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Spin-free 1 matrices p(r I r')'s are obtained in algebraic form from simple Hylleraas-type
(HY) wave functions for the ~S ground states of He and several He-like ions. The algebraic
y (r(r')'s are then Fourier transformed to momentum space in order to obtain radial momen-
tum distributions Io(p)'s. The analytical method developed here allows Io(p)'s to be calculated
in a direct manner from HY wave functions. Although the present emphasis is on the method
rather than on the "goodness" of individual Io(p)'s, results for the ~S He and Li' ground states
are obtained from six-term HY functions which incorporate 99.1 and 98.0%, respectively, of
the correlation energy.

I. INTRODUCTION

The purpose of this paper is to develop an analyt-
ical method for evaluating radial momentum dis-
tributions from two-electron Hylleraas-type (HY)
wave functions @(x,, ra, xqa)'s. This is accom-
plished by obtaining the corresponding (spin-free)
first-order density matrix' y(P'I r') in algebraic
form. Then, y(r lr ) is Fourier transformed to
momentum space, as described by Benesch and
Smith, in order to obtain the radial momentum
distribution i,(P). A secondary purpose of this
paper is to apply the analysis to relatively simple
(two-, three-, and six-term) HY functions for the
'S ground states of He and He-like ions.

The extension of the algebraic density matrix
method to N-electron HY and configuration inter-
action (CI) wave functions is pointed out in Sec. IL
The problem of Fourier transforming a y(r Ir )
which explicitly contains angular functions is briefly
discussed in Sec. III.

We stress here that the Fourier transformation
of the algebraic I matrix will yield Ic(P) to exactly
the same accuracy with which the original HY func-
tion was determined. This is to be contrasted with

the Fourier transformation of the natural orbital
(NO) expansion of y(r I r ). Although the Fourier
transformation of the NO's is accomplished exactly, '
the NO expansion of a y(r lr ) obtained from a HY
function is necessarily truncated due to the problem
of choosing a suitable finite basis set for expanding
the NO's. In practice, this truncation error is very
small. However, the determination of y(r Ir ) in
algebraic form from a HY function eliminates the
need for the NO expansion. The resulting Ic(p)
therefore does not incorporate any truncation error.

II. ALGEBRAIC EVALUATION OF y(r (r') FROM TWO-
ELECTRON HY FUNCTIONS

As previously shown, the radial momentum dis-
tribution is(P) is obtained by Fourier transformation
of the spin-free I matrix y(r I r ) derived from a
normalized N-electron wave function 4, namely,

Is(p) = p 1 J y(pl p) sino. dndP

The diagonal momentum-space 1 matrix is given
by
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y(p ~p) = (22') f e ""' 'y(r~Ir )drdr', (2)

where p= (P, &, P) and r= (r, 8, (t)); y(r lr') is
the nondiagonal (spin-free) 1 matrix in position
space,

y(r r ) = N f 4(x, , x2, . . . , x„)

x )I'*(x, , x2, . . . , x„)dsl (dxl). (3)

f y(p]p)dp= (22) f e ""' 'y(rlr )dpdrdr

In (3), x, denotes the combined space and spin coor-
dinates of electron i, x, = (r;, li, ), (dx;) indicates
integration over spatial coordinates and summation
over spin variables of electrons 2 through N, while
ds1 means summation over the spin variable of
electron 1. The subscript zero on I()(P) in (1) in-
dicates that it only involves the spherically sym-
metric component (under spatial rotations) of

y(p Ip).
Since y(r lr) is normalized in Lowdin's conven-

tion to the number of electrons N, y(p lp) obtained
from (2) is normalized in the same fashion,

Let us now specialize (3) to the case of a two-
electron HY wave function 4'(r, , r2, r,2) constructed
for an atomic state of zero orbital angular mo-.
mentum, i. e. , a 'S or S state. The spin part of
such a function is of no importance and we there-
fore dispense with it. The variational form chosen
by Hylleraas' and others for functions of this sort
is

4'(s, t, u) =& e "'t2 Z c, , &,
2s't~u

where s, t, and u have their usual definitions, s
+ +2 t +1 +2 + 12 The constant R is re-

quired for normalization.
As a first step in obtaining y(r I r ) in algebraic

form, we rewrite (6) explicitly as afunction of r, ,
r2, and r,2. Since 4 is real, (3) becomes

y(r ~r )=2 f +(r, r2, r, 2) C(r, r2, r»)dr2 . (7)

