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The long-time behavior of velocity-correlation functions p "'(t) characteristic for self-diffu-
sion, viscosity, and heat conductivity is calculated for a gas of hard disks or hard spheres
on the basis of the kinetic theory of dense gases. In d dimensions one finds that p" (t), after
an initial exponential decay for a few mean free times to, exhibits for times up to at least
-40to a decay - & " (p)(to/t)"~, where e'" is of the order of p" ', p=na" with n the number den-
sity, and a the hard-disk or hard-sphere diameter. The 0.'"'(p) are determined by the same
dynamical events that are responsible for the divergences in the virial expansion of the trans-
port coefficients. In this paper the n "

(p) are calculated to lowest order in p. In this order,
they are identical to the low-density limit of the G.' "'(p) that have been obtained by other authors
on the basis of hydrodynamical considerations.

I. INTRODUCTION

Recently Alder and Wa, inwright' computed the
velocity-autocorrelation function PD'(t) for a sys-
tem of 500 hard-disk particles using computer-
simulated molecular dynamics. The particles were
studied for about 30 mean free times to for a range
of densities from 0. 2 to 0. 5 of the density at close
packing. Although for a few mean free times Alder
and Wainwright found the exponential decay that
would be predicted on the basis of the Boltzmann or
Enskog equation, they noted that for times t in the
range 10to & f = 30to, pn '(t) showed a nonexponential
slowly decaying behavior. Similar results over a
comparable range of densities and times were ob-
tained later for the velocity-correlation functions
p„' '(t) and p', '(t), characteristic for viscosity and
heat conductivity.

Although they reported only one result in three
dimensions for the velocity-autocorrelation func-
tion PD' (t), there seems to be little doubt that both
the two-dimensional and the three-dimensional re-
sults can be represented for 10to& t 30to by

(v(0). v(t)) «& fo
PD f =

(&2(0)) D P

Here v(t) is the velocity at time f of a chosen par-
ticle in the fluid, whose initial velocity is v(0), and
d is the dimension of space, p=na", where g is the
number density and a the diameter of the hard disks
or hard spheres. The brackets denote a molecular
dynamic time average over all particles in the sys-
tem. 4

For d= 2, (1.1) describes p~" (f) over the entire
reported range of densities and time within the
"experimental error" which is estimated to be on

the order of 10%.
For d = 2 and 3, (1. 1) also agrees with a hydro-

dynamical theory of pD" (f). A hydrodynamical de-
scription of their results for pn'(f) was presented
by Alder and Wainwright, based on a numerical
solution of the Navier-Stokes equations, which was
in good agreement with the molecular dynamics
calculations. ' In fact, the molecular dynamics
calculation for d = 2 exhibited a vortex type of ve-
locity correlation between a chosen molecule and

the surrounding molecules, which is very similar
to the hydrodynamical flow field surrounding a
moving volume element in a fluid which is initially
at rest. Furthermore, using hydrodynamical argu-
ments based on an analytic solutionof the linearized
Navier-Stokes equations, Alder and Wainwright, ' '

and Ernst, Hauge, and van Leeuwen' were able to
derive theoretical expressions for the asymptotic
time behavior of PD"'(t) as well as of p„'(f) and

p,
'

(t) which are in agreement with Eq. (1. 1) and
lead to expressions for &D'(p), &„'(p), and n,'~'(p)
that are numerically consistent with the available
computer calculations. The same results for
p' '(f) have been obtained by Kawasaki6 and by
Ernst, using the hydrodynamical mode-mode cou-
pling theory.

The purpose of this paper is to elaborate on a
discussion of the Alder and Wainwright results us-
ing the methods of the kinetic theory of gases and
an analysis originated by Pomeau. ' A preliminary
version of this work has been reported elsewhere.

We shall illustrate our calculations of the long-
time behavior of PP&'(t) in detail, while we only
sketch the very similar calculations for p„(t) and

Our starting point is the definition of pn'(f) given
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by Eq. (l. 1), where the average is now interpreted
as that over a canonical ensemble in the thermody-
namical limit. Such an average is assumed to be
identical with the average used in the computer
calculations, if the number of particles used in
these calculations is sufficiently large. In this pa-
per we will only consider the low-density limit of

(p); in a subsequent paper, the extension of the
present calculations to higher densities will be giv-
en. ' We shall formulate the theory for a general
short -ranged intermolecular potential. The for-
mulas will be applied, however, to hard disks and
hard spheres only.

In Sec. II we outline the cluster expansion on
which our discussion of p((&'(t) is based. In Sec.
III we discuss a rearrangement of this cluster ex-
pansion which is necessary if one wants to find the
long-time behavior of pv (t). In Sec. IV the hydro-
dynamical modes of the linearized Lorentz-Boltz-
mann equation and the Boltzmann equation, which
are needed to find the long-time behavior of pi&"'(t),
are summarized. In Sec. V the t " time depen-
dence and the coefficient ov (p) are obtained for
hard disks and hard spheres in lowest order of the
density. In Sec. VI the corresponding expressions
for the long-time behavior of p„'(t) and p~ (t) are
given. The calculation leading to these expressions
is outlined in the Appendix. In Sec. VII some as-
pects of the results obtained in this paper are dis-
cussed.

II. CLUSTER EXPANSION FOR p~&"&(t)

We consider N particles in a volume V at tem-
perature T= (Pk») ', where k(& is Boltzmann's con-
stant. The definition of pv'(t) is"

(d&sty (vlxv(x( t))

lim (v,„) ' I dx" v&,S,(x")p(x")v,„
N, V
N/ V=A

dv( v(x4'I& (v(, t), (2. 1)

where

4'(&"'(v„ t) = Iim m'(v»') ' V
N, V
N/V= ft

x dx" ' S,(x")p(x")v,„. (2. 2)
4

NHere x = x,x~ ~ ~ xN stands for the phases x; = r&, p&

of the N particles 1, ~ ~ .N; and m is the mass of a
particle. The N-particle streaming operator S,(x"),
when acting on a function f(x") of the phases of the
N particles, transforms this function into

S-((x")f(x ) = f(x"(- t)),
where x"(- t)=x, (-t). ~ .x„(—t) are the initial phases

of the particles 1, ~ ~ ~, N which lead to the phases
x" after a time t. They can be obtained from x by
solving the equations of motion of the N-particle
system with the Hamilton function

N p 2 N

H(x )= Z ' + Z (t&(r(~),
i=i 2™5&&=1

(2. 3)

where the interparticle potential (t&(r;&) is short
ranged and depends only on the distance

~&&= Ir, —r, l between the two particles i and j.
For hard disks and hard spheres of diameter a,
one has

(2. 4)

The operator S,(x ) can be formally written

S,(x") = exp [- t x(x")],
where

(2. 6)

Here we have

N

X,(x")= Z p'
m

(2. Va)

and

ey(r, ,) a (&y(r„) 8 (2. 7b)

where the curly brackets (,H(xN) Idenote the
Poisson brackets with the Hamiltonian function
H(x"). For hard disks and hard spheres, the op-
erator 8(& and consequently 'K(xN) are singular.
However, in this case it is still possible to obtain
a suitable representation of the streaming opera-
tor S,(x"). Since we do not need this representa-
tion in this payer, we shall not give it here but
refer to it in the literature.

p(x") is the probability density in the canonical
ensemble

p(XN) Z-1 e-(&H(xN&

where

Z= jdxNe (&N(x &

Finally v~„ is the component of the velocity of the
chosen particle 1. We note that because of the
time translational invariance of the equilibrium
average, we have p((&~'(t) = p('& '(-.t) [cf. Eq. (1.1)].

