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The polarization correlation of photons emitted in an atomic cascade is treated in the frame-
work of a general semiclassical radiation theory. The resulting predictions are contrasted
with those of orthodox quantum-radiation theory. Experimental evidence is discussed which
is in agreement with the latter theory, but excludes semiclassical theories in general.

It is well known that calculations in a fully quan-
tum-mechanical treatment of electromagnetic radi-
ation lead to divergent expressions. Semiclassi-
cal theories which treat matter quantum mechan-
ically, and radiation classically, are conspicuously
free of these difficulties. This fact has recently
led several authors' to investigate the possibility
that semiclassical theories may warrant considera-
tion in their own right as a general formalism for
the description of radiation, matter, and their in-
teraction. These authors with varying degrees of
emphasis have suggested that the predictions of
such a theory are compatible with all existing ex-
perimental data of atomic physics. Jaynes and his
collaborators, ' 3 in particular, claim that to first
order the theories are indistinguishable.

The successes of such a formalism are impres-
sive, to be sure. Many effects, whose origxns
have long been thought to be intimately tied to a
quantization of the radiation field, have been re-
derived (or were originally derived) in a semi-
classical framework. These include (a) sponta-
neous emission, ' ~ (b) absorption and stimulated
emission, (c) resonance fluorescence,
(d) photoelectric effect, '~ (e) Compton effect, '
(f) Lamb shift, ~ ~ (g) vacuum polarization, a and

(h) blackbody radiation spectrum. ' 5

It is the purpose of this paper to show that there
is at least one first-order effect that cannot be
predicted by a semiclassical theory. Further, it
will be shown that currently existing experimental
data from two independent experiments exclude
semiclassical theories in general. Thus there is
justification for the usual caution with which such
theories are treated. More important, they cannot

by considered a solution to the problem of diver-
gences in quantum electrodynamics.

In what follows we first discuss one of these ex-
periments and its predictions from orthodox quan-
tum theory of radiation. Next we calculate the pre-
dictions of a general semiclassical theory for the
same experiment. Finally, we compare both with
the experimental results. A second relevant ex-
periment, discussed earlier by Bohm and Aharonov
in a similar context, is included in Appendix A.

KOCHER-COMMINS EXPERIMENT
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FIG. l. (a} Schematic diagram of apparatus of Kocher
and Commins. e)) Partial level scheme for calcium
(after Kocher and Commins).

The pertinent experiment is one that measures
the polarization correlation of photons emitted suc-
cessively in an atomic cascade. Such an experi-
ment has beenperformed by Kocher and Commins. "
In their experiment, the emitted photons were
selected by interference filters and detected in-
dividually with photomultiplier tubes, as shown in
Fig. 1. This experiment utilized a three-level
cascade in calcium. The cascade proceeded from
a J=O level to a degenerate J=I level, and termi-
nated in a J=O level, which is the atomic ground
state.

In this process radiation, emitted at frequencies
v„and va, is passed by the two optical interfer-
ence filters A and B„respectively. The polariza-
tion of the optical photons was measured by linear
polarizers of the sheet type. For each decay there
is a finite probability for both photomultipliers to
register a count in coincidence. Kocher and Com-
mins measured this coincidence rate as a function
of relative polarizer orientation.
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FIG. 2. Coordinate system for description of cascade-
photon polarizations.

I2ph«ons &=(i~~2) (l~. & l~. &+ Iy. &lyz &) . (4)

The joint linear-polarization measurement made
by polarizers oriented at angles Q„and Pz to the
z axis projects the state of Eg. (4) onto the two
linear-polarization states

I
e"&= cost"

I ~~ &+sine"
I s~ &

QUANTUM-MECHANICAL CALCULATION OP
COINCIDENCE RATE

Consider two photons emitted into the polarizer-
deteetor systems of the Kocher-Commins experi-
ment. For simplicity of demonstation, assume the
detectors subtend infinitesimal solid angle. Take
the position of the emitting atom as the origin„with
the detectors on the + z and —z axes (see Fig. 2).
Use the ket vector i p, p) to denote the photon state.
Here p=R, I., g, y refers to the photon's polariza-
tion being right or left circular or linear in the g
or y direction. The term p. =+ denotes the photon's
propagation direction along the + z or —z axes.
Finally, & =A or 8 refers to the photon's having,
x'espeetively fx'equency vg ox' vg.

