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Variational functionals are constructed for solving Feshbach equations for multichannel
scattering and rearrangement collisions. The open-channel and closed-channel components
of the state function are varied separately. This separation disentangles the violent fluctua-
tion in the open-channel component from the closed-channel component and speeds up the con-
vergence in the resonance energy region. Numerical illustrations are given for the elastic
(e, Ii) scattering.

I. INTRODUCTiON

The work of Feshbach' has made clear that it is
advantageous to separate the state function Y into
the cl.osed-channel and open-channel segments

and to exhibit their interrelations in the form of a
pair of coupled equations

(Z- PHP) PT =PHD,

(Z —qHq) qr = QHPT,

(1.2a)

(1.2b)

where H is the Hamiltonian of the system, Q= 1
—P with PQ= 0. P is a projection operator, which
projects onto the open channels asymptotically,

PT - ~t Q„v„(p„)g; (r„) as p-~, (l. 3)

where the internal coordinates r„ for the asympto-
tic eigenfunctions g„are labeled collectively ac-
cording to their associated open-channel coordi-
nates p„. The v„' s in Eq. (1.3) satisfy the ap-
propriate boundary conditions of the collision sys-
tem.

The Feshbach equation given by Eqs. (1.2) or
their alternative form

(r -3:)PT=O,
with

(l. 4)

X=P 8+II . H P,E —QHQ+ ig

are in a form which is most convenient for dealing
with the closed-channel resonant scatterings~-9
and rearrangement collisions. 9 " The quantity
g-0' in the effective Hamiltonian $C is introduced
for the case when the y sum in Eq. (1.3) does not
extend over all the open channels.

The projection-operator formulation of Fesh-
bach is related to the coupled-equation formula-
tion. In fact it puts the various coupled-equation
approaches to the scattering and rearrangement
collision on a firm theoretical ground. Formally,
it allows a unique description of the neglected
terms in the form of an optical potential for a
truncated coupled-equation calculation. More im-

)portant, it permits the generalization of the set of
coupled equations to satisfy a variational principle
with bounds for a certain class of projection opera-
tors. '6'" This follows from the fact that if P is
constr~cted to project onto all the open channels
not only asymptotically but throughout the entire
channel coordinates, then one need only solve ex-
actly the open-channel equation given by Eq. (1.2a)
for a given variationally bounded QT to maintain
the minimum principle. " This minimum principle
contributes to the success of the close-coupling
approximations. "

The rigorous-bound principle is obtained under
the strong assumption that Eq. (1.2a) for the open
channels can be exactly solved. In practice this is
often difficult to accomplish especially for multi-
channel problems. The purpose of the present
,work is to investigate the method of solving the
Feshbach equations in a new variational principle
proposed by us recently. ~' In this variational prin-
ciple, we make use of the advantages obtained in
separating Y into the closed- and open-channel
segments by varying PT and QT separately. This
permits the fluctuations in PY to be disentangled
from that of QT in the determination of variational
parameters in QT. For each chosen trial function
QT, Eq. (l. 2a) is then solved variationally for
P Y. This proves to be extremely helpful in stab-
lizing the solution for PY in the resonance region.

A variational principle of this kind was simultan-
eously but independently proposed by Hahn. aa An
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(1.7)

here the X„'s which may be constructed, for ex-
ample, by diagonalizing the Hamiltonian in terms
of a set of basis functions are square-integrable
functions of the coordinates of the entire collision
system. With Q given in terms of X~, it is clear
that asymptotically

QT-0 asp-~; (1.6)

consequently, PT satisfies Eq. (1.3) with the y-
sum sums over all the open channels. With the
projection operator Q constructed in this manner,
QT does not contain open-channel components
only asymptotically. At small-channel coordinates
QT in general contains open-channel components.
Such open-channel components at small channel
coordinates can, to a large extent, be removed
from QT by appropirate choice of the y functions
in Q. We shall therefore consider that the ex-
plicit expressions for the projection operator Q
and P= 1 —Q, with P projecting onto all the open
channels, are available.