In order to avoid the necessity of solving the
N body -problem in the computation of p~~" &(t), one
expands p&& '(t) in a systematic way in terms of the
solution of Ae 2-, 3-, 4-, . body problem. This
can be achieved by generalizing the cluster expan-
sions used in equilibrium statistica1 mechanics 3
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to obtain virial expansions of thermodynamic quan-
tities and reduced distribution functions to the
case of nonequilibrium statistical mechanics. 14

A cluster expansion of pv '(t) can be obtained in
a variety of ways. Our starting point will be the
following cluster expansion of the N-particle
streaming operator S,(x") in terms of 1-, 2-,
3-, . . . particle streaming operators14:

pv"'(&)—= f dte "pa( (t)= fdv1v1„C'1') (v1, (-') i

(2. 14)
where

C D")(v„e)= lim p(m)"' V

x dx" ' G(x", ~) p(x") v1„(2.I &)

where the operators u (x1, t), 'u (x1, x„ t) ~ ~ ~ can be
obtained successively from Eq. (2. 8) by writing
out the equation for %=1, 2, .. . , respectively.

By substituting the cluster expansion Eq. (2. 8)
into the right-hand side of Eq. (2. 2), and by using
Liouville's theorem, i.e. ,

fdx"'S, (x ') f(x-")= fdx" 'f(x -),
and spatial homogeneity, i.e. , C~ ' does not depend
on r„one obtains the following cluster expansion
fol' C)11 (v1, t):

C)1) (v1, t) = pm[ 1 + n fd2 & (x1, x2, t)g(r„r2) ()pp(v2)

+-', n' fd2 jd3 ~(x„x„x„t)

x g(r, r2, r3) pp(v2) ('pp(v3)+ ~ ~ ~ ]((pp(v1) v1

(2. 9)
where we have used that (u12„) 1= Pm and written
dr2dv2= d2, etc. Here the s-particle equilibrium
distribution functions g(r, r2, . . ., r,) possess well-
defined density expansions 3

g(r1 r2. .. r)= ~ ng1(r1 r2). . . r)
i-"0

with

g1(r1 r2 ~ ~ ~ rs)

(2. 1O)

~ ~ ~

f' / ~dr„1 ~ ~ ~ fdr3+1 g1(r1 ~, r,
i
r„1,. . . , r~1 ),

(2. 11)
where we refer to the literature for the

g, (r1, ~, r, jr~„.. . , r„,). In particular we have

S

I!O(F1,. . . , F,) =~ii)i(-)) & ((~4))
f&j

(2. 12)

Finally, we have

S,(x")=&(x„t)S,(x" ')+ 5 &(x„x;,t)s, (x' ')
4=2

+ 2 z(x„x,, x„ t)s, (xN ')+. . . , (2. 8)

and the operator

G (x", ~) =- [e + 3C (x")] '

dt exp(- et)exp[- tK(x")] (2. 16)

is the Laplace transform of the streaming operator
S 1(x"). The operator G(x", e) should always be in-
terpreted as given by the right-hand side of the
Eq. (2. 16).

If we take the Laplace transform of Eq. (2.9),
we can obtain a cluster expansion of Cv '(f„e)
similar to that for CI)")(v„t). In so doing we will
encounter the Laplace transform of the cluster
operator 'u (x„.. . , x„t), which we denote by
'u(x„. ~ ~, x„&). We show elsewhere ' that from
the application of Liouville's theorem, spatial homo-
geneity and repeated use of identities like

[2 ++(X1i X2i X3)] [e ++(X1i X2) ++(X3)]

.["ex„x.) ~(x.)1 '(8» 8~)

x [e+K( x1x2)]x3

we obtain the following equality. '

1
d2 ~ ~ ~ ds'u(x1) x2, ~ ~, X3)

(s —I)!„

xg(r„. . . , r,)II Vp(v, )
]~1

1
d2 ' ' ds C(X1i X2i ~ ~ ~ i X3)

(2(

x g(r1, . . . , r ) Q ()() (v ), (2. 17)

where the left- and right-hand side of Eq. (2.7)
are operators which act only on functions of v1
but not r&, and where

8 (x1i X2i 2) 812G(xii X2i ~)

tt (x1, x2, x3, e)

yp(v) = (Pm/211)'t2 exp( ——,'Pmv') . (2. 13) 812 G(xli X2i s)(813+ 823) G(x1i X2i X3i )

The computation of pp(")(t) for t» tp is consider-
ably simplified, in particular in connection with
the resummations to be carried out later, if we
first compute the Laplace transform of p~"'(t),
which we denote by pv( '(E), and is defined by

g (x„x„.. . , x„e)= 812 G(x„x2i e)

X (81 3+ 823) G(X1i X2i X3 2) ~ ~ ~

&& (8„+82, + ~ ~ ~ + 8, 1,) G(x1, x2, . . . , x„&) .
(2. iS)
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We rema. rk that for hard-disk and hard-sphere
particles, it is possible to give a representation
of these 8 operators in terms of binary collision

operators which avoids the use of 6)&&.
' ''7 As a

result of Eq. (2. 17) we obtain the following cluster
expansion for CD '(v„«):

C)'D '(v» «) = (pm/«) [1+n f d2 @ (x» x3, «) g(r„r3) p 0(v 3)

+n J d2 fd3 ~(x„x3,x3, «) g(rl, r3, r3) q 0(v3) 9 0(v3) + ~ ~

l

+)3' fd 2 ~ ~ ~f dl + (x„x,. .. , x„«)g(r„. . . , r, )II y, (v, ) + ~ ] y, (v,) v,„.(a. 19)
l=2

If we further expand the g(r„.. . , r,) in powers of
n,, using (2. 10), the following formal density ex-
pansion for C l)"'(v„«) results:

CtD (vl, «) = (pm/«) [1+ 2 n &)tl (vlt «)l))oo(vl) vltt ~

(a. 20)where

8 3 (v„.«) = f d 2 8 (x„x3,«) g,(r l, r 3) q 0(v 3),

0

8) (Vl, «) = fd2 ~ ~ ~ f dl [@(xlt . ~ ~ t xl t «)go(rlt ' ', rl)
l

+8(xl, . . . , x, l, «)gl(F». . . , P'& lI rl)+ ~ ~ ~ +8( xlt 2xt )g)-3(~li 3I 3 l)] II go(v, ) . (2. 21)
4=2

The cluster expansions (2. 9) or (2. 20) cannot
be used to determine the behavior of C I) )(0„f) for
times t & t„' or equivalently, to determine the
small-«behavior of CI)"'(v„«). For in addition to
the factor 1/«on the right-hand side of Eq. (2.19),
a dynamical analysis of 8, (v„«) with l = 2 reveals
that each term diverges as E - 0, and that the
most divergent contribution to each 8, comes
from sequences of (I —1) uncorrelated binary
collisions ' among l particles, leading to an
E " "divergence of 8, .

