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FIG. 2, Polar plot of the various sound velocities as
a function of angle ft), the angle between the sound propa-
gation direction and the g axis of the helium crystal. T&

corresponds to a pure transverse mode whereas T2 and
L are quasitransverse and quasilongitudinal modes, re-
spectively.

tal is measured.
Knowing the separation of the sending and receiv-

ing transducers thus allows calculation of the veloc-
ity of propagation perpendicular to the transducers.
As seen in Fig. 1 this measured velocity corre-
sponds to the phase velocity or the component of the
velocity with which the wave front traverses the
crystal in the direction (l, m, n) normal to the wave

front or transducer. In an isotropic substance,
this velocity would also be the group velocity and

would be found to be independent of the sample ori-
entation. In general, for an anisotropic medium

the path of the sound ray does not coincide with

the normal to the wave front. A knowledge of the
orientation of the crystal with respect to the trans-
ducers for hcp crystals then allows a plot of the
phase velocity as a function of P, the angle between
the c axis and the wave normal, to be made. Fig-
ure 2 is a polar plot of this velocity in a plane con-
taining the c axis for solid He showing the pub-
lished experimental points. This plot is a cross
section of the velocity surface with l =0 and the c
axis of the crystal along the vertical axis.

While the velocity surface is easily measured,
the wave surface has the elearest physical meaning.
This is the surface which represents the expanding
wave front of a point disturbance occurring at the

origin, one unit of time after that disturbance has
taken place. Another way to say this is that the
wave surface is the locus at time I;= 1 of all possible
plane waves which passed through the origin at
time t =0. Since the wave surface describes what
is actually happening in a crystal, and the velocity
surface describes what is measured in an experi-
ment, both of these surfaces are necessary for
a full understanding of sound propagation in an
anisotropic crystal. Because in an anisotropic
medium the path of the sound ray does not coin-
cide with the normal to a wave front, the velocity
surface does not in general coincide with the wave
surface, in such a medium. The inverse or slow-
ness surface is also important for some considera-
tions, but we shall not make use of it here.

For greater intuitive grasp of the relation be-
tween the velocity surface and the wave surface,
we shall here describe a graphical construction
that will enable the wave surface to be constructed
from the velocity surface or vice versa. We use
the notation (I, m, n) and ($, q, g) to represent the
coordinates of a point on the velocity surface and
wave surface, respectively; or, if the quantities
are normalized, to represent the direction cosines
of those points. If the wave surface and the veloc-
ity surface are drawn to the same scale in polar
coordinates on one sheet of paper, then any tan-
gent to the wave surface at a point (g, q, t;) will
intersect the velocity surface at the corresponding
point (l, m, n) such that the line from the origin to the

point (l, m, n, ) on the velocity surface is perpendicu-
lar to the tangent line. To apply this idea to find

the velocity surface from the given wave surface,
simply draw a tangent line to some point on the
wave surface. The normal to this tangent line
(the wave front) from the origin intersects the

tangent at a corresponding point on the velocity
surface. Starting with a velocity surface, the
method is a little more difficult but follows from
the above idea. At any point on the velocity sur-
face, construct a line perpendicular to the radius
vector. This line will form a tangent to the re-
quired wave surface. It may be necessary to
draw many of these tangent lines from neighboring
points on the velocity surface to map the wave sur-
face.

The above description is given only as an aid
to seeing the relation between the two surfaces,
and for any serious consideration it is necessary
to give the equations of the two surfaces. The
following equations have come from Musgrave's
comprehensive work on the propagation of elastic
waves. ' Starting with the five reduced elastic
constants (elastic constants divided by the density)
needed to describe a medium of hexagonal symme-
try, c&z, c&z, c&s, c&3, and c44, we define a, c, d, h,
and H as follows in order to simplify the necessary
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equations:

a =cfg c44 c =c&& —c» —c44, d =c»+c44
H P'mc + (2q'H/m)

'g =DE V — +
v 2v

2k = C33 —C44~ H —V —C44 ~

and

HT =2m C
2

1

—4m n (ah —d )]' ']

Solving for the displacements A„, A„and A„we
find for L, the longitudinal mode,

Here v is the phase velocity with direction cosines
(l, m, n). Because of the symmetry of the hcp
crystal structure, we limit the discussion to the
plane containing the c axis for which l =O. By ro-
tation of this plane about the c axis the total sur-
faces may be reconstructed.

In this plane the equations for plane-wave solu-
tions to the stress-strain Hooke's law equations
are

(m'c /2- H)X„=O,

(m a —H)A„+dmnA, =O,

dmnA, +(n h- H)A, =O.