II. MULTICHANNEL VARIATIONAL PRINCIPLE

In this section we discuss the variational prin-
ciple in which the open-channel and closed-channel
components of the state functions are varied sep-
arately. This separation will help to disentangle
the violent fluctuation in the open-channel com-

excellent account of the formal relations between
the new variational principle with both the varia-
tional principle for scattering and the genera-
lized variational boundsis, iv was given there Si„ce
Eq. (1.2a) is now solved only variationally, the new
variational principle is, therefore, no longer rigor-
ouslybounded. Itis, however, of interesttonote
that the results we have obtained for the elastic (e, H)
scattering using the new variational principle ap-
pear to be bounded by the Schwartz results. "
In the present paper, further results of our calcu-
lation are reported.

Before presenting the variational procedures
and their sample application to the (e, H) scatter-
ing, it is perhaps worthwhile to discuss the avail-
ability of the projection operators P and Q. A
remarkable feature of the Feshbach equation lies
in its generality in the projection operator. The
only physical requirement is that P projects asymP-
totically onto the desired open channels. There
are a number of ways that the projection operators
may be constructed to satisfy this require-
ment. '2'9 ' For the particular case where P
projects onto all the open channels, the projec-
tion operator can be easily constructed in the form

P=1-Q,
with

ponent from the closed-channel component and to
speed up the convergence in the resonance-energy
region.

We shall. formulate the variational principle in
terms of the reactance matrix R. Let there be ~0
open channels which are arranged in order of in-
creasing target energy. The asymptotic function
in Eq. (1.3) may be rearranged in the form

Q„p„' v„(p„)tj„(»„)'jj „(p„.»'„), (2. 1)

v» (p„)- ( p» /0»)'~ (sing» a». + cosg» b»&),

y= I, . . . , X, (2. 2)

with

$» =k» p„+ &e» /k»+n», (2. 3)

where 4z, is the residual charge in the y channel,
and g, is an additional constant phase factor which
may be chosen for convenience for inelastic and
rearrangement collisions. For elastic scattering,
it takes the form

tI (elastic) I v+ (ga /y ) ln2y

In Eq. (2. 2), we have introduced an additional sub-
script y with y = 1, . . . , No for v», to denote the
initial channel. The radial channel function v»,
behaves like p„'~" in the limit p„-0. We have the
boundary condition

Iim[p-' »'v»(»p„)]= ~», as p„-0 (2. 6)

for y and y =1, . .. ,Xo.
For each set of initial conditions (a». ), the reac-

tance-matrix elements may be determined from
the set of values (b», }.by solving the linear equa-
tions

No

Q R„,a), , = b„„..
&=1

In matrix notation, we have

(a= ba-'.

(2. 6)

(2. 7)

For standard phase convention, the reactance
matrix is real so that

+ =0+=N, =a 5; (2 6)

the S matrix can then be determined either in terms
of (R or a and b:

where 'tj» ( p» r») contains the angular and spin func-
tions. We may think that channel indices are being
renumbered to include the description of angular
and spin states. The radial function for channel
y takes the asymptotic form
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1+iN (1 —8 )+aiN8 (a. Qa)
In matrix notation, we have

(a. is)
= (a+ ib)(aa+ bb) ' (a+ ib) . (a. Qb)

[Z, j=J„—&PY, IX-Z PT, )+~J„
with

(a. io)

Note that in determining 8-matrix elements the in-
version of the complex matrix can be avoided.

The reactance-matrix elements R„„, (or the
values for b„,,) can be obtained by applying the
variational principles for scattering to the Fesh-
bach equation given by Eq. (1.4). The Kohn varia-
tional functional takes the form '

IQY&=( Elec, &H, &ee, l)HI», &,

where H&& is the matrix element of inverse of .
We have therefore

(2. 21)

where the matrix elements for 3C and are de-
fined as

H„=&en,
I
E H-I ee, &, (2. 19}

(a. ao)

Hence the stationary QY, is formally given by

dLJp =(P(Y -—Yi)I3l.' —EI P(Y —Y )&,

5{,'=P H+H H P,1

(a. is)

(a. ia)

(a. is)

Q= ~l equi&H~l&ee~l (2 22)

The open-channel variational functional [J~] for
a given stationary closed-channel function QY, then
takes the form

[J,j=z„-&PY,
I

H+ g (Hl Qy, &H-, ', &Qy, IH)

where the trial function PY, should be constructed
to satisfy the boundary conditions inferred by Eqs.
(i.S), (a. i), (2. 2), and (2. 5).

