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A unified formal treatment of the two-state potential-curve-crossing problem in atomic
collision theory is presented, and the case of close crossings analyzed in detail. A complete
solution for this case, including necessary computations, is given using a suitable generali-
zation of the linear model originally suggested by Landau, Zener, and Stueckelberg. Our
solution is based upon a hierarchy of approximations concerned with (i) choice of a discrete
basis set for electronic coordinates, (ii) semiclassical treatment of the nuclear motion, (iii)
an appropriate model for the two-state electronic Hamiltonian, and (iv) a complete solution

to that model.

I. INTRODUCTION

This paper is the second in a series concerned
with the problem of electronic transitions occurring
at a crossing of two electronic potential surfaces
during an atomic or molecular collision. Such
transitions are usually involved whenever efficient
electronic deactivation or energy transfer occurs
in collisions of dissimilar atoms. In the first
paper of this series! we made a detailed analysis
of one particular approach to the solution of the
crossing problem, viz., that of Stueckelberg.?

An important conclusion of that analysis is that the
precise conditions of validity of the well-known
Landau®*-Zener®®-Stueckelberg (LZS) formula for
the transition probability at curve crossings remain
unclear; all the derivations of it are valid only
under unrealistically stringent conditions, while
there is considerable evidence for the de facto
validity of the formula itself over a rather wider
range,

Since the original studies by these three authors
in 1932, many treatments of curve crossing, using
various assumptions and methods of solution, have
appeared in the literature. Most of them can be
understood and evaluated within a unified formal
theory in a way that sets out clearly the essential
assumptions and approximations.

An analysis of the curve-crossing problem is
based on a hierarchy of approximations with four
basic steps: (i) choice of a suitable truncated
discrete basis set for describing the internal
(electronic) states, (ii) a semiclassical treatment
of the relative (nuclear) motion, (iii) definition of

Ll

an appropriate explicit model for the projection of
the Hamiltonian on the truncated electronic sub-
space, and (iv) adequate solution of the resulting
model problem,

In another series of papers,* we have considered
in detail the derivations of semiclassical descrip-
tions of inelastic collisions, paying special atten-
tion to the precise conditions of validity of the
various derivations and to the physical interpreta-
tions associated with them., From that analysis
we can conclude that inadequacies in previous
treatments of the curve-crossing problem have
resulted primarily from defects in the construction
and solution of curve-crossing models, and not
from errors inherent in a semiclassical descrip-
tion.

The major concern of this paper is with the con-
struction and solution of a model for close cross-
ings, in which the crossing point is close to the
classical turning point. For completeness, how-
ever, we begin with a discussion of the first two
approximations in the hierarchy, i.e., the reduc-
tion to two states, and the semiclassical treatment
of the nuclear motion, The formal properties of
the resulting time-dependent equations are dis-
cussed, and an important simplification is pre-
sented. Finally, a model for the close curve-
crossing problem is presented and solved, includ-
ing the necessary numerical computations for in-
termediate parameter domains.

The model developed here is a generalization of
one due to Bykhovskii, Nikitin, and Ovchinnikova®
(BNO) and we will use some of their formalism
and notation. Both their model and the present one
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are extensions of the LZS model of linear poten-
tials, constant coupling, and constant nuclear veloc-
ity: The BNO model takés into account the acceler-
ation of the nuclei, while our model also allows

for curvature in the potentials and variation in the
coupling with internuclear distance. However,

our formal analysis of the structure of the curve-
crossing problem is more important than the spec-
ific model we have employed, because it shows
clearly why various approximations, such as the
LZS model, are inadequate, and provides criteria
and means for systerhatic model improvements
needed to meet actual conditions.

II. GENERAL THEORY

A. Internal States

The description “curve crossing” implies that
important features of the problem to be treated are
associated with a particular pair of electronic
states. The applicability of such an idealization
must be decided separately for each system and
process in question, and obviously can be appro-
priate even then for only a limited range of observ-
ables. Two general limitations to such a descrip-
tion are inherent in atomic collisions, arising from
(i) the tendency of electronic excited states to be
nearly degenerate with many otl;“ers, because of
Rydberg convergence on ionization limits, and
from (ii) the increasing importance of “direct-
impact” excitation with increasing nuclear velocity.
These general limitations confine applications of
the curve-crossing problem, at least in the detail
considered here, to those low-energy collisions
that involve as the primary event the excitation of
well-isolated (hence, lower-lying®) electronic states
of the colliding system. To define “low energy”
we may take the Massey adiabatic criterion, which
confines relative collision energies below 1 keV.

In principle, a curve-crossing theory might be
extended to cover the situation where the potential
curve for the initial electronic state of a system
crosses a sequence of closely spaced curves, and
finally moves across the ionization limit of the
sequence into a continuum. Some studies of this
case have treated it as a multiple-curve-crossing
problem.”"® While such a formulation may offer
useful insight in certain cases, it is important to
recognize that this problem also has some funda-
mentally new features. A highly degenerate mani-
fold of electronic states can never behave adiabati-
cally, because levels less tightly bound than
(m/M)E are strongly mixed with the continuum
through the nuclear motion.® An electron initially
translating with one of the nuclei may escape com-
pletely during a collision, if it is excited to such
a weakly bound state. This effect, and all “direct-
impact” effects!® related to it, cannot be described

by the use of Born-Oppenheimer electronic states
or by the use of any unitary tvansformation upon
any finite subspace spanned by Bovn-Oppenheimey
states. Inclusion of direct-impact effects within
the degenerate manifold of final states, which in-
cludes a careful account of the electron kinematics,

~would be necessary before a multiple-crossing

model could be properly employed to examine
strong coupling of such a manifold to an initial
state.

With these restrictions on the generality of the
theory, the problem is framed from the outset
within a limited electronic subspace which is com-
pletely spanned by a finite set of Born-Oppenheimer
(BO) or adiabatic electronic states. However, be-
cause the BO states obey the noncrossing rule,
they may not form the most desirable representa-
tion within the subspace; instead it may be desir-
able to introduce diabatic representations, in which
the diagonal matrix elements of the electronic
Hamiltonian in the subspace can cross and the off-
diagonal interactions appear as scalar coupling
potentials. The main aspects of this question have
already beendiscussed by F. T. Smith!!; our forma-
lism differs from his only in certain details. .

A partial-wave analysis is convenient since the’
choice of electronic representation, etc., may
depend on the collision angular momentum (class-
ical impact parameter). Generalizing the defini-
tion of “internal state” to include implicit specifi-
cation of angular momentum state for the collision,
and denoting such internal states as a set of kets
{1 n)} which may depend on internuclear distance
R as a parameter, we can write the wave function
for a single partial wave as a linear combination

¥, =R, u,(R)In) . (1)
Following the general lines indicated in Ref. 11
it is easy to show that the vector u (y,u5,...,uy)
obeys the coupled equations

{[-in(a/ar)+P(R)]* +H'R)}u=Eu , 2)
where

P,,(R)=(m| —ifi (d/dR)In) ; (3)

the elements of H’, H,,,(R), contain all other ef-
fects of the Hamiltonian and are simply scalar
functions of R.

Only the R component of the nuclear gradient
contributes to the nonadiabatic coupling matrix P.
Coriolis forces also appear in the complete Ham-
iltonian because Born-Oppenheimer states employ
a rotating molecular reference frame. These
“angular couplings” produce A-type doubling and
related effects in the electronic spectra of diatomic
molecules. They can lead to strong coupling within
orbitally degenerate manifolds of the united atom
associated with a colliding diatomic system; for
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example, they are responsible for the high proba-
bility of the Lyman-a excitation process H* +H(1s)
- H* +H(2p) at very low energies.'® On the other
hand, the asymptotic significance of the Coriolis
forces within orbitally degenerate manifolds of the
separated atoms can be shown to be trivial. 13
Finally, Coriolis coupling may come into play at
an accidental crossing of two BO states whose A
values differ by +1. In any case our formalism
includes them in the interaction matrix _Ii’ .

