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The projection operators onto various subsets of states of a quantum-mechanical system are
constructed in a semiclassical approximation based on the Wigner transformation of statistical
mechanics. As illustrations, explicit operator expressions are derived for the cases of central
Coulomb potential, one-dimensional harmonic oscillator, and radial Coulombic states of
specified angular momenta. The accuracy of these operators is then examined in some detail
in terms of the overlap integrals and dipole transition probabilities. The semiclassical
approximation is found to be effective in the energy regions away from the classical turning
points. Extensions of the approach to partially projected Green's functions and other re-
lated moments are discussed and their applications to scattering problems pointed out.

I. INTRODUCTION

f(x, p)=h ' f (x ——,'rip lx+ ~r)e"""d'r . (1.1)

Here f is the Boltzmann function for a particle at
x with momentum p and (x I p Ix') is the density ma-
trix in a coordinate-space representation. The
inverse of (1.1) is

(xlply)= f d p f(—,'(x+y), p)e'~' "" . (1.2)

The normalization in Eq. (1.1) is so chosen that

ff(x, p) d x d p = f d x, ('x
l p l

x) = 1, (1.3)

Projection operators occur frequently in formula-
tions of theories of scattering reactions, such as
that of Feshbach' and its subsequent developments. '
For example, a calculation of compound resonance
states may be set up in terms of the closed-channel
operator Q which is orthogonal to all open channels
at a given energy E. The variational bound for-
mulations of effective potentials and resulting
bounds on reaction matrix elements is also de-
veloped with the use of projection operators.

The difficulty of constructing such projection op-
erators has been an obstacle in the application of
these theories. In this paper we describe the use
of the Wigner transformation of statistical me-
chanics to provide a semiclassical approximation
for projection operators.

The Wigner transformation expresses the Boltz-
mann function as a certain Fourier transform of
the quantum- mechanical density matrix. Applied
to the case of the single-particle distribution func-
tion this relation is

when p is expressed in a Hilbert-space represen-
tation:

Relations (1.1), (1. 2), and (1.4) suggest the ap-
plication to projection-operator construction with
a change in normalization, of course. Consider a
complete set y~(x) of orthonormal single-particle
wave function. The projection operator onto a sub-
set I of these is

(xlAly) =~s&.(")»(y) (2 1)

A classical phase-space function F(x, p) is in-
troduced as

F(x, p)= f (x —2rlAlx+ 2r)e"'~" d r . (2. 2)

The inverse transformation is

(x lAly)=„, F(-,'(x+y), p)e"'*'""d'P . (2. 3)

If the X)„are normalized to unity, the normaliza-
tion of I" is

f F(x, p) d~x d'p=h Zz .
Consider now the plane-wave states

y,"(x)= h e"'+"

(2. 4)

in some large volume U. The projection operator

the average being over an appropriate ensemble
with g, the wave function of n in that ensemble

II. PROJECTION OPERATOR ONTO STATES OF ONE OR
MORE PARTICLES
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onto states of momentum less than I' is

(xlAly)=h ' f,,d'& e"*"'"" (2. 5)

F(x, p) = 0, (x, p) not in 8, . (2. 7)

Then the quantum-mechanical projection operator
corresponding to the classical phase space 8 is

(x I
A

I y) = h J d P e"'*"' (2(x+ y), p) in (R .
(2. 8)

The generalization to the case of N particles is
obvious. Let F{x,p„.. . , x~, p„) be unity in a re-
gion (R of the N-particle phase space and let F van-
ish outside this region. Then the corresponding
projection operator is

(x„.. . , x„IAIy„.. . , y~)=& '" f 'f
g 'P~F

~

E
p x y (2. 9)

The case of a particle in a spherically symmetric
attractive potential V(r) is very simple. Suppose
V(r) approaches zero as r- ~. Then choose

F(x, p)= 1 for (P /2m)+ V(x) E 0,

Let

= 0 otherwise (2. 10)

P(x) = (2m [E —V(x)]PI (2. 11)

[We are to set P = 0 if the right-hand side of (2. 11)
is imaginary. ] The expression (2. 8) then gives us

(xl Aly) = 2w'Ix —y I
'(sinG —G cosG),

(2. 12)
G =

I lx -y IP(-.'I x+y I)]/@.
The projection operator onto all bound states of

a Coulomb potential, for example,

For this projection operator Eq. (2. 2) gives

F(x, p)= f,&~d q 5(q —p), x in U . (2. 6)

We see that F is unity in the "allowed" region
(P (P) of phase space and vanishes outside this re-
gion.