In (7) and in the following analysis, r =r, and-r
I

The key to the algebraic 1 matrix analysis of
4(r, r2, r, 2) involves rewriting the volume element
dr2=r, dr, sin82d82dp2 as

(4)

We thus have a useful normalization check on com-
puted I()(P) values, namely,

N= f I2(P)dP .

r2dr2rl2drl2dX/r2r (6)

where 0 &
X

~ 2m is an angle of rotation about the
position vector r = ~1. Details of this transfor-
mation are elementary and are described else-
where. We thus obtain '

y(r ~r ) = (42/r) ( f dr2r2 f„drl2rl2 +(r r2 rl2) +(r r2 r12)

00 r 2+r
+ f «2r2 J dr12r12+(r r2 r12) +(r r2 rl2)j (9)

r "2~

after integrating over X.
With wave functions of the type given by (6), we

have
I+(r r2 r12) (r r2 r12)

n, ~

The algebraic coefficients f„collect various pow-
ers of ~, r in addition to products of expansion
coefficients, the C&,&,~'s in the original wave func-
tion (6). E(luation (9) thus involves the integrals

r+r2
in~(r) = f «2r2" e '"'

0 r~2

For m even we obtain

I (r) = J„(r),
whereas for m odd we have

I„(r)= Z„(r)+ SC„(r),
where

(12)

and

X (r)=
2

e "2 0 (-))'( ) )

2 "~ m+ 2,2 l (n+ j+ I)!
'I))))) r = n

Q
tl+g+ 2m+2 l 1 jI

(14)

+ f"dr, r,"'e '"2J '
dr»rl"2 . (11)r r2~

1g + + + at+n+3-k
X ~

y ]+1
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In (14) and (15), (") denotes the binomial coeffi-
cient. The summation over j in (14) is to be carried
out in steps of two while the summations over i
and j in (15) are not restricted in this fashion.

Multiplication of the algebraic f (r, r )'s in

(10) by the appropriate I„„(r)'syields y(r I r )
(Ref. 9) in the analytic form

y(r
~

r') e-&(r+r')/2 QA rvr'v

+ e-32r l2 -2r'l2 Q R v 'v

The A. 's and B's collect from the preceding analy-
sis the algebraic coefficients for given powers
p, and v of ~ and ~'.

Equation (16) was obtained assuming (6) for the
variational form of the two-electron 'S or S 4.
Other forms, ' namely, those that incorporate dif-
ferent exponential parameters for x, and x& in the
separable portion of @(r, , r„r»), lead to ex-
pressions of similar type given in (14) and (15)
for J„„(r)and K (r) .

Although the above analysis was performed for
spherically symmetric two-electron atomic states
described by HY functions, it can be extended to
many-electron atoms. For example, the spin-
free second-order reduced density matrix (or 2

matrix) & '(rq, r2lr, , r2) can be constructed
from the normalized N-electron wave function
k(x, , x2, . . . , x„). Then, r2 is set equal to r2.
If the resulting I' ' contains the interelectron co-
ordinate r&2, as will be the case if + is of the HY

type, the transformation given by (8) can be used
to eliminate the x» and x~ dependence. If I" ' is
independent of r», as will be the case if 4 is of
the usual configuration-interaction (CI) type, the
labor involved in integrating out the coordinates
of electron 2 is considerably simplified. In both
cases an algebraic expression obtains for
[2/( -»]y(~I~).

(p, , v) in (16). The radial integrals R(z, i, p) ap-
pearing in (17) are explicitly defined as

R(z i p)
-=f e '"x j,(px)dx . (18)

Various analytical expressions have been given for
integrals of this type. "

ln order to obtain I3(P), we integrate (17) over
o' and p, p= (p, &, p). Since y(pip) as given by

(17) does not involve any functions of these angles,
this integration yields a factor of 4w. Hence I3(P)
is given by

f,(p) = 42p'y(p Ip) = p' y, (p ~p), (19)

D3(r) = r f f y(r~r)sin&d8dg,

where

(20)

i. e. , yo(P I P) is 4w times the expression given by
(17).

