z) is equivalent to the approxi-
mation of using the projected Hamiltonian of (4. 1):

PH,P=03 |n)(n| -38+2 v, (T =R, |23 |m)(m|

=27 |n) ap(nl + 22 | 1) Bumim| , (4.7)

n n#m
where a,, is the polarization energy of the electron
at site » and 8,, is the transfer (or exchange) en-
ergy between sites nm. The Wannier functions
In) in practice must be approximated by wave
functions either of the negative ion or alow-ener-
gy resonance state'? associated with site #.

If the polarization energy a,, is taken to be a
constant, the fluctuation potentials that localize
the electron arise from fluctuations in B,,, which
is a function of the distance between nm and of
their relative orientations.

The physical picture of the trap itself in this
model is then a cluster of molecules which happen
to have the right configuration in lowering the local
electronic energy below the quasifree state. !’
This is essentially a resonance stabilization ef-
fect. The simplest such cluster would be a dimer,
Since a localized state in three-dimensional space
requires exponential decay of the wave function in
all directions, the minimum size of the cluster
could be greater than 2.

When the dielectric relaxation or the local de-
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FIG. 3. Relative energies for two water molecules
plus an excess electron. The O-O distance is 2.7 A
for all configurations and each molecule has the equi-
librium configuration in gas phase (no bond stretching).

formation such as bond stretching takes place, the
cluster size is likely to be reduced. It is possible
that the center of localization may correspond to
a void or cavity in the medium under certain con-
ditions. Some results of our dimer calculations
are given in Fig. 3, where each relative energy
represents a result of a 21-electron self-consis-
tent-field (SCF) calculation. The absolute ener-
gies were found to be sensitive to the choice of
wave function for the excess electron. A more de-
tailed description of these calculations will be pub-
lished separately. !®

It is important, however, to realize that a de-
tailed calculation, such as Fig. 3, is meaningful
in understanding the trapped state itself or the
electron spin resonance (ESR) spectrum, but insuf-
ficient for the purpose of understanding the optical
spectrum. For the latter, equally elaborate cal-
culations for all the excited and ionized states are
required. Experimentally observable spectra are
the ensemble averages of these molecular calcula-
tions.

V. DISCUSSION

The most important factor that we have omitted
in our phenomenological model may be the effective
mass® of the polaron. Electrons in the quasifree
state in polar media, or even in nonpolar media,
do not necessarily have the same mass as a free
electron. The problem requires a much more de-
tailed understanding of the dynamic behavior of the
mobile electrons. The relative importance of the
long- and short-range potential can also be related
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to the magnitude of the effective mass. The prob-
lem is further complicated by the possibility of en-
ergy dependence of the effective mass and, also,
the effect of low-energy resonances arising from
fluctuation potentials of disordered structures.

The relevance of our two-parameter potential to
real systems is therefore not too clear at this
time. By the same token, the meanings of a
smooth long-range potential and its 1s -~ 2p transi-
tion must be studied carefully before one embarks
on a detailed calculation or parametrization.

Keeping these uncertainties in mind, and also
allowing the possibility of other factors, we have
made a comparison of our theoretical results with
some experimental results. In these curve-fitting
processes, we have not introduced any additional
parameters other than the depth and range of the
potential. We do not expect a good fit in cases
where fluctuation of these two parameters is ex-
pected to be important: for example, in low-tem-
perature glasses, or where mixing of other entities
such as free radicals is suspected.

In Figs. 4-6, the observed spectra in metal-
ammonia solutions, !° water, ? and ethanol'®'?! are
compared with the results of the two-parameter
model. The parameters are summarized in Table
I. In these figures, the observed and calculated

0]

k(m)

REL. 0.D.

0.5 1.0 1.5
TRANSITION ENERGY (eV)

FIG. 4. Comparison of experimental (solid) and the-
oretical (dotted) absorption spectra for metal-ammonia
solutions. The specification of each curve is given in
Table I.
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spectra are normalized at their peak energies.
Coincidence of the transition energies at the peaks
therefore has no meaning. Since the theoretical
transition energy at the absorption maximum is
related to the depth V; and the radius a of the po-
tential, the curve-fitting procedure automatically
determines the magnitudes of the binding energy E,
and a, which in turn can be compared with nonop-
tical experiments. It is clear that experimentally
observable quantities, such as the heat of solution
and the activation energy for detrapping the elec-
tron, are related to the binding energy E,. [ Eq.
(3. 2)] rather than the depth of the potential itself.
Furthermore, the binding energies relevant for the
optical ionization are greater than those for ther-
mal ionization by some unknown factor, probably of
the order of 2-3, because of the Franck-Condon
principle. It must be remembered, however, that
the optimum sets of E; and a, which can be obtained
from curve fitting, are meaningful only for the
square well potentials, which may not be the best
model for real potentials.

The experimental information pertinent to E; and
a is not too abundant. = The magnitudes of the ra-
dii for metal-ammonia solutions and water in Table

TABLE I. List of parameters.

System Fig. A a () Temp. Ref.
Na— NH;, K— NHg 4(a) 2.65 3.63 -65°C 12(a)
Na-NH; 4(b) 2.6 3.61 -70°C 12(b)
K-NH; 4(c) 2.7 3.88 ~47°C 12(c)

H,0 5(a) 2.6 2.47 —-4°C 13

H,0 5(b) 2.5 2.62 90 °C 13

D,0 5(c) 2.3 3.02 300°C 13

Ethanol 6(a) 2.6 2.30 —-78°C 14

Ethanol 6(b) 2.65 2.19 77°K 6

I are consistent with the “cavity” radius, 2 ~3.2 A
for the former and the ESR hyperfine structure®
in ice for the latter.

