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transmitted through the surface when rings inter-
act with ionic charge previously stored at the sur-
face. We observed several anomalies, especially

when the stored charge is of sign opposite to that
carried by the rings. We are exploring this
situation further.
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Bogoliubov-Zubarev's exact transformation, specific to a weakly interacting Bose gas having
a condensate, yields a Hamiltonian describing a gas of interacting excitations. The non-Her-
miticityof the Hamiltonianarises from the nonorthogonality of the physical states; it has some
significant consequences. The excitation spectrum is gapless in every approximation; the
lowest-order correction is evaluated numerically and shown to be small. It is concluded that
the approach presents a prospective method for a quantitative description of the weakly inter-
acting Bose gas.

I. %WEAKLY INTERACTING BOSE GAS

This paper deals with the low -lying states of a gas
of weakly interacting Bose particles. Liquid heli-
um differs from this problem in that those parti-
cles are strongly interacting at short: distances.
The excitation spectra of the two systems should
be qualitatively similar in that (i) they are phonon-
like for long wavelengths, ' (ii) they exhaust the f
sum rule in that limit, ' and (iii) they entirely de-
termine the low-temperature specific heat ' and
normal-fluid density. ~ Apart from quantitative de-
tails, the only aspect of the helium spectrum which
is due to the "hard core" is the roton feature. '
Thus, despite the absence of a corresponding ex-
perimental system, the weakly interacting Bose
gas is an important subject for study as a model of
a superfluid system. It is notable that few of the
first-principles microscopic methods that have
been proposed for this problem have yielded real-
istic results.

Fifteen years ago Bogoliubov and Zubarev (BZ)'
proposed a novel approach to this problem. Their
paper has been given little notice; it is my intention
to point out the virtues of the method and to sug-
gest that it may allow a realistic calculation of the
excitation spectrum of a weakly interacting Bose
system.

In Sec. 0 BZ"s method is outlined and commented
upon. The non-Hermiticity of the BZ Hamiltonian
is shown to be a necessary feature of a representa-
tion which treats phonon states as being indepen-
dent. The role of the condensate in the BZ trans-
formation is elucidated, showing that the method
is specific to a superfluid system.

In Sec. III the appropriate Green's-function for-
malism is introduced, and it is shown that the re-
sultant perturbation expansion gives a gapless
spectrum in every approximation. The lowest-or-
der corrections are evaluated and shown to be
small.

In Sec. IV connection is made with other ap-
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proaches that have been proposed for this problem.

II. OUTLINE OF METHOD OF BZ

We start with the observations that the operator
p-„= g«e'"'*« is of fundamental importance in the the-
ory of interacting boson systems, ' and that the
wave functions of a noninteracting boson system
have a certain structure: They are simple poly-
nomials in the p„-. For any set of N vectors {k,.)
there is a state whose wave function is

4'(x1 1 x2 i ' ' '
~ x«« i kl i k2 i ' ' '

~ k«j«)

—
i

' «"«'*«i 'n-""(N«)-' (I)
where l

'
I

' denotes the permanent of the NxN
matrix (e««'"&). In particular, the wave function
for the ground state is

-N/2,po(x1, x2, . . ., x„,0, 0, . . ., 0) —0
for the lowest-energy state having momentum k,
Qx((x«}) = p„- $0; and for the state having two such
excitations, j„- -= [p„-p- -p- -] )0. It is readily
shown that every wave function is a polynomial in
the p„-.

I et us then attempt to use the p„- as a set of co-
ordinates. If the wave function is written 4 (p-),
the Hamiltonian for the noninteracting system (the
kinetic-energy operator) becomes

-N 82
T — Q g« —Q q„p- —N

m ~
'

k
" "8pk pk'pk

k2 82
+ g " (k.p)p„-;, (2)

2m k'y 8p 8p-

where
~, =-,'a'k'/m .