The above suggests the following approximate
model for a projection operator. Define

F(x, p)= 1,
with (x, p) in a region S. of classical phase space,
and

where ao is the Bohr radius.
The projection operator onto the continuum of the

Coulomb states is, in the present approximation,
obtained as follows:

Fc= 1-F
so

(xlAe Iy)= 5(x —y) —(xlAe Iy) . (2. 14)

The relation (2. 14) is, of course, exact. This re-
sults from the fact that if F = 1 on all phase space,
our approximation gives the exact result

(x
I
A

I y) = 5(x —y) . (2. 15)

We emphasize that the expressions (2. 12) and
(2. 13) are defined only in that domain of x and y for
which P(-,'(x+ y)) is real. Thus (x

I
A Iy) vanishes

for 2(x+ y) outside the classical turning points. Ex-
tension of our procedure into the classically for-
bidden regime appears possible (as in the WKB
method) but is not discussed here.

The formal relation

(q I
A

I
q') = h-' f d'x d'y e '""'""' (x I

A
I y)

=h ~ J dsxF(r, &(q+q'))e'" ~i' . (2. 17)

It is also of interest to consider the applications
of (2. 5) and (2. 9) to collision problems. For scat-
terings in which all the states in the set 3 corre-
spond to open channels, A~ for the states in S may
be used to construct the open-channel projection
operators. Thus, for example, in the e-H scatter-
ing near the ionization threshold, we may use
Ae (1;1') of (2. 12) and construct the operator as

Ae (1, 2; 1', 2') = As (1;1')+ Ae (2; 2')

—A~ (1;1') As (2; 2' )
—= A (2. 18)

and its complement

(2. 16)

to be satisfied by projection operators is not satis-
fied exactly by the approximation (2. 8). As the do-
main 5l becomes large compared with ha (the semi-
classical limit), it is easily seen that (2. 16) be-
comes valid, however. For the classical phase
space 8 described by the symmetric variable
~2(x+ y), the operator given by (2. 8) is Hermitian.

The expression corresponding to (2. 3) when a
momentum space representation is used is

V(r) = —Zen/r

is then [now E = 0 in Eq. (2. 11)]

(x
I
As

I y) = (2w [co I
x+ y I

/4Z ] i ]

x [(sinG)/G3 —(cosG)/G~],
i(2. 13)

Ae(I, 2; 1', 2') = 5(1 —1' ) 5 (2 —2')

—A, (1, 2; 1', 2') =- Ao, (2. 19)

where [A~(1, 1'), Ae(2; 2')]= 0. These operators,
which are Hermitian and almost idempotent, may
then be used to study the resonance structure, dis-
tortion effect, and the bounds on scattering param-
eters near the ionization threshold. Alternative-
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As a first application of the projection operators
derived in Sec. II, we study the ionization transi-
tions of hydrogenic targets by fast-electron im-
pact. Since the bound-state -bound-state transi-
tions are dominant in this case, the usual closure
approximation to the transition probabilities leads
to gross overestimate, and it is necessary to iso-
late carefully the continuum contributions. Thus,
the relevant transition probability is given in the
leading order by

M„,= Q (z, t, m;xix Ac(x, y)y~n, l, m;y),
(3. 1)

where all the dipole transitions from in, l, m; x) to
the continuum are included. Similarly, we also
have

1
nl 2~

corresponding
states.