Had y(r lr) depended on the orientations as well
«l

as on the magnitudes of r, r, the initial expres-
sion for y(p I p) would just involve the plane wave
expansions for e '~' and e" . The resultant ex-
pression for y(p Ip) would then involve products of
two (normalized) spherical harmonics, F,„(o.', P)'s;
p= (p, a, p). Integration over the spherical har-
monics then yields y3(P IP).

ln actual I3(P) calculations, it is recommended
that the normalization condition stated in (5) be
verified. Similarly, problems can be avoided if
the algebraic expression for y(r I r ) [or the NO

expansion of y(r Ir )] is checked before it is
Fourier transformed. This is most easily ac-
complished by setting r = r, thereby yielding the
diagonal matrix y(r Ir). Integration of y(r Ir) must
then verify the normalization condition. A bonus
feature of this check is that the radial electron-
nuclear distribution function Do(r) is first obtained
in analytical form from the algebraic y(r I r),
namely,

III. EVALUATION OF Io (p) FROM y(1'~& ) N= f Do(r)dr . (21)
We will now evaluate (2) using the algebraic

y(r lr ) given by (16). Since y(r I r ) in (16) is in-
dependent of angular functions, integration over
(8, Q) and (&, Q ) in (2) yields a factor (4m)'i&(pr)
&&j 0(Pr'), j2(x) = (sinx)/x. The expression for
y(p ip) thus reduces to a sum of products of radial
integrals. These integrals involve powers of ~

I
(or r ), exponential terms and zero-order spheri-
cal Bessel functions, the jo's. The diagonal 1
matrix in momentum space is thus given by

y(p ~p) = (2/v) [Z A„„R(2k, n+ 2, P) R(2k, m+ 2, P)
n, m

+ Fi B„R( k, n2+ 2, p) R(2k, m+ 2, p)],
(17)

where the summation indices (n, m) in (17) replace

Although the use of 4 (r, r2, r,2) rather than
@(r, r2, rq'2) in (7) and (9) does not appear to affect
y(r Ir ) significantly, the consequences are not
immediately obvious. For the two-, three-, and six-
term HY functions to be studied in Sec. IV, Eqs.
(7) and (9) yield y(rlr )'s whose corresponding
D3(r)'s, when integrated analytically, satisfy the
normalization condition (21) to ten decimal places.
The I3(P)'s derived from the y(r lr )'s, when nu-
merically integrated, satisfy (5) to six or seven
decimal places. Expectation values of the kinetic
energy operator —

& V, obtained by operating on
the algebraic y(r Ir )'s, are slightly smaller than
those obtained by operating directly on the wave
function 4( rrr, 22) with —2(V', + V2 ). For ex-
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TABLE I. Wave functions and energies of S ground states of He and He-like ions.

Atom

H"

He

L 0+

Be2'

B3'

C'4

Wave function

Two-term HY, No. 3 of Green et aL (Ref. 12)
Three-term HY, No. 7 of Ref. 12
Analytical RHF of Curl and Coulson (Ref. 13)

Exactb

Two-term HY, No. 11 of Ref. 12
Three-term HY, No. 14 of Ref. 12
Six-term HY, Stewart and Webb (Ref. 14)
CI, Table IV of Cressy, Miller, and Ruedenberg
(Ref. 15), their g3

Best analytical RHF, Table VI of Roothaan, Sachs,
and Weiss (Ref. 16)
Exact

Two-term HY, No. 16 of Ref. 12
Three-term HY, No. 18 of Ref. 12
Six-term HY, Stewart and Webb (Ref. 14)
CI of Ahlrichs, Kutzelnigg, and Bingel (Ref. 17)
Analytical RHF, Table VI of Ref. 16

Exact

Three-term HY, No. 20 of Ref. 12
Analytical RHF, Table VI of Ref. 16

Exact

Three-term HY, No. 22 of Ref, 12
Analytical RHF, Table VI of Ref. 16

Exactb

Three-term HY, No. 24 of Ref. 12
Analytical RHF, Table VI of Ref. 16

Exactb

Energy
-E(a.u. )

0.508 78
0.525 30
0.488 0
0.527 751

2. 891 12
2. 902 62
2.903 32

2. 902 61~

2. 861 680
2. 903 724

7.268 15
7.278 03
7.279 06
7. 278 86
7.236 42
7.279 913

13.653 26
13.61130
13.655 566

22. 02834
21.986 23
22. 030 997

32.403 43
32.361 19
32.406 247

/o corr.

