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A new general expression for the electrical resistivity of a substance is obtained with the

help of projection techniques with the Liouville equation as the point of departure.

No many-

body detail is sacrificed and the “A% limit” is not invoked. The first-order result in a per-
turbation expansion in orders of the scattering is presented in explicit form and shown to have

a simple and physical appearance.
expressions for simple cases.

I. INTRODUCTION

The calculation of the electrical resistivity of
a substance can be performed at three different
levels. The most elementary is the Drude ap-
proach, ! wherein the electrons are assumed to be
subjected to a viscous force proportional to their
speed. Writing the classical Newtonian equation
for each electron as

m Z—f =k - oV, 1)

where the electron has mass m, charge ¢, and
velocity ¥, E is the applied electric field, and «
is a constant of proportionality, we can immedi-
ately calculate the steady-state (d¥ /dt=0) elec-
trical resistivity y as

y=m/Ne?t , (2a)
T=m/a, (2p)

where N is the total number of electrons in the
substance and 7 is the “relaxation time.”

Apart from the fact that the equation of motion
used is a classical one, the major drawback of
the Drude approach is that its implicit assumption
of a constant « (and therefore of a constant 7)
cannot be justified and an investigation of the ori-
gin of the viscous force cannot be carried out
within its framework. One merely makes general
statements asserting that the viscous force arises
from collisions of the electron with the scattering
centers (other electrons or different bodies) and
that the “relaxation time 7’ is approximately one -

It is also shown to reduce to the well-known Boltzmann

half the average time between two collisions.

A more sophisticated approach starts with the
Boltzmann equation, >~7 which describes the time
evolution of f, the ensemble density in u space.
The equation in its exact form is a complicated
nonlinear integrodifferential one, and so approx-
imations like “linearization” and the “relaxation-
time assumption” (see for instance Ref. 3) are
often used to solve for f.® From f one then obtains
the electrical conductivity o (which is of course
1/7) as’

o=~ —-—I T 0 86’* ak (3)

where v, is the component of the velocity of the
electron in state %2 along the direction of measure-
ment, €, is its energy, f? is the equilibrium
Fermi-Dirac distribution function, d%k is a vol-
ume element in & space, and 7, is the relaxation
time which arises out of the relaxation-time as~
sumption.

The above approach is widely used for practical
calculations and almost all discussions of elec-
trical resistivity or related problems are carried
out in its context. Under these circumstances it
is easy to forget its inherent limitations and the
criticisms that can be levied against it. The
most serious objection to this Boltzmann ap-
proach consists of an objection to the very use of
the Boltzmann equation. This equation was de-
rived® on the basis of intuitive arguments which
are not rigorous and attempts to obtain it deduc-
tively from more general starting points (like for



770 V. M. KENKRE AND M. DRESDEN

example the Liouville equation) have not been suc-
cessful to the present date. The Bogolubov
formalism, '° which perhaps came closest to ob-
taining the Boltzmann equation from the Liouville
equation, has recently met with many objec-
tions' ! of a very fundamental character, and
until these are removed we cannot be said to have
any acceptable derivation of the Boltzmann equa-
tion. Also, this equation is known to be a first-
order approximation valid for low densities and
weak interactions, and the domain of validity of
its generalizations is also not completely known.
For a more detailed discussion see Refs. 14-16.
It is thus clear that the Boltzmann approach is
not entirely satisfactory and a more rigorous and
a more general approach is necessary. This is
the Liouville approach, 17-2 whose starting point
is the Liouville equation for the density matrix.
The first analysis along these lines was carried
out by Kohn and Luttinger'™!® but they considered
the simplified case of noninteracting electrons.
To attack the problem from a completely general
standpoint, we may begin with a many-body sys-
tem and obtain, through the Kubo formalism,®:20
a closed expression for the electrical condvuctivity.

o=(e%/m*kT) | T atd) (4a)
J(t) =3 Trp{FF(t)+ F¢)F} , (4b)
F(t)=e*t F, (4c)
Lo =[H\\ | for anye , (44)

where % is the Boltzmann constant, T is the tem-
perature, p is the equilibrium density matrix and
H is the system Hamiltonian, both before the ap-
plication of the electric field, and F is the com-
ponent of the total momentum of the electrons
along the direction of the applied electric field
and of the measured current. # (In this paper,
we treat only the diagonal component of the con-
ductivity tensor for the sake of simplicity.)