In (S. 1) and
ic states as

Q (n, l, m;x ix A (x, y)yin, t, m;y)
(3. 2)

to the transitions to all the bound

(3. 2), we have denoted the hydrogen

in, I, m;x) —= g„, (x)=R„,(x) I', (x), (3. 3)

while the projection operators A~ and Ac are given

by (2. 13) and (2. 14), with E = 0.
Evidently, the contribution to (3. 1) coming from

the 5-function part in (2. 14) corresponds to transi-
tions to all available states, both bound and con-
tinuum, and is given in this case by

M„, = Q (n, l, m;x ix 5(x —y)yin, &, m;y)+ m

ly, a similar projection operator A onto the
closed-channel space Q for the two-electron sys-
tem may also be obtained directly from the multi-
particle generalization (2. 9). The effective pseudo-
potential for this process can then be constructed
with A~.

Generalizations of (2. 18) and (2. 19) to systems
involving more than two electrons are also
straightforward, and the result could be used with

greater advantage in the e-atomic and e-molecular
reactions, simply because A and A~ are now very
simple to evaluate.

III. APPLICATIONS OF COULOMB PROJECTION OPERATOR

Q (n, I, m; x
i
As (x, y) in, I, m; y ) .

(3. 5)
Obviously, with the exact A/) in (3. 5), in place of
the approximate form (2. 13), we expect that

for the nth state in A~

= 0 otherwise . (3. 6)

The exact values of M„, and M„, are also available
for n & 4 for ready comparison.

More explicitly, after the sum over the magnetic
quantum numbers is carried out, M„& becomes

+CO W ce

M„g-—— x dx I y dy R„,(x)R„,(y)
~Q ~ Q

"1
dp P, )p) p

"
)~ -1 Q

For some values of JLt, in the range I p, I -1,the vari-
able v goes through zeros and thus G becomes sin-
gular. This causes the integrand in (3. 9) to oscil-
late violently and makes the d p integration diffi-
cult. To avoid this problem in the actual numeri-
cal integration, we change the variables (x, y) to
|x, t) where t —=x+y and rewrite the M„, in the form

M„,= — x dx ' t dt R„,(x) R„,(b)
1 1

a Q Q "-1

x(sinG —G cosG)(ta x)P, (p)da, —(3. 8)
where

d= (4x'+ t' 4x«)'", b = (t'+-x' 2xta)'", -

G 2d/tl/2 t), = (ta —x)/b .
(3. 9)

The form (3. 8) and the corresponding expression
for 8„,were used in the actual numerical calcula-
tions, and the result is given in Table I for the
cases n = 1, 2, 3 and E= 0. A semianalytic integra-
tion formula, which is useful for rapidly oscillat-
ing integrands, and the Newton- Cotes five-point
formulas with varying mesh sizes are used to as-
certain the accuracy of the triple integrations in
(3. 8). The actual values given in the table are ob-

=Ms, +M~, = 2[5n +1 —Sl(I+1)j, (3 4)

where the quantities defined with bar denote exact
values. An additional quantity of interest for our
study is the overlap integral defined as

TABLE I. Dipole transition probabilities and overlap integrals for the hydrogenic system, with & =1,2, 3 and l =0.
The full projection operator A~ for all bound partial-wave states is used. The quantities with bar denote the exact
values, in atomic units.

3.00
42.00

207.00

—B
M„p

2.15
39.30

202. 56

C
Mno

0.85
2.70
4.44

A
Mno

3.00
42. 00

207.00

B
Mno

2. 07+0. 01
39.6 + 0.1

189 +6

C
M„()

0. 93 ~ 0. 03.

2. 4+0.1
18+6

0.87+0.02
0.95 +0.02
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I I I

Hydrogen (n=i, &0)
the classical turning point.

The parameters of the model are defined in the
units m = 8= 1, by'

l.2—

1.0—

09—
0.93

0.85 exact

a 2+ a x (f)„=E„Q„,6x
with

E„= (2n+ 1)a, n = 0, 1, 2, . . .