An improved expression which eliminates the
above-mentioned divergences can be obtained by
regarding Cn '(v„«), to be determined by the equa-
tion

«[1+ ~ + @i+);(+l,«)] C')) (ll, «)

= Pm q 0(v, ) v,„) (2. 22)

rather than by Eq. (2. 20). We may define a new
set of operators ls, (v„«) by means of the density
expansion of the inverse operator appearing on the

left-hand side of (2. 22), i.e. , by '

[1+Z n' a...(vl, «)] '= 1 —Z n' l9...(v„«),
l=1 l=1

(2. 23)
which yields

Q)+l (Vl, «) = Z. l( —1) Z Ctt +1 '@sot 1
' '

ttl+l ~

C. 1a g=lj
l=1

(2. 24)

This leads to the following equation for 4 03'(fl '«):

e )vt, t) Ptttl t + II t tB t(vt, E)) ttttt(vi) vt„
l:.=1

(a. as)
The operators 8, (v„«) may easily be obtained

successively from Eq. (2. 24) as

$2(V)t «) Q3 (Vlt «)

f d 2 813G( xi& x2& «) go( rl & r2) po(v2) t

(a. 26a}

$33 (Vlt «) =@3 (Vlt «) [83 (Vlt «)]

= f d 2 f d 3 813 G (xl t x3& «) [(813+823)G (xl t x3& x3 &
«) go( rl t r2t r3)

go( rl r3) 813G(xl X3 )go( 1 3) + gl (rl r3
I
r3)]9 0(v3)9 0(v3)

' (2. 26b)
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and so on.
Although in three dimensions there are phase-

space arguments, based on the dynamics of 2 2nd 3
particles, which indicate that e~ and e, exist
in the lim e -0; these same dynamical. phase-
space arguments suggest that for / = 4 the e, di-
verges as e -0 when acting on a general function
of v, .' ' In fact these phase-space arguments
suggest that for & -0, &4~-inc, while r~-&-''-"
for l & 4, for particles interacting with a short-
range repulsive potential. Similarly for d = 2, al-
though e3 exists, phase-space arguments give
that for e-0, c~3-1ne, while e+, -e ""for /&3.
For a gas of hard disks, the phase-space argu-
ments for the divergence e 3 have been substanti-
ated by Sengers ' and others, 4 and similar results
have been obtained for a variety of Lorentz mod-
els. 5' Thus, although the introduction of the
operators 8, removes the most divergent contri-
butions for e -0 in each order of n in the density
expansion (2. 20) of @~~'(v„e), there still remain
divergent contributions in the , operators if e -0.
A further rearrangement of the expansion (2. 25) is
therefore necessary.

Since no rigorous proof of these divergences in
the e~ has been given, other than for e, for hard
disks, we will carry out a rearrangement of the
expansion (2. 25) in the following section based on
the assumptions: (a) the qualitative behavior of
ed), for small e is the one quoted above, and (b)
this behavior is due to the dynamical events dis-
cussed in Sec. III.

III. BINARY COLLISION EXPANSION OF t' (v, , e);
RESUMMATION

Here a, p, y, ~ ~ denote pairs of particles chosen
from the particles (1, 2, . . . , s), and the opera, tor
C,(a, t) is defined by

C,(a, e) = 8 G,(a, &), (3. 2a)

It is generally assumed, although not proven,
that for a short-ranged repulsive potential, such
as that given by Eq. (2. 4), sequences of l binary
collisions are responsible for the most divergent
contributions to the operators 8, (v, , &) in the
lim &- 0. In order to isolate these most divergent
contributions in each 8, and then to sum them up
into a well-behaved operator, we introduce in this
section an expansion of 8, (v~, 6) in terms of se-
quences of binary collisions: the binary-collisions
expansion of the 8, (v~, t).

The basic binary-collision expansion which we

use reads for a general potential

H, G(x, , . . . , x„e)=C,(a, e)[l+ Z C,(p, e)
/Ax

+ Z C,(p, e)C,(y, E)+ ] . (3.1)
Bee, pl)p)

where

G,(a, ~) = [~+7L'p(x ') —e ] ' . (3. 2b)

In deriving the expansion (3. 1), repeated use has
been made of identities similar to that preceding
Eq. (2. 17). We further define a binary collision
operator T,(a, e) in terms of C,(a, e) by

C,(o., e) = T,(a, a)G,(x'),
with

G,(x' ) = [e+V,,(x„x„.. . , x,)] '

(3 3)

(3.4)

with I'&& the permutation operator which exchanges
particle indices i and j. In obtaining Eq. (3. 5b),
etc. , one uses, apart from Liouville's theorem,
that when acting on a function of velocities of the
particles 1, 2, 3, ~ ~ ~ the operator C,(x&, xz, &) can
be replaced by the operator Cp(x, , xz, &), and that
a sequence such as

Cp(xf p x3, e)C3(x» x3p ) p( pg 3p e)

which ends in a C operator that does not contain
particle 1 in the interacting pair is not a most
divergent contribution to & S, . The terms which
we have explicitly written out in Eq. (3. 5b) con-
tain the contributions from those sequences of /

binary collisions among / particles that we assume
to be the most divergent in each , in the limit
& -0. Due to the graphical representation of

The following developments are all based on the
binary-collision expansion (3. 1), using the binary-
collision operator T,(a, &) given by (3.3). The
operator defined in (3. 3) is denoted by T,(a, c),
in order to conform with the literature where a
representation of this operator is discussed for
hard disks and hard spheres. ~

An analysis of & 3, & 4, . . . on the basis of the
binary-collision exp.".'sion leads to expressions
for these operators asa 'av [(LDT) stands for less-
divergent termsl

& 5Ia(vg &) = & f d2Ca(xt xa ~) 8p( 1 r2) 'Pp(~2)

(3. 5a)

c QPp(v~, t) = t f d2 f dSCR(x~, xm, t) Ap(xg, xa~xp,' &)

x Cz(x) q

xaam

&) pp(vp) pp(v3) + (LDT), (3. 5b)

e +4(v„a) = e f d2 f dS f d4 Ca(x„xs, e)

x A3(xf p xpixpy ~)A3(xgp xaix4 ~)

xC,(x„x„&)g yp(v;)+ (I.DT),
(3.5c)

and so on, where

A3(xgx ixj ) E) Cp(xgp xgy E)

+C,(x„x;&)(1+F2;), (3. 6)
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these terms given by Kawasaki and Qppenheim,
these terms are generally referred to as the "ring
events. " The remaining parts of & , are indicated
by LDT and contain (a) sequences of more than /

binary collisions among l particles, which are all
less divergent or convergent, (b) terms that con-
tain equilibrium cluster functions[(go(rf ., r, )
—l, g~(rs, . . . , r, ), etc.], and (c) terms where more
than two particles are within a distance af the O(a)
at the same time. These latter terms may involve
genuine n-tuple collisions for n & 2, or a number of
binary collisions which take place within a few col-
lision times t, . For a further discussion of these

points we refer to the literature. ""
Although in three dimensions & ~ is finite as

&-0, it will be convenient for the determination of
the long-time behavior of po'~'(f) to include this
term, as given in Eq. (3. 5b), in the resummation
to be performed below.