The advantages of this procedure over the
Boltzmann approach are many. Here one begins with
the very general Liouville equation and sacrifices
no many-body detail to obtain the expression

"[Eq. (4a)] for the electrical conductivity. In the
Boltzmann approach on the other hand, we “de-
scend”’ from the T space to the p space (borrow-
ing from classical terminology) and thus we lose
information. However, as may be expected the
compact but highly formal expression (4) is ex-
tremely hard to calculate. One is forced there-
fore to make some sort of approximation. This
however is beset with difficulties because if a
straightforward perturbation expansion of o in
powers of the scattering interaction is sought, one
quickly meets with failure. The reason is that the

~above.
scattering interaction are assumed, the limit

|o

o without the scattering is infinite (for obvious
physical reasons), and each successive term in the
expansion is also found to be infinite.

The expansion thus turns out to be purely formal
and completely useless. There are two remedies
to this situation: one is the “A%f limit” 22 8=5 of
Van Hove, and the other is the content of this pa-
per.

The “A%¢ limit” of Van Hove has been explained
ingreatdetail in Refs. 20, 21, 23-35 and it has been
used by Chester and Thellung21 and by Verboven?®
for the present purpose. It essentially consists of
a rearrangement of the formal expansion described
If certain mathematical properties of the

A—0, t-», \%f=const (\ denotes the strength
parameter of the scattering interaction) leads to
an expansion of o in which each term is finite.

While some indications of the physical motivation
of the “A%# limit” exist, # the procedure has not
really been justified and the physical meaning of the
limit remains somewhat mysterious. In this pa-
per we bypass this limit completely and present a
different method of calculating the electrical re-
sistivity from the Kubo formula [Eq. (4a)].

II. DIFFERENT METHOD

The basic reasoning is as follows. In the expan-
sion of the electrical conductivity
o(N)=0(0) + oy +A20p+e e+, (5)

0(0), oy, 05. .. all turn out to be divergent. One
may however ask the question: What would happen
if an expansion of the quantity y=1/¢ is sought in
successive powers of A:

YO =7(0) + Xyy + X2yp 4o . (6)
It is clear that while the conductivity with zero scat-
tering o(0) is infinite, the resistivity y(0) with zero
scattering is zero. The expansion in Eq. (6) thus
at least starts off with a noninfinite unperturbed
quantity [unlike the expansion in Eq. (5)]. If there-
fore 7y, 73 ... also turn out to be noninfinite, we
have a perfectly valid way of calculating ¥ or ¢
from Eq. (6)—hoping of course that the terms in the
expansion are successively smaller. We shall now
show that such a development can in fact be carried
out with the help of a special use of the Zwanzig
projection techniques. ® We shall obtain specifically
the first-order result and show that it can be put
in complete correspondence with the Drude re-
sult [Eq. (2a)]. Our procedure starts with the
Liouville equation, proceeds through the Kubo
formalism to Eq. (4a), and then makes no other
assumption except the interchangeability of the
orders of a certain limit and an integration. The
result we arrive at [Eq. (12a)] is thus subject
only to the validity of the above operation and of



6 THEORY OF ELECTRICAL RESISTIVITY 771

the Kubo formula. We then make the usual as~
sumption of the possibility of an expansion in A
and obtain the lowest-order expression.

III. PROJECTION TECHNIQUES

The projection techniques of Zwanzig?® are a
means of formally extracting partial information
from the evolution equation of a quantity x(¢),
when one is interested not in the entire x(f) but
only in a part of it. The techniques have been
used in various contexts by a number of au-
thors, #~% and the details of the particular man-
ner in which they are used here may be found in
an earlier paper.®

Our use of the projection techniques for the
present purpose proceeds through the following
steps. We first observe that by the cyclic per-
mutation of the operators within the trace, it is
possible to rewrite the J(¢) appearing in Eq. (4)
as

J(¢)=TrFK() , (72)
where K (¢) obeys the Liouville-like equation

K(#)=e** K(0) (7o)
and

K(0)=3(pF+Fp) . (7c)