The functional [J~j is stationary with respect to
a small variation in PT, and J~, as well as Q T, ,
which is expressed in terms of the inverse operator
Q(E —QHQ) 'Q [see Eq. (1.2b)] in the effective
Hamiltonian K given by Eq. (2. 11). The first-
order variation in [J~j can be carried out with re-
spect to PY, and J~, for each stationary QT, ob-
tained from a variational functional [Jz] constructed
for the closed-channel component~:

[J.j= &eY,
l
QHQ-El QY, &

+ & QYi I QHQIP Yi&+ &»il PHQI e Yi& (2'4)
It can be shown that [Joj is stationary with respect
to small variations in QT, to give Eq. (1.2b). This
is a two-step variational procedure in which a
stationary QY, is first obtained from functional

[Jzj and then the variations on the functional [J~]
is carried out for each stationary QY, .

Consider the case when the trial function for the
closed-channel component is taken to be of the
form

(a. is}

—zlPY, ). (a. as)

As mentioned before, the first-order variation in

[Z~] can be carried out in a number of ways. In
the rare case where anomalous singularities occur
in the open-channel component, the violent fluctua-
tions may be controlled by the alternative procedures
proposed by Harris~'0 and Nesbet. Such anoma-
lous singularities will not introduce any fluctuation
in the closed-channel variational functional [Jz].
We found it is sometimes convenient to use an al-
ternative open-channel variational functional [J~ ]
constructed from Eq. (1.2a):

[J~j =J.i (PYi
I
PH—P- El»e&+ &PYil PHQI QY~&

+ &QYil QHPI P-Yi& (2 24)

This functional [Ji', ] together with the function
[Jo] form a pair of functionals which permits PT,
and QY, to be varied separately. For computa-
tional conveniences we have made use of both
[Z~] and [J~] open-channel functionals in the nu-
merical illustration reported in Sec. III.

The variational functionals constructed in this
section satisfy the stationary principle. Owing
to the inequality'6

where QP, are square integrable. The variations
with respect to the linear parameters

e(QHQ-E)e o (a. as)

BQ]

yield

Q~(QQ, IE —QHQI QP)& cq= (Qp,
I

QHQ
I
PT,) .

(a. iv)

an estimate of the error involved in the variation
procedure can be obtained from Eq. (2. 11). For
the case where the norm of the error in the open-
channel functional is smaller than the norm of the
error in the closed-channel functional, the varia-
tional functionals provide an approximate bound
on the reactance-matrix elements. It should be
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TABLE I. s-wave phase shift for the static-exchange
approximation of electron-hydrogen scattering.

TABLE III. Fixed nonlinear parameter calculation
for the s-wave phase shift for electron-hydrogen scatter-
ing (in a.u. ); (0;=0.5, P=0.75).

3$
k2 (in a.u. ) N. I.~ Variational

's
N. I.~ Variational

0.01
O. 04
0.09
0.16
0.25
0.36
0.49
0.64

2. 908
2.679
2.461
2.257
2.070
1.901
l.749
1.614

2.90760
2.67915
2.46113
2.25730
2.07007
1.90056
1.74882
1.61410

2.396
1.871
l. 508
1.239
l.031
0.869
0.744
0.651

2.39581
1.87017
1.50811
1.23951
I.03150
0.86906
0.74415
0.65127

Numerical integration, see Ref. 36.

0.1
0.2
0.3
0.4
0.5
0.6
Q. V

0.8

2.539
2.047
l.673
l.389
l.174
1.013
0.902
O. 857

aReference 18.

is
k/6 Present ls-2s-2p

2.492

1.596

1.093

0.817
0.773

Present

2.9372
2.7157
2.4981
2. 2918
2.1028
1.9308
1.7770
l.6406

3$

ls-2s-2p

2. 9355
2.7153

2.0956

l.767
1.633

stressed that the inequality (2. 25) is satisfied only
for the class of Q which contains no open-channel
states not only asymptotically but throughout the
entire channel coordinates.

with

q„(r,) = e "&/11'~s, (3.4)