52. 3
93.8

pC

100c

70. 0
97.4
99.1

97.4

pC

100c

73, 0
95.7
98.0
97.6

pC

100c

94. 8
pC'

100

94. 1
pc

100

93.7
pC

100c

'Percent of correlation energy is taken as %corr. = [(E-E„„F)/(E~ct-E„„F)) &&100, where E~~c~ is taken from
Frankowski and Pekeris (Ref. 18); ERzF is taken from Roothaan, Sachs, and Weiss (Ref. 16), except for H .

Reference 18.
'By definition.
While checking the He CI functions of Cressy, Miller, and Ruedenberg (Ref. 15) for normalization and other properties,

lj)3 and $4 were found to have exactly the energy expectation values reported by these authors for g4 and g3 ~

'This energy is computed from a truncated version of Ahlrich, Kutzelnigg, and Bingel's (Ref. 17) CI function for Li'.
Further details of the truncated function and the respective Io(p) calculation are given in Ref. 2(c).

ample, the kinetic energy obtained by operating
directly on the two-parameter He function of Green
ef al (see Table .I) is 2. 91882 a. u.

&

that calculated
by operating on the algebraic p(r lr ) is 2. 86168
a. u. Numerical integration of Io(P) weighted by
the factor ~P' gave 2. 86167 a. u. These smalldis-
crepancies for the kinetic energy will not be con-
sidered further at this time.

IV. RESULTS AND DISCUSSION

The analysis of Secs. II and IO was applied to
two- and three-term HY functions for the 'S ground
states of H, He, and Li'. Three-term HY func-
tions were employed for the 'S ground states of
Be ', B', and C4'. In addition, six-term HY func-
tions were used for He and Li'. The natural or-
bital (NO) expansions of p(r lr )'s obtained from
configuration interaction (CI) wave functions were

also used to obtain correlated Io(p)'s for He and
Li'; thy CI results for Li' are those previously
reported. @" Restricted Har tree Fock (RHF) Io(p) 's
were computed for H, He, Li', Be', B ', and C '
by Fourier transformation of the respective RHF
orbitals. Details of these various wave functions
are collected in Table I.

The reduction of the various HY y(r lr )'s to the
algebraic form indicated in (16) was performed
entirely by a program written in FORMAc. The
resulting algebraic expressions for the A's and
B's of (16) were then incorporated into a FQRTRANIV

program for further processing and subsequent
evaluation of Io(P). Values of the A's and B's ob-
tained from the algebraic 1 matrix analysis of the
six-teem HY function for the 'S He ground state
are given in Table II. The radial electron-nuclear
distribution function obtained from this particular
y(r Ir ) turns out to be
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TABLE II. Algebraic y (r ) r') from the six-term HY function for the S He ground state. ~

(,m)b

-1,0
-1,1

1j 2

0, 0
0, 1
0, 2

1,0
11
12
2, 0
2 1
2 j 2

3, 0
4, 0

0.518335 0076
—0.968 708 8324 (-1)

0.329 7445970 (- 1)
0.2245754794 (+1)

-0.649 300 7026
0, 292 582 4964
0. 781 029 6234

-0. 8743499665 (-2)
0. 1174583772 (-1)
0. 166 0794212

—0.653 2096182 (-1)
0.297 8147215 (-1)
0. 706 599 7897 (- 1)

—0. 8122219678 (-2)

—1,0
1j 1
1j 2

0, 0

0, 1
0, 2

1, 0
1j 1
1 j 2
2, 0
2 1
2 j 2

3, 0
4, 0

-0.5183350076
0.9687088324 (-1)

-0.329 7445970 (-1)
—0.453 3143855

0. 1173136713
—0.289350 8838 (- 1)
—0.511973 8405 (-1)

0.378 02 0 8139 (- 1)
0.0'

—0.490 031 8376 (-1)
0.0~

0. Od

0. 0~

0. 0~

Reference 14. The exponential parameter for this wave
function is k =3.51.