1t is thus possible to express J(¢) as a quantity
projected out of another, the latter being governed
by a Liouville-like equation. We now define the
linear time-independent idempotent projection op-
erator P through

Po=K(0)TrF'© for anyo , (8a)
F'=[1/J(0)]F . (8b)

This particular choice immediately simplifies the
Zwanzig equation®

)
i 22540 pyp() + PLGO( - P)K(0)
t
—iI ds PLG(s)(1 =P)LPK(t-s), (9a)
0
G(t):eit‘(l-P)L ) (9b)
and reduces it to (see Ref. 30 for further details)
t
3,
—i]#l = —I ds 8 (t =s)J(s), (10a)

4]
9 (1) =[1/J(0)] Tr[FLG(#)(1 - P) LK (0)] . (100)

We can solve® Eq. (10a) by Laplace transforms
to yield

f0'° dte'“J(t)=J(o)/[e+f0” dte*t2@®)] . (11)

This result is exact and is a direct consequence
of the Kubo formula [Eq. (4a)]. We now take the

limit as €- 0 and assume that the orders of the
limit and the integration may be interchanged.
If this is permissible we immediately have a
formula for the electrical resistivity:

y=[m2kT/e2J(0)?] fow a Q) , (12a)

Q@) =Tr[FLG({)(1 - P)LK(0)] . (12p)

This is in the form required for the Eq. (6) and
we shall find that while an expansion of J(¢f) and
therefore of o in powers of the scattering interac-
tion gives rise to divergences, a similar expan-
sion of @(¢) and thus of ¥ does not. In fact we
shall derive an explicit formula for the resistivity
to the lowest order in the scattering.

1V. SIMPLIFICATION OF Q(¢)
From Eq. (12b),
Q) =Tr[FLG({)LK(0) - TrFLG(t) PLK(0)] . (13)
But from Eq. (8),

PLK(0) =K(0) Tr[F'LK (0)] , (14)
and from Eq. (7c), we can easily show that

Tr[F'LK(0)]=0. (15)
Then we have

Q)= Tr[FLG(/)LK(0)] . (16)
We now write

H=Hy,+V, (17a)

L=Lg+Ly , (17b)

where H, is the Hamiltonian of the system in the
absence of the scattering mechanism and V con-
tains the scattering. It should be noted, in par-
ticular, that Hyneed not be simple and may cer-
tainly have a complicated many-body character.
For most systems of interest, we shall have

[F,Hy]=0. (18)
It is clear that for any two operators ©; and 0,
Tr[0,L0,]=-Tro,L0, . (19)
Using Eqgs. (17b)—(19) in (16), we have
Q(t)=Tr[FL, G(t)LK(0)] . (20)

This result for @(¢) is exact. To get an ex-
plicit expression out of Eq. (20) we now make the
weak-coupling approximation. Before that we
should note that taking the equilibrium density
matrix to be canonical, we may write the follow-
ing approximate equations, 3% which are valid to
the first order in the interaction V:

BH V) o,

p=e Pot+PV » (21a)
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po=e*¥o (21b)
pr=po W, (21c)
K()~Ky+Ky , (22a)
Ko=3(Fpy+po F) (22b)
Ky=3(Fpy W +py WF) , (22¢)
W= fo'B dxe*oyeo | (23)

The weak-coupling approximation® consists in
replacing G(t) by Gy(f), where

Go(t)=e”“'_P)L0 . (24)

Using Eqs. (21)-(24) in (20) and retaining the
lowest-order terms,

Q) =Tr[FLy Go()(LoKy+LyKy)] . (25)

The above expression which still contains projec-
tion operators may now be rid of them by noting
that for any operatoro,

Go(t)0=0 +itLy® —itPLgO ++++ . (26)

However, from the definition (8a) of P and from
the results of Eqs. (18) and (19), we have

PL,0=0 for anyo . (27)

Substituting Eq. (27) in the expansion in Eq. (26),
the projection operators all disappear, yielding

Go(t)0 =e'*Foo for any o (28)
and
Q) =Tr[FL,e'*l0(L Ky +LyKy)] . (29)
V. EXPLICIT CALCULATION

