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The scattering of electromagnetic waves by a large-scale turbulent plasma has recently
become of interest again in connection with the formation and study of the nonequilibrium
plasma (often turbulent) of controlled fusion machines. Other than the usual Born approxima-
tion, it has also become fashionable to use the equivalent of the Dyson and Bethe-Salpeter
equations, as well as a transport formulation for the scattering wave. The use of these
methods has recently been justified by Frisch. These results are considered in a critical
fashion. It has been possible to conclude that the results obtained from a solution of the
stochastic transport theory are valid in both the high- and low-frequency limits, while the
results of the smoothing approximation for the DJJson and Bethe-Salpeter equations are
limited to the low-frequency limit. In addition, it has also been concluded that the secular
effects that exist in the ordinary Born series may be fictional.

INTRODUCTION

Historically, the interaction of electromagnetic
waves with a large-scale turbulent plasma was
first of interest in connection with wave propaga-
tion studies in the disturbed ionosphere. ~ In this
connection, I proposed that some of the many prob-
lems associated with the multiple scattering of
waves by a turbulent medium might perhaps be re-
solved by a stochastic formulation based on Max-
well's equations which could be used to derive a
stochastic transport model for the radiation.

More recently the wave problem has been of
interest in connection with studies of instabilities
and turbulence in the nonequilibrium plasma of the
controlled thermonuclear fusion machines. A
paper by Tatarskii and Gertsenshtein was specifi-
cally directed towards a solution of this problem.
They used the bilocal, or first-order smoothing
approximation, an extension of the work of Bour-

The wave-scattering problem has also been of
interest in connection with the diagnostics of the
forced turbulence of a weakly ionized plasma. We
should like to call the reader's attention to the con-

tinued work of Granatstein, Feinstein and
Granatstein, ' Salpeter and Treiman, ' Barabanen-
kov and Finkel' berg, ~ Vedenov, Watson, "and
some recent comments by the present author. ' '

In addition the problem of wave scattering by a
random medium has attracted the attention of the
applied mathematicians. Papers by Keller, ' '

and the text by Frisch, are of particular interest.
While the bilocal or first-order smoothing ap-

proximation was first introduced by Tatarskii and
Gertsenshtein5 and specifically restricted by them
to a wave-number or frequency region where

ao

where ao is the fluctuation scale size or mean eddy
size of the turbulence, their work has in many
cases been neglected and in other cases improperly
applied, with equally bad results. For example
an entire issue of an engineering journal devoted
to the question of partial coherence fails to men-
tion this particular paper or properly apply the
smoothing theory. In a more recent paper, the
smoothing theory was applied without any mention
of the frequency limitations.

In addition to these difficulties in the literature,
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We shall consider solutions of the wave equation
for the electric field intensity E, in a turbulent
plasma,

V E+k K=4m; N, (r)E (1)

characterized by the electron density N, , whose
mean value is denoted by N„such that the elec-
tron fluctuation density resulting from the turbu-
lence is given by

n, (r) =N, -N, (2

We shall restrict the following to cases where the
plasma is well underdense in the frequency range
of interest, as this is sufficient to serve our pur-
pose. Other cases follow directly. Hence we
have

k = (d go&, 6 = eo(1 —&dp/(d )

2= 2~~ = e N/m, &, ,
(3)

and r, is the classical electron radius. The in-
tegral form for Eq. (1) is

E(r) =Go(r) —4', f»G, (r, r~)n, (r~)E(r~)dr~

where Go and G, are the appropriate Green's func-
tions for the free-space geometry and for the scat-
tering region, and where the geometry is illus-
trated by Fig. 1. The integral equation may be
written as a perturbation series of the Born form,

E(r) =Go(r) —4', f»G, (r, r„') Z E„(r„')dr„', (5)

(4)

the Keller theory"" has also been applied to the
high-frequency limit [for example, see Keller,
Ref. 19, Eq. (31)]. This might well be questioned
as Frisch20 has shown that Keller's method is
equivalent to a first smoothing approximation of
the Dyson equation for the mean field, and con-
sequently must be limited to the low-frequency
limit in this applications, as observed by Tatar-
skix. '

In this paper, I have directed my attention to a
review of all of these difficulties as well as a study
of the differences between the first-order smoothing
approximations for the Dyson and Bethe-Salpeter
equations and the solutions of the stochastic trans-
port theory in the first stochastic approximation.
This comparison is carried out for both the low-
and high-frequency limits of the theories. As a
result of this study it seems reasonable to conclude
that the transport theory produces a reasonable re-
sult to a first stochastic approximation, in the
high-frequency limit, while the first-order smooth-
ing theory does not.