The most general polarization state for the two
photons is given by

I
2 photons &= al ft„, + & I I, + &+ t'

I L„,+
& I ft, +).clft„, —&II,„-&+dlL,„,—&lft„-&

+delft„, +) lf4, —)+@II.„,+) II.„—)

+zlf~~ —
& lfts +&+hlL~ —&lfa +& (l)

The initial and final atomic states have zero angu-
lar momentum and the same parity, and are unaf-
fected by a 180' rotation about the y axis. Similar-
ly, the two-photon state must have zero angular
momentum and even parity, and be unaffected by a
rotation of l80' about the y axis. The only state
satisfying these requirements is

I 2 photons )= n(l R„,+) I
I. , + )+ I f. , + ) I ft, + )

+ Ift„, —
&I J.„-&+ I i„,—&Ift„-&)

+g(I~„,+&Ift„-&+If.„,+&IL,„-&
+If~„,-&lf4, +&+IL,„,-) Il.„+&). (2)

The two photons are distinguishable by their en-
ergies. The optical interference filter in the +z
direction transmits only photons of frequency v~.
Likewise, in the —z direction only photons of fre-
quency v~ are transmitted. Gutside of these fil-
ters, then, the state vector is"

I 2 photons )= (1/W2) (I ft„& I fez )+ I
I,„)I Lz )) . (3)

le'&=cose'l~. )+sine'ly. &.

Thus, the coincidence probability in the Kocher-
Commins experiment is proportional to

P „,~ I
(P"

I (P I
2photons) I

=-,'+-,' cos2(P"- Pz),
with the idealization that the detectors subtend in-
finitesimal solid angle.

A more complete calculation, '3 which acknowl-
edges the finite solid angle of the detectors and the
nonideal efficiencies of the polarizers, yields, for
the probability of a coincidence,

&coiac~~(& z+& &(zz+& )

+-,'(z~z —z"„)(~„—~„)F,(a) cos2(y" —yz),
(7)

where &„and &„are the maximum transmissions
of the polarizers, e' and gz are their minimum
transmissions, and E,(6) is a function of the half-
angle 5 subtended by the detectors. For the ge-
ometry of the Kocher-Commins experiment, I'I
= 0.99.
SEMICLASSICAL CALCULATION OF COINCIDENCE RATE

In a, semiclassical theory„polarization effects
of. radiation must be described classically, since
Maxwell's equations are to provide a complete
description for the radiation fieM. Since Kocher
and Commins observed coincidences, this result
implies that single photons must be described as
short guises of classical electromagnetic radiation,
emitted during a transition made by an atom from
one state to another. The elassieal description
implies that these pulses must have a well-defined
space-time description for their electric and mag-
netic fields.

First consider a single such pulse put sucessive-
ly through a narrow bandwidth filter and a pa,rtial
linea. r polarizer and into a fast photomultiplier
tube. The photoelectric effect has been treated
semiclassically by Frankens and Lamb and Seully, ~

who show that in this description the probability of
electron emission is proportional to the intensity
of the incident wave for low intensities. The pulse
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entering the system has a probability of producing
a photomultiplier count given by

p = 2 q(KB —6 ) cos2($ 8)+ g(q+s)(EB+ f ) ~ (5)

In the above expression, p, ~„and e are, re-
spectively, the orientation, maximum transmis-
sion, and minimum transmission of the polarizer,
and 8 is the orientation of the linear polarization
of the pulse. Here q, 8, and s are classical ran-
dom variables. For p to be a sensible normal-
ized probability, we require that 0& q, z &1.

Now consider the two pulses of radiation emittea
during a J=O-1-0 atomic cascade. In the semi-
classical theory of Jaynes eg gE. ,

~ 3 an atom exact:
in the highest level is in unstable equilibrium. A

perturbation, perhaps associated with the excita-
tion itself, gives it an admixture of other states
and initiates a cascade. ' The perturbation deter-
mines the degree and direction of the linear yolar-

. ization of the emitted yulses, and will vary from
one emission to the next. According to this theory
the radiation reaction field first accelerates and
then damps the radiation process.