III. APPLICATION TO ELASTIC (e,H) SCATTERING

In this section we report the application of the
variational procedure of Sec. II to the elastic
(e, H) scattering. It is well known that in the elastic
(e, H) channel there are a number of resonances
for which the Kohn variational procedure does not

converge. This application would serve as a good

example on the convergence of the two-step varia-
tional procedure. In addition there are other
theoretical calculations which may be used to as-
sess the new variational procedure. 3- '"~ '34'

The Hamiltonian for the (e, H) scattering system
can be written in the center-of-mass coordinate
as (in atomic units)

where we have taken the proton to be infinitely
heavy in comparison with the electron and set the
channel coordinates to be the electron coordinates,

We shall consider the s-wave scattering and

take the open-channel trial function to be

PI' = (I -@[» (r2) 41 (r1) ~».(rt) 01.(r2)l,

(3.5)
with

», (r, ) = r, '(sinkr, + tan5 coskr, )(1 -e '"&)

+ g d, r '; e '"&, (3.6)
&=0

where the + signs denote the singlet and triplet
scatterings, respectively, tan& is the 8 matrix
element, and v' is a nonlinear parameter to be

1 1 1
H= - —V' ——& ————+

2 12
(3. I) TABLE IV. s-wave phase shifts for electron-hydrogen

scattering (in a.u. ).

I' 1

q = [I -
~
q„(r,) ) (y„(r,)

~ ]

(3.2)

&& [I —
~
01,(rs) ) (41,(rs) ~1

TABLE II. The eigenvalues of Q&g for the s-state
electron-hydrogen system (in a.u. ).

For elastic scattering, the projection. operators
have been found to be

kt/6

0.01
0.04
0.09
0.16b
Q. 25
0.36
0.49
o.64

2.5S3(1)
2.oevs(9)
1.6964 (5)
1.414e(4)
1.2O2(1)
1.O41(1)
o.9soo.)
o.886(s)

ls-2s-2p + Corr~

2.550
2.060
l.690
l.408
l.192
1.032
0.921
0.877

1$

Schwartz~ Present Schwartz

2.9S88(4)
2.71V(5)
2.499e(8)
2. 29S8(4)
2.1046{4)
l.9329(8)
l.vv9v(e)
1.643 {3)

Present

2. 9383
2.7172
2.4994
2. 2937
2.1042
l.9323
l.7782
1.6431

ls-2s-2p + Corr

1 —0.148779
~S 2 —0.126008

3
1 —O. 127108

S 2 —0.125092
3

~Reference 4.

oob

—0.14872
—0.12596

—0.12701
—0.12507

—O. 1270
—0.12517

Present

—O. 148766
—0.125992
—0.125019
—0.127108
—0.125110
—0.125006

Reference 3. Reference 6.

CR

—0.1479
—0.12598

0.6790
0.7208
0.74

0.9205
0.762
0.8376

0.9161
0.753
O. 822

1.6158
1.5828
1.5724

1.6132
l.5829
l.5701

~Reference 31,
"The rigorous lower bounds of the s-wave shifts in-

cluding up to d-wave hydrogenic states have been ~round

(Ref. 37) at k2=0. 16 a.u. to be g =1.4112 (singlet) and

g = 2.29356 (triplet).
Reference 19.
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FIG. 1. Comparison of the energy dependence of the
s-wave phase shift for the singlet (e, H) scattering in the
present variational approximation with that in the Kohn
variational approximation (Schwartz, Ref. 31) and in the
various close-coupling approximations (1s, Ref. 36;
1s-2s, Ref. 18; 1s-2s-2p, Ref. 18).

I.5
INELASTIC THRESHOLD

I I I I I

0.2 0.4 0.6 0.8
INCIDENT ELECTRON ENERGY IN Ry

FIG. 2. Comparison of the energy dependence of the
s-wave phase shift for the triplet (e, H) scattering in the
present variational approximation with that in the Kohn
variational approximation (Schwartz, Ref. 31) and in the
1s-2s-2p close-coupling approximation (Ref. 18).

d[Z, ] d[J,]
d(tan 5) '

dd~
(3.8)

The functional given by Eq. (3.7) is obtained for
the case in which only linear parameter) are
varied in the closed-channel trial function QV,