P„(x)= A„H„[(a) x]e

The dipole coupling produces

[f P„*(x)xP„(x)dx]'

(4. 1)

(4. 2)

We let

(n+1)/2a =M„,„.q for m=n+1
n/2a -=M„,„ i for m =n —1

0 otherwise.

(4. 3)

I I I

0 I6 32 48
Kmax

I I

64 80
M„= M„,„,g+M„,„,= (2n+ 1)/2a .

The operator A~ which projects onto all the
states with energy E„&&is

(4. 4)

FIG. 1. Convergence of the M&0 integrations for the
hydrogenic system. The angular integral in (3.8) is
carried out using both the semianalytic method and the
Nevrton-Cotes (five-point) integrations. The mesh size
h is defined by k=2/K~.

(4. 5)
En&EC

The one-dimensional analog of (2. 8) gives us the
semiclassical approximation to (4. 5):

tained by rough extrapolations to the limit of zero
mesh sizes (Fig. 1). The mesh size h is defined
here by h = 2/K; the convergence was found to
be extremely slow, and becomes worse as n was
increased, especially in the do integration of (3.8).
E ~ is the number of meshes in the angular integration.

We have encountered additional difficulties in the
evaluation of M„„because of the severe cancella-
tion between M„", and M„, for n &1, where M„",=M«
»M„&. This seems to be a peculiarity of the Cou-
lomb problem under consideration. The difficulty
could in principle be avoided by defining Ac di-
rectly in a form similar to (2. 8), rather than
through As as we have done in (2. 14). When the
order of integrations d p and du are interchanged,
the resulting integral is then well defined. How-

ever, we are left with four-dimensional integra-
tions which are difficult to carry out numerically.
For the case n = 1 and E = 0, we obtain M, o= 1.1
~0. 2.

IV. PROJECTION OPERATOR IN ONE DIMENSION
(HARMONIC OSCILLATOR)

We consider in this section a one-dimensional
harmonic-oscillator model. Aside from the sim-
plification in the numerical analysis, the model in-
volves a very simple dipole coupling scheme and
also allows us to study the accuracy of A~ near

]p(» y) 1 sin PQape ""= — . (4. 6)

Here

P (v)= 2Ec —a2v2,
1u=x-y, v= ~(x+ y) . .

In addition to (4. 6) we define

(4. 7)

(4. 8)

(1/2v) fo dp cospx cospy, even
(x i~; Iy)=

(1/2v) fo dp sinpx sinpy, odd

vc -= (2Ec/a) I (4. 10)

The quantities A~ would represent projection
operators onto even (odd) states, corresponding
to even (odd) n values, except for the wrong sym-
metry of Eqs. (4. 7) and (4. 8). We shall see,
however, that for those cases considered below,
A& represent very good approximations to the
projection operators on even (odd) states.

The quan. ities of interest are defined by

M„"= (n, x Ix' In, x), (4. 11)

(I/2m[(sinPu)/u + (sin2Pv)/2v] .
(4. 9)

We note that A& and A& vanish for I v I &v~,
where
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TABLE II. Dipole transition probabilities M„and overlap integrals S„for the one-dimensional harmonic-oscillator
model. The force constant a =0.45 and the cutoff energy is chosen at the tenth level, with ~,=10. Both cases with Az
and &~ are considered.

M =Sfn n n n

0
1
2
3

5
6
7
8
9

10

1.1111
3 ~ 3333
5.5556
7.7778

10.0000
12.2222
14.4444
16.6667
18.8889
21.1111
23.3333

1.0000
1.0000
1.0000
1.0000
1.0000
0.9994
0.9969
0.9952
0.9513
0.8584
0.6632

l.1111
3.3333
5.5556
7.7774
9.9968

12.2011
14.3345
16.2100
17.352
16.884
13.807

0.0000
0.0000
0.0000
0.0004
0.0032
0.0212
0.1100
0.4566
1.537
4. 227
9.527

1.0000
1.0002
0.9996
l.0007
1.0074
0.9717
1.0196
1.0197
0.9931
0.9159
0.7678

1.1112
3.3323
5.5593
7.8052
9.7765

12.7276
14.070
16.361
17.945
18.86
18.69

-0.0001
0.0011

-0.0038
-0.0274

0.2235
-0.5054

0.374
0.305
0.944
2.26
4.64

0.0000
0.0000
0.0004

-0.0002
-0.0074

0.0287
-0.0227
-0.0315
-0.0418
-0.0541
-0.105

~'„= (n, x )x~,y )n, y),

S„=(n, x )~, )n, y),

(4. 12)