We are now in a position to consider the summa-
tion of the most divergent terms or ring events in
the 8 series appearing in Eq. (2. 25). We write

e -Qn' p. S„&=e —naS a-na(R (v» 4)+(LDT)
(3. 7)

with

cS, (vs, a) =& f d2Ca(x» xa, t)[1 —n f dSAs(x» xalxs, e)yo(vs)] Ca(xz, xa, )yo(va) (3. 8)

To obtain (3.8) we have added and subtracted a
finite term

an f d2Ca(xzxa, &)Ca(xi, xa &)po(Ua)

to the geometric series used to obtain tR (v„a).
The subtracted term together with all the LDT (and
finite terms) of order na and higher, which have
not been included in 6P(v~, a), are collected in the
term which we denote by LDT in Eq. (3. 7).

The expression for e6t (v„a) may be further sim-
plified by using the relation between C and T op-
erator given by Eq. (3.3) and by using the fact that
~$ acts only on functions of the velocity of par-
ticle 1. Thus we may write~~

t(R (vq, a) = f d2Ta(x~, xa, a)[e+'l0o(x), xa)

—n f dS&3(xg xal xs ~)(po(vs)]

x T,(x„xa, )po(v a), (3.9)

where

~s(x1 ~ xal xs ~
'a) T s(xi ~ xs ~ a)

+T,(x„x„~)(1+I„) . (3. 10)

The determination of the long-time behavior of

po (f) to be carried out later will be greatly facil-
itated, if we go over to a Fourier representation
of eR (v~, &). To do this we use the fact that
6R (v&, e) does not depend on r& and write

&(R (v&, &) = f dva f dry f dra 5(rs) T a(x~, xa, e)[a +Xo(xf xa)

n f drs f dvs~a(xl & xalx» e)+o(vs)] T a(x1 & xp& a)+o(Ua) ' (3' ll)
Then by inserting & functions, using their Fourier representation, and that2

f dr~ ~ f dr, exp(-i E k& r&) T, (x» xa, a) exp(+i 2 kj ~ r&)
j=1 j=1

l

=(2 ) 5(k +k —k' —k,') 0 5(k, -k,')&k, , k„.. . , k, lT, ( „,&)lk,', k' ~ ~ k'), (3 12)
j-3

one finds28

6R (v~, &)=,
( )a dva&0, 0l Ta(x~, xa, a)lk, —k)

4

&& [e+sk v,a-nx.„(v„e)-n&a(v„&)] '&k, —kl T,(x„xp, a)l 0, 0) qo(va), (3. 13)

where

x-„(v„&)=fdv, &k-k,, Ol T( s„x„x)al ,k—k, 0) yo(vs)

Xa(va, &)= fdvs&k, —k, Ol Ts(xa xs a)(1++as)lk~ k~ 0) go(vs)

(S.14a.)

(3. 14b)
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1 vy3 I I v] v3

d3=

I

bdbdP (0 &b &a, 0 &q &2n'), d=3

(-a &b &a),
(3. 16)

where f(vl) is an arbitrary function of v„and the
primed velocities are the restituting velocities.

In the following we will also replace X „-(v3) by

Xo(vp) = llm X j(V3),
f-0

where Xo(v) is the linearized Boltzmann collision
operator which is for hard spheres or hard disks
given by'

Xo(vl) Po(vl) f(vl) = fdv3 fdb
I 13V1

x [f(v, )+ f(v3) —f(v, ) —f(V3)]Vp(vl)po(v3) .
(3. 17)

lt will be shown in a subsequent paper that this
replacement leads to an error of higher order in
the density, than considered here.

Qn the basis of these considerations, it follows
that for hard-disk and hard-sphere particles at
low density, we may write Eq. (2. 25) for 4' '(vv, , E)
in the form

C'D (vl, e) = pin [f —nXp (vl) —nEGtp (vl, 6)

—(LDT)] 0'o(vl)vlx ~ (3. 16)

where e@o(v„e) is given by Eq. (3. 13) with &„- and
X; replaced by Xov and &p, respectively, and elS3
has been set equal to &o.

IV. HYDRODYNAMIC MODES

In Sec. V we shall argue that the dominant con-
tributions to eQo (v, e) for small e come from the

V18= Vi —V2

Although the procedure leading to expression
(3.13) for the sum of the most divergent terms in

the , expansion has been carried out for a gen-
eral potential we will in the remainder of the

paper restrict our attention to the special case of
hard-disk and hard-sphere molecules. For this
case one can show that the binary-collision op-
erators T,(o.', e) are independent of e as well as of
the phases of all the particles except those of the

interacting pair &. ' ' Moreover, for this case
one can show that &„-(vl, e) is independent of k and
e and can therefore be denoted by Xo(vl), while
a,$3 is independent of & and equals &o(vl) the Lo-
rentz-Boltzmann collision operator given by

~o(vl)yp(vl) f(vl) = f dv3 f db1Vl3

x [f(v,') —f(v, )]yp(v, )yp(v3), (3. 15)

and
(4. 1a)

[ik .v —n X (v) ] 8l l
(k, v) pp(v) = Q(k) 8 "

(k, v) po(v),

(4. 1b)
respectively. %e impose the condition that
X' '(k, v) and 8'"'(k, v) are normalized according
to

and

fdv [X" (k, v)] yo(v)=1

fdv [0'"'(k, v)]' po(v) = 1,

(4. 2a)

(4. 2b)

respectively, and we require that different eigen-
functions are orthogonal, according to the rela-
tions

fdv X'" '(k, v)X, '"'(k, v) yp(v)=0 (4. 2c)

fdv 8'"'(k, v) 8'" (k, v) yo(v) = 0 . (4. 2d)

These points will be further discussed elsewhere. '
The hydrodynamic eigenfunctions and eigenval-

ues which are of interest here may be obtained by
assuming that X '(k, v) and O'"'(k, v), and &(&)
and Q(k) have expansions in powers of b for small
)'3, and by requiring that for k-O, pl(0=0)=0 and
Q(k = 0) = 0.

Using the fact that Xo (vl) has only one zero ei-

small-0 region of the k integration, i. e. , from
0 = )k t & / ', where / is of the order of a mean free
path. It will be convenient to have a representa-
tion of the operator [e+ik ~ vl3-nQ (vl) —nXo(v, )]

'
expressed in terms of the eigenfunctions and ei-
genvalues of the operators ik ~ v —n&o (v) and
ik. v —nXp(v). In the region where )'3 &l ', these
may be found from the eigenvalues and eigenfunc-
tions of nQ (v) and n&p(v), respectively, by means
of perturbation theory regarding the operator ik ~ v

as a perturbation.
Following Pomeau, we notice that among the

eigenvalues of the operators ik ~ v, —n&p (v, ) and
ik. v, —nXp(v3), there are those which go to zero
as 4 -0. These eigenvalues and the correspond-
ing eigenfunctions will be shown in Sec. V to give
the leading contribution to pD (&) as &- 0 or to
p v (f) for long times. The eigenfunctions of ik ~ v
—n&p (v) alld lk v —nXp(v) wi'tll eigellvallles going to
zero as k- 0 are called hydrodynamic modes, and

they arise from the eigenfunctions of Xo and Xo

belonging to the eigenvalues zero, respectively,
under the perturbation ik. v for small k. %e now

determine these hydrodynamic modes.
The eigenfunctions and eigenvalues of the opera-

tore ik ~ v —nXo(v) and ik ~ v -nXo(v) will be given by
the solution of the equations

[lk v —n Xo (v)] X'"'(k, v) Po(v) = +(&) X'"'(k, v) 9'o(v)
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genvalue, one can write

&u(k)= 0)0+ 0),k+ & ak +.2

(k, v}=)&Q (v)+k)(1 (v)+ ~ ~ ~

(4. Sa}

(4. Sb)

(do
——(dg ——0, (4. 4a)

(4. 4b)

and that the one hydrodynamic mode of the opera-
D~tor ik ~ v-nXQ(v) is a diffusive mode which is to

O(k ) given by

o"'(k, v)=(-,'.)"'[-.'Pmv'~Pmc. (k v)], d=S.
(4. 9e)

Here k, k',", . . . , k'," "form a Cartesian set of
mutually orthogonal unit vectors.