If the variables p- are assumed independent, we
k

can introduce an occupation-number representation
for the wave functions and interpret p- and &/up-

as being the creation and destruction operators
(respectively) in this representation. Since the
Hamiltonian [E«I. (2)] is nonsymmetric in the crea-
tion and destruction operators, it is non-Hermiti-
an. This difficulty is related to that found by Dy-
son in his discussion of the spin-wave problem':
the "physical states" formed as simple products
of the g&

e«"'*& are not orthogonal; the assumption
that the p„- are independent variables correspond-
ing to independent oscillations of the system gives
rise to the "ideal states, "whose behavior is de-
termined by a non-Hermitian Hamiltonian opera-
tor.

Simple examples of the relationship of the two
representations are given by the states of the non-
interacting system.

In the f x«] representation,

&«X x g e«i x„
y fS tl

A2
+ ~

2
(x i)n;:, +-'A' 's;I

y~k,
™

y

+ —N 1p- ——Z(6 +nV)+mgNVO. (6)
8pk
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The first two terms are of harmonic-oscillator
type; let us introduce the second-«Iuantized opera-
tors

2 8N" 22&k b-= p -+2NXk'k k k k 8p

where

8
2X~ 5-= p» -2'~k k k k 8p

X„=e„/(2nVx+ ax) .
With this substitution, E«I. (6) becomes

aaz= Eo+ao+ Il
where

E = ,'nN V + —' Z- (E — — V„)—,

(8)

80= 5 Ex b„- bx,
kto

a, =N-'«' 5 —,
' r, , (f', ,+ I, ,)

k+yA 0

(10)

is not orthogonal to P„- -=g„e''""'xx; the orthogo-
nalized function g- -= P- - —p- - is an eigenstate of

kpp ky y k+p
T. In the {p„-] representation, Q„- -= p- p- is or-
thogonal to p„»;, , but the eigenstate of the asymme-
tric Hamiltonian is g- -= $- - —p- - as before, even

k~y k~ y k+y
though p„» is itself an eigenstate of T. The price
paid for the orthogonal basis f p~]. is that the eigen-
states are no longer orthogonal.

The Hamiltonian for the interacting system is

H=T+U,
where

U= (2Q) ' Z„-p-„V p „- -Z„- 'n V, -
in which t/'k is the Fourier transform of the inter-
particle potential. The operator U mixes the
eigenstates of the kinetic-energy operator but it
remains true that the wave functions can be written
as a function in the p„- representation.

BZ proceed by assuming that the last term of the
kinetic-energy operator (2) can be regarded as a
small perturbation. The remainder of the Ham-
iltonian can be diagonalized by assuming that the
wave functions can be written in the form

4 = exp[-,' N ' Z„p„- p „-] 4 ( p„-) .
If i 4 is an eigenfunction of H [defined by Eq. (3)],
then 4' is an eigenfunction of

@2k' 82H=Z &N nV + P-P - -%k
4m " -" '

8p-„8p -„
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x (f~b „+g~b~)(f~b q+g~bf) ~ (11)
with

&~ = (2«.~.+ ~.)8 1la (i2)

4 =exp. ,'-N Z ii -~ p- p „- . (16)a

jap E ll

Functions of this sort have been proposed for
helium by Bijl' and Jastrow. ' Reatto and Ches-
ter" have discussed the importance of the E~/e„
singularity in the long-wavelength limit in destroy-
ing the condensate in one and two dimensions.

The excitation spectrum (12) is of the same form
derived earlier by Bogoliubov' „however, in that
case the condensate density ~ appeared where we
now have the total particle density n. In the pres-
ent case the excitation spectrum will not display
the strong dependence on the degree of depletion
that other approaches suggest.