(4. 13)

(4. 14)

off (4. 10). However, we expect that S'„=0 for
those n which are away from nc, as given in the
table. In fact, we have 8'„=S„-S'„, and the exact
value would of course be S„'=0.

Mn™n~ (4. 15)

and the corresponding integrals with A& in the
place of A~. We denote them by M„', M„', and

S„.
The dipole-coupling scheme of this model is very

simple, and we have the exact values for compar-
ison:

PROJECTION OPERATORS ONTO RADIAL WAVE
FUNCTIONS

The numerical calculation of the dipole transi-
tions of Sec. III can be simplified by the construc-
tion of projection operators onto radial states.
Thus, the exact projection operator onto the bound

and

M„=O, (4. 16)
24—

P8 with nc=10
S'„=1 or 0

depending on the symmetry of n and A~,

S„=1 .
The parameters of the model are chosen as

20—

I8—
a =0.45

Ec= 2nc+ 1 with nc= 10

which in turn gives the cutoff value

vc = [(2n z+ 1)/a j':5. 6 .

(4. 17)

(4. 18)

l6—

Table II contains the result of calculation for
both cases in which A~ and A~ are used. The extra
term in A~ causes both M„' and S'„ to oscillate
around their respective exact values, while the in-
tegrals with A& give smoother variations in n.
The deviations of M„, S„, M„', and S'„are illus-
trated in Figs. 2 and 3. Also included in Table II
is the overlap integral S'„which was calculated us-
ing the wrong symmetry, that is, A~ for the case
with n odd, and vice versa. Although the form of
integrands in (4.9) is either symmetric or anti-
symmetric under x - -x (or y -—y), As itself does
not have the definite symmetry because of the cut-

I2—

Io

Snx IO~~

I

6
I

7
n

l

8 IO

FIG. 2. Values of M„and 8„for the one-dimensional
harmonic-oscillator model are given near the cutoff
pg, =10, where the projection operator Az is used.
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2.2

20

Bessel functions. This leads to

(r
~
As ~r') = (I/m r ') [(sinPu)/u —.( —)'(sin2Pv)/2v] .

(5. 7)
To use this, we must relate L in Eq. (5. 2) to l.
Two reasonable choices are

18
I =l(I+1) =Lo—,

I =(I+g) =Ic—.

(5. 8a)

(5. 8b)

16

l4

12

10

Spx 10~~

There is a strong temptation to drop the second
term in brackets in (5. I), writing

(r
~
As

~

r') = (1/err') (sinPu)/u =- Ae 0 . (5. 9)

v = —L2
C

Later, we shall compare use of both expressions
with some exact results.

For the projection operator onto all the bound
states of the Coulomb field, we have E = 0 and V
= —1/r in Eq. (5. 3). (We set m=e=)r= 1.) Then
(5. 6) gives

8 9 10

FIG. 3. Values of M„» and S» for the one-dimensional
harmonic-oscillator model are given near the cutoff
n~=10, where the projection operator AB» is used.

Coulomb states corresponding to an angular mo-
mentum / is

(r~Agr )= Z R„,(r)R„,(r ).
n= l+1

To construct the semiclassical approximation to
this, we proceed as follows.