In any general semiclassical theory there must
exist an asymmetry defining the polarization of a
J=O-1 transition. Since the radiation is to be
treated classically, the parameters describing the
polarization of the pair of emitted yulses over an
ensemble of such pairs must be classical random
variables with a classical joint probability density.
Denote this by

p(8A& qA u SA s 8B ) qB& SB)=p((0) ~

The probability of a delayed coincidence count in
the two photomultiplier tubes of the Koeher-Com-
mins experiment may be calculated by using the
usual methods of classical probability theory:

= -,' f [q„(e„"- e"„)cos2(g" -8„)+ (q„+s„)(8 + c~)]

[qB (EB —t'~) cos2 (Q —8 ~)

'(q " )( "')I p( )d . (9)

In the experiment of Kocher and Commins, data
were taken keeping the relative orientation of the
yolarizers fixed, and averaging over rotations of
the pair. When the above expression is similarly
averaged, we have

p(y"-y )=-,'(g"„-~"„)(g'„-g ) [cos2(y" —y')

xfq„qB cos2(8„-8B)p(~)d~+sin2(g" —pB)

&fq„q, sin2(8„- 8, ) p((u) der]+-,'-(e"„+e")(~B„+~B)

x f (q„qB+q„sB+qss„+s„sB)p(~)d(u . (10)

Equation (10) can be put in the form

P(4'- 0')= l(~",—~')(~'„- ~'„)

x(q„qB )«C cos2(p" —p —])
+-.* (~N+ ~") (~B+~)((qAqB &., +D), (11)

where 0& C, D, (q„qB)„&1. It is clear from Eg.
(11)that a semiclassical theory predicts that the
ratio of minimum-to-maximum coincidence rate
must always be greater than

(
R~~m (tB + 6~)(CB + E~) 2 (te 6~)(KB C~)

(~",+ e„")(~B+2)+2(eB —~„')(~B—~')
(12)

On the other hand, conventional quantum mechan-
ics predicts from Eq. (V),

( (&B+& )(&B+& )+(&B
(12)

The factors of —,
' rendering the two expressions dif-

ferent' arise from a neglect in the semiclassical
results of interference terms of one photon with

the other. It is one of the most curious predictions
by the quantum theory that this polarization inter-
ference persists, even when the photons are remote
from each other, and have different frequencies.
A discussion of this point may be found in Appen-
dix A, along with mention of a second relevant
experiment performed by Wu and Shaknov.

A detailed calculation of the dynamics of the J
=0- 1-0 cascade is performed in Appendix B in
the specific semiclassical formalism of Jaynes
gt ~E. It yields predictions consistent with Eq.
(11)for any set of initial conditions.

Inserting the measured efficiencies of the po-
larizers used in the Kocher-Commins experiment
into Eqs. (12) and (13), one gets

(R „/R )„,&0.45; (R „/R ~„)~=0.15 .
The experimental result

(R „/R «), , =0. 15+0.02

decisively contradicts the predictions of semi-
classical theories.

CONCLUSION

The polarization correlation of photons emitted
in a J=0-1-0 atomic cascade has been treated
within the framework of a general semiclassical
radiation theory. The predictions differ from
those of an orthodox quantum-mechanical descrip-
tion of the electromagnetic radiation field. Re-
sults of the Kocher-Commins experiment (and the
Wu-Shaknov experiment) are discussed; they ap-
pear to exclude semiclassical theories in general.
Nor does it appear likely that a simple modifica-
tion to these theories can bring them into agree-
ment with experimental data. Only two fundamen-
tal assumptions have been required for this dis-
cussion:

(i) For a classical electromagnetic wave of any
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incident polarization, the intensity that is trans-
mitted by a linear polarizer varies as
a+ b cos (8 —P).

(ii) The probability of electron emission at a
photomultiplier cathode is proportional to the in-
cident intensity.