For mathematical simplicity we treat only the
two-state case N=2. Even aside from the funda-
mental problems of such a truncation discussed
above, there are cases where a basis with more
than two internal states is needed, notably those
with angular momentum couplings; however, the
important features of curve-crossing problems
are present in the two-state case and there are
many situations where it should be an adequate
model.

The two limiting representations of the internal-
state subspace are now easily defined: The
“adiabatic” basis is that for which I_-I_' is made diag-
onal at each R, and the “diabatic” basis is that
for which P vanishes., Potential surfaces (diagonal
elements Hj,) are usually more readily calculated
in the adiabatic basis, though the results of exper-
iments are often more easily interpreted in the
diabatic basis. Semiclassical calculations are
equally easy in either representation.

Suppose that in the diabatic basis H' has the
elements

Hi’/=V”(R) . (4)

Let W represent the unitary matrix that renders
V diagonal,

]
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WVW'=¢ (diagonal) , (5)

so that in adiabatic representation, H;, = 6;,¢,(R).
W can be written

cosf -siné
\—N-_(sine cos9> ’ (6)
where
VZ cosf=[1+8/(1+22)1/2]1/2

V2 sing=[1 —¢/(1 +£3)1/2] 2,
and

t=[Vy = Vy1/2V, =cot26 . (8)

(7

The variable £, it will be recalled, plays an im-
portant role in Stueckelberg’s treatment (cf. our
analysis in Ref. 1) and will here also.

For any given state vector, its representative
in the diabatic representation g” is related to the
corresponding adiabatic representative g‘ by

uf=Wu? . ©)
B. Semiclassical Treatment of Nuclear Motion

1. Semiclassical Approximants and Classical
Trajectory Equations

A semiclassical treatment is based on the use of
asymptotic (WKB) approximants to the channel wave
functions adequate to describe elastic propagation
in the absence of coupling. The exact wave function
for the coupled system is then expanded in terms
of these approximants, and coupled equations are
obtained for the expansion coefficients, Thus, for
the diabatic basis, for example, we write

u

where

®%R)/2M +V,,(R)-E=0 . (11)
After deriving first-order coupled equations for ¢,,(R)
and making a set of suitable approximations, inherent
in the semiclassical theory,* we arrive at the equations

. T
.. d ¢
in %:{Vmexp[ % j(; (Vu_Vza)dT':l}cz ,
(12)
dc

. T
in ;rl :{V12 exp [— % f (V- sz)dT']}C1 ,
0

where 7 is a “time” variable related to R by
R _F
dr ~ M’ (13)

»_¢i.(R)expli [[R®;(R")dR'] /}+ci.R)exp{—i[[R®s(R’)dR"] /Ki} (10)
A |§}72' ) /

a quantity subsequently referred to as the “nuclear
velocity.” Equations (12) are called “the classical-
trajectory equations, ” because they can be obtained
by making the heuristic postulate that the nuclei move
along a classical trajectory R(7) and that the elec-
trons obey the time-dependent Schrddinger equation
arising from such a time dependence in the Ham-
iltonian. However, it has been shown not only that
this independent postulate is unnecessary, but that
Egs. (12) are valid much more generally than such
an interpretation or postulate allows.*

If the inelastic couplingis weak inthe adiabatic rep-
resentation, then the analogous semiclassical
solution can be written
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uh- v;.(R) expl(/7) [* m dR’]+v, (R)exp[- (/%) [®n,dR']

7 Iﬂ;lzl ’ (14)
T
where 7, is the adiabatic momentum, By using Eqs. (6)-(9), these forms can be ex-
_ pressed in the diabatic representation as
[#(R)/2M]+€¢,(R)~E=0 . (15)
i |
[u’l’:' _ [{1 +t/(1L+t2) /212 ] Ve €xpl@/%) [ 1,dR")+ v, exp[- (/%) ] 1,dR"]
ug _ {1 -t/(1 +t2)1/2} 1/2 | (2%)1/2’
{1-2/(1 +23) 2 V2] y,, explG/B) [ mydR']+y,. expl - (/) [ 7, dR’] (16)
Lt/ yz e I(27,)77 ’

which can be recognized immediately as the asymp-
totic forms obtained by Stueckelberg!? [cf. Egs.
(14) of Ref. 1]. Stueckelberg’s treatment assumes
that sufficiently far from a crossing region the
coefficients y,, are constants and that the relations
linking them across the crossing region can be
determined by “connection formulas” obtained by
examination of Stokes’s phenomena associated with
the crossing point. In Ref. 1, we showed that this
procedure is almost never valid, If the actual
variations in y,,(R) are considered, we obtain, by
methods identical to those for Eqgs. (12),

T
dy, [ _as i )]
e ‘[ ar exP(‘;zj (&~ €)dT')| 75

d de i (7
ﬁ%}:(}_f exp(—;— j (&5 — ea)dT')] Ye 3

note that

dae
art

am7)

:-% 20 +¢3)]7 .

Equations (17) are just the classical-trajectory
equations in the adiabatic representation [Egs.
(15), Ref. 1].

We wish to emphasize at this point the very gen-
eral validity of the classical-trajectory equations,
especially as investigations of the crossing prob-
lem have sometimes focused attention on the ap-
plicability of semiclassical methods to the prob-
lem. In papers cited in Ref. 4 we have considered
the general problem of semiclassical theories of
inelastic scattering, paying careful attention to the
various derivations of the classical-trajectory
equations and the conditions for their validity. In
addition to the derivations based on semiclassical
approximations in configuration space, we have
shown that there exists a derivation based on a
momentum-space semiclassical approximation,

[

which complements the one based on configuration
space in such a way that Egs. (12) and (17) can
often be valid even to describe coupling in the
classical-turning-point region, The general as-
sumptions required for the validity of the classical-
trajectory equations are the following:

(i) The semiclassical approximation must be
valid to describe elastic scattering for each channel
in the absence of coupling.

(ii) The difference between classical trajectories
for elastic scattering on potential curves for dif-
ferent channels must be small compared to atomic
dimensions.

(iii) The coupling must be negligible near the
classical turning points; and/or

(iii’) the forces - (dV,, /dR) must have the same
sign near the turning points.

Therefore the classical-trajectory equations are
nearly always valid to describe crossing problems.
There is only one important case for which they
are not applicable: If the crossing point is close
to the turning point and the forces - (dV,, /dR) have
different signs for the two channels, then a kind
of orbiting collision occurs which cannot be de-
scribed classically. In all other cases Eqs. (12)
and (17) are applicable.

Finally we may point out the complete equivalence
of Eqs. (12) and (17) within the limits of the semi-
classical theory. Sometimes it has been suggested
that one form may be more accurate than another.
First we may note that if R(7) be specified the same
in each case, then Eqs. (12) and (17) are merely
different types of interaction representations of
the same “time-dependent Schrddinger equation,”
Any argument for the superiority of one form over
the other must therefore rest on the claim that one
form’s choice of mean trajectory R(7) is different
from and superior to that of another. However,
we show in Ref. 4 that if the choice of trajectory
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makes much difference, the classical-trajectory
formulation itself is not valid. Hence the choice

of representation is entirely a matter of convenience

insofar as the calculation of the coefficients c¢; or
7, is concerned.