We use the hydrodynamic modes to express the
operator [a+ik va —neo (v, )-n)&p(va)] 'for small
k when acting on a function of the form f (vl, va)
' 0 0(vl) 9 0(v2) as

[) +ik via —nXQ (Vl) —nX (0V )2] f(V1, Va) &))p(vl)po(va)

and

(4. 5)

H f (vl I V2} 0 0(vl)%0(va)

x f (vl ~ va) &)&)0(vl) yo(va), (4. 10a)

where Do is the value for the self-diffusion coeffi-
cient obtained on the basis of the Boltzmann equa-
tion. Similarly, using the fact that Q(v) has (d+ 2)
zero eigenvalues and writing

and

Q(k) = Qp+ kQ, + k Qa+. . . (4 8)

O'"'(k, v) = 80"'(v)+k 01 (v)+. ~ ~, (4. I)

we find that to O(ka) the eigenvalues are given by

and

o=i ' =~& =0( Vi) (8)

(+)~l + ~co

Q, =-
v&) = )10/nm,t v~)

Qa =Dr = Xo/nCpo
(a)

i= (1, ~ . ~, d —1) (4. 8a)

(4. 8b)

(4. 8c)

(4. 8d)

80 '(k, v) =()Bm)' '(k") v),

80"'(k, v) = (2') ( —,
'

Pm v —2),

Oo"'(k v)=(-') (—'Pmv ——,'),

(4. 9a)

d=2 (4. 9b)

d=3 (4. 9c)

8&0')(k, v) = —,'[—,
' pmva+ pmco(k ~ v) ], d=2 (4. 9d)

1 2(d —1)Qa)—= 21'2&)=a &0+(rOd 0

(4. 8e)
Here H denotes a heat mode V&, i = 1, . . . , d —1,

the (d —1) the shear (or viscous) modes, and (+)
denotes the two sound modes. Furthermore, co
= [(d+ 2)/(Pmd)]'~2 is the ideal-gas sound ve-
locity in d dimensions yo = C /C~ = (d+ 2)/d, where

C~o and C~ are the ideal-gas specific heats per par-
ticle at constant pressure and volume, respectively,
andgoand Xoare the values for the coefficients of vis-
cosity and thermal conductivity, respectively, ob-
tained from the Boltzmann equation. We note that
the bulk viscosity vanishes in the low-density
limit. The subscript 0 denotes that the low-density
limit has been taken. The corresponding eigen-
functions to O(k) are

where

S Hf (Vl V2) pp(V1) Po(va)

[gyp)(k)+Q(k)] g'"'(k, v, ) 8' '(-k, va)

xyo(vl)&OQ(va) f dvl f dva&

x 8'"'(-k, v, ) f (vl, Va)&&)Q(vl)(&)0(va) . (4. 10b)

In this section we shall compute the behavior of
p&))) (t) in time for hard disks and hard spheres by
iterating the operator on the right-hand side of
E&l. (3. 18) about [2 -n)& 0(v, )] '. In this way we

shall obtain an initial exponential decay, which in
the low-density limit can be derived from the
Boltzmann equation, as well as a long-time be-
havior - t "

Using the E&ls. (3. 18) and (S. 13) we have then

P")(~)= P
"' (~)+ P ")1(~)+

with

p)) p (&) = pm f dvl vl„[& —n)& 0(vl)] vl &oo(vl)

(5. 1)

(5. 2)

p& & 1(&)= pmn f dvl vl„[6 —nX 0(V1) ]

I

x e&R (v, ,~c)' [6 n)& 0(vl)-] 'vl„&oo(vl). (5. 3)

Here we have assumed that one can drop the LDT's
in E&I. (3. 18) for the computation of the long-time
behavior of pod'(t) for hard disks and hard spheres
at low density. An indication for the correctness
of this assumption can be found in a subsequent

Here the prime on the summation symbol indicates
that only the hydrodynamic modes y(") and 0'") are
to be included in the sum. The other operator 5'~

contains the contribution from nonhydrodynamic
eigenfunctions, i. e. , from perturbed eigenfunc-
tions obtained from nonzero eigenvalues of Xo and

o.

V. BEHAVIOR OF p~ |'t) IN TIME: t+ DEPENDENCE
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paper. ' Since me shall only calculate the first
two iterates, the time interval over which our
results are valid may be restricted. This point
mill be further discussed in Sec. VII.

The Laplace inversion of t&v12&0 (k) leads to an ex-
pression for po14&0 (t) for all t of the form

pD p(t)= ppnf dv&v1& 8 0 1 v«kpp(v«) . (5, 4)

(4) (g) ~ -t (BmDpp)-I (5. 5)

where D« is the self-diffusion coefficient obtained

Although the expression may be evaluated in terms
of the eigenvalues and eigenfunctions of the opera-
tor n X 0(v) as a sum of exponentials, it is a suf-
ficiently good approximation to replace (5.4) by

from the Lorentz-Boltzmann equation in first Ens-
kog approximation. ' Since Png Dpp is proportional
to the mean free time to, pD12&0(t) decays over a few
mean free times.

We now evaluate po12] (t) [Eq. (5. 3)] and divide
the k integral appearing in this expression into two
pieces for which 0 = k = kp and kp & k = ~, respec-
tively, where kp' is on the order of a mean free
path. The contribution to t&012&,(e) coming from
k & kp will be neglected, for we assume that this
part of the k integration incorporates the effects
of collisions which take place on a small space
scale compared to a mean free path, in which we
are not interested here. The region for which
k & kp, is the region where the perturbation theory
outlined in the previous section is valid. Using

Eqs. (4. 10a) and (4. 10b), we may express this
part of pD '1(a) as

p v1 &, (~) - n p pn g [e+&u(k)+Q(k)] ' dv,
4e gt&f Q

k p

dv2 v1 [~ n~ 0 (V1) ]

(0, 01 T,(x, , xa)
l

k, -k)&t'"'(k, v, ) 0'"'(-k, v, ) 0&0(v&)qo(va)

x dv, dva&t'"&(k, v, )8'"&(-k, v,)(k, -k
~

T,(x»x, )
~

0, 0) [~ -n&«. 0(v«)] v1„9&0(v1)yo(va) .

Here we have assumed that the contributions
from nonhydrodynamic modes can be neglected for
the discussion of the long-time behavior of p~~', ,
since me expect that they will lead to contributions
decaying exponentially over a few mean free times.