In addition to these results, I have made a num-
ber of suggestions which should prove useful for
those, who like myself, might wish to probe further
into these questions.

FORMULATION AND REVIEW

PLA S &+
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FIG. 1. Geometry for scattering by the plasma
turbulence.
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terms, each of which is the product of two point
correlation functions. All moments of odd order
vanish for the Gaussian process. This, in fact,
is a good experimental test for such a process.
As an example of this property, let us consider the
case for P = 2, as shown in Fig. 3. The diagrams
on the right-hand side of the figure are referred to
as dressed, in that the two point space-correlation
functions for the plasma fluctuations have been in-
dicated by dotted lines.

The set of all dressed diagrams for a given field
variable, such as the expectation of E, wiQ con-
sist of both connected and unconnected diagrams.

with

E,(r ') = n(r,')Eo(r,')

and

E„,,(r„'.,) = —4', n, (r„',~) f» G,(r„'„,r„')E„(r„')dr„'.

Since the electron density is a stochastic variable,
this equation may only be solved in a statistical
sense. The solution may be represented graphical-
ly by the undressed diagram. For example, for
the mean value or expectation of the field shown in
Fig. 2, the () indicate that an ensemble average
must be taken of each term of the diagram. In
drawing this diagram, we have considered the case
of a Gaussian rando~ Process for the amplitude
fluctuations of the electron density of the plasma.
In short-lived experiments that do not reach a
steady state, the ensemble consists of the totality
of all experiments starting from the same initial
conditions, same fields Ho, etc.

As noted by Frisch, a bare or undressed dia-
gram will contribute to the scattered field in a
number of different ways, depending on the number
of possible two point correlation functions, for the
case of a Gaussian process. As this is a well-
known property of such a process, I shall not
dwell on it here. It is sufficient to note that bare
diagrams of moment 2p may be written as the
sum of
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FIG. 2. Mean value or statistical expectation of the
electromagnetic field.

FIG. 4. Effective wave-number operator for the mean
field intensity.

These are defined as follows:
A connected diagram is a diagram without termi-

nals, that is not factorizable. In other words,
one that cannot be cut into two or more diagrams
without cutting any dotted lines.

The definition of an unconnected diagram is the
simple converse and follows directly. While the
above definition is essentially that of Frisch, +
with our emphasis on the key words, it should be
noted that his example contains an error (Ref. 20,
p. 110).

With this definition for the connected diagram,
it is possible to define the effective wave-number
operator and construct the Dyson equation for the
expectation of the electric field intensity.

Effective wave number o-perator. This is de-
fined as the sum of all possible connected dia-
grams (see Fig. 4). If the expectation, or mean
field intensity, is denoted by Fig. 5(a), then the
Dyson equation for the mean field is given by Fig.
5(b). This equation is a "formal" solution, as it
has never been solved for E because of the many
difficulties associated with the problem of finding
a closed form expression for the effective wave-
number operator. The literature to date has been
restricted to finding the bilocal or first-order
smoothing approximation for the expectation. This
is obtained from Fig. 5(b) by using the first ap-
proximation for the effective wave-number op-
erator, i.e. , the first term in Fig. 4 [see Fig.
5(c)]. We shall return to Fig. 5(c) later in this
paper.

The diagram method may also be used to write
an expression for the space correlation of the field

intensity E. The Born series for this is given by

00

(z(rq)z+(r~)) =((G~ -4w;l~~ G~(r~, r„')2 E (r„') d„r„')
n~i

00

x
~

G0-4vr, G,(rl, r„')Z. E*„(r')dr'
~

(5)
where E~ denotes the complex conjugate of E. When
the amplitude Quctuations of the plasma are Gaus-
sian, the first few terms of the dressed diagram
are given by Fig. 6. The first two terms are just
the first Born approximation, so often used in the
calculation of scattering by a turbulent plasma.
The equivalent of a Bethe-Salpeter equation for the
space-correlation function of the electric field in-
tensity may be constructed by using a method sim-
ilar to that used for the Dyson equation.