The classical Hamiltonian for a particle with
angular momentum L in a potential V(r) is

(5 1)

H = p /2m+ L /2mr + V(r), (5. 2)

v =—,'(r+r'), —u= (r —r'). (5. 5)

We note that AB vanishes outside the classical turn-
ing points vc, where

P(vc) = 0 (5. 6)

It is consistent with the semiclassical approxi-
mation to use the asymptotic form of the spherical

where Q, r) are the momentum and canonical radial
coordinates. For fixed L, if the energy is to be
less than E, we must have the momentum P less
than

P(r) =(2m[E-L'/2m' - V(r)]j"' . (5. 3)

For the semiclassical approximation to AB we
then write

(r
I
Aa ~r') = (2/&) fo

'"'
der O'I' (&r)r'

r (&r'), (5. 4)

with

with AB vanishing within the centrifugal barrier de-
fined by v ~vc

By performing the angular integrations, the
quantity (3. 2) can be reduced to the form

M„,= [(2l+1)] ' f x dx f y dy

&&R„,(x)R„,(y) [l(x iAs
'

iy)+ (I+ 1)(xi' '
iy)]

—= [(2l+ 1)] ' [/M„, + (I+ 1)M„„].

The corresponding quantity M„&» is
C AM.~»= Mni -Mni»,

(5. 10)

(5. 11)

where M„", is given by Eg. (3. 6). In general, Mc„
»M„, , so that we have M„,=M„„. Finally, the
normalization integral S„„defined by Eg. (3. I), is

S„,= f, x' dx f y' dy R„,(x)R„,(y) (x i As iy) .
(5. 12)

We can also define analogous quantities using the
approximation (5. 9) and Aso, and denote them as

BO 0 COM„„, S„„,M„„, etc.
As is clear from the above discussion, there are

essentially two ambiguities in the present case; we
could choose either (5. 8a) or (5. 8b) for the value of
L and thus the cutoff vc, and second we could use
either (5. 7) or (5. 9) for As (and Ago). We have
considered here all four possibilities. Table III
contains the result of calculations with L~= Lac
= (I+ —,)~ and both Aso and As'. We thus have Me,~,
M„&„M„&„andM &, corresponding to the transi-
tions I - I+ 1. The cases with L2= L2o -- l (l + 1) are
considered in Table IV.

First of all, we should point out that, as in the
three-dimensional Coulomb case studied in Sec. III,
M»-M»»M„, (Fig. 4). Therefore the accuracy
of AB and A» should be judged in terms of S„& and
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TABLE III. Hydrogenic dipole transition probabilities and overlap integrals using the radial projection operators
AB~o, and AB~, for the case l l+1. The choice L =Lc —=(l+2) is used in the cutoff vc and momentum P(v).

10
20
30
40
50
60
21
31
41
51
61

—A
Mn)

3.00
42. 00

207. 00
648. 0

1575
3255

30.00
180.00
600.0

1500
3148

Exact values
B.

Mni+

2.15
39.30

202. 56
642. 7

27. 62
174.54
591.7

c
Mn) ~

0.85
2.70
4.44
5.3

2.38
5.46
8.3

0.917
0.959
0.972
0.979
0.983
0.985

0.965
0.980
0.987
0.990
0.991

ABp, Lc2

Bp
Mni.

2.24
40. 90

205. 59
646. 5

1573.4
3252. 2

26. 52
176.7
596.4

1496.2
3142.5

cp
Mnr.

0.76
1.10
1.41
1.5
1.6
2.8

3.48
3.3
3.6
3.8
5.5

0.910
0.825
1.059
0.943
0.972
1.021

0.890
0.899
1.063
0.982
0.974

AB, LC2

B
Mni+

2. 20
44. 3

190.4
668. 9

1581.5
3151.5

27. 6
181.6
564. 5

1536
3174

0.80
—2o3
16.6

-20.9
-6.5

103.5

2.4
-1.6
35.5

-36
-26

(xlGB ly)=~~ X.(x)(E-E.) 'Xf(y) . (6. 1)

Here the E~ are eigenvalues of the energy for states
X~, members of a complete orthonormal set Qj,

M„„rather than by looking at the small M„,. Sec-
ond, the results in Tables III and IV are not very
sensitive to the choices of L, so long as it is cho-
sen judiciously. Incidentally, the cutoff for v & vc
partially corrects for the error caused by the use
of asymptotic j, in (5. 7). Finally, we note that the
extra term in As (i. e. , &s —&so) gives rise to
small oscillations in M„&„while ABO yields fairly
smooth M„,,

VI. APPROXIMATION TO GREEN'S FUNCTIONS

The reasonable accuracy of the semiclassical ap-
proximation for projection operators suggests a
similar application to certain other operators. In
the present section we discuss the construction of
partially projected Green's functions by this tech-
nique.