These indices also indicate the powers of r and r', i. e. ,r"r', in expansion (16).

'Numbers in parentheses indicate powers of 10.-
f'The algebraic expressions for these particular coef-

ficients are null.

6

(~) Q g ~&e lit' Q 5 ~tl e Rkt' (22)

TABLE IG. Distribution function Dp(r) obtained from
the algebraic y(r I r') of Table II. IDp(r) =4~r y(r t r),
where y(r tr) is obtained from y(r tr') by setting r=r'.
See also Eq. (22). Numbers in parentheses indicate
powers of 10; the computed norm of this distribution is
"exactly 2.0, to ten decimal places. ]"

0.6513589808 (+1)
0.270036 7162 (+2)
0.206 972 3721 (+1)
0.5653841586 (+1)
0.214 694 6182
0.272 178 1938

&n

—0.6513589808 (+1)
-0,4479201152 (+1)

0.416 472 4881
—0.504 366 2481

where the a's and b's are linear combinations of
the A's and 8's involved in y(r lr ). As in a pre-
vious algebraic study'" of Do(x}'s from HY wave
functions, a, = -b&. Table III lists for He the a' s
and b's implied by (22), and the computed norm
of Do(r}.

Table IV lists for selected values of P the Io(P)'s
obtained for the 'S He ground state. Table V gives
various Io(P)'s for the 'S ground states of H and
Li'. For details of the wave functions employed
in these IO(P} computations, the reader is referred
to the references in Table l. The IO(P)'s reported
in Tables IV and V were all integrated numerically
and they all satisfy the normalization condition
(5) with X=2.

With the exception of the two term HY -IO(P), a
cursory examination of Table IV indicates that the
RHF, HY, and CI Io(P)'s for the iS He ground state
are in reasonably good agreement. Closer ex-
amination reveals that the correlated (three and-

six-term HY) values are larger than the RHF
values for P = 0-0. 9, the peak maximum of each
Io(P). One observes exactly the reverse behavior
between the RHF and CI results. Disregarding
the two-term HY values, the differences between
RHF and correlated H values are large enough that
this ion should be investigated further, both theo-
retically and, if possible, experimentally. ' ~ If
we again disregard the two-term results, we see
from Table V that the correlated and RHF Io(P)'s
for Li' agree satisfactorily.

V. PRACTICAL CONSIDERATIONS INVOLVING THE
ALGEBRAIC 1 MATRIX ANALYSIS

%e have seen that the present analysis of the
1 matrix y(r lr ) involves the manipulation of
algebraic expressions according to a given pre-
scription. Because these manipulations are alge-
braic and not merely numerical, they cannot be
programmed for a digital computer in a language
such as FQRTRAN. In the present application, :FQRMAc"

was chosen because it is an easy language to code.
Estimates of the computing time required to

solve given problems are of particular importance.
The FORMAC program currently in use is still in

the development stage and has not been optimized
to any extent. At present, its input is restricted
to chara. cter strings composed of two-electron
HY wave functions of the type shown in (6). For
these and other reasons outlined below, no sys-
tematic effort has been made to obtain reliable
time estimates for even the two-electron case. It
is worth mentioning that 1.44 min of IBM 360 model
75 time were required to completely solve the

six-term case for both He and Li'.
At present, the author has reservations about

the suitability of FORMAC for the algebraic 1 matrix
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TABLE IV. Io(p)'s for the ~S ground state of He. The HY wave functions used for He and the He-like iona are of the
form indicated in (6) and are given by O'= Re (co+cgN), += Xe (co+cgu+c2t ), += Ke (co+c~g+c2t +c3s+c4s +c5u )
for two-, three-, and six-term cases, respectively. Values of the various parameters for the two- and three-term
wave functions are obtained from Ref. 12; the six-term He and Li' wave functions are given in Ref. 14.