In evaluating (5. 6), we can make a k expansion
of the numerator on the right-hand side of the
equation and keep only the lowest-order terms in
k. That is, we can replace (0, 01 Ta(x1, xa) Ik, -k',
and (k, —k I Ta(x, , xa) I 0, 0) by Too(x, , xa), where

Too(x„xa) = lim(0, 0
I

Ta(xl x2)
l
» -k)

a-p

= lim(k, -k
~

T,(x„x,)
~

0, 0) . (5. 7)

Furthermore, we can replace &t'"& (k, v, ) and
8'"'(-k, v, ) by y',"&(» v, ) = 1 [cf. , Eq. (4. 5)] and by
810 '(-k, va) [Eqs. (4. 9a)-(4. 9e)], respectively. The
terms involving higher powers of k can easily be
seen to lead to a more rapid decay of p~( ', , than the
terms retained. Thus we write

pD«1 (&) n ppn Q 2 [6+o&(k)+Q(k)] dV1 dVav«k
2& kp 4

x[& —n &1 0(V1)] Tpp(x1 xp) 80 (—k, va) Pp(v&) yp(va) d v1 d v28p (—k& va)

x Too(x1, xa) [e -n &«. 0(v«)l v&k Po(v&)0&0(va) ~ (5. 6)

The expression for p012&1 (a) given by Eq. (5. 8) can
be simplified by using the symmetry of the opera-
tors A. p and ~p, that

z 0 (v, ) = f d v, T„(x» xa) 0&p(va) ~

and that the ep'"' are linear combinations of sum-
mational invariants in a binary collision, a so that

I

f d v1 f d vp v«„[& —p1 &I p (v1)]

x Too(xl, x2) 80 (-kt V2) Pp(vl)0 0(v2)

= —f dv& v&„[e —n&10 (v&)]
'

X &1 p(V1) 8 (—» V1) pp(v«)
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f dV1 fdf/20" 0 (—K, V2)

~00(+le 22) [2 'n 0 (vl )] vl» 0 p(vl) 'pp(v2)

pn", 1(t) '-n-a'(to/t) .
Similarly, for d=8, pI),'1(t) becomes

(5.16)

= - fdfle p"'(- k, v,) A.p(iF1)

n (o(vl)] vl»0'0(vl),

p(,",(e)-npmZ
k&0 0

A, p 'Fl 4 -gkp Vl

which leads to the following expression for p)) ', (e):

, [e+ ~(k) + n(k)] '

p ", (t)- ——Z 2, exp[-kot(D, +v,)]
1=1

0

x [ fdic 1vl»80 '((-k, v)(/)0(vl)]

8m @

«20

x
~

dkk exp[-k t(D, +v,)], (5.17)
~)

p

2

x 0 0 (—kr +l) 9 0(vl) . (5.9)

" dkp'"', (t)- Z, exp[- (Q(k)+ o)(k))t]
n „„(20')

x .[f dvlvl»O»p '(-k, vl) 9)0(vl)] . (5.10)

Considering the tensorial character of the hydrody-
namical modes Op"'(k, v, ), we see that only the sound
and shear modes give a contribution to Eq. (5. 10). Of
these modes, the shear modes give the dominant
contribution to pv', (t), since the presence of the
+ inc p in the sound- mode eigenvalues can be shown
to result in a faster time decay than that given by
the shear modes. ' We therefore obtain

p,'"',(t) - —Z, exp[- tk'(D()+ v())](„) Pm
' dkn;, „, (2)/)'

x [ f d&, vl„O0 '(-k, &,) yp(v, )]'. (5. 11)

Using the fact that for d = 2, k, = (1/k) (k„, -k„), we
obtain, with (4. 9), for d = 2,

pv", (t)-[8wn(D0+ vo)t] '(1 —exp[-(Do+ vo) kot] j
(5.12)

or for t» tp,

p])",(t)- [8)/n(D0+ v()) tp] '(t()/t) . (5. iS)

For hard disks of diameter a, tp is in the low-den-
sity limit given by

t =
2na

(5. i4)

while Dp and vp are in first Enskog approximation

D, = [2na(Pm)/)"'] ',
v() = [2na(pm 0)1/2]-',

so that for such particles

(5. 15a)

(5. 15b)

Inverting the Laplace transform, we find that for
t &to, p~, ', (t) can be expressed as

3/2
[)/(Dp+ v()) t()] "'i —'

I(, t
(5. 18)

for t» tp. For hard spheres of diameter a, t0 is for
low densities given by

(pm/)/)' '
0 4 2

and using the values of Dp and vp in the first
Enskog approxim ation

D = (3/8na ) (Pm)/) '/

v, = (5/16na ) (Pm)/) '/',
we obtain"

(3) (t) 1 (+4)3/2( 3)2(tgt)3/2

=- i. 17 (na')'(t, /t)"'.

(5. 19)

(5.20)

Equations (5. 16) and (5.20) exhibit the t ' be-
havior found by Alder and Wainwright and are con-
sistent with the computer results extrapolated to
low density.

VI. BEHAVIOR OF pi"i(t) AND p (t) IN TIME

Using similar procedures as those for p~")(t),
the behavior of other velocity-correlation func-
tions with time can be determined. In this section
we discuss those velocity-correlation functions
that give the kinetic contributions to the coeffi-
cients of shear viscosity and thermal conductivity.
In particular we shall consider functions of the
form

N N N

p~"'(t) = (Q Z(v, (0)) Z J(~f((-t)) ) /([2 Z(v()] ),
(6. 1)

where P~„" and k~„' are the x components of the two
mutually orthogonal unit vectors which together with
k form a Cartesian set. The k integral may be shown
to be equal to gm so that

0

p&"&(t)-
8 2 dkk exp[-k t(D0+ v,)]

"0
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where for the viscosity g

Jo (v () = v („v (y (6. 2a)
dviJ vi ep k

and for the thermal conductivity A.

Z, (v,.) = v,, [-,'Pmv, ' ——,'(d+ 2)] . (6. 2b)

p~ '(t) = fdv(d(v, ) C'~"'(vz, t), (6. 3a)

where using the identity of all N particles, one
has

e~(')(v„t)= lim (J'(f()) 'm'V
N V
Nf V~n

N

x dx" 'S., (x")p(~") E' d(v, ). (6.3b)
k~1

In view of the great similarity of the Eqs.
(6. 1) and (6.3) to (2. 1) and (2. 2), it will be clear
that the time behavior of p~~)(t) can be determined
in a manner similar to that used for p()"(t). We
will briefly outline this procedure in the Appendix
and only give the main results here.

Corresponding to Eq. (5. 2), we may expand

p,("(~) as

p'"(&) = p'", 'o(&)+ p'", ' (s)+ ~ ~ ~ .
The Laplace inversion of p~ 'o (e) leads to an ex-
ponentially decaying function similar to that given
by Eq. (5.4) for pI) ',(t). Thus we write

(6.4)

pz", o(t) = (d (v&)) fde J(v, )

x e"'o'"(" Z(v, )(I)o(v() (6. 5)

for all t. In the first Enskog approximation

p 0, o (t) = exp[- t(Pmv oo) (6. 6a)

and

p,",'(t)=-exp[-t(P L),„)'], (6. 6b)

where vpp and D&QQ are the first Enskog approxi-
mations to vp and D&, that have been defined in
the Eqs. (4. 8c) and (4. Sd), respectively.