We introduce the "Green's function"

and

Z(v) = {2m[E,—V(v) j)"'

E~ (p /2m)+ V(v),

(6. 2)

(6 8)

where v —= —,(x+y) as before. Then, the operator Gs
in the semiclassical approximation is given by

fyiu/h1 e
-(P'» )-V() '

where u =x- y. After the angular integrations,
(6. 4) becomes (m = h = e~ = 1)

P( v)

(xiG i )
p p p

~ + ~ 0 2E, -p —2V(v) ' (6. 5)

which is the desired result. Analogously, the op-

and the sum extends over a subset ~ of these.
The semiclassical approximation to (6. 1) may be

obtained in exactly the same way as with (2. 8) and

(2. 12). Thus, for all states with E„~E,and poten-
tial V(x), we define

TABLE IV. Hydrogenic dipole transition probabilities and overlap integrals using the radial projection operators
ABo„and AB, for the case l l+1. The choice L =L~ ——l(l+1) is used in the cutoff vc and momentum P(v).

nl
10
20
30
40
50
60

A
Mni

3.00
42. 00

207. 00
648. 00

1575
3255

Exact values

2.15
39.30

202. 56
642. 7

C
Mns.

0.85
2.70

44
5.3

0.947
0.968
0.977
0.981
0.984
0.986

ABp, Lq2

BO
M„)

2.35
41.02

205. 74
646. 7

1573.6
3252. 5

CO
n

0.65
0.98
1.26
1.3
1.4
2. 5

0.981
0.829
1.062
0.948
0.972
1.023

AB, I g
2

B
Mng+

2. ~6
44. 66

190.62
668. 1

1584.0
3149

C
Mns.

0.74
—2.66
16.38

-20.1
—9.0

106

21
31
41
51
61

30.00
180.00
600.0

1500
3148

27. 62
174.54
591.7

2.38
5.46
8.3

0.973
0.984
0.990
0.992
0.992

26. 85
176.93
596.7

1496.5
3142.8

3.15
3.07
3.3
3.5
5.2

0.899
0.895
1.062
0.985
0.974

27. 85
182.5
564. 6

1535
3177

2.15
-2.5
35.4

—35
-29
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evaluated using (6. 5), while the leading nonadia-
batic corrections p, to the adiabatic pseudopoten
tials in the low-energy electron-atom collisions in-
volve operators with y= 2. The low-energy scat-
tering parameters are known to be determined
principally by these parameters.

The form (6. 7) immediately suggests that the
case with &&0 may also be of interest, although
special care is required in the direct evaluation
of G~& because of the convergence difficulties at
large values of P. Thus, we have

10 = M (x I+a ly) =,2„2)6.&
~P(v)

pdp sinpu (2E —p2 —2V) .

1.0 =

0.1

FIG. 4. Variations in n of the exact dipole transition
probabilities of the hydrogenic system for the processes
(n, l)

'

(all states with l+1), (all bound states with
l+1), and (all continuum states with l+1). The cases
with l =0 and 1 are considered.

erator in the complementary space S= 1 —S can
also be given directly this time as

~ Ptv)

pGp sinPQ

2&.-p'-2V(~) ' (6. 6)

which should be convergent at large P because of
the Riemann-Lebeque theorem. Of course, both
G& and G& are defined only in the region of v such
that P(v) is real.

Generalizations of (6. 5) and (6. 6) to operators of
higher moments are obvious, as

2 p4p sl.npQ

[2Z p3-2V(. )]
(6. 7)

and the corresponding expression for Gc.
There are many possible applications of the

operators (6. 7); for example, the adiabatic dipole
and higher-multipole polarizabilities e, may be

(x IG ly) = [M/(2mu)]e'

where

SC(v) = (2M[E —V(v)])"'.