Comparison with the heat of solution, which was
calculated by Copeland, Kestner, and Jortner, lis
beyond the scope of this paper, because the heat of
solution involves the relative energy of the quasi-
free polaron state with respect to vacuum in addi-
tion to the binding energy E,.

The most striking feature in Figs. 4-6 is the
general agreement of the shapes of the spectra,
except for the low-temperature glass, ethanol, and
water at 300 °C. In water, the spectral profile re-
mains remarkably constant® over the temperature
range —-4-90°C. It is not easy to understand this
phenomenon in terms of any simple model. In par-
ticular, if the broadness of the spectrum arises

08—
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FIG. 6. Comparison of experimental (solid) and the-
oretical (dotted) absorption spectra for ethanol. The
specification of each curve is given in Table I.
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from vibronic couplings of 1s~ 2p transition, one
would expect an increase of the half-intensity width
with temperature. The vibronic coupling alone is
not likely to explain the magnitude of the width,
which is ~0. 9 eV in water. This observation may
also apply to the case of metal-ammonia solutions. t

A recent work by Kawabata® indicates the photo-
bleaching efficiency of the absorption spectrum of
the solvated electron in ice is small for a photon
energy lower than that of the absorption maximum.
A similar effect has been known in alkanes.?® This
effect has been interpreted to be the manifestation
of final states being the bound states, at least in the
long-wavelength side of the spectrum. This inter-
pretation is by no means unique. The same effect
can be interpreted in the photodetachment scheme
such as ours in the following way. The photo-
bleaching efficiency is the net result of detrapping
and retrapping of electrons. If the retrapping
cross section decreases with the energy of the
ejected electron, the observed effect can be under-
stood. The most important mechanism for retrap-
ping is likely to be through the low-energy virtual
states, which have the property of localized states
embedded in the continuum of states. Unless one
considers retrapping at the original trap, from
which the electron is ejected, these virtual states
arise from relatively shallow fluctuation poten-
tials. In this case, only s-wave virtual states are
important. The s-wave resonance scattering cross
section, as any other resonance cross section, is
significant only in a low-energy region!? and does
not vanish at zero energy, unlike the p-wave reso-
nance.

Zot,10= {0 (¥80)| 2| Yo (r690)), <4
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The total oscillator strengths are always unity
in our model, while the experimental values for
metal-ammonia solutions and water are less than
unity. We have no explanation for this discrepancy.
It is possible that ab initio calculation of the oscil-
lator strength may be beyond the scope of any one-
electron scheme.

We have also examined experimental spectra
other than those given in Figs. 4—-6. The results
are similar to those of Figs. 4-6. A relatively
large discrepancy was also observed in methanol,
as in ethanol of Fig. 6, for the short-wavelength
side of the absorption maximum. This discrepancy
can be interpreted to arise from absorption of some
free radical® produced by radiolysis.

Our two-parameter model seems to generate the
width and the asymmetry of the absorption spectra
with fair accuracy, considering the simplicity of
the model. This fact alone does not justify the
model itself, but seems to indicate that the model
is not totally irrelevant to real systems. Before
we proceed to improve the curve fitting, it is im-
perative to understand at least the qualitative sig-
nificance of additional parameters. The main
problems are the role of high Rydberg states and a
more accurate description of the quasifree states
in disordered systems.

APPENDIX

The z component of the matrix element, zg;, in

(3. 15) can be separated into two factors:
20t = Zok,1n + 20E, out » (A1)

where

=V 26 Ay By (37"/3) cose,

[l

aga

sin(a,a-oga) sin(a,a+aga)
a.a-aga

a.a+aga

a.a-oga

(cos(aLa —aga) cos(a a+ a a)> . (sin(aca -aya)

20%, out = { Va0 90) 12| 90(r89)), 54

e -Bga

ka[(ka)®+ (Bya)®]

= V243G Ay [3(4m)*Y/ | coso,

a.a+ e

in/
_sinf{aga+ay a))] . (a2)

(0, a - aga)? (a,a+aga)®

1 . . 1 .
x[c\:osf)l(—k; (Bya sinka + ka coska) — (Ryacoska — kasinka) - %+ (Boal® [(BEa® - K2a®) coska - 2kaBqa smka])

. 1 . . 1 2 2 12 2 . )2]
_smﬁl( e (Boa coska — kasinka) - (Boasinka+ka coska)—m [(BE a® - k?a®) sinka + 2kaBa coskal) |,

(A3)
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Al =3ie7i% (A4)
10
, 6,j1(ka) — sing, ny(ka)

’ = A C0S0171 17 , A5
Bip=4y ) (A5)
1 sin204a sin®qga \ /2

VY 0 0
Ao=a (2 4oha * 2Bya > i (46)

1 sin2qya  sin®aga Y2
=aV?%f% sinqyaf = - 0= 9
CO a € 0 2 4aoa zﬁoa ’

(A7)
ay=(1/2a) (A =)V, (48)
Bo=(n/2a) "' 2. (a9)

By inserting (A1)-(A9) into (3. 15), it can be easily
shown that (3. 15) does not depend on V. This can
be more clearly expressed as

2
me“k w
do= chﬁé | 202|510 d 02

in the limit of V=~ e,
It should be also mentioned that ¢ and w, o depend
on a as

(A10)

cxa?, (A11)

weoxa?, (A12)

when ) and % are fixed. Thus, we can get o-vs—
transition-energy curves at various a very easily
from the results calculated at an arbitrarily chosen
value of a. The fact that the shape of a o—vs-tran-
sition-energy curve is determined only by 2 is very
important in our case; otherwise it may be almost
impossible to perform the curve-fitting procedure.

*The Radiation Laboratory of the University of Notre
Dame is operated under contract with the U. S. Atomic
Energy Commission, This is AEC Document No. COO-
38-830.
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