We remark that pz p(t) decays over a period of
a few mean free times.

A treatment of p~ )&(t) similar to that given for
p() '&(t) shows that for long times, the dominant
behavior is contained in the expression

(g)(,)
&d'(&()& '

p~, ~ ~

dkx Z „exp[- ttQ(k) + 0'(k))]
o,o.,'(„(»)"

Here again the angular brackets denote an average
over a canonical ensemble in the thermodynamic
limit.

Expression (6. 1) can be written in the form

x 8'o '( —k, v, ) Fob, i)), )0 0)

where the prime on the summation sign means
that only the hydrodynamic eigenfunctions 8'"'
and O~

" ' are to be included, and the subscript
zero on the eigenfunctions refers to them in the
approximation given by Eq. (4. 9). Of all the hy-
drodynamic modes in the summation in Eq. (6.7)
the dominant contribution to p~ '((t) comes from
those combinations of 0 and 0 which are such
that the sum A(k)+0 (k) is -ka. These combina-
tions are easily seen to arise from (a) two shear
modes, (b) two heat modes, (c) a heat and a shear
mode, and (d) two sound modes such that one has
eigenvalue ikcp + p ~„k and the other —ik & p+ &

xp
Inserting the expressions for Q(k) given by Eq.

(4. 8) and for Oo ' given by (4. 9), we find that only
combinations of two shear modes or two "oppo-
site" sound modes contribute to p„,'(t), while
combinations of one shear mode and one heat mode,
or two "opposite" sound modes contribute to

p), ,'(t), because of the tensorial character of the
functions J„(v&) and J,(v(), respectively.

For d = 2, the long-time behavior of p„',(t) is
given by

2 21 dk k„k~ 2 -2vptk2 I spk t~

"A&kp

(6.8)
where the first term in the parentheses incorpor-
ates the contributions of the shear modes, while
the second term contains the sound-mode contri-
bution.

Carrying out the k integrals, we obtain for
t&& tp

p„",'0)-)32mt, )' x,'+ (x,
'

) (
—')

(6.9a)
or

p.",((t) - o(~')(to/t),
where we have usedthat (v„v, )= (Pm) P and the
values for A. p and qp for hard disks of diameter
a in the first Enskog approximation.

Similarly, we have

(6. 9b)

where the first term in the curly brackets incor-
porates the contributions from combinations of

(p) 1
~

dk 2k, A.p
p ((t)

~ ( ) „3 exp —k t ()o+
"

k&kp

2k exp(-0, 0~(]I, (0. 10)
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or

p'„",(t) - p(na')(to/t), (6. 11b)

where the values for g0 and A.0 in first approxima-
tion have been used. For d = 3, we find that"

I

p„'",(t)- (120nm" )
'

7(2voto) ' '

6. 12a

or using the values for A.0 and g0 for hard spheres
of diameter a in first Enskog approximation~

p„",'(t)-1. 05(n ) (f /t)

while for pp~(t) we find that '
-3/2

p~~~(f)- (12/7f ) v t&~i 0 0
Ã

(6. 12b)

or

4 -3/2~ ] -3/2
+— + —v pto (6. 13a)

Sz g

(6. 13b)

if the Enskpg approximation to m0 and &0 for hard
spheres is used.

Equations (6.9), (6. 11)-(6.13) are consistent
with the computer results of Alder and Wain-
wright, extrapolated to low densities.

VII. . DISCUSSION

A number of remarks can be made in connection
with the results presented here.

(i) The expressions given by the Eqs. (5. 13),
{5.18), (6.9a), (6. 11a), {6.12a), and (6. 13a) are
identical with those derived by Alder and Wain-
wright, ' ' Ernst, Hauge, and van Leeuwen, and
Kawasaki for p~ '(t), p„'"'(t), and pI, '(t) on the
basis of hydrodynamical considerations, if one
replaces the transport coefficients in the expres-
sions given by the above-mentioned authors by
their low-density values.

(ii) The results of Secs. V and VI for the long-
time behavior of p'+(t) seem also to apply to a
general class of systems with short-range inter-
particle forces. This obtains in spite of the k and

e dependence of the Fourier representation of the

T, &, and X operators inthis case. For thisk and
e dependence seems to incorporate effects on the
scale of the range of the interparticle forces and
of the duration of a collision, which both should

shear and heat modes, while the second term con-
tains the sound-mode contribution. Thus, we
write

(6. 1 la)

TABLE I. Comparison of the coefficients of tp/t as
obtained (a) from the divergence of the three-body colli-
sion term e +3 or e 3 (Refs. 23 and 34) for hard disks,
and (b) from the method outlined in this paper, after a
resummation of the S& and & series has been carried
out.

Before re summation

na' tp-0.06

na tp—0. 22
6

2

3

After resummation

na tp

4

sa tp
6

sa tp

3

lead to corrections of O(n) compared to the effects
on the scale of the mean free path and mean free
time, considered here. This expectation seems
to be borne out by machine calculations of p~~~ '(t)
by Verlet and Levesque for systems of particles
interacting with a 12-6 Lennard-Jones potential. 3'

(iii) As remarked before, the results obtained
here are consistent with the machine calculations
of Alder and Wainwright'2'4 extrapolated to low
density.

In this connection it is interesting to note that
in two dimensions a (1/t) time dependence is ob-
tained for p~~'(t), soithout carrying out the rear-
rangement discussed in Sec. III. This is due to
the inc behavior of e3~and eS„which is defined
inthe Appendix, for small &. Using the results of
Sengers for the coefficients of the inc terms in

e3 and e3, we have computed the coefficient of
(to/t), which would be obtained from eSg and eS ~.
A comparison of the results for the coefficients
of the (t~/t) term in p+'(f) before and after resum-
mation is presented in Table I. It is clear that the
unresummed coefficient is inconsistent with the
machine calculations of Alder and Wainwright,
having the opposite sign in two cases, and being
between 5 and 20 times smaller than the coef-
ficient obtained in the resummed theory. Thus the
agreement with the Alder and Wainwright machine
computations can be taken as an a posteriori justi-
fication for the rearrangement carried out in Sec.
III and as consistent with the existence of the di-
vergences in e, as & -0, which necessitate such
an arrangement. In fact, the same dynamical
events responsible for the most divergent contri-
butions to the e, and e, are after resummation
responsible for the (to/t)"~~ tails in the velocity-
correlation functions p~~~'(t), p„'~'(t), and p~~"'(f).

(iv) We have considered here only the first iwo

terms in the iteration method to determine p~+(f).
This may set an upper limit for the time interval
over which the results obtained here are valid.
The higher iterates involve more complicated dy-
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namical events than considered here. A rough
estimate of the terms we have neglected suggests
that they may make themselves felt for times
longer than about 40to. This would imply that the
(tp/t)'t terms should be dominant in p'"'(t) for the
times relevant in the Alder and Wainwright ma-
chine computations.