We now proceed to calculate the trace explicit-
ly. Writing

Q) =g (8) +P10(8) , (30a)
Pou(t) = Tr(FLy e 0LoKy ) , (30Db)
b1o(t) = Tr(FLy e 0L, Ky) | (30c)

and choosing the representation of the simultaneous
eigenstates £, u, etc., of F and H,, we have

G ERS eE (‘E'L"Fl“><“ILoKv|§>e‘“Eu‘E¢) ’
” » (31a)
V1o(t) = —? (E|Ly Fu) (u|LyKo| £) ¥ Bu-Bo)

(31b)
The following identities have been proved in the
Appendix:

(E|LyFlu)y=C|V|u) Fu=F)), (32a)

2Au|LoKy|£) = (| V|E) (F, + Fp) (e —e*B2) ,
(32b)

(RILyKo| &) =(u|V|e) (Fee®t=F,e®u) ,  (32¢)
(F, +F‘)(e'5Ew —ePE) 1 2F, et~ F, ¢PPu)

=(Fy=F,)ePBt+oPPu), (32d)
where F, is the diagonal element {u| F|u).

Substituting Eqs. (32a)—(32c) in Eqs. (30a) and
(31) and using Eq. (32d), we obtain

QW)=1% lE e EEY | (| V)| 3(F, - Fy)?
x(e®ft +ePBu) ., (33)

Substituting Eq. (33) in Eq. (12a), taking the
thermodynamic limit first, and writing (the prin-
cipal part of 1/x does not contribute to the follow-
ing expressions)

S atet =m0, (34)

we obtain the expression for the resistivity
v=[dE ™ a(E)/ [dEe*E g(E) , (35a)

2
a(E)=%"gﬂ%k)—§ tZJ K| V]w)| 2(F, -F,)?

X 6(E -E,)5(E-E,), (35b)

where g(E) is the many-body density of states
given by ¥, 0(E - E,).

The quantity J(0) appearing in Eq. (35b) also
depends on the scattering V, and we must there-
fore carry out an expansion of it in orders of V
and, for the sake of consistency in the expression
for 7, retain only the lowest order term. We
shall now carry out this calculation.

From Egs. (7),

J(0)= TrpFF , (36)

and in the lowest order of V (the zeroth order)
this is
J(0)~ Trp,FF . (37)

The well-known Kubo identity, !°* which may be
written in our notation here as

—im [ py, X]=p0f: ds F(~is) , (38)

with X as the relevant component of the “total po-
sition operator,” takes the following form in the
zeroth order of V:

—-im [po, X]: ﬁpOF’ (39)
and Eq. (37) can therefore be written
J(0)~ = imk T Tr] pg, X] F . (40)

Cyclic permutation of operators within the trace
and the use of the basic commutation relations be-
tween the position and the momentum operators
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yield, *® from Eq. (40),
J(0)~ NmkT . (41)
Substitution of Eq. (41) in Eq. (35a) gives our
]

1 m

T NmkT

)

V1. REDUCTION TO BOLTZMANN FORMULAS

The final expression for the electrical resis-
tivity, the conjunction of Eqs. (2a) and (42), has
in spite of its many-body character an extremely
familiar form and the recovery of the usual Boltz-
mann-like formulas for simple cases is quite
trivial. While the details are absolutely straight -
forward and will not therefore be given here, an
outline of such a reduction is perhaps in order and
will be briefly sketched for the model of elastic
scattering of noninteracting electrons from fixed
impurities.

Expressing the operators V, F, and H in the
second quantized form,

V=23 Vpaha, , (43a)
m,n

F=2 keala,, (43b)
k

Hy=2J €aka, , (43c)

the expression for y [Eq. (42)] can be shown to re-
duce to a sum over single-electron states, of a
product of two factors, one of which is the sta-
tistical manifestation of the exclusion principle
and the other consists of, among other quantities,
the transition probability | VI %, The statistical
factor is £ (1 =f?), and when multipled by 1/&T
[see Eq. (42)] it yields 872 /#¢,. The Boltzmann
expression (3) is then exactly obtained with its
T, corresponding to a part of the other factor (not
containing the statistics) in our formula.
Scattering from phonons may also be treated in
an identical manner, and the corresponding Boltz-
mann formula obtained from Eq. (42).