(6 9)

(6. 10)

The corresponding expression for G' in the
straight-line eikonal approximation' [which is
certainly more accurate than (6. 9)] is

(x IG'ly) = — exp[i J- K(r) ds(r)] . (6. 11)

Here the path integral is taken on the straight line
joining points y and x.

We see that (6. 9) corresponds to approximating
the eikonal integral as

if(r)ds-(r)= lx —y If(~lx+y I) (6. 12)

ACKNOWLEDGMENT

One of the authors (Y. H. ) would like to thank
the physics department and Lawrence Berkeley
Laboratory of the University of California for
their hospitality.

(6. 6)
The case with 6 = 1 may be used, for example, in
the calculation of the partially projected oscillator
strength. The main advantage of dealing with the
operators in the restricted set 3 or & is that the
contributions from each state in that set are all of
the same sign, often resulting in some type of
bound property.
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(6. 4) can be obtained by using it to construct the
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Resonance-Narrowed-Lamb-Shift Measurement in Hydrogen, n = 3 ~
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A new measurement of the Lamb shift in the n=3 state of atomic hydrogen is reported. The
experiment was performed in zero magnetic field with a fast hydrogen beam. The radio-
frequency spectroscopy measurements were made with both a single oscillating field and two
separated oscillating fields. The final result for the Lamb shift was $(H, n =3) = (314.819
+ 0.048) MHz. In a further experiment, the separated-oscillating-field technique was used to
narrow the resonance so that the linewidth was less than the natural linewidth.

I. INTRODUCTION

Precise measurements of the Lamb shift in hy-
drogenic atoms give one of the most sensitive tests
of quantum electrodynamics. The presently ac-
cepted theoretical value for the Lamb shift in the
n = 2 state of hydrogen agrees very well with the
most recent measurements; it is calculated with a
precision which is a factor of 5 greater than the ex-
perimental precision achieved to date. ~'3 Despite
extensive experimental work, the precision of the
measured value for the Lamb shift in the n = 2 state
of hydrogen has not been improved over that ob-
tained by Lamb and his co-workers 20 years ago. '
The new measurements significantly disagree with
the older measurements. "

In these Lamb-shift measurements the width of
the resonance is greater than or equalto the natural
linewidth and it is determined essentially by the
lifetime of the short-lived Pstate. Obtaining the
stated one-standard-deviation precision requires
determining the center of the resonance line to six
parts in 10 of the natural linewidth. The natural
linewidth imposes a fundamental limitation on the
obtainable precision and a significant reduction of
the experimental uncertainty will require a com-
parable reduction in linewidth.

This payer reports a measurement of the Lamb
shift in the n = 3 state of atomic hydrogen by a tech-

nique which uses the method of separated oscillating
fields to narrow the resonance. ' This technique
was also used to show the feasibility of reducing the
linewidth to less than the natural linewidthby select-
ing those atoms in which the P state lives longer
than a mean life. The paper deals in succession
with the principle of the experiment, the theory of
the line shape, the apparatus, and the results.

II. PRINCIPLE OF THE EXPERIMENT

The reduction of the linewidth was performed with
a technique familiar to molecular-beam spectros-
copy which is known as the Ramsey separated-
oscillating-field method. The single Rabi-type in-
teraction region used in earlier Lamb-shift mea-
surements was replaced by two coherent rf fields
separated by the distance L. Between the two rf
regions the atoms spend a time T= L/v in a field-
free region. The linewidth is determined by T and
the time spent in the two rf transition regions. The
line can be made arbitrarily narrow by making T
very long. Because of an interference effect be-
tween the S- and P-state wave functions, even when
T= 0 the linewidth is narrower than for a conven-
tional Rabi-type rf system with the same over-all
length. Since the mean life of a P state is quite
short and the number of P states available for the
interference measurement decreases as e "~

where Z~ is the decay constant for the P state, the