0. 0
0. 1
0.2
0.3
0.4
0. 5
0. 6
0. 7
0. 8
0. 9
1.0
1.2
1.4
1.6
1.8

2. 0
3.0
4. 0
5. 0

10.0

RHF

0. 0
0, 054278
0.205 60
0.423 30
0. 66714
0.898 42
1.088 09
1.22030
1.291 56
1.30738
1.278 33
1.133 64
0. 94057
0. 750 18
0.585 16
0.451 33
0. 123 57
0. 038 684
0. 014 025
0. 000375

Two-term HY

0. 0
0. 044 446
0. 17027
0.356 83
0. 575 42
0. 795 67
0.99137
1.14422
1.245 10
l. 293 16
1.293 68
1.188 78
l. 00771
0. 810 87

0.631 80
0.483 29
0. 12195
0. 035 469
0. 012 244
0. 000301

Three-term HY

0. 0
0. 056 254
0.213 23
0.439 31
0. 692 53
0. 931 87
1.126 17
1,258 31
1.324 82
l. 332 28
1.292 92
1.128 30
0. 922 62
0. 728 12
0, 56468
0.434 89
0. 12129
0. 038460
0, 013 955
0. 000 367

Six-term HY

0.0
0. 055 550
0.210 54
0.433 72
0. 683 64
0.91993
1.11195
1.243 00
1.309 69
1.31852
1.28145
1.122 68
0.922 55
0. 731 99
0.57069
0.441 63
0. 124 85
0.039 699
0, 014 406
0.000 378

CI

0. 0
0, 052 675
0.200 14
0.413 92
0. 655 86
0. 888 07
l. 08092
1.217 16
1.291 88
1.309 74
1.281 12
1.13407
0. 93798
0. 746 42
0.582 18
0.45010
0. 126 74
0. 040 344
0. 014640
0. 000383

Linear momentum variable in reciprocal atomic units.

analysis. Any major programming effort should
be undertaken with a view to producing a portable
program. Portability of programs written in
FoRMAc:, is not realizable because the FQRMAc com-
piler depends upon IBM's programming language,
PL/1. Apart from the fact that FoaMAc receives
no support (it is issued as a Type III program by

IBM), the current version is designed to run on
IBM's 360 series, model 40 and above. As several
possibilities regarding the computer implementa-
tion of the algebraic 1 matrix analysis remain to
be explored, remarks concerning the best pro-
gramming language, time estimates, and various
computational procedures are best left to a future

TABLE V. Io(p)'s for the ~S ground states of H and Li'.

0. 0
0. 1
0.2
0.3
0.4
0.5
0.6
0. 7
0. 8
0.9
1.0
1.5
2. 0
3.0
4. 0
5.0

10.0

RHF

0, 0
1.376 83
2. 948 67
3.238 68
2. 862 34
2.302 43
1.765 25
1.322 63
0. 983 58
0, 732 66
0.54933
0. 14858
0. 048326
0. 007 511
0. 001 702
0. 000 503
0. 000 0093

H
two-term

HY

0. 0
0. 605 10
1.906 50
2. 95137
3.24862
2. 92168
2.321 01
1.713 82
1.217 77
0. 85230
0.59638
0. 12025
0. 033 424
0. 004560
G. 000 981
0. 000282
0. 000 0050

three-term
HY

0. 0
1.056 11
2. 89527
3.655 34
3.19737
2. 336 56
l. 615 75
1.14124
0. 845 39
0.651 76
0.514 01
0.166 18
0. 055 557
0.008 313
0.001 820
0.000 527
0. 000 0094

RHF

0. 0
0, 012 200
0. 047 862
0, 10429
0. 17734
0.261 93
0.352 51
0.443 68
0. 53056
0. 60915
0. 67649
0. 812 17
0.69744
0.345 24
0. 148 85
0. 065 536
0, 002 591

two-term
HY

0. 0
0.010 946
0. 043 041
0, 094134
0. 160 89
0.239 10
0, 324 13
0.41124
0.496 04
0. 574 70
0. 64420
0. 80864
0. 71655
0.36020
0. 152 04
0. 064 929
0. 002 334

L 0+

three-term
HY

0. 0
0. 013215
0. 051 784
0. 112 619
0. 19100
0.281 15
0, 376 85
0.472 07
0. 561 52
0. 640 97
0.70744
0. 821 60
0.685 77
0.332 11
0, 14428
0. 064275
0. 002 579

six-term
HY

0, 0
0. 012 400
0. 048 644
0, 10597
0. 180 15
0.265 95
0. 357 70
0.449 84
0.53738
0, 616 24
0. 683 43
0. 813 59
0. 693 12
0. 342 05
0. 148 62
0. 065 881
0. 002 603