2. Formal Properties

Many results summarized in this section were
obtained by Bates, Johnston, and Stewart.!*

a. Reduction to three real equations. Writing
the coefficients c;, as a two-vector c(7), we define
the evolution matrix _G_r(T, T,) such that

c(1)=G(7, To)e(Ty) . (18)

G obeys the same differential equation as ¢ and has
the boundary condition

G(75,T)=1 . (19)
It is easy to show that
G'G=GG'-1 , (202)
G(7o,7)=[G(7,7)]™ (all 7,7) , (20b)
detG(r,7p)=1 . (20c)
Therefore G can be written
G(r, 7o) = ((1 _zzjz}z/z Tt . .—z‘zf‘-;:ae"rl ) , (@)

where z, T';, T', are real functions of 7 and 7,
satisfying the differential equations

dz -
o c V(1 —28)Y2sin(E+ T, - T)
ar z —
G == Vi Gz c0s(E4Ti-T,) ,  (22)
4T 1 - z2)i/2 ~
—‘-1—7-1:_ 12 (——)—lcos(.:.+I‘1—I’z) s
with
zzL; (Voo = Vay)dr'/ (23)

and boundary conditions

2(7,79)=0, Ty(7o,Tp)=0, Tp(Tg,To)=—37 .
(24)
In the adiabatic representation the formalism of

Eqs. (19)-(24) can be repeated exactly, with the
substitutions

e . _
V1z"E, E+D =Ty =E4+T, =T+ 37
in Eqs. (22), and with
5= f,; (6 -€)dr'/m (23")

the boundary conditions (24) remain unchanged.
b. Symmetry rules. Let 75=0 correspond to

the “time* at the mean trajectory turning point.

Then the classical-trajectory equations have the

|

symmetry properties

V(= 7)=Vip(r)=Vi(r), E(-7)=-E(1) ,

<Z—g)ﬂ=—(3§—>f . (25)

It is easy to show from these equations that

_q*( - 7,0) in either representation obeys the same
differential equation and boundary conditions as
G(7,0), so

G*(-1,0)=G(,0) . (26)

It follows that
¢(7)=G(7,0)c(0) =G(7,0)G(0, - T)c(-7)

and, using (20a) and (26), we find
c(1)=G(7,0)G(7,0)c(- 7)
=G(0,-7)G(0, - T)e(-7) (27)
(here g is the transpose of _(‘1). Also, we define

c.=lim[c(7)] , (28a)

T £

G,=1lim[G(7,0)] , G.=lim[G(0,-7)]. (28b)
T = T+
Observables of a collision which can be predicted
by the classical-trajectory equations are all in-
corporated in a matrixs:

$=G,G. +G,G,=GG. . (29)

It is easy to show that § is unitary and symmetric,
with det§S=1. From Egs. (29) we see that § is
determined either from G, or from G., requiring
integration over only half the “time range” of a
collision.

Boundary conditions of G. correspond closely
to the physical situation in a collision experiment:
The system is initially in one of the two internal
states (at 7~ ~«). Computationally, the boundary
conditions are usually applied at some large nega-
tive 7 and the coupled equations are integrated to
7=0. However, Lebeda and Thorson'® showed that
the boundary conditions (24) are then not appro-
priate at any finite starting value of 7, and that
using them produces spurious oscillations in z and
T',. The corrected boundary conditions obtained
by a certain asymptotic device!® remove these
oscillations and lead to a substantial improvement
in speed and accuracy of computation.

In the present study, we calculated G, by apply-
ing the boundary conditions (24) at the turning point
(7=0) and integrating to large positive values of
7. The fact that these boundary conditions do not
occur in the physical system is unimportant since
we can still evaluate the S matrix from G, accord-
ing to (29). This procedure has the advantage that
as 7 increases, z, I';, and T', converge to their
limits in an oscillatory manner, and by averaging
over a few oscillations the asymptotic value is
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quickly and accurately obtained. The analogous
procedure to obtain G. is not possible in a single
computation. This procedure for obtaining G,
appears to achieve an improvement in speed and
accuracy comparable to that obtained with the
Lebeda-Thorson boundary conditions for the G.
integration.

Let us further define z,, T';, as the values which
generate G, in Eq. (21); then the § matrix can be
written

Syy=(1-22)e®T1+ 122 2
(30a)
Spy = +2iz,(1 - 22)125in(Ty, + T,)
or
Sy =(1~22)e? -4 22 g% 2
(30b)
Spy=—2iz_(1 =22V 2sin(T,.~T,.) .

While these forms are a very general result of the
symmetry properties of the classical-trajectory
equations, they have an especially simple and well-
known physical interpretation for the special case
of a crossing problem in which the crossing point
is well separated from the classical turning point.
The probability of making a transition from state

1 to state 2 is

P=1S,12=42%(1 - 2%) sin®(T, +T,,) . (31a)

z2 may be considered to be the probability that the
system makes a transition in a single passage
through the crossing region. Then the probability
that after a second passage it remains in state 2

is 22(1 —22). The factor 4 sin®(Ty, +T,,), with aver-
age value 2, takes into account the two possible
classical event sequences leading to a transition and
the quantal interference between them. The phases
I';and I'y also have an interpretation. I'y, which would
be zero for zero coupling, represents a reactive
response of the initial state on a single passage
through the coupling region. TI'; contains two terms;
one is the phase difference between the two elastic
potentials over the “time” interval between turning

point (7=0) and crossing point [in diabatic repre-
]

_ dppexpl-i(k,R—3Lm)] -8, expl+i(k,R-3L7)]

733

sentation, [(¢ (Vyy = Vy,)d7'/%], but there is also
a small inelastic shift associated with the transi-
tion. Given this account of the phases, the form
of Sy; also can be interpreted as the sum of am-
plitudes for the two classical sequences leading to
no net transition. In view of these properties S
can obviously be written

(1-P)/2¢tTo  1ipV/2
§=( +ipl/? (1= P)/2 T ) (31b)
with
— 22) il 2
T, =tan™ (1 -2%)sin2l,, — 25 sin2T,, 31c)

(1-2%) cos2l',, +22cos2T,, ’

so that all results of the scattering could in prin-
ciple be described by giving the two functions P
and Iy, However, these quantities vary rapidly,
while z,, T'y,, and Iy, are slowly varying, for the
crossing problem; it is therefore more convenient
to tabulate the latter in this case.

In Ref. 1, we showed that in Stueckelberg’s
treatment of the crossing problem, which involves
a connection-formula technique for solving the
classical-trajectory equations in the adiabatic rep-
resentation [Eqs. (17)], the transition probability

[Eq. (51a), Ref. 1] has the form of Eq, (31a),
where I'y, + I, =0y — 7 and oy is the (adiabatic) elas-
tic phase lag associated with the two surfaces.

We found that the additional phase — 7 was unde-
termined in the Stueckelberg connection-formula
method, but we were able to determine it by an
analytical evaluation of the Stokes’s coefficient. We
discuss the results of this analytic formula in Sec.
I DS5.

3. Complete Scattering Matrix and Differential
Cross Sections

In a typical scattering experiment the boundary
conditions on u,(R) stipulate incoming waves in a
single internal state n'. Let us specifically incor-
porate this boundary condition by indexing solutions
Un,+(R). The 8§ matrix of scattering theory is then
defined for each partial wave by

Upp?

in the important and common special case where
the angular momentum L of the nuclei is essentially
conserved and the rotational parts of the kets {I%)}
are merely spherical harmonics. Comparing this
definition with Eq. (10) we find that

}iim\/Mc;,,.(R)zﬁ,,,,, lim (exp{i [( fRR @, dR'/%)
- 00 - o0 ""
-keR+L1u/2]})

kn'®

(32)

r
-8L.= Egmc;n. (R)
x exp{ +3 [( fR’: ®.dR'/T) - k,R+Lu/2]} (33)
(where R, is the classical turning point for the nth

elastic surface); combining Eqs. (33) with Egs.
(27) and (29) we then find as the final result

SnLn"—‘ rfn’ eXp[i(T]n+7),,')] s (34)



734 J.

where 77, is the WKB phase shift for the nthelastic
surface

Me=tim [([* ®,(R")dR"/7) =k, R+ sLm+%7] -
R “Fp
, (35)
[Eqs. (33) and (35) give explicitly the diabatic.
forms; read m, for @, in the adiabatic case. ]

S,»» and 7, can be evaluated using either the di-
abatic or adiabatic representations; however, con-
sistency is required to obtain the correct scattering
matrix elements §,,,. This may seem strange in
view of our earlier statement (at the end of Sec.