Intensity operator. This is defined as the sum
of all possible connected double diagrams contri-
buting to (E~E) ) (see Fig. 7). A Bethe-Salpeter
equation for the space-correlation function of the
electric field intensity may be written as shown in
Fig. 8. It should be noted that this result differs
from that obtained by Frisch in that I have not
used the Dyson equation in the construction of the
Bethe-Salpeter equation. As a consequence, the
intensity operator differs from that given by
Frisch. 20 I prefer this form for the Bethe-Sal-
peter equation as I am of the opinion that the other

(a)

3 1 I o
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\

h $ g g ~ 0
(b)

(c)
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FIG. 3. Example of a dressed diagram using the
third term on the right-hand side of Fig. 2.

FIG. 5. (a) Diagram for the mean field intensity of
the electric field. (b) Djjson equation (after Frisch) for
the mean field intensity of the electromagnetic field.
Actually the name is not to be applied in a strict sense
as this equation is not directly related to Dyson's
earlier work in the quantum theory (Refs. 23 and 24).
(c) Bilocal or first-order smoothing approximation for
the statistical expectation of the electromagnetic field.
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FIG. 8. Bethe-Salpeter equation (title after Frisch)
for the space-correlation function of the electric field
intensity. As in the case of the Dyson equation, this
name is not to be applied in a strict sense as this equa-
tion is not directly related to the earlier work in the
quantum theory (Ref. 25).

+ o ~ ~

FIG. 6. First few terms of the dressed diagram for
the space-correlation function of the electromagnetic
field intensity.

&fkoIP-5 'I
(v'+ k o) &E(r)& + 18"r'

x ( n, (r)n, (r'))(E(r '})dr ' = 5(r) . (7)

is an example of "bootstrapping. " It does, however,
appear to be permissible in a first-order smooth-
ing appr oximation.

As was the case for the Dyson equation, this is
only a "formal" solution for &E,Eo~), because of
the difficulty of finding a closed form solution for
the intensity operator. The literature to date has
been restricted to the solution of the biloca1. or
first smoothing approximation for &E~E$), by
using the first term in Fig. V. This might also be
referred to as the ladder approximation, as it is
in other applications of Feynman diagrams (see'
Fig. 9).

In order to compare the results of the bilocal or
first-order smoothing approximations to the re-
sults of the transport theory, it is necessary to
consider a number of examples.

EXPECTATION OF FIELD

The bilocal or first-order smoothing approxi-
mation for the mean field intensity may be ob-
tained from Fig. 5(c). The first few terms are
shown in Fig. 10. It is self-evident that this ap-
proximation includes all simple humps but neglects
all of the crossed humps in Figs. (2) and (8).
Nevertheless, the approximation does include some
of the multiple-scattering effects. This, of course,
is the reason for its usefulness. Frisch's method
has been used to obtain the following differential
equation for the expectation of the field intensity,
for a point source in the turbulent plasma:

This result is the equivalent of that which could be
obtained by applying the "honest" method intro-
duced by Keller~ to the plasma problem. Pro-
ceeding by the methods of Frisch, 2o Keller &8

Tatarskii, ' it follows that the solution of Eq. (7)
may be written as

(E(r)):—(1/4') e' "'" (8)

In the calculation of the effective wave number
k,«, Keller, Frisch, and Tatarskii have all
taken an exponential form for the space-correla-
tion function of the random variable. While we
note that this may not be reasonable, given the
physics of the plasma turbulence, 7 we will never-
theless use their result as this does not effect the
principal purpose of this paper. Hence, for the
low- frequency limit,

k, ff ——ko+ 8ooroo& no) k o' loz+ il 6wo
& no) roloo

for bolo 1
where

(n, (r, )n, (r,)) = &n~o& exP(
I ra r& I/lo)

In the high-frequency limit, we obtain

k «=ko+i(1/2lo)

The imaginary part of Eqs. (9) and (10) result in
an attenuation of the field as it propagates into the
plasma. This is similar in form to the results of
the transport theory, as we will note later in this
paper.

rg. '~

I
+ 5 + ~ ~ ~

I

l

(E,E, ) '
, x (E, K, )
I

FIG. 7. Field intensity operator.