In these equations A„, A„, A, are the x, y, and z
components, respectively, of the displacement vec-
tor for elastic-wave propagation. By setting the
determinant of the coefficients in the above set of
equations equal to zero, we obtain a cubic equation
for H (and thus for v ) whose three solutions cor-
respond to one longitudinal and two transverse wave
solutions. The three solutions H» HT, and HT~Ty)
are

Hz, r ——~{m a+n h+[(m~a+n h)~

f=n v- —+ ~

Two additional parameters of interest are 51,, the
angle between A.z, and (I, m, n) and &z,r, , rz, the
deviation of the energy path from (l, m, n). In an
hcp crystal it can be shown' that A&, , AT&, and A~
are mutually perpendicular and that AT& is per-
pendicular to (I, m, n) In. other words, T, is a
pure transverse mode and 61.= 5T&, where 5T2 is
the angle between AT and the plane perpendicular
to (l, m, n). The fact that 5z and hrz are nonzero
is an indication that the L and T2 modes are not
pure longitudinal and pure transverse, respective-
ly. The equation for 5~ is

cos5 g = lPI, + szqg +sf'I,
Since && T,» is the angle between the radius vec-
tor to a point on the wave surface and the radius
vector to a point on the velocity surface, it is
given by

&, =arccos(f4+my, +nt;, ).
Using the above equations, the given elastic con-

stants for hcp solid helium, and a desk computer,
($, q, t;), 5~, and 6, were calculated. The sec-
tion of the wave surfaces in the plane (0, m, n) is
shown in Fig. 3. Figure 4 is a plot of ~1,, 4T&,
and hr~ as a function of P measured from the c
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In the above equations p, q, and ~ are the direction
cosines for displacement vector A. Using the above
three solutions for Hr, „HT„and HT2 and the pub-
lished elastic constants, 3 the solid lines of Fig. 2
were calculated.

The coordinates of any point on the wave surface
of wave normal (0, m, n) are

)=0,
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FIG. 3. Cross section of the wave surfaces of hcp
sou.d He4.



CONSEQUENCES OF ANISOTROPIC SOUND VELOCITIES. . . 519

20-

IO

-IO

-20

IO 20 30 40 50 60 70 80 90

FIG. 4. Plot of the deviations &~, &~„&z2, and 61.
as a function of (I5, the angle between the wave normal
and the c axis.

axis. The quantity 5~ is also shown in Fig. 4 as
the dashed line.

Using the method of analysis of Wanner, ' we
can explain the regions of missing data along the
T& curve of Fig. 2. A consideration of Fig. 1

leads to the conclusion that if the angle 4 between
the wave normal and the direction of propagation
(ray} is too large, then the sound beam emitted
by the transmitting quartz crystal will not be inter-
cepted by the receiving transducer. For the ap-
paratus of Crepeau et a/. , where the diameter of
the transducers is 0. 310 in. , if the angle 6 the
sound ray makes with the wave normal is greater
than 17 deg, the direct sound signal will not reach
the receiving transducer and hence a sound veloci-
ty will not be recorded. It can be seen from the
graph of Fig. 4 that this occurs between values of
Q = 17 and 32 deg and again between P = 60 and 80
deg for the curve &r2. A quick glance at Fig. 2
shows that these are approximately the regions on
the T, curve where no data have been recorded.
For all values of P for the T, and L curves it is
to be expected that data will be measured because
4 is less than 17 deg.

We have examined the propagation of sound in
solid helium crystals using the published data and
elastic constants. The wave surfaces and values
of the deviation of the sound ray from the wave
normal have been calculated and used to explain
the regions of missing data in the results of Crepeau
et al. 3

The authors are grateful to Dr. R. Wanner for
an interesting discussion of the subject of this pa-
per.
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These equations may be derived from equations given
in Refs. 4 and 5 by simplifying the general equations for
a medium of hexagonal symmetry. An alternate expres-
sion for the wave surface may be found in Ref. 6.
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Only for HeH' of the noble-gas hydride ions have
accurate Born-Oppenheimer energies been found, '
and these over a small range (1.1-1.8 bohr} near
the equilibrium separation r = 1.462 bohr. Mi-
chels has delineated the shape of the curve over
the larger range 0. 1-6 bohr, albeit with less ac-
curate~ absolute values. Peyerimhoff3 has made

approximate calculations for NeH' extending from
1.35-4. 5 bohr. For the heavier systems, only
crude approximations for the quantities r„, D, (the
potential-well depth}, and k (the force constant} ex-
ist. In view of this sparsity of information and the
current interest ' in these systems, it would seem
useful to have mathematical models for their inter-