I B1) that Eqs. (12) and (17) are merely “different
interaction representations of the same time-de-
pendent Schrédinger equation” [for a given trajec-
tory R(7)]. The point is that although Eqs. (12) and
(17) are so related to a unique wave function in a
time-dependent interpretation, thefull semiclassical

scattering wave functions u# or u” are not calcu-

lated via that interpretation, but are related to the
coefficients ¢;, or y,, through the WKB approxi-
mants [cf., respectively, Egs. (10) and (14)]. It
follows that the elements §,,, have the same mag-
nitude, but not quite the same phase, in the two
representations; hence the inelastic transition
probability, but not the differential-scattering am-
plitude, is invariant to the representation used.
The scattering amplitude is obtained by summing
over partial waves with the incident plane-wave
boundary condition

Fon (@) = [2i (B, k0 )/2]
X230y 2L+1) P (cos®)(SEy = 8yye) . (36)

Equation (34) is especially important, since it
implies that the semiclassical solution of the in-
elastic scattering problem can be separated into
two independent parts: first, the calculation of §
via the classical trajectory equations, and second,
the calculation of elastic scattering phase shifts
(n, +7M,) via the WKB approximation and summation
over partial waves to obtain differential cross
sections. Essentially the same decomposition of
results was found by Knudson and Thorson!® for
the special problem of Lyman-« excitation and
resonant charge exchange in H* - H(1ls) collisions.

4. Formal Simplification of Classical-Trajectory
Equations

We now obtain an important transformation of the
classical-trajectory equations for the two-state
case, which provides the formal basis for the unified
model analysis of Sec. III. Here we carry out the
transformation in the diabatic representation, but
an analogous result holds for the adiabatic case.

Let us assume that V,,(7) does not change its
sign as 7 varies over the interval of integration
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(0-x); although, in principle, cases of V,, chang-
ing sign could occur, we do not in fact know of any
in real problems. Noting that [[§ (Vi = Vpp)d7' /%]
is a (dimensionless) classical action difference
function, we find it convenient to introduce also an
“inelastic action function,”

S(T)=[J: Vm("")d?"/ﬁ] s (37)

which is a monotonic function of 7 if Vi, is of fixed
sign. If we then express the diabatic classical-
trajectory equations (12) in terms of s as an inde-
pendent variable, they become

8
i%:exp[—ij Zz‘(s’)ds':'c2 ,
s (38)
. gi_f_g_ . ’ ’

i e Texpl+i 2t(sds’|e, ,

where £, which was defined in Eq. (8), is the in-
verse of an “effective coupling strength function”
and must be expressed as a function of the inelastic
action variable s.

Equations (38) show that solutions to the classical-
trajectory equations are not sensitive to all the
detailed properties of the four functions Vi,(R),
Vaa(R), Vip(R), and R(7), but depend only on the be-
havior of a single function of one variable, #(s).

By characterizing models in terms of s vs 7, and

t vs s, we can obtain very general results for the
matrices S which result from particular model
assumptio—ns in a computationally concise manner.
In the remainder of this paper we develop and solve
a model problem appropriate to close crossings.

III. MODEL FOR CLOSE CROSSINGS
A. Properties of t(s)v and Close Crossing Concept

The formalism of Sec. II B4 provides the basis
for a unified analysis of all models for the crossing
problem.

If V,»(R) decreases more rapidly than R1las
R—~x, Eq. (37) maps the semi-infinite range of the
time onto a finite range of the variable s (0 <s <s,).
The fact that this range is finite is relevant to the
theory. For crossing problems, #(s) has a fairly
simple structure, illustrated in Fig. 1. At the
turning point (s =0, 7=0), £(0) has some finite ne-
gative value, but has zero slope because on the
trajectory at 7=0,

(2) (2)() (%) (22) -

and

ds

ar - V.[R(0)]#0 .

At the crossing point s,, t(s,)=0 but (dt/ds)s, #0.
Finally, #(s) is singular at s, (7~«). Important
limitations on models for the crossing problem are
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FIG. 1. #(s) vs s for a curve-crossing problem. S =0,
turning point; s=s,, crossing point; s., finite value of
s for T— . Solid curve shows the actual behavior of
the typical #(s), while the dotted curve represents the
linear LZS model. #(s) is singular at s., and has zero
slope at s=0. Both the BNO model (Ref. 5) and the model
of this paper represent ¢(s) as a suitable quadratic, and
are valid if the region near s, does not contribute much to
coupling (close crossing case).

associated with this singularity.

We define a close crossing model by the assump-
tion that s, and s, are sufficiently well separated
to ensure that the effect of the singularity in #(s)
is unimportant. In this case #(s) can be adequately
described by a few terms in a Taylor series on the
portion of the s axis for which coupling is signif-
icant, Conversely, a distant crossing is a situation
in which s, is so close to s, that the effect of the
singularity is important, We do not treat that case
in this paper.

However, there is no exact correspondence be-
tween the distance R, at which a crossing occurs
and the applicability of the terms “close” or “dis-
tant” crossing in the sense defined above. A given
crossing may be considered “distant” for small
impact parameters, and “close” for large impact
parameters, as the turning point approaches the
crossing point. Moreover, since f;x V2 dR is
bounded, |s. —s,| =0(™) at high velocities; there-
fore for any system the effect of the singularity
increases with increasing velocity (this is what
leads to the failure of the LZS formula at high
velocities!”). In general, though, if R, is small,
then the close crossing designation is usually ap-
propriate, while if R, is large the distant crossing
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‘case usually applies, at least over most of the

range of impact parameters for which inelastic
transitions are important.

B. Discussion of Previous Models

Truncation to a two-state electronic basis and a
semiclassical treatment of nuclear motion are
features common to all models of the curve-cross-
ing problem. Further, as we have shown above,
no model which implies a description of #(s) as an
algebraic expansion about s =0 or s, can apply to
distant crossings.

The well-known Landau-Zener-Stueckelberg
model is characterized by further assumptions: (i)
approximate linearity of the diagonal potentials
V;;(R) vs R, (ii) approximately constant coupling
V5, and (iii)approximately constant nuclear vel-
ocity v =dR/d7T. These three assumptions imply
that #(s) is linear in s, However, in addition
Landau®® and Zener®® each assumed that (iv) these
approximations remain valid in a region about the
crossing point which is sufficiently wide that ¢ be-
comes “infinite” and ¢; (or y,) reach their asymp-
totic values before the nonlinear deviations are
important. In a less obvious way, Stueckelberg’s
derivation'? builds on the same assumptions. This
model may provide a good first approximation for
intermediate energies, but it is bound to fail at
high energies because of the singularity at s., and
at low energies because of the curvature of #(s)
near the turning point.

Bates, Johnston, and Stewart!* modified the
fourth LZS assumption by taking into account the
fact that since s, is finite, #(0) has a finite negative
value and therefore ¢;(0) does not have the asymp-
totic limiting value assumed in the Landau-Zener
treatment; however they retained the LZS linear
approximation for #(s). This model can account for
some deviations from the LZS formula for close
crossings, but remains inadequate if deceleration
effects [which produce the curvature in #(s) at
s=0] are important in the coupling region.