Both of these assumptions are rather well tested
experimentally for classical electromagnetic radi-
ation, and evidently cannot be modified within the
framework of Maxwell's equations. The experi-
ment of Kocher and Commins is, however, under-
going current refinement at this and other labora-
tories in an attempt to test general neoclassical
theories of matter and radiation which do not stay
within the framework of Maxwell's equations. '
These results will be reported elsewhere. "'

APPENDIX A: WU-SHAKNOV EXPERIMENT AND
HYPOTHESIS STUDIED BY FURRY

In a famous paper'V Einstein, Podolsky, and
Rosen (EPR) discussed correlations in spatially
isolated systems. They pointed out that quantum
theory predicts that such systems may interfere
with each other despite their spatial separation.
The nonlocal nature of this interference, they be-
lieved, is an unreasonable behavior for physical
systems; it suggested that the correlations must
arise through an incompleteness of the theory.
Bohr in reply showed that such correlations give
rise to no observable effects that are contrary to
physical experience, and that quantum mechanics,
in spite of the objections of EPR, can be consid-
ered a complete description of physical phenomena.

At the same time, Furry pointed out' that a
suitably modified theory in which this interference
was eliminated necessarily led to significantly dif-
ferent predictions. He hypothesized that, in this
modified theory, after the two systems had ceased
to interact, each somehow evolved into a definite
state. Following this evolution, the systems are
in a correlated "mixture" of states, rather than a
correlated "pure" state.

Bohm and Aharonov, a much later, appealed to
experiment to test this hypothesis. They consid-
ered the Wu-Shaknov experiment, "which was a
measurement of the polarization correlation of y
rays emitted during the annihilation of singlet
positronium. Their analysis, similar to the one
in this work, showed that the observed correla-
tion has the magnitude predicted by quantum the-
ory, and not that of the hypothesis discussed by
Furry.

A moment's reflection will convince the reader
that a semiclassical treatment of the joint polari-
zation of cascade photons is simply an alternative
form of this saxne hypothesis. The classical elec-
tromagnetic waves emitted in a semiclassical de-
scription of a cascade cannot interfere with each

In this Appendix we shall solve exactly the equa-
tions of motion proposed by Jaynes ef al. ' ~ for a
J=0-1-0 atomic cascade. Consider a system
that has three levels and five states, labeled as
shown in Fig. 3. The above system is assumed to
start in a definite pure state, whose wave function
is represented by a superposition of the wave func-

Components of
photon A

(Eg- Ernj
h

Components
photon 8

~Ern-Eo~
h

E=Eo

PIG. 3. States participating in cascade vrith appro-
priate labels, energy, and total angular moment indicated.
Transitions indicated by dashed lines are not observed in
coordinate system chosen, as they give rise to longitudi-
nal polarizations.

other. They have different frequencies, and will
not pass each other's narrow bandwidth filter.
Moreover, the nonlocal character of quantum-
mechanical interference to which EPH objected so
vehemently is quite foreign to classical electro-
magnetic radiation.

Thus the Wu-Shaknov experiment can also serve
to test semiclassical theories. The Kocher-Com-
mins experiment is used in this work, since it is
a system for which semiclassical theories are
more easily discussed, and for which exact solu-
tions can be obtained.

Finally, a comment is warranted concerning the
relation of this result to the measurement problem
in quantum mechanics. It is well known that diffi-
culties are encountered when one attempts to in-
clude the apparatus and the observer within the
quantum formalism. ~ The problem is associated
with interfacing the classical domain of the observ-
er with the quantum domain of the radiating atom.
It has been shown that the quantum formalism must
not be applicable at some point in the measure-
ment chain which stretches from the atom through
the observer. Semiclassical theories attempt to
solve this difficulty by placing the transition from
the quantum domain to the classical domain at the
point where radiation is emitted. The above analy-
sis demonstrates the error in such an attempt.

APPENDIX B: J= 0 ~ 1 ~ 0 CASCADE IN SEMICLASSICAL
SCHEME OF JAYNES et al.
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tions of the five states,
4

y(x, t) =Z a, (t) y, (x),
9~0

which satisfy Schrodinger's equation

(al)

P44(to) 2
44

AP
™

P

h 1 Poo(0) 2
00

——
A

all

~ atomy (B2)

lm

where
(ul „=(ZI, —Z„)/tt

(B4)

(B5)

v4 ——2gv~ and co 0
——2jyv~ for yn=1, 2, 3 .