CI

0. 0
0. 012 164
0. 047 728
0. 104 01
0, 17691
0.26134
0, 351 79
0.442 84
0, 52962
0, 60813
0., 675 41
0, 81090
0. 696 14
0, 34530
0. 14968
0. 066212
0. 002 623

Linear momentum variable in reciprocal atomic units.
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date.
On a more positive note, the algebraic analysis

of the 1 matrix has definite advantages over the
conventional NO analysis. First, for wave functions
of the HY type, it is an exact method. Second,
the very real problem of choosing an appropriate
set of basis functions (for the NO expansion) never
arises. Third, and most important from the com-
putational viewpoint, the algebraic analysis of the
1 matrix need be performed only once for all mem-
bers of an isoelectronic sequence, provided that
each member of the sequence is described by a
wave function of the same functional form. This
is easily seen if it is remembered that all param-
eters characterizing the given wave function are
treated as variables during the algebraic analysis.
After this analysis is completed, those wave-func-
tion parameters which characterize y(r lr') for
a member of the sequence are assigned their ap-
propriate values and evaluated by conventional
methods (i. e. , a FORTRAN program).

VI. SUMMARY

An analytical method has been developed which
allows radial momentum distributions to be ob-
tained directly from HY functions. The Ie(P)'s
calculated for the S ground states of He and He-like1

ions are primarily intended to illustrate the method.

Further work, both experimental ' and theoreti-
cal, will have to be performed in order to deter-
mine whether or not the Cl and six-term HY Ic(P)'s
actually represent an improvement over RHF. Al-
though the two-, three-, and six-term HY functions
are all energetically better than their RHF counter-
parts, differences between two- and three-term
values for H, He, and Li' indicate that Ic(P) is
sensitive to both the accuracy and expansion length
of the respective HY functions.

Whether or not the algebraic 1 matrix analysis
is as practical for three-electron HY functions as
it is for two-electron functions is an open question.
The "best" HY function presently available for the
I i atom involves 100 terms. With FQRMAc, the
increased labor involved in reducing@@~ to y(r Ir')
may prove more costly than the conventional NO

expansion. ' Problems of this sort are not antici-
pated when applying the analysis to two-electron
HY functions.
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Variational equations are derived for the optimum orbitals for constructing a multiconfigura-
tion expansion of the wave function for a many-electron system. Both the case where all Slater
determinants are constructed from a common set of orbitals and the case where each determi-
nant is constructed from an independent set of orbitals are considered. An equation with a single
orbital operator is obtained in the former case; a separate operator for each determinant in
the latter. The latter case corresponds to a physical picture in which the orbitals fluctuate
as the system makes virtual transitions from one Slater determinant to another. The invar-
iance properties of the wave function and of the variational equations with respect to linear
transformations of the orbitals are analyzed, and various procedures are given for obtaining
equations which select a unique set of orbitals. A prescription of Adams can be used in either
case to localize the orbitals at a selected physical subsystem (an atomic shell, an atom, or a
group of atoms). Another prescription can be used with a common set of orbitals to obtain an
equation for natural spin orbitals.

I. INTRODUCTION

The invariance of the unrestricted-Hartree-Fock
operator and wave function under orbital trans-
formations was pointed out by Fock in his original
work, and first used by Hund to construct localized
orbitals in molecules. The invariance was also
used by Wannier to construct the orthogonal lo-
calized orbitals which bear his name. 3 The theory
of orthogonal localized orbitals was developed and
used to interpret chemical concepts in a series of
papers by Lennard-Jones and his collaborators.
These developments laid the ground work for a

building-block approach to the theory of large mol-
ecules and solids. An important related develop-
ment was the method of atoms in molecules de-
veloped by Moffit, 5 Hurley, ~ and Arai. ~ Hurley
also derived equations for the localized orbitals
in a wave function constructed from paired-elec-
tron orbitals.

Adams was the first to formulate a general self-
consistent-field theory suitable for a building-
block approach. Reformulation of this theory in
terms of pseudopotentials provided a useful tool for
studying local properties of large polyatomic sys-
tems and for synthesizing wave functions for large