More recently Heinrichs'® also employed a mod-
ified linear approximation to #(s). However, the
essence of his treatment is that transitions always
occur within a domain delimited by a fixed critical
magnitude of £, |#] =t=~1. We showed in our analy-
sis of Stueckelberg’s method!® that no energy-inde-
pendent upper limit can be placed on the ¢ values
for which transitions can occur. Effectively
Heinrichs set #(s) linear between points s, + As
such that #(s, + As)==x#, and #(s) =+ beyond these
points. From Fig. 1 we can see that the introduc-
tion of a cutoff singularity between s =0 and s, is
inappropriate in any case, and while the cutoff at
s, +4As could in some cases simulate effects as-
sociated with s, its location on the s axis cannot
be determined by presetting a critical value of ¢,
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The idea that the crossing problem can be fully
characterized by the value and behavior of #(R) is
a tempting one and has a long history, but as Eqgs.
(38) and Fig. 1 demonstrate, it is entirely mis-
leading because it is #(s) which must actually be
considered.

Child" has recently presented a general analysis
of the curve-crossing problem, and also a treat-
ment of a special model. The general analysis
follows an approach by Dubrovskii,2® in which a
form of the classical-trajectory equations is re-
duced to Weber’s equation, and asymptotic prop-
erties of the Weber functions are used to obtain
Stueckelberg’s form of the LZS transition proba-
bility, including the associated phases (Zener®®
solved the LZS-model problem by the same device).

Child’s analysis is complicated somewhat because i

not all the mathematical simplifications justified in
employing the classical-trajectory equations were
utilizedfrom the outset. Inthe Appendix, we discuss
the conditions under which the various forms of the
classical-trajectory equations [Eqs. (12) and
Eqgs. (38)] can be reduced to Weber’s equation,
The essential requirement is a parabolic approxi-
mation to the quantity @2 [cf. Child’s Eqs. (7) and
(8)] in terms of a suitably defined progress vari-
ablex. Aswe show inthe Appendix, this approxi-
mation is roughly equivalent to the linear approxima-
tion to #(s), and therefore shares the defects of the
LZS model both at high and low energies.

Child’s special model'® approximates all elements
of the potential-energy matrix V;,(R) by Coulombic
forms. This makes #(R) linear and with the con-
stant-velocity approximation leads again to Weber’s
equation. Although this model may appear to be
applicable to distant crossings, this is not so be-
cause (a) no system exists in nature for which the
true off-diagonal elements of the potential (V,,) are
Coulombic, and (b) because of the long range of a
Coulombic coupling, s. is infinite, As we noted
earlier, the difficulty with distant crossings is that
the singularity of #(s) at the finite value s, pre-
cludes a Taylor-expansion representation based
ons, or s =0, and this difficulty is not properly
resolved by altering V;, so that s,—~<«. The transi-
tion probability of Ref, 19 tends to a constant with
increasing velocity, instead of following the cor-
rect Born behavior (~v%) appropriate to finite-
range couplings,

Bykhovskii, Nikitin, and Ovchinnikova® (BNO)
were the first to take into account the correct be-
havior of #(s) near the turning point. In the BNO
model the first two L.ZS assumptions were retained,
but the constant-velocity approximation was re-
placed (as is consistent with linear V;;) by a con-
stant-acceleration approximation. #(s)is then a
quadratic with coefficients coinciding with the
Taylor expansion about s =0. When s, is near s=0
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this expansion will work very well,

The understanding of the curve-crossing problem
provided by analysis in terms of #(s) makes it easy
to obtain a very simple, yet significant improve-
ment on the BNO model. In the model presented
here all the LZS approximations are refined. We
may consistently include effects due to variations
in Vy,, curvature in V;;, and acceleration of the
nuclei, within a two-parameter model, by obtaining
the best possible quadratic approximation to #(s).
This model is developed in the following sections.

C. Mathematical Description

The best possible quadratic approximation to #(s)
is the one which fits most closely when [£]| is
smallest.

Consider first the case that the crossing point

is in the classically allowed region. We expand
t(s) about the crossing point s,:
ts)=ty(s = s.)+ zt5(s = 5,)° (39)

To relate the coefficients ¢, and #, to the potentials
and the trajectory, we write
V,(R)=-F,(R-R,)-3F/R-R.\F+... ,
VIZ(R)= V;z ‘f(R —Rx) tret o,
R(T)=R, +v(1=7)+ s (F/M) T =T, 0 +...

Here we have taken V,,(R,)=0; F,, F;, Vi, f, v,
and F are the (constant) values of the appropriate
quantities, evaluated at the crossing point. (F is
any reasonable average force; in Ref. 4, we
argued that if the particular average used makes
much difference, then the classical trajectory
formulation is itself not valid.) Since the zero
of potentials is at R,, we have E = 3$Mv% A
straightforward calculation then gives

t=Rv(F, - F,)/2VE
ty=1%(F, - F,)F/2MVE] (1 +2E/DF)
where

D= (F1 - F3)/(Fy— F3)+3f/Vy,

(40)

(41)

(note that F, — F, >0 by convention, and we assume
F >0 for convenience). D (with units of length)
carries the effects of the curvature of V,, and in-
constancy of Vi,(R). Itis not easy to give an intui-
tive “physical” explanation of the parameters ¢,

ty; we prefer simply to regard them as the Taylor
coefficients of #(s) about s,.
If R, is in the classically forbidden region, it is
appropriate to expand #(s) about the turning point
s =0, where ¢ has its minimum (positive) value
and zero slope:
t(s) =ty +1,5° (42)

However, we again express the potentials in an ex-
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pansion about R, as in Eqs. (40), while R(7) is
given by

R(T)=Ry+[F(R)/M](37%) , (43)
where
F(Ro)=3(Fy+F;)+ 3 (F{+ F))(R, - R,)
=F+F'(R,-R,) . (44)

Since the zero of energy is at R, as before, we
take

E=%(V22+V1,)Ro (<0) . (45)
After some manipulation one obtains
Z-o = [(sz - Vi)/2 V1z]1e°

=-[E(Fl"Fz)/zFVm][l"'(ZE/dF)] ’ (46)
t,=[M2F(F) - F,)/2MV3][1 +11/(F - F,)]

d'=i[F'/F-(F{- F;)/(F,- F;) - 2f/Vy,] .

Note that although these expressions give the
Taylor coefficients at s =0, the physical param-
eters in Eq. (46) are those associated with the
crossing point R, 5

It is convenient to relate the parameters above
to those defined by BNO.® When R, is in the class-
ically allowed region, define

B=(8/t,)"/2=(4V /B )MV ,/F(F, - F,)]"/?

x[1 +2E/DF]™"% | (47a)
e=tl/2t,
=[E(F, - F,)/2FV,][1+2E/DF]"' .  (47b)
For the classically forbidden case, define
B=(8/%,)"/ 2= (4Vyp/B ) MV,,/F(F, - F;)]/?
' X[1 +fF,/(Fy - F,)]"1/2 ' (48a)
e=-1, (48b)

[cf. Eqs. (46)]. Equations (48) are not the analytic
continuations of (47) because the Taylor series

are expanded about different points in the two
cases. When the above definitions of € and B are
combined with Eqs. (39) or (42), a quadratic ex-
pression for #(s) results:

t(s)=— € +4s%/p% ; ) (49)

in the classically allowed case, s, has been elim-
inated by the requirement that (d¢/ds),=0.

In the diabatic representation, the classical-
trajectory equations then become

i %:cz exp| —i(8s%/38% - 2¢s)]

(50)

i d;(;a- =c, exp[ +i(8s%/38% - 2¢s)]

This is identical with Eqs. (10) of BNO, ® since our
s corresponds to their (37) and our B to their b.
The difference between our model and theirs does
not lie in the form of Egs. (50), but entirely in the
definitions of € and B and their relationship to the
potential parameters and the collision energy.