VII. DISCUSSION

In summary, our procedure consists of start-
ing with the Liouville equation, arriving (with
Kubo) at Eq. (4a), applying projection techniques
to yield Eq. (11), and making the assumption of
the interchangeability of the orders of the limit
and the integration to give Eq. (12a). Equation
(12a) is really our central result. We then derive

final expression for the electrical resistivity v
correct to the lowest order in the scattering V.
It can then be cast into the exact form of Drude
[Eq. (2a)] with the relaxation time 7 given by

JdEe'BE 2 [\ v|w)|3(F, -F,)%(E -E,) 6(E -Eu)/IdEe'BE 2 8(E-E,) . (42)
° ¢ )

an explicit expression for the resistivity [Eq.

(42) with (2a)] to the lowest order in the scatter-
ing interaction: Results correct to higher orders
may be obtained by treating @(¢) and J(0) to higher
orders.

Our method differs from the existing
derivations from the Liouville equation in that it
entirely bypasses the “A%¢ limit” and consequent-
ly avoids the problems of its justification and
physical interpretation. When the final result is
placed vis-a-vis the Drude expression, the re-
laxation time 7featuring in our formula is seen to
have a simple and physical appearance: One en-
counters, in Eq. (42), a product of the transition
probability between two many-body states and the
square of the difference between the expectation
values of the total momentum component in the
two states. As we have shown in Sec. VI, it is
also a straightforward matter to simplify our Eq.
(42) for the noninteracting case and obtain a
Boltzmann-like formula for the conductivity. As
it stands however, Eq. (42) has the complete
many-body character. It does not require H,, the
Hamiltonian without the scattering, to be a sum
of single-particle Hamiltonians, and it is correct
as long as H, satisfies Eq. (18). Furthermore,
it is possible® to modify the procedure and to ob-
tain by a straightforward extension of our method
a slightly different formula when Eq. (18) is not
satisfied. Another general feature of Eq. (42) is
that it is independent of the statistics of the con-
stituents of the system. The latter have to be fed
into the formula through the states &, u, etc.

We must hasten to add that while our method
has avoided the A%f limit, it has introduced in its
place a new assumption, viz., the one about the
interchangeability of the orders of the limit and
integration in Eq. (11). However, we believe that
this appears to be a muchmore reasonable assump-
tion. It is nothing more than requiring that as
€ - 0 the limit of the Laplace transform of the cor-
relation function be equal to the #=0 to == integral
of the correlation function.

As a side remark it is interesting to note the
following result. Multiplying and dividing Eq.

(4) by J(0) one may write

20,21,23=-25

o=Ne?t/m , (44a)
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T=¢ fo ©dta)/I(0) , (44b)
¢ =J(0)/NmkT . (44c)

This simple manipulation shows that if the resis-
tivity v, as appearing in the Kubo formalism, is
put in the Drude form, 7 acquires a particularly
transparent and nonartificial form. Apart from
the parameter ¢, it is just the zero-to-infinity
time integral of the “normalized”’ correlation
function. [Two simple details may be easily
checked: The dimensions of 7 are obviously those
of time, since both ¢ and J(¢)/J(0) are dimension-
less; and the right-hand side of Eq. (44b) gives

7 apart from ¢ for the simple case of a single
universal relaxation time, i.e., if J(f) equals
J(0)et'".]

The problem to which one then requires to ad-
dress oneself is the calculation of the right-hand
side of Eq. (44b). The Van Hove method consists
of expanding J(f), considering the integral in Eq.-
(44b) with #’ (# ©) as the upper limit, rearranging
the expansion and taking the limit as A— 0, ¢
~o, A%'=const. Our method, on the other hand,
consists of handling the entire object [g dtJ(¢).
From the structure of J(¢) [Eq. (7a)], we write a
separate equation for J(¢) [Eq. (10a)], which we
arrive at through projection techniques. Laplace-
transforming the equation we obtain an expression
for the entity [y dtJ(t) as a reciprocal of another
t=0to t= integral. This latter integral turns out
to be amenable to a nondivergent expansion [unlike
Jo dtJd(t)]. The central idea of our method is thus
extremely simple. Since for the case of no scat-
tering, 7= but 1/7=0, we expand 1/7 rather than
7 in orders of the scattering.