(v) Physically the long-time tails of the cor-
relation functions are caused in our calculation by
the slowly decaying hydrodynamic modes. Kinet-
ically this is due, among others, to the possibility
of recollisions, i. e. , collisions between two par-
ticles that have collided before. They lead to a
much slower decay of the initial state of a particle
than if they are excluded, since they can still "re-
mind" the particle of its initial state after many
collisions have taken place.

(vi) Since the transport coefficients are related
to time integrals of the time correlation functions
p'" (t), the results (5. 13), (6. 9a), and (6. 11a), if
valid for all t» to, would imply that the time-cor-
relation-function expressions for the Navier-Stokes
transport coefficients do not exist in two dimen-
sions. Similarly, the results (5. 16), (6. 12a), and

(6. 13a) would imply that the time-correlation-func-
tion expressions for the Burnett transport coef-
ficients do not exist in three dimensions, since
integrals of the form' '

f"dt tp'"'(t)
0

occur. However, we stress that in view of the fact
that the results obtained here may only hold over
a restricted time interval, the existence or non-
existence of these transport coefficients is an
open question.

(vii) In view of the long tail of the time cor-
relation functions p1" (t), a sharp separation of
kinetic and hydrodynamic time scales is not pos-
sible. Therefore the precise range of validity of
even the Navier-Stokes equations is not clear,
since in their derivation it is tacitly assumed that
the transport coefficients attain their full value on
a kinetic time scale which is much shorter than
the hydrodynamical time scales to which the equa-
tions apply. In particular, it is not clear to what
extent these equations can be used for phenomena
which are not infinitely slowly varying in space
and time.

In a subsequent paper we shall discuss how the
present considerations can be generalized to
higher densities. We will obtain there, in a sim-
ilar fashion as in this paper, an initial exponential
decay followed by a decay proportional to (tp/t)
with coefficients that reduce to those obtained here in

the low-density limit and which can also be compared
with the results of the hydrodynamical theories. These
results will also allow a comparison with the com-
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APPENDIX

Here we outline the method which leads to Eqs.
(6. 9a), (6. 10), (6. 12a), and (6. 13a) for p„'",'(t) and
p~1",'(t). Since the method closely parallels that
used to obtain p~+, (t), we will only indicate the es-
sential modif ications.

By taking the I aplace transform of Eqs. (6. 3a)
and (6. 3b), one can write

w'"(&) = 1 dv1 J(v1) c',"(v„e),
with

4'~"'(v„e) = lim Vm'(J'(v, )) '
g p'~co

N'/ T/=n

(Al)

x dx"-' G(x",e) p(x")g J (v,.) . (A2)

Using the method outlined in Sec. II, one obtains
for 41~"'(v„e) [see, Eq. (2. 20)I

4,'"'(v„e)= (I/s) [I+Q n'a „,(v„s)]

~ 9 p(1 1) J (v1)' (J (vl)) (A3)

where a, (v,e) are given by the Eqs. (2. 21), pro-
vided that in the operators 8, (v„e) the product

g; asap(n;) is replaced by

Defining the operator $,(v, e) by an identity sim-
ilar to (2. 23) and using a, instead of a, , one can
give an expression for @'z'(v» e) in a form similar
to Eq. (2. 25) for 4~1(v„e):

@'~ (v„e)=(J'(v, )) '
[ -eQ ne „1S,(v„)e] '

l =1

x P1p(v, )J(v,). (A4)

Here the , bear the same relation to the a., as the
S, do to the 8~1, of Eq. (2. 26). For hard disks and

spheres, the operator e&p(v„e) is the linearized
Boltzmann collision operator Xp(v, ) given by Eq.
(3. 17).

Using the binary-collision expansion, one can
sum the most divergent terms in the 8 expansion

puter data of Alder and Wainwright over the whole
range of densities for which they are available.
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with the result

Z 'n era„,(v» e) = ne5l(v„e) + (LDT),
1=2

with

cia(v„e) =, „dv, (0, 0, ~T,(x»x, ) ~k, -k)

(A5a)

by iterating about the operator [e —nXo(v, )] ', and
then by using (Al). pz', (e) is obtained from Eq.
(A6} as

pz'"', (e) =n(J (v,)) ' Jdv, J(v,) [e —nl)p(v, )] '

x eelo(v» e) [e —nl)o(v, )] ' J(v, )pp(v, ).

x [e + ik . vip — n X)l(vg ) —nX )1 (vp) ]

x(k, -k
~
Tp(x&, xp)(1+P,p)

~
0, 0, )rPp(vp) (.A5b)

For reasons identical to those given in Sec. III, we
replace in (A5b) the operator

(Av)

Proceeding as in Sec. V and using identities similar
to those employed in the transition from Eq. (5.8)
to (5.9), the following expression for p~~, (a} is
obtained"'" [cf., Eq. (5.9)]:

by the operator

[e+ik. vip —nip(vy) —nXp(vp)]

to obtain edlp(v„e).
Equations (6.4) and (6. 5) for p'~~)(e) and p'z@p(e),

respectively, are obtained by writing

C'~'(v» e) =(&'(v,)) ' [e -nip(v, ) —neQ(v„e)] '

x &(vi) Po(v, ), (A6)

dvf J vf ~o vf E ~o v

x8', '(k, v, ) eo '(-k, v, )rp, (v,))'. )AS)

Laplace inversion of (A8} leads for t &tp to the

Eq. (6. 7), from which all further results of Sec.
VI can be derived.
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The transport coefficients in high electric fields are obtained for electrons bound in image-
potential-induced surface states on a dielectric liquid surface. A two-dimensional Boltzmann
equation is solved in the diffusion approximation, assuming the principle electron scatterers
are gas atoms and surface waves. At high temperatures, where gas-atom scattering dominates
both energy and momentum relaxation, the transport coefficients are field independent even
though the average electron energy is much higher than the product of Boltzmann's constant
and the liquid temperature. At low temperatures, where surface-wave scattering dominates
the momentum relaxation, the conductivity and Hall mobility increase rapidly with increasing
electric field. For 4He this non-Ohmic transport should occur below 1 K at fields below 0. 1
V/cm.

I. INTRODUCTION

Cole and Cohen' and later Shikin predicted that
electrons should form surface states outside liquid
He, H2, Da, and Ne. The idea is that an elec-
tron can be drawn to and localized outside the liq-
uid surface because of the dielectric image force.
Because of the short-range repulsive interaction
between the electron and the liquid, the electron is
not drawn into the liquid. This one-dimensional
attractive image potential gives rise to electronic
states that are nearly hydrogenic in their motion
perpendicular to the liquid surface. However, the
motion parallel to the liquid surface is assumed to
be free-electron-like. A surface state was de-
tected on liquid He by Williams, Crandall, and

Willis and by Crandall and Williams. They mea-
sured the lifetime of electrons in this surface
state. However, they were unable to explain the
magnitude of the lifetime in terms of the above
image-potential model. ' The experimental values
of the lifetime were much longer than the theoreti-
cal values. Cole calculated the mobility of elec-
trons parallel to the liquid surface and predicted
that above about 1 K electrons would be scattered
mainly by He atoms in the vapor phase, whereas
below this temperature the mobility would be de-
termined by surface wave scattering. Crandall
and Williams suggested that electron motion
parallel to the liquid surface may not be free-elec-
tron-like but rather that electrons are arranged in
a crystalline array. Sommer and Tanner recently