The BNO model requires the first two LZS assump-
tions (V,, linear and V,, constant) and constant

acceleration for the nuclear motion, and the nature
of their special derivation is such that these as-
sumptions must be strictly maintained. In our
formulation, these a priori assumptions are not
necessary. We have established on very general
grounds4 the validity of the classical-trajectory
equations, and the device of a general Taylor ex-
pansion of #(s) based on the expansions of V;,(R)
and R(7), combined with the formal reduction of
the classical-trajectory equations [Eqs. (38)],
leads to a general theory of close crossings. When
at most quadratic terms are retained in #(s), the
equations reduce to the BNO form [Egs. (50)).
Further refinements can be introduced in an obvious
way by augmenting the algebraic form of #(s) but
this will require the introduction of a third explicit
parameter. ‘

The relation between the BNO parameters Bgyo
and €gyo and ours is mainly an E-dependent de -
formation, produced by the factors 1 +(2E/DF) in
Eqs. (47) and by analogous forms in (48). In the
BNO model, Bgyo is a constant and € is linearly
proportional to E. Figure 2 illustrates the be-
havior of 8 and € (relative to the BNO parameters)
as functions of E; at E=0, B=fgyo and (de/dE),
= (degno/dE),. For most systems, we can see
from Eqs. (41) that DF >0; hence as E increases,
B decreases and € falls off from a strictly linear
behavior. At very large E, € tends to a constant
and 8- 0. For systems with DF<0, € and 8 be-
come singular at E=— 3DF. In this case, the
curvature of V,, and inconstancy of V;, offset the

_ deceleration effects, so that the quadratic term

vanishes and #(s) is precisely linear. At still high-
er energies, #(s) would have negative curvature
at the crossing point. Obviously, a quadratic ap-
proximation to #(s) could never be adequate to de-
scribe this situation; the proper procedure is to
augment the algebraic form of #(s), if E>— 3DF
for DF<0, Similar behavior of 8 and € occurs for
E<0, but it happens that the transition probabilities
in this region are so small that these deformation
corrections are quite unimportant. The discon-
tinuity in slopes of B and € at E=0 reflects the
fact noted earlier that the Taylor-series represen-
tations of #(s) for E >0 and for E <0 are not ana-
lytic continuations of each other.

The locus of parameters (B, €), representing a
particular physical system, with fixed potential
surfaces (and a fixed impact parameter), as a func-
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FIG. 2. Energy dependence of the parameters B, €,
of the present model, relative to the BNO parameters.
(B is a reduced coupling strength and € a reduced collision
energy.) @ is the parameter (2/DF) appearing in Eqgs.
47), and depends only upon the potential curves, as in
Egs. (41).

tion of E, is a curve similar to those shown in
Fig. 3. Thus, given characteristic parameters of
the potential surfaces, D is determined and the
trivial algorithm represented by Figs. 2 and 3 is
used to locate the appropriate parameters B, €:
Provided that a complete solution of Eqs. (50) for
the full range of (B, €) is available, the energy
dependence of the scattering amplitude is imme-
diately determined.

It is useful to represent the above model in the
adiabatic vepresentation, using Eqs. (17); for
convenience we use ¢ as the independent variable.
From Eqs. (37) and (49) we obtain

dt 8V,,s 4V,
at _8Vyps _4Vy, 1/2
ar- gt (t+e€)

while from Eqgs. (7) and (8)
(€5 — €,)=2Vy,(1 +22)1/2

It follows that

T t
S (@—e)ar’ =38 [ [(1+£2)/(e+1)] 2 at
(51)
and the classical-trajectory equations in adiabatic
representation [Eqs. (17)] take the form

%‘3— =[2Q +¢3)] v, exp (’i(%ﬁ)

t
xf [a +t2)/(e+t)]"2dt) ,

: (52)

‘%’L =-[20+¢%)], exp(+i(%3)

¢
Xf [A+2£3)/(e +t)]1/2dt)

Because of the more complicated form of the ex-
ponential factor, the adiabatic representation is
less convenient for analytical work. However,

for numerical work both representations are equally
convenient, with the diabatic slightly preferable

for weak coupling and high energy, the adiabatic
slightly preferable for strong coupling and low
energy.

-D. Approximate Formulas

In this section we present all of the useful ana-
lytical approximations to the G-matrix parameters
which are known to us. Some of these are based
on the LZS linear model for #(s), and the remainder
on the quadratic model; many of the latter were
originally obtained by Nikitin and his co-workers,
but they remain valid with our general reinterpre-
tation of the parameters g and e.

The first two sets of approximations are simply
expressed in the diabatic representation, the last
two in adiabatic representation, The general
relationship between the forms of solutions in the
two representations is given in Sec. IIID3.

1 2 3
(ely) —

FIG. 3. Typical algorithms showing the locus of
points (8, €) associated with E dependence, for a system
with various choices of (fixed) .
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Since many of these formulas are closely related,
it is difficult to attribute them to specific papers.
However, we have tried to do so in a reasonable
way, and the numbers in square brackets to the
left of equations refer to cited papers in which the
formulas appeared. Nontrivial formulas not ac-
companied by bracketed numbers are, as far as
we know, new.

1. Diabatic Perturbation Approximation

Devivation. From Egs. (50), obtain c,(~) by
first-order perturbation theory.
Result. Define x =€p?®. Then

[21,5,22] 22=1nB?%/3[Ai%(-x)+Gi%(-x)]V2 |

(53a)

[21,5, 22] T?=tan™[- Ai(-x)/Gi(-x)] , (53b)
=0 . (53c)

[21,5,22] PP =n?B%/%Ai%(-x) , (53d)
rP= ' (53e)

[Equations (53c)—(53e) do not preserve the unitarity
of S, a characteristic defect of first-order pertur-
bation approximations.] Ai(x) and Gi(-x) are the
Airy functions so denoted by Abiramowitz and
Stegun, 2

Validity. B<1; the approximation is more ac-
curate for large | €.

Asymptotic limits. For large positive € (B<1,
€p?/ 3> 1), the above expressions become (Refs,
21, 5, 22)

[21,5,21] 2°=(np)*/?/(2€'*) ,
[21,5,21] 17=-(3Be/2+5m) ,

re=o , (54)
[21,5,21] PP=(nB/€"/?)sin’T}

D _
rO" ’

while for large negative € (8<1, €<0,le| g%/3>1)

[21,5,22] 22=(2]|€|) ,

[21,5,21] I"D=_%(ﬂﬁ.6‘3/2)1/2e-(2/3)BIEI3/2 ,
r’=o0 ,

[21,5,21] PD=[1r,3/(4\€\1/2)]e-(4/3)83513/2 ,
r?=0 .

(55)

2. Zener’s Derivation of the LZS Formula

Derivation. Based on a strictly linear approxi-
mation to #(s)
ts)=rv(F, - F,)/2VE](s =s,)=T5 s - s,) .

(56)
Equations (12) or (38) then reduce to Weber’s equa-

tion, and provided that the effective limits of
(s —s,) are extended to £+ asymptotic properties
of the Weber functions can be used to provide the
connections between solutions on either side of the
crossing point. Obviously the artificial assump-
tions of the LZS model cannot be applied indiscrim-
inately if an account of the phases as well as the
magnitudes of elements in G, is desired (Zener®”
calculated only the magnitudes). However, pro-
vided some care is taken for a consistent physical
interpretation of the asymptotic solutions, the
elements of G, can be determined in a way which
requires reference only to the single LZS param-
eter T, and the relative phase shift between 7=0
and 7, associated with the diabatic potential curves
for the actual system. This result appears at
variance with Child,'® whose essentially similar
formula contains instead the adiabatic phase dif-
ference.

Result.