I

adjusted so that tan& converges with increasing
number of I.inear parameters d&. The closed-
channel trial function is chosen to be of the form
given by Eq. (2. 15). With PT, given by Eqs.
(3. 5) and (3.6), the variational functional corre-
sponding to Eq. (2. 23) takes the form

[z,]=-.'u tan5-&Pv, la+ p(Ifl qy )e,', &qy, l-.lf)

-zlP T,). (3.7)

The stationary solutions are obtained with the vari-
ations

[see Eqs. (2. 16)-(2.18)]. If the nonlinear param-
eters in the trial function are to be varied, it is
convenient to use the pair of functionals [J~] and

[Jo] given, respectively, in Eqs. (2. 24) and (2. 14).
To investigate the convergence of the open-chan-

neI. variational functional, we first consider the
special case with QY, =O, i. e. ,

5(-'& tan5- &»~l»P- EIP T~)) =0, (3.9)

and compare the variational result with the known
static-exchange result obtained by numerical dif-
ferentiation (Table I).M It is found that the phase
shift converges quickly with increasing number
of linear parameters. No anomalous singularity
and significant fluctuation have been found in a
large number of calculations.

For the closed-channel trial function we adopt

TABLE V. Phase shifts in the neighborhood of resonances~ (in a.u. ).

0.700
l.455

0.74782
1.641

0.745780
1.595(4)

0.701
1.718

0.74798
2.142

0.745792
1.805(2)

0.702
2.166

0.74801
2.448

0.745794
2.305(4)

0.703
2.724

0.74804
2.731

0.745798
0.991(1)

0.704
3.139

0.74807
2.957

0.745808
1.486(1)

0.705
0.238

0.706
0.379

Parentheses indicates the uncertainty in the last figure quoted.
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TABLE VI. Resonance energies for the s-wave electron-
hydrogen scattering (in a.u. ).

—0.148894
—0.14865

-0.126002
-0.12595

—0.125019

~(shift)

-1.28 x 10 4

-0.99x 10

—8x10 7

Width (in eV)

4.11x 10-2

4.75 x 1p-2~

2. 65 x 10-'
2.19x10 3

6.22x 10 5

-0.12703
-0.126992

—0.125109
—0.1250006

~Reference 19.

+4.8x 10 6

+3.0 x 1p-s
&10 s

3.1x 10-'
2.06 x 10

2, 4x 10-6

2.4 x 10-s

the separable form

QT, = P c, „„Q(r~r'e +"~'~"&'+r",ra" e '~"~'~&')
guu

x P, (cos&»), (3.10)
where cosa» in the Legendre function is the cosine
of the angle between the two electrons. The func-
tion QT, to be adopted should have the flexibil. ity to
account for the interactions which are not con-
tained in an open-channeltrial function. One of the
important interactions in the elastic (e, H) channel
is the formation of thethree-bodyresonanceswhich
are not contained in the open-channel trial func-

tion P T, given by Egs. (3. 5) and (3.6). C onseguent-
ly one of the criteria for the QT, is in its ability
to account for these resonances. We have there-
fore used this function and calculated the quasista-
tionary approximation of the resonance by deter-
mining the eigenvatues of QHQ. The results so
obtained are compared in Table II with the results
obtained using other types of functions. It is seen
from Table II that the separable trial function is
capable of yielding as accurate values as other
trial functions including the Hylleraas-type trial
functions. The separable trial function has, how-
ever, certain computational advantages.

In determining the stationary solutions of the
functionals, we may carry out variations with re-
spect to the linear parameters and leave the non-
linear parameters fixed in both the open- and closed-
channel trial functions. We observe that the result
so obtained depends sensitively on the nonlinear
parameters n and P in the close-channel trial func-
tion [see Eq. (3. 10)]. The nonlinear parameter r
in the open-channel trial function [see Eq. (3.6)],
on the other hand, affects the convergence of the
result. In Table III, the result obtained for a set
of chosen nonlinear parameters & and P is tabulated
as a function of scattering energy. In this calcu-
lation, we have included in QT, six s-wave terms
and nine p-wave terms. It is seen that the pres-
ent procedure gives consistent improvement (about
75%) over the 'S ls-2s-2p close-coupling results"

I 0.0- 40.—

8.0-

6.0- TRIPLET

4.0-

2,0-
50.

