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The equations governing the linearized hydrodynamics of cholesteric liquid crystals are sys-
tematically deduced. They are valid for compressible as well as incompressible cholesterics
and for arbitrary direction of mode propagation. The variables which contribute to the hydro-
dynamics are the conserved variables, mass density, energy density, and momentum density,
and one additional broken-symmetry variable whose auto correlation function diverges at zero
wave vector%. , This divergent auto correlation function is determined from the Frank free en-
ergy for cholesterics and is found to diverge as (k3 +ck~ ), where q is a constant, k3 is the
component of %. parallel to the pitch axis, po, and k~ is the componentperpendicular to po. The
form of this divergence implies that an infinite cholesteric is unstable with respect to fluctua-
tions. The dephasing distance is, however, astronomical; and any finite sample is stabilized
by its boundaries. The mode structure of the hydrodynamical equations is analyzed for an in-
compressible choleteric and for a compressible cholesteric for% along the two symmetry di-
rections. The spectrum for% parallel to p includes a diffusive velocity and a diffusive direc-
tor mode in agreement with the work of Fan, Kramer, 'and Stephen. The spectrum for k per-
pendicular to p has a similar structure. For k at an angle of 45 to p, there is a propagat-
ing shear wave for sufficiently small k. The velocity of longitudinal sound is very slightly
anisotropic. Hydrodynamical forms of dynamic response functions are derived, and flow of
a cholesteric in a cylindrical capillary is discussed.

I. INTRODUCTION

Liquid crystals have recently become a, subject
of intensive study by chemists, physicists, mathe-
maticians, and engineers. Several review arti-
cles have already been written on the subject,
and conferences dealing with liquid crystals are now

held on a regular basis. ' ' Liquid crystals are
composed of long, usually organic molecules. In
certain temperature ranges, these molecules be-
come aligned collectively even though the substance
as a whole can flow like a liquid. In 1922, Friedel
distinguished three subclasses of the liquid crystal-
line states; the nematic state [Fig. 1(a)] in which
the long axes of the molecules are on the average
aligned along one direction and the positions of their
centers of mass fluctuate freely as in an isotropic
fluid; the cholesteric state [Fig. 1(b)] in which free
displacement of the centers of mass of the mole-
cules is still allowed but in which their long axes
are aligned in a helical pattern along a pitch axis
with a characteristic pitch Xo= 211/qo~ the slxlectlc
state [Fig. 1(c)]in which the long axes are aligned
along one direction and in which the centers of
mass are constrained to be in parallel equidistant
planes with free displacement within any given
plane.

The major aim of this paper is to determine the
equations governing the hydrodynamics of the cho-
lesteric state and to examine their consequences.
Hydrodynamical equations determine the dynamics
of a system in which all variables are in local
thermodynamic equilibrium. Thermodynamic equi-

(c)

FIG. 1. (a) Schematic arrangement of molecules in a
nematic liquid crystal, (b) in a cholesteric liquid crystal,
and (c) in a smectic liquid crystal.
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librium is produced and maintained by collisions
between particles which occur on the average at
time intervals T. Hence, any disturbance which
maintains local thermodynamic equilibrium must
have temporal variations which are slow on a scale
of v, i.e. , the frequency ar of disturbances de-
scribed by the hydrodynamical equations must be
such that ~7 «1. Similar arguments apply to spa-
tial variations. If X is any characteristic "micro-
scopic" length (usually a mean free path), the wave
number P of any hydrodynamical disturbance must
satisfy kX «1. In cholesterics, the latter condition
imposes a particularly stringent boundary on the
region of validity of hydrodynamics. The pitch Xo
(usually the order of a few thousand angstroms)
must be considered a "microscopic" length, and the
wavelength of any hydrodynamical disturbance must
be much greater than this. There may also be hy-
drodynamiclike behavior in cholesterics for wave-
lengths lying between ) 0 and the mean free path X.
We will not consider this regime.

The first problem we face is to determine which
variables will enter into the hydrodynamical de-
scription of the cholesteric state; i.e. , we must
find those variables which will have variations which
are slow in space and time. The most familiar hy-
drodynamical variables are densities of conserved
quantities. The time development of these opera-
tors is controlled by a local conservation law relat-
ing their first time derivatives to gradients of local
currents. After Fourier transformation, such local
conservation laws imply that frequencies go to zero
with wave number. Familiar examples of hydro-
dynamical equations