FIG. 9. Bilocal or first-order smoothing approxima-
tion for the statistical expectation of the space-correla-
tion function of the electric field intensity.
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SPAC&CORRELATION FUNCTION OF TOTAL ELECTRIC
FIELD

The bilocal or first-order smoothing approxi-
mation for the space covariance of the field in-
tensity may be obtained from Fig. 9. The first
few terms are shown in Fig. 11. It is self-evident
that this is the ladder approximation. Writing the
equation in Fig. 9 formally, we have

&E~Ef):&E,)&E~)+16vlrf f f„&E(r,—r,'))

& ( g
- g))&E( i) ( I))( ,( g') .( I))

(11)
where &E) may be obtained from the results af the
first-order smoothing approximation of the Dyson
equation. The geometry is illustrated by Fig. 12.

Having written the integral equation for the bi-
local approximation for the field covariance, it is
now possible to compare the results of the smooth-
ing theory to the results of the stochastic trans-
port theory originally proposed in 1958.~4

COMPARISON OF RESULTS OF SMOOTHING THEORY TO
RESULTS OF STOCHASTIC TRANSPORT THEORY

In picking a particular starting point, we have
chosen a form of the stochastic transport theory
consistent with the conditions used in the discus-
sion of the bilocal approximation. These con-
ditions are statistical stationarity af the plasma
turbulence, as E would be time dependent (other
than icvt) if this were not the case, and a well-be-
haved total cross section. These conditions have
been discussed in detail previously. ' The sto-
chastic transport equation may be written as

v V&f, ) = f &cr,(r, k)f, (r, k'))dQ' —Q, &f, )
(12)

In this equation, f, is the photon density function
for scattering by the plasma turbulence, o, is the
wave-scattering cross section per unit volume per
unit solid angle of the plasma turbulence, and Q,
is the total cross section for scattering. We have
modified our earlier result in one respect by in-
cluding 0, within the ensemble average in the in-
tegral, in Order to stress that they are not neces-
sarily statistically indePendent quantities. If the

FIG. 11. First three terms of the bilocal or first-
order smoothing approximation for the mean value of the
space-correlation function of the electric field intensity.

first Born approximation is used to find the cross
section a„ then we have

which is the previous result, in some cases
written simply as o,f,. It should also be stressed
that the density function f, is related to the field
intensity by way of the integral3

& p ) =5'(uo J v &f, ) d V„. , (14)

where &P) is the expectation of the poynting vector
of the total field.

In order to compare the results of the transport
theory to the results of the bilocal approximation
for the field intensity, it is convenient to consider
a simple geometry. Let the source be directional
with a radiation beam width equal to —,'P, as illus-
trated in Fig. 18.

The solution of Eq. (12) consistent with the ap-
proximation of Eq. (13) is

-g,Z "& -g, (Z-~s )

f'"'=-f'" 16"Z '.', ""16"(Z ")
x o, (x', K)f,(v', k') dA', (15)

where the angle of integration in Q is bounded by
0. , as a function of r, such that

t~n= ,'pz/(z --~) .
While P must be small, this is often the case in
applications of interest.

~+%

FIG. 10. First four terms of the bilocal or first-
order smoothing approximation for the mean value of the
electric field intensity.

FIG. 12. Geometry for the bilocal or first-order
smoothing approximation for the mean value of the
space-correlation function of the electric field intensity.
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FIG. 13. Geometry for the solution of the stochastic
transport theory.

The transport theory, Eq. (15), may now be
compared directly to the bilocal result by sub-
stituting for E in Eq. (11), from Eqs. (8)-(10).
Then taking r, =r2, we have

(Iz(z) I
')

X &a1IR-rf I 1%1IR-r2 e (E(» s)E( i) )4n IR- r&I

x (n, (r,')n, (r,')), (17)

where k~ is the real part and k2 the imaginary part
of k,«. Physically, these results tell us that the
ensemble average of the photon density function or
the mean-square field intensity consists of a co-
herent and incoherent contribution, the first and
second terms on the right-hand side of each equa-
tion.