The equations of motion for this five-state sys-
tem coupled to the radiation field in the absence of
the external fields are given by '3

p, „= Z, [-,'(A-„A,„) -t(r„—r,.)]p-„p,„,
(Be)

where

AIm= Amt =4tttm' pmII0Im ~2@c ~

'~x [k "(III
I

e-'"' " vl t )]dt's dk, (as)

p,„(t)= f y,*(t)exy.(t)d x. (BQ)

These equations can be solved exactly if the
Einstein A coefficient for transitions from the
highest state to the intermediate state is the same
as that for transitions from them to the ground
state. Thus we set

A, 4 =A 0=A and I4 =I p=7' fol ppg=1 2 3

and the solutions for the diagonal elements of the
slowly varying part of the density matrix PII(t) in
terms of the initial conditions P, I(to) are

P44(t) = 2~ Potan" [PDA(t to t44)1

The time-dependent density-matrix elements are
defined in the usual way as

al (t) = a, (t)a*(t)

and a slowly varying part

For consistency with a probability interpretation,
the initial conditions must satisfy the requirements

PII (to) & 0 and QI PII (to) = 1 .
The solutions for the off-diagonal elements are

P4I (t) =
p4I (to) cosh(PDAt44) sech [PDA(t —t44 —to)]

x (oscillating terms),
(811)

PID(t) = PID(to) cosh(PDAtoo) sech [POA(t —too —to)]
x (oscillating terms) .

The oscillating terms are identified as effectively
generating a Lamb shift in radiating states.

The effective electric-dipole moment of the atom
is given by'"

M(t)= Z Re(p pIIe™Im)t. (B12)
l &m

In this expression, the electric-dipole moment is
to be interpreted as due to an objectively existent
charge distribution, whose oscillation generates
the classical radiation field. This notion will be
recognized as the old Schrodinger interpretation
of quantum mechanics.

Following Franken' and Lamb and Scully, we
assume that the probability of a photomultiplier
count is proportional to the time average of the in-
tensity of the classical electromagnetic wave trans
mitted by the interference filter and the linear
polarizer. Thus the system accepting light with
frequency v„will register a count with probability
proportional to the time average of the square of
the component of the electric-dipole moment paral.
lel to the linear polarizer direction y". From
(Bll) and (B12) this is given bysv

PA I $4 +314 + 2I 343 14cos(S34 14 2y ) (B13)

where y, & 0 and 8,&
are both real and are defined

by

Pss(t) = Pss(to) P '(t)

P»(t) = P»(tO) P'(t),

Pll(t) = Pll(to) P (t),

PDD(t) 2+Potmh[POA(t- to too)] ~

In the above we have defined

(B10)
p, „(t,)=I, etolm .

Similarly, for frequency v~, we have

PB +0$ +I 01 + 21 OII Oscos(eos 801+2y2 2 B (B14)

Finally, the probability of a delayed coincidence
is proportional to

p (t)

Po tanh[ Po A(t —to —t44)] —Po tanh[ P0 A(t —to —too)]

P33(to) + P22(to) + Pll(to)

Po= I —Poo(to)P44(to)]'",

Pootao poo(to)pll(to)pSS(to)p44(to)

xl2[l+cos2(y —y" —g)]+ " 0 + ", (B15)
r'

Pl 1(to) PSS(to)

where
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R~l~ PSS(fp)/pll(fp) + pll(tp)/psp(fp) 1
4 PSS(~0)/pll(fp) + Pll(fp)/PSS(tp)

(816)

equality holds when pz&
= p33.

Relation (12), with the assumption of ideal

]= (Ep+Fl+ES+@4)tpa '+arg[ao(tp)al(fo)ap(tp)a4(tp)] .
Thus, for each decay the ratio of the minimum-to-
maximum coincidence rate is given by

polarizers (&„=1, 4 =0) yields the same lower
limit for this ratio. Thus, as expected, the theo-
ry of Jaynes et g/. is consistent with the more gen-
eral results derived above.

Finally, it should be remarked that since (815)
holds for any initial pure state, this lower limit
must be valid for an average over any statistical
mixture of pure states. Hence, the assumed form
for the density matrix is not critical.
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