[3(b), 19, 20] 22 = [2¢"T0/2 ginh(477Ty)] V2 ;
T2, =arg[T(3iTy) ]+ 5Ty =5 To In(3Ty) + &7
+ fof"{ [Vao(7) = Vi ()1 /B} dT (57D)

[where the true diabatic potentials V,,, not the
LZS model forms, are used to evaluate the integral
in Eq. (57b)];

(57a)

rﬂ: 0, (570)
PP =4e"0(1 - e T0) sin®(T'5, + D)) , (517d)

I? = cot™{cot2I2, + [0/ (1 — ™™ 0)]csc(2Ty, )}
(57e)

3. Relation between Diabatic and Adiabatic
Parameters

The derivation is long and dull, From the gen-
eral relationship [Eq. (9)] connecting diabatic and
adiabatic wave functions, derive the relationship
between the coefficients ¢;.(R) and 7,,(R) of Egs.
(10) and (14). Apply the + separation and the bound-
ary conditions to relate the § and G, matrices in the
two representations; then relate z, I'y,, and T,.
The results are as follows. Define

2=l [y @R - [~ ¢\R")aR" /E (58)
=/:” [l +22)!?| ~tlas (58b)
= [, U@ st22 —ddr@ar (58¢)

where T(¢)=(ds/dt) is the quantity so denoted in
Ref. 1 [Eq. (26b) ff.]. If the quadratic model for
t(s) is used [Eq. (49)],

=18 {[I+22)"2| —t)/|(e+£)"/2|} at
(58d)
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Further define

et 0

M=<0 2T (58e)
and

Wo=W[t(0)] (58f)
Then

§’=Ms*M , (592)

GY=MGIW, , (59b)

GP=W;'G'M , (59c)

so that for the quantities in _g? and gf
(2P)2 = (2*)? cos®, + [1 — (24)?]sin%6,
+224[1 - (2%)?] /2 sinf, cos §, vcos(T4 +T%) ,

(60a)
tan(T? - %)

[1-(z4)*]*2cos6, sinT4 + 2% sinf, sinT's
[1 - z*Y]'2cosb, cosT{ — z* sing, cosT5 ’

(60b)
tan(I'? +Z)

__z*cosgysinTf - [1 - (24)?] /2 sing, sinT4
" z%cosfycosT +[1 - (z4)2]/2sing,cosT{ ’

(60c)
PP=p* | (60d)
rg=Tf+2z , (60e)

where cos#f, and sinf, are given by Egs. (7) with
t=t(0). Except for Eq. (58d), all the above for-
mulas are a perfectly general consequence of the
classical-trajectory equations.

4. Adiabatic Perturbation Approximation

Devivation. From Eqs. (52), obtain a first-order
expression for y,. The resulting integral cannot
be evaluated in closed form. However, an order-
of-magnitude estimate can be obtained by displac-
ing the contour of integration into the upper half-
plane so that it passes close to the singular point
at £=7; the dominant features of the result should
then depend on the value of the exponential factor
"in the integrand, evaluated at +z, and the preex-
ponential factors may be determined approximately
by calibration with the Landau-Zener formula or
another appropriate limiting approximation.

Results. Case (i): €>0. Define

a=38 [ [ +t2)/(e+t)]V2dt= -0 +ib

where o4 is the adiabatic phase lag defined in Eq.
(28) of Ref. 1, and

|o»

i6= %Bfo‘ [(1+£2)/(e +1)]/2at

In the limit € >1, 6=8'"" =77, as in Eq. (39a) of
Ref. 1, By calibration with the LZS formula in this
limit, we find

[21,22] zA=gRetid) (61a)
[21,22] T4 +T4=Im@EA) 7 | (61b)
r{=0 , (61c)
PA-42ReUM) gin?[Im(GA)+ 7] , (61d)
r4=0 (61e)

Validity. The approximation is valid if g>1,
€<0. Asce€ increases, (61a) and (61b) becomes more
accurate and (61c) less so.

Results. Case (ii). €<0. In this case the first-
order perturbation expression for y, should be
integrated over all positive and negative times.

The preexponential factor can be determined by
calibration either with the case € >0 or with the
Airy formula (Sec. IID1):

[21,22] P=2¢2Retia) (62a)
or
T e T T T L

300

2.50

200
Q
T
Q
> 150

100

Q.50

-1.00 ] 5.00

FIG. 4. Excitation probabilities for small 8. (P/g*"
vs €8, Smooth curves are the Airy approximation
m Ai%(— €8 B) and its envelope, which is /(! g153) for
€>0, and [r/(€!”2 g13)] expl- (2/3)81 €13”] for €<0, [,
B=1.00; O, =0.50; A, f=0.25; +, f=0.10.
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[21,22] P=(rg/4Ve)e2Reti®) | (62b)
Ty=0 . (62c)

Validity. The approximation is valid if g>1,
€<0 and is better for large | €|. As B decreases
and | €] increases, (62b) becomes better than
(62a); however, neither form is very good unless
P is very small,

5. Stueckelberg’s Formulation

Derivation. See Ref. 1. (G, is the matrix that
converts [aan ab»]ll[ to [aaﬂ abo]lv-)
Result.

[2,1] zA=gRetia) (63a)
[2,1] Tf=ImGA)z7 |, (63b)
1] rf=1m@Go)+n . (63c)

Validity. Stueckelberg’s derivation can only be
justified if neither (z4)? nor [1 - (z4)?] is <1,
i.e., if (z,)? has an intermediate value.! The
quantity 7 cannot be determined within Stueckel-
berg’s formulation,

In the Appendix of Ref, 1 a direct evaluation of
the Stokes’s constant needed to determine the

000 | 4
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-mr/a \
-37/8
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-3mw/4

-7m/8

1 1

- 1 1 1
-300 200  -100 ~ 000 100 200
X:e 823

FIG. 5. Phase & for small 8 vs €8%/%. Smooth curve:

diabatic approximation (2 8e’/2—% ). Markings of calcu-

lated curves correspond to the values of Bindicated for
Fig. 4.
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FIG. 6. Phase I'{ for small 8 vs €%/, Markings
of calculated curves correspond to values of B8 indicated
for Fig. 4.

Stueckelberg connection formulas was performed.
We have since evaluated the infinite-series expres-
sion obtained there. However, we find that the
magnitude | B| thus obtained for the Stokes’s con-
stant does not agree with the value obtained from
the LZS formula and from Stueckelberg’s method
[Eq. (A12), Ref. 1]; they agree for small T, and
for very large T,, but at intermediate values of T
the ratio | (Beg;./Byzs)! reaches a maximum
~]1,04. Since the deviation is largest just when
the Stueckelberg procedure is valid, and since we
have in any case computed exact numerical phase
data for a much more accurate model, we have
not shown the phase 1 given by this calculation (it
agrees with the diabatic and adiabatic limiting
forms in Secs. IIID2 and NI D4). We do not know
why this direct evaluation of B does not agree with
the LZS result, which is exact for the strictly
linear model. A possible explanation may be as-
sociated with a certain nonuniqueness of the set

of Stokes’s constants for this problem. #

E. Numerical Results

The approximate formulas of Sec. IIID are
inadequate in a significant portion of the (B, €)
plane, especially when € is not large compared to
1 and f=~1 or larger. Therefore we supplement
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these formulas by exact numerical calculations of
G, parameters.

Our computations were performedin the adiabatic
representation, solving Eqs. (52). These can be
put in real form as indicated in Eqs. (22)-(24),
and the matrices S and 8 obtained using Eqs. (29)
and (34). Alternatively, of course, the results
could be combined with diabatic phase shifts in
Eq. (34) after transformation of G to G? via Egs.
(59) and (60).

Figure 4 shows that the Airy approximation to
the transition probability is quite good for <0.1;
it is too large by about a factor of 3 for =1,

. €=1, and the approximation improves as € increases
for fixed B.