The coherent terms may be compared directly.
Taking k2 from Eqs. (9) and (10) for the bilocal ap-
proximation, we have

2u, = 3211'1', (n', )I', for K, l,«1,
(18)

24m= I/fo or ~olo~~1

These may be compared with the results of the
transport theory by using Q, from Ref. 3 or by
starting with some of the material in a later pa-
per. [In this paper the result is obtained in the
high-frequency limit, see Eq. (3. 5) of Ref. 26.
The result for the low-frequency limit may be ob-
tained by using Eqs. (2. 1) and (3. 3) of Ref. 26].
In so doing it should be noted that

It is evident that the coherent terms agree in the
lo1c fr-equency limit, but are quite different in the
kiI, h fee-quency limit. I am inclined to dismiss the
bilocal result in the high-frequency limit since an
attenuation factor of 1/lo is excessive and would
lead to a very rapid attenuation of the fieM. This
has not been observed. Furthermore, it should
be noted that Tatarskii and Gertsenshtein in their
paper specifically restricted their result for the
bilocal approximation to the low-f requency limit
[see Eq. (29) of Ref. 5].

An argument in favor of the validity of the trans-
port theory result in the high-frequency limit fol-
lows directly from a criterion previously reported
by the author (see Ref. 26), where it was noted
that the mean-square value of the change in phase
introduced by the dielectric noise (which in the
present case is due to the turbulent plasma) is
related to the total scattering cross section Q, by

(o )=4@,L for kolo»I

from which it follows that (& )= v at a distance of
one mean free path in the plasma. This, of
course, is that required for the destructive inter-
ference of the wave. In addition, we may note that
this criterion also exhibits the proper frequency
dependence.

The incoherent components of the field [second
term on the right-hand side of Eqs. (15) and (I'7)]
are somewhat different. Frisch2 has observed
that Eq. (11)or (1V) for the bilocal approximation
may be reduced to a transport equation for the
mean intensity such as that we introduced (see Ref.
20, p. 145). We note, however, that the transport
equation is not phenomenological but can indeed be
derived from Maxwell's equations. '

We shall take a somewhat different approach.
Taking the usual definition for the space spectrum
of the plasma turbulence

S(K)— ( ( 1)+ (rR)) e +,"1 2 1» d(r r ) (2l)
(n', )

and noting that the cross section 0, is related to
S(K) by

c,= ~~ (n~) S(K)

when Eq. (13) is assumed valid (first Born approx-
imation for o,) it follows that the bilocal approxi-
mation can be simplified in the lozu frequency limit-
and written as

e-2k2 K .

(he )= 16m r, (n, ) (ko) (19)

for the case of a turbulent plasma. Hence, I ob-
tain the result

Q, =32m r, (n, )lo for bolo«1,
(20

Q, = 2r ~e (n, )lo(Q) for kola»1 .

-2k2(Z-~')
+ «'

a i a (IE(&') I')&e11(&)

where o„, is the cross section in the low-frequen-
cy limit. While this result is similar in form to
the transport result, it should be stressed that the
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equivalence is limited to the low-frequency limit.
The two results differ substantially in the high-fre-
quency limit. This is consistent with the previous
result for the coherent contributions.

Barring further experimental evidence to the
contrary, it would appear reasonable to conclude
that the transport theory yields a reasonable re-
sult for both the low- and high-frequency limit,
while the first-order smoothing approximation for
the Dyson and Bethe-Salpeter equations is only
correct in the low-frequency limit. As noted pre-
viously, the inadequacy of the smoothing approxi-
mation is probably due to the fact that only a small
number of the many multiple-scattering terms of
the Born series are included. This observation
naturally leads us to a discussion of the secular
terms in the Born series.

ON QUESTION OF SECULAR TERMS IN BORN SERIES

First of all, it is of importance to note that sec-
ular terms do indeed exist in the Born series for
the case of an unbounded space completely filled
with a statistically homogeneous turbulent plasma.
The proof for this is similar to that given by Frisch
(Ref. 20, p. 146) and will not be repeated bere.
However, it is also of importance to realize that
the existence of such terms does not in itself
prove that the comPlete series will diverge. There
may, in fact, be some. bound on the range x, given
(n, ), where the complete series is absolutely con-
vergent. This point merits further study since the
smoothing approximation is probably invalid in the
high-f requency limit.