The validity of this approach is limited to cases
where the system possesses a condensate by the
following considerations: The states given by Eq.
(1) are necessarily polynomials in p-„of order less
than N. The potential V, however, mixes poly-
nomials of order M with polynomials of order M
+2: Polynomials of order greater than N in the p-

k
will occur in the ground-state function. These
polynomials cannot readily be interpreted as states
of the form of Eq. (1); but since the set of states
given by Eq. (1) form a complete set (i.e., all the
states of a noninteracting N-boson system), they
should suffice to describe the interacting g,".ound
state. This apparent paradox is resolved by a re-
interpretation theorem: A term of power M &N in
the p-„can always be rewritten as a polynomial of
order & N in the p„-. The proof lies fundamentally
in the completeness of the set of states for the non-
interacting system. Thus the assumption that the
p„- may be regarded as independent variables
breaks down where intermediate states of the form
of Eq. (1) with all k, wO are involved; the approach

A —~&+1 ga —~a —12

and

1" =-—k p (14)4m A.p A.p

Equation (12) displays a spectrum of almost in-
dependent excitations. In particular, if g~=1, the
three-phonon processes (H, ) contain the operator
(b f -+ b-„;) 5 „- b - only, and hence will not affect the
ground state or singly excited states. If these
three-phonon processes may be neglected, the
Hamiltonian for 4 becomes the first sum in Eq. (6),
and 4 may be shown to be

e= * ~-x(

the untransformed wave function 4 becomes

of BZ is thus invalidated in the case of normal li-
quids. It is generally accepted, however, that
superfluids have a condensate'7 and that the con-
densate density shows only small fluctuations about
its equilibrium value"; in this case we have k, =0
in a macroscopic fraction of the rows of the per-
manent in Eq. (1) and k, eO for only a few extreme-
ly improbable intermediate states. Thus, in a
system with a condensate, the assumption that the
p„- are independent is justifiable.

Since the excitation spectrum (12) contains V„,
it cannot be appropriate for a strongly interacting
system. The interpartiele potential for helium is
strongly repulsive at short distances; this repul-
sion gives a large contribution to V~ at small k.
The helium atoms never enter the core region,
however, so that the wave function and energy lev-
els should not be sensitive to the details or the
magnitude of the core repulsion. This point is
well understood in other systems; it necessitates
a consideration of the higher-order dependences of
the wave function on the potential and in some cir-
cumstances results simply in the replacement of
the interparticle potential by an effective interac-
tion. ' Such an analysis will not be attempted
here; in what follows we shall assume a weak po-
tential having a Fourier transform.

III. THREE-PHONON PROCE33ES

The transformation which produced the BZ Ham-
iltonian (8) was exact, and the derivation of the ex-
citation spectrum did not involve any linearization
of an equation of motion. If the corrections to the
excitation spectrum coming from the three-phonon
terms H, are small, then the BZ Hamiltonian is a
viable starting point for a microscopic calculation
of the sound speed of a Bose-condensed liquid. %'e

will now consider how important these terms will
be.

It is not a priori obvious that the three-phonon
processes are negligible for any finite density,
even though they vanish (so far as the ground state
and single-phonon states are concerned) in the low-
density limit. The limit is not uniform: For any
density there is a region of k space for which ~„41
and thus for which the perturbation must be con-
sidered. It will be shown below that for a reason-
able example the lowest-order correction to the
excitation spectrum is only a small shift of that
spectrum which vanishes uniformly in the low-den-
sity limit. This suggests that the BZ Hamiltonian
provides a reasonable description of the weakly in-
teracting boson gas.

The construction of approximation schemes to
take II& into account is complicated by the following
consideration: It is generally true that a Hamilto-
nian with only a cubic term does not have a ground
state. ~ The expectation value of such a Hamilto-
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nian in trial states of the form

~

n ) = exp[n(b,-'+ b.'+ b -) ——,
' n']

~

vac ) (1'7)

is not bounded below, since the expectation of the
cubic term is proportional to Q.SN ~~~, which can
be made arbitrarily large and negative by suitable
choice of a. The magnitude of n required, how-
ever, is of order N'; in this case the expectation
of b- b~ in the state I n) is of order K In view of
the discussion of Sec. II, it is clear that these
states (17) are nonphysical and the argument does
not apply.

The BZ Hamiltonian does not conserve phonon
number; consequently a matrix Green's-function
formalism must be employed. ~' Let us define

,

~ g
E

FIG. 1. Lowest-order contributions to Z~.