LU

coIO0

0
8.0-

0.70 0.72 0.74 0.76

20. —

6.0-

40

SINGLET

rNIDTH

2.0-

0.68

ON ANCE
ITION

I I

0.70 0.72 0.74
INCIDENT ELECTRON ENERGY IN Ry

0.76

IO.

I

0,2

INELASTIC

l

THRESHOLD'
t I I

0.4 0.6 0.8
INCIDENT ELECTRON ENERGY IN Ry

FIG. 3. Multiresonance structure of the s-wave phase
shift for the singlet and triplet (e, 8) scattering.

FIG. 4. Energy (Ry) dependence of the s-wave contri-
bution to the total elastic (e, H) scattering cross section
(a,').
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l6.0—
S RESONANCE

S RESONANCE

l4.0

I2.0—

S
RESONANCE

PIG. 5. Details of the energy
dependence of the s-vrave contri-
bution to the total elastic (e, H)

scattering cross section (ao) in
the resonance-energy region.

S RESONANCE

l0.0—

I

0.68

RESONANCE
POSITION

I I I

0.70 072 0.74
ELECTRON ENERGY IN Ry

INELASTIC
THRESHOLD

(as compared with the Schwartz result ) over a
significant energy range (k = 0. 1-0.8 a. u. ). This
implies that the nonlinear parameters once proper-
ly determined are not sensitively energy depen-
dent. (This is, however, not the case in the re-
sonance-energy region. ) We may use fixed o. and

P values for a range of energies so that a signifi-
cant number of integrals need not be recalculated
at different energies.

More accurate phase shift are obtained if the
nonlinear parameters a and P are optimized. In
Table IV, the 8-wave phase shift obtained with
optimized n and P and 50 linear parameters in-
cluding up to the d-wave terms in Q7, are com-
pared with other calculations. The present proce-
dure gives in general 92-96% improvement over
the 1s-2s-2P close-coupling calculations for sin-
glet scattering. For triplet scattering, our result
differs from the Schwartz result only in the fifth
significant figure. The energy dependence of the
phase shift is compared in Figs. 1 and P.with var-
ious other calculations.

Near the elastic threshold, the ratio (tan5)/k
gives the scattering length

a= (tan5/k) as k -0.
Our 50-term QT, computation gives a"'=6.15
a. u. and a' ' = 1.88 a. u. This is to be compared
with the Schwartz value a "=6.Q9 a. u. and a'3)

= 1.88 a. u. obtained with a 50-term Hyllera. as-
type trial function. Schwartz has shown that a
more accurate result of a"' = 5.97 a.u. and a
= 1.77 a. u. can be obtained by improving his asymp-
totic wave function which corresponds to our
open-channel trial function. The effect of the long-
range potential on the asymptotic wave function in

relation with the scattering-length determination
has been investigated by Rosenberg et al. ' and

by Temkin. 3'

Near the first excitation threshold, we enter
the closed-channel resonance region. In this re-
sonance region, we found that the convergence of
the phase shift depends very sensitively on the
nonlinear parameter v' in the open-channel. trial
function. This is the region where the conventional
Kohn var iational procedure has convergence dif-
ficulties. s~'4 In the present procedure, we adjust
the v' parameter in PY, so that the desired con-
vergence in PY, isachieved. Thenonlinearparam-
eters n and P in QT, are taken in the resonance-
energy region to be the values obtained in optimiz-
ing @HE. Table V illustrates the detailed manner

in which the phase shift goes through a resonance.
Our result for the resonances agrees with the close-
coupling results as shown in Table VI. The multi-
resonance structure of the phase-shifte'4' is shown
in Fig. 3.

The s-wave contribution to the total elastic-scat-
tering cross section can be obtained from the sin-
glet and triplet scattering cross section:

~ ~(i)+ 3 ~(3)

This is shown in Figs. 4 and 5. The width of
higher-member triplet resonances are too narrow
to be seen for the adopted scale.

Note added in p~oof. We have recently received
a report of a paper prior to publication [D. G.
Truhlar and R. L. Smith, Phys. Rev. (to be pub-

lished)] from Dr. Truhlar. In this paper, an in-
vestigation of the convergence of the variational
technique was carried out.
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