While the question of secularity is theoretically
interesting it may in reality be mathematically
"academic. " In actual practice the turbulent plas-
mas of interest are small in volume. While multi-
ple-scattering effects can be of importance, secular
terms are well behaved for all observers located
in the fax field of the plasma scattering.

A further observation may also be of value.
While the mathematical proof for the existence of
secular terms is straightforward, Frisch has not
provided us with a physical explanation for the phe-
nomena. I should like to suggest the following:
Consider an infinite space filled with a turbulent
plasma. Let a point source of photons be located
at r' and an observer at r. Let us assume, as in

the theory, that both the source and observer have
omnidirectional transducers. The photons reach-
ing the observer arrive from the forward scatter-
ing of nearby turbulons and from the backscatter-
ing of distant turbulons, as illustrated by Fig.
14. I should like to suggest that the secular effect
is due to backscattering fromthe more distantparts
of the plasma where the volume, and consequently
the number density of the turbulons, increases at
the same rate at which the field is attenuated by

FIG. 14. Geometry to illustrate the question of
secularity.

spherical spreading, I/r'. A close examination of
Frisch's result yields a contribution from the
double pole of

1 d Ke' "
4»» dK (k»+»L '

KI ')» -, ' (24)

producing the secular term

(25)

It has, of late, become fashionable to use the
equivalent of the Dyson and Bethe-Salpeter equa-
tions, together with a first-order smoothing ap-
proximation to calculate the amplitude, phase, and

intensity of an electromagnetic wave scattered by
a turbulent plasma. This method was first intro-
duced by Tatarskii' and has recently been justified
by Frisch on the premise that the complete Born
series contains secular terms in an unbounded
homogeneous space. I have readdressed myself
to this problem and have concluded that some in-
teresting differences exist in the multiple-scatter-
ing region between the results of the first-order
smoothing theory and the results of the transport
theory. In particular, it has been possible to show
that the smoothing approximation for the Dyson and
Bethe-Salpeter equations and the transport theory
yield similar results in the loco frequency /imit, -

which, apart from a phase dependence, is indepen-
dent of ~. This is in keeping with the physical ex-
planation for this effect. It follows that the com-
plete series can only converge if the phase and am-
plitude of the individual secular terms are such
that they cancel each other in some fashion. This
merits further study.

CONCLUSION
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provided a first Born approximation is used to con-
struct the cross section in the transport theory.
This approximation for the stochastic transport the-
ory has been defined as the first stochastic approx-
imation, in that the cross section and the field are
assumed to be statistically independent in the en-
semble average of the transport equation.

The two methods yield substantially different re-
sults in the high fre-quency limit. It is evident that
these differences are probably due to the approxi-
mation inherent in the smoothing result for the

Dyson and Bethe-Salpeter equations, as many of
the multiple-scattering terms in the Born series
are neglected. Barring further experimental evi-
dence to the contrary, it vrould appear reasonable
to conclude that the first stochastic approximation
for the transport theory yields a reasonable result
for both the low- and high-frequency limits, and is
therefore probably valid at all frequencies.

We have also concluded that the secular terms
that exist in the ordinary perturbation series as ex-
pressed by the Born series may be fictional.
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Spatial Period of Bend Oscillations in the Dielectric Electrohydrodynamical
Instability of a Nematic Liquid Crystal*
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We observed the spatial period of "chevrons" in an ac-excited sample of room-temperature
nematic methoxy benzylidene butyl aniline. The frequency dependence of the period is explained
by the increase in the dielectric relaxation rate due to ionic diffusion currents, with a normal
diffusion constant.

Under the influence of ac electric fields, nemat-
ic liquid crystals (NLC) undergo electrohydrody-
natnical (EH) instabilities. These can be reason-
ably well explained by the Carr-Helfrich mecha-
nism. A quantitative one-dimensional model is
now availablea which describes the instability in

terms of oscillations of space charges and angular
deformations of the NLC, parametrically coupled
through the applied electric field; this model has
been quantitatively tested by threshold measure-
ments. 3

One of the more striking properties of the EH in-