(18)

D"(q, ~) = z-' j e'"'«&~a
I »;(f) b-,'(0)

I
4'n)

(19)
where i&0) is the ground-state wave function for
the BZ Hamiltonian. The Green's function for the
"unperturbed" system (for which the Hamiltonian
is lus't Ho) is

Do (q, &u) = b~" [Pkv —E,+ i&] ',
where E, is the excitation spectrum [Eq. (12)]. The
equation of motion for D can be written

D' (q, &u) = Do' ( q, &u) + Do "(q, &u) Z""(q, e) D"'(q, ~) .
(21)

The self-energy matrix Z can be given a linked-
cluster diagrammatic expansion similar to that
which has been proposed for the "hydrodynamic"
Hamiltonian. ' The diagrams are composed of
lines, representing the "bare" Green's function Do,
which are directed from the vertex at which the
virtual phonon is created to that at which it is de-
stroyed; the vertices are the matrix elements of
H, , and always connect exactly three lines. Some
care must be exercised in this perturbation
scheme: The non-Hermitian nature of H, implies
that the usual "time reversal" and "crossing" sym-
metries fail to hold. In particular, it is not true
that Z "(q, ~) equals Z (q, ~): Diagrams contribu-
ting to Z" will have at least one vertex at which
three phonons are annihilated (three ingoing lines,
as occurs at the tops of the appropriate diagrams
in Fig. 1), whereas Z will have at least one ver-
tex at which three phonons are created: These
processes have different amplitudes in H, . The
symmetry Z' (q, &) = Z '(q, —&) does hold, how-
ever.

The excitation spectrum is given by the poles of

D, which will occur for m such that

edt~ Do' (q, (o) -Z (q, (u)
~

=0,
that is,
—[b(u+-,'(Z' (q, ~) —Z '(q, ~))]'+[E,+ 2(&' (q, ~)

(22)

1 d p ~!
A~Dp, -,

(q, ~)=—
~

32g „(2w)~ ((u —E~ —E, ~+ib

DP„A q (25}—~ —Ep —Ep„+i6

d'p B;C' '
z (q, (u)=-

Rn, l (R~)' (~ —E, —z, , +&5

where

+ ' . , (26)—~ —E —E +i6

+5 '(q, &u)] -Z" (q, &u) Z (q, (u) =0. (23)

Every vertex of every graph in Z ~ contains a
factor which is small of order q' ' if any one of
the momenta q entering the vertex is small. Since
every self-energy diagram has two vertices with
the external lines, Z '~(q, &)- q in the long-wave-
length limit. Therefore the solution of Eq. (23)
will not display a gap, in contrast to some other
approaches to the Bose-gap excitation spectrum.

The simplest approximation for Z is the bubble
graphs (Fig. 1). They yield the expressions

1
I dp! A~Bg

2n (2n) I&co
—E~ —El;+ i 5

A', =(0~b, b, ,&, b,'~0)=1'(P, -P-q) g, g&.,+1(p, q)f g~+I'(q -P-q)f a'~"
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~o'= &0I f.lfif Jb'~.,~0&= 1'(P, -0-q)f f„+1(P, q)a, f&+~(q -f -q) g. f~..
C'"=«Ib~f, b-~-, lfilo&=f'(p q) gag, +1'(p, -p —q) g, g,„+1'(q, -p q-) g, g,.„
&&,.=(0~» bJ &', b'&-. ~0&=f'(P, q)fpf. +f'(P -P-q)f~fp. +f'(q -P-q)f, &~".

(28)

(29)

(30)

Perturbation theory on three-phonon terms has
been proposed in the Bose-gas context before 3;

the present method has the advantage that it is not
necessary to cut off the integrals in (24)-(26) in
the large-momentum region: The factor g~ be-
comes small where V~/e~ does; if the potential be-
comes small for large p then so will C~" and A~.

The integrals in (24)-(26) were evaluated nu-
merically for a gas of bosons having the mass of
helium atoms and interparticle potential

V V -k /4 (31)

for 0 = 2. 5 A and various choices of Vo, the number
density n was chosen to be 2. 1 x 10 particles/cm,
a value typical of liquid helium.