Figure 5 shows calculated values for ®4=T¢ + Ty,

For comparison the diabatic perturbation theory
formula is also presented [cf. Eq. (53)]:

dA~2ped/2 taq | (64)

The first term in Eq. (64) is the diabatic phase dif-
ference; the last term arises from the transforma-
tion to adiabatic representation. The additional
term +3 7 emerges in the asymptotic approxima-
tions to the Airy function; it also appears in the
exact LZS result [Eq. (57b)] and from the distorted

6.00 |- -

5.00

400

3.00

-l/n(pPr2)) 78

200

1.00

1 1 1 1 1 ! 1
-200 -1.50 -1.00 -0.50 0.00
€

000 L

FIG. 7. Excitation probabilities for large 8, €<0:
—B1In & P) vs €. Smooth curve is the Nikitin approxi-
mation [Eq. (62a)]. [], 8=1.00; O, B=2.00; A, B=5.00;
+, B=10.0.
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Smooth curves: upper one, the LZS exponent=1rB/4€”2~,

lower one, Nikitin exponent [Eq. (61a)]. Markings on
calculated curves correspond to values of § indicated for
Fig. 7.

wave approximation to the LZS problem. ! These
additive terms in ® have caused a great deal of
confusion in the past. However, it is now conclu-
sively established that the above form is correct
for at least the first few oscillations in the transi-
tion probability. For B not too large, it is pos-
sible that Egs. (57b) and (57c) may give a better
prediction of ®4 for € >1 than does the diabatic
perturbation theory, the major improvement being
due to an exact evaluation of the diabatic phase dif-
ference in Eq. (57b) instead of the estimate based
on linear #(s) as in Eq. (64).

Figure 6 shows I'# for small 8. It increases
from zero at large negative € to n/4 at large posi-
tive €. This behavior is predicted in Egs. (53),
after conversion to adiabatic representation.

For large B the excitation probability is rapidly
oscillatory for positive €, and rapidly decreasing
for €<0. The graphs show the logarithm of P or
of z. Figure 7 compares Nikitin’s adiabatic
formula for negative € [Eq. (62a)], by comparing
- B'In(3P) to A(e). As mentioned in Sec. III D4,
this formula gives only the correct order of mag-
nitude for P, The deviations at € ~0 for large 8
result from the behavior of I'f + I'Y, which passes
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through zero in this region.

Figure 8 is a similar test of the Stueckelberg-
Nikitin formula [Eqs. (612) and (63a)]. This is a
very substantial improvement upon the LZS for-
mula [Eq. (57a), after transformation], which is
also shown; the latter is singular at €=0. How-
ever, even the more accurate formula predicts
only the correct order of magnitude.

In Fig. 9, the computed values for 4 =T4, %
are compared to Eq. (61b). Finally, Fig. 10
shows the behavior of I'4 for large 8.

Data shown in the figures contain only a resume
of the computed results, which are available with
a grid size on (B, € ) permitting accurate numerical
interpolation,

IV. SUMMARY

We have analyzed the potential-curve-crossing
problem and solved it for a model of the close
crossing case, within a hierarchy of .approxima-
tions. The first and most severe approximation
is that the system can be described by only two
electronic states. The second set of approxima-
tions, essentially a semiclassical treatment of the
nuclear motion, reduces the coupled second-order
Schrodinger equations to the first-order “classical-

107 4
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FIG. 9. Phase &% for large B vs €. Smooth curves are
the corresponding adiabatic perturbation estimates [Eq.
(61b)] but setting A=~cf . Markings on calculated curves
correspond to values of B indicated for Fig. 7.
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FIG. 10. Phase I’f for large B.vs €. Markings on
calculated curves correspond to values of 8 indicated for
Fig. 7.

’

trajectory equations.” As we have shown else-
where, these approximations are valid very gener-
ally, in particular, they remain valid even when the
crossing pointis close to the turning point, provided
only that the forces F,; and F,, have the same sign.
For each partial wave the quantal scattering matrix
8_" can then be factored into an elastic part which
contains only the elastic scattering phase shifts
for the decoupled potential surfaces, and an inelas-
tic matrix S, obtained by solving the classical-
trajectory equations. The exact solution of the
classical trajectory equations has been shown to
depend only upon properties of a single function of
one variable #(s) whose properties were investigated
for the case of curve crossing. The third approxi-
mation in the hierarchy replaces the actual ¢(s) by
its Taylor series, including quadratic terms. This
approximation is valid for close crossings, a
concept definable in terms of the relative spacing
(on the s axis) of the points s=0, s=s,, and s =S,
corresponding to turning point, crossing point,

and the point at infinite separation R where #(s)

is singular; distant crossings are those for which
the behavior near the singularity in ¢ affects the
inelastic scattering. The close crossing model is
applicable to a very large portion of curve-crossing
problems. The resulting model equations can be
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solved using various limiting approximations in
various regions of the (B, €) plane, and numerically
everywhere else., A complete grid of these numer-
ical calculations has been done., Within the above
hierarchy of approximations, we may regard the
problem of close curve crossings as completely
solved.
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APPENDIX: REDUCTION TO WEBER’S EQUATION

Under certain circumstances the two-channel clas-
sical-trajectdry equations can be reduced to Weber’s
equation. 3*1%20 The possibility of this reduction
is closely connected to the validity of the LZS
formula; indeed, Zener’s method of solving the
LZS model problem relies on just this connection,
although to obtain the correct phases [Eqs. (57b)
and (57c)] some care must be given to the physical
interpretation of the model. We shall briefly in-
vestigate the conditions for which reduction to
Weber’s equation is possible, starting from our
Eqgs. (12) and (38). In view of the discussion in
Secs. IITA and III B above we shall use £ or s as
the progress variable, rather than R or 7.

By starting with Eqs. (12), transformation to ¢
as the independent variable produces the form

‘—;ﬁtl T()expl-2i [* T@)'at'lc, |
de, (A1)
i W“ T(#) expl +2zf Tt dat']e,

where T(t) was defined in our study of Stueckel-
berg’s method, !

dt dt
T() = == ddy
B)=V2/0 i Vi /fw “F
= 2MViy /0y + @) L (A2)
12 1 2 dR
Recall further that
ds
T(t)= i (A3)

The substitution

c1=9,O)TE)] 2 expl -3 [* T@")’ dt") (A4)

into the second-order equation for ¢, leads to the
result /¢

2,

%t%L +4 {Tz(t)(l +t2) =iT(t)

[d®InT 1 (d 1nT)2]
- = = A5
*[ ar® " 4\t 0, (A5)
which is essentially the same form as that obtained
by Child. ! If one makes the approximation 7'(¢)
=const = T,, and the scaling subst1tut1on x=(2Ty) /%
the Weber equation results:

2
Lo o3[ (@y-i)+ 1210 (a6)

which is precisely Child’s Eq. (9). The derivation
requires, as we noted, that T(¢)=T,, an assumption
also made by Stueckelberg"? and, of course, built
into the LZS linear model at the outset.

Starting from Eqs. (38) a very similar proce-
dure leads, with § as independent variable, via the
substitution

cy=£(s)exp[~i [*t(s")ds"] (A7)
to the equation
2 i’
é—%—+§ <1+[t(s)]2—i 3—2—):0 . (A8)

This equation again reduces to (A6) provided ¢ is
linear in s, but a quadratic dependence will not
permit this,

In summary, if £(s) is truly linear in s over the
region of significant coupling, then the LZS transi-
tion amplitudes [as given by Egs. (57)] will result
from the asymptotic properties of the parabolic
cylinder functions. For high energies, the result
aliways breaks down because #(s) cannot remain
linear in s as the singularity at s, approaches s,.
For low energies it will also fail; it would fail
even if #(s) were linear because |#(0)| is finite, and
not asymptotically large as turning point s =0 and
crossing point s, draw closer together. However,
a much more important effect arises from the fact
that T(s) is not constant but becomes singular at
s=0, i.e., theparabolic dependence of ¢(s) near s=0
must be considered. The accurate treatment of
this effect requires the BNO model or our modifica-
tion of it, as is clearly demonstrated by our calcu-
lations.
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