Our final expression is for the resistivity v
rather than for the conductivity o. It is therefore
particularly useful whenever a direct y expression
(as opposed to a o expression) is required. This
happens, for instance, in an investigation®® of the
Matthiessen’s rule.* This and the treatment of
the nondiagonal components of the conductivity
tensor, which require a slight modification of our
method, will be reported elsewhere.

We conclude by stating that while our method is
perfectly general and can in principle tackle the
magnetoresistance problem, our final expression
as exhibited in Eq. (42) is not valid for such a
situation. This is because of the assumption in
Eq. (18) which is not correct when the Hamiltonian
without the scattering involves a magnetic field.

A modification of the simplifying procedure initiated
in Eq. (18) must thus be undertaken to treat the
problem of magnetoresistance., Such an analysis
can be carried out® and will be reported in another
paper.

Note added in proof. After this paper was written,
it was pointed out to us that some of our methods

[Kep]

are similar to the ones employed by H. Mori,
Progr. Theoret. Phys. 33, 423 (1965); 34, 399
(1965). In these interesting articles, Mori provides
a rigorous foundation to the Langevin equation in
the theory of Brownian motion. In this process he
employs projection techniques and derives equa-
tions that resemble some of the equations in the
first part of the present paper. Indeed Egs. (5.3)
through (5.4) in Mori’s second paper are almost
identical to our Eqs. (11) and (12). (The difference
lies in the meaning of the projection operators.)
However, Mori did not obtain an explicit usable ex-
pression for the resistivity, which does not contain
projection operators. Also, the spirit of his in-
vestigation and his use of the projection techniques
are quite different from ours. A detailed compari-
son showing the interrelationship of the two ap-
proaches will be presented elsewhere. Here we
merely state the following chief differences: (i)
Mori applies projections to the Heisenberg equation
of motion of an operator corresponding to an ob-
servable, and containing no statistical element,
while we start with the Liouville equation already
containing the statistics and obeyed by K(¢), a quan-
tity which is obtained in a simple manner from the
density matrix. (ii) Whereas we choose such pro-
jections as will make the initial-value term in the
Zwanzig equation equal zero, Mori’s projections
make the first term (called the “proper term” in
Ref. 16) zero, and in his approach the initial-value
term plays an important role, viz., that of the
fluctuating random force. This is a fundamental
difference and means that the projection operators
are quite different in the two cases. (iii) Equations
corresponding to our Eq. (11) look different in
Mori’s and our approaches in the general case and
are alike only in the special case of autocorrelation
functions. (iv) The projected equation is directly
obeyed by a correlation function in our method,
while Mori’s equation features a currentlike oper-
ator, whose correlation we consider. (v) The quan-
tities described by the original equation and the
projected equation are the same in Mori’s approach
but different [K(f) and J(¢), respectively] in ours.
(vi) Finally, the techniques of Mori are particularly
well suited to the investigation of Brownian motion
while ours are effective for transport parameters.
We have also been informed that P. N. Argyres
and J. Siegel have recently obtained some results
similar to ours. We wish to thank Professors R.
Kubo and P. N. Argyres for drawing our attention
to these investigations.
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APPENDIX

We present here the details of the calculations
that lead to Egs. (32a)-(32d).
The relation

L,F=VF -FV (A1)

and the fact that F is diagonal in states u, £, etc.,
yield Eq. (32a) quite trivially. We note from Eq.
(23) that

Wl W)= [ arulv|p et (a2)

Carrying out the integration we get

THEORY OF ELECTRICAL RESISTIVITY 7175

ePEt — oPEu

—E:—_‘E—u—'(lilV‘ﬁ) . (A3)

(uwg) =

From Eq. (22c), we have
(u|Ky| &) =3e®u (Fy+ F)(u|W[E) .
Substituting Eqs. (A3) and (A4) in
2(u|LoK, | &) =2(u|K,|£) (B, ~Ep) , (45)
we obtain Eq. (32b). Also, since

(| LyKol €)= (| V] &) (| Kol &) —(u|Ko|p)),
(A8)

Eq. (32c) is easily obtained. Finally (32d) can be
established through a straightforward calculation.

(A4)
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