The spectrum E, for this model, for all but un-
reasonably large Vo, has the property that the de-
cay of one phonon into two with conservation of en-
ergy and momentum is possible; consequently, if
Eqs. (24) -(26) are evaluated for & = E, the denom-
inators of some of the integrals may have zeroes
and the self-energies may have imaginary parts.
Numerical evaluation of the implied principle-val-
ue integrals for the real parts of the self-energies
is a difficult problem; it was evaded here by eval-
uating Z'~(q, ~) only for ~ such that the integrals
are nonsingular. In practice this requires that
be only slightly less than E,. The results may be

. regarded as good approximations to the real parts
of the self-energies, since the integrals are quite
insensitive to ~ near E,: The integrands are af-
fected only in the singular region, which has very
small volume (Ip I must be less than I q I, and p
nearly collinear with q), whereas the principle
contribution to the integrals comes from p near the
cutoff of V~ (for density-of-states reasons). This
contention was also verified numerically in the
course of the calculation.

Figure 2 shows Z' (q, E, —b, ) for the various
choices of Vo considered. The other energies are
of comparable size and therefore unimportant to
the solution of (23). For comparison Fig. 3 shows
the corresponding spectra E,. Vfe observe that in
the limit that Vo is small the shift of the spectrum
is small, and that the shift becomes appreciable
when n V 8'0K- 4' hn/m = n V~, where V„ is the
Fermi pseudopotential. For potentials stronger
than this, multiple scattering (core nonpenetration)
becomes important and theories depending on the
unrenormalized V~ become automatically suspect.

These simple numerical studies support the con-

tentions that the representation of the low-lying
states of the interacting system in terms of the
eigenstates of Ho becomes asymptotically exact in
the limit of weak potential and low density, and
that no new phenomena arise from the three-pho-
non perturbation.

IV. CONNECTION TO OTHER APPROACHES

A. Collective-Variable Formulations

There have been other attempts to formulate the
interacting-Bose-gas problem in terms of the na-
tural p- variables: (a) Several workers ' have at-
tempted to use the linearized equations of motion
for p-; (b) model "hydrodynamic" Hamiltonians
have been formulated in these variables"; and (c)
Bohm and Salt applied the Bohm-Pines method
to divide the representation into "particle" and
"collective" variables.

These formulations have provided some useful
insights into the nature of the excitation spectrum.
They are, however, inferior to the BZ approach
in two respects:

(i) They have not taken clear account of the non-
orthogonality of the p„- variables: The transforma-
tions used are unitary, and the resultant Hamilto-

0

Cf
LLj

Cl

+

3

I

.5

q(A ~)

FIG. 2. Self-energy function Z' (q, (d) evaluated in
lowest-order perturbation theory for & slightly less than
E . Three choices have been made for the strength of the
potential: gV0=0. 5, 2, and 8'K.
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cr
Ld

mations for the higher-order distribution func-
tions, their results come to have the form of ex-
pansions in the liquid structure factor S(k). This
elimination of the interparticle potential in favor
of S(k) is an advantage for the extension of the
theory to the case of liquid helium, for which S(k)
is better known than the potential itself.

For the case of the weakly interacting system,
Lee and Feenberg have shown how S(k) is related
to the potential; in our notation,

S(k) = X,', (33)

.S

q(A )

FIG. 3. Excitation spectrum E, for V&= Vo e ~ ~, with
three values for nVO.

nians Hermitian. The discussion above makes it
clear that a non-Hermitian representation is nec-
essary even for the noninteracting gas; further-
more, the asymmetry of the Hamiltonian is essen-
tial to the convergence of the self-energy-function
integra]. s. 3'

(ii) The various linearizations and expansions in-
troduced are of uncertain, ' nature. It is not clear
that it is possible to do perturbation theory with
the terms that are claimed small.

B. Correlated Basis Functions

Let @(r„.. . , r~) be the exact ground-state
wave function, or some good approximation to it.
According to Feynman, ' the function p„4 is a good
approximation to the one-phonon wave function;
this suggests that the nonorthogonal set

Ih k)=p-„p;C', . . . (32)

might be a useful basis inwhich to formulate the in-
teracting-boson problem. The BZ description is
itself a theory of this type, in which the correlating
function C is given by Eq. (16), and the nonorthog-
onality has been handled by a certain prescription.

Other ways to use this basis have been proposed.
If 4 is chosen to be the exact ground-state wave
function, then all matrix elements of the Hamil-
tonian and the unit operator can be expressed in
terms of the radial distribution function and higher-
order distribution functions. In this way Jackson
and Feenberg, s Lee, ' and Lai, Sim, and Moos
have performed perturbation expansions in the
basis (32), which they use in a Schmidt orthog-
onalized form. Upon the introduction of approxi-

which is essentially the expansion parameter of the
BZ theory.

C. Particle-Coordinate Representations

A commonly used approach to the description of
the Bose gas is the Green's-function formalism.
The method encounters several difficulties.

(a) The perturbation theory is a double expansion
in the interparticle potential and the condensate
density; the latter must be determined self-con-
sistently. Beliaev~ and Hugenholtz and Pines'
have described the formalism necessary to handle
this problem.

(b) No nontrivial approximation for the self-
energy has been found which yields both a gapless
spectrum and self-consistent thermodynamics. s

It has been shown, however, that the spectrum of
the exact Green's function will be gapless. '

(c) In normal systems the spectra of the single-
particle Green's function and the two-particle cor-
relation function are distinct; however, the ex-
tremely successful Landau description of super-
fluidity postulates the existence of just one excita-
tion spectrum. This problem has been resolved
by Gavoret and Nozieres, Huang and Klein, 37 and
Hohenberg and Martin, who showed how the pres-
ence of the condensate couples the Green's func-
tions, resulting in a single spectrum.

The BZ approach leads to a difficulty comparable
to point (a) in that it requires the use of perturba-
tion theory for a non-Hermitian three-phonon
Hamiltonian. The formalism has not been studied,
and so it is not known how serious a difficulty it
presents. I have shown above that in this formal-
ism every approximation leads to a gapless spec-
trum, so difficulty (b) is not encountered.

The Hamiltonian Ho has only a single spectrum;
for the Green's function D no additional structure
appears in lowest-order perturbation theory, nor
is there reason to believe that other branches
should arise. Thus we begin closer to the Landau
point of view; that this single spectrum will appear
as the principal structure of the spectral weight
function of the usual single-particle Green's func-
tion and the dynamic-structure factor is readily
established since the matrix elements (k(N) I p~ I
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&&0(N) ) and (k(N+1) (a ~l 0(N)) are nonvanishing in
the thermodynamic limit (where I k(N) ) and ) 0(N) )
are, respectively, the exact single-phonon state
and the exact ground state of an N-particle sys-
tem). The various correlation functions couple to
the same dynamical processes with different ma-
trix elements and hence have the same poles with
differing residues. Thus difficulty (c) does not
arise, and the Gavoret-Nozieres theorem arises
in a simple way.

V. SUMMARY

An outline of the BZ approach to the interacting
Bose gas has been presented, showing that this
method is unusually free of formal difficulties.
The Hamiltonian is cast into a form which can be
interpreted as describing phonons interacting
through a non-Hermitian three-phonon process,
and which allows a systematic expansion which is
asymptotically exact in the limit of weak interac-
tions and low densities. The presence of a con-
densate was shown to be necessary for the validity
of the theory, although it does not play an obtrusive
role otherwise. It was also shown that in every ap-

proximation one obtains a single gapless phonon-
like excitation spectrum. The origins of the non-
Hermiticity of the BZ Hamiltonian were explored;
it proves to be a necessary feature of a represen-
tation which treats phonon states as being indepen-
dent. The lowest-order corrections to the
Bogoliubov excitation spectrum were evaluated and
shown to be small. Finally, the BZ method was
compared with some other approaches that have
been suggested.

The principal difficulties with the BZ approach
are the need for a Fourier-transformable potential
and the non-Hermiticity of the Hamiltonian. The
former problem limits the approach to the case of
weak potentials until the appropriate analogs of
the t-matrix method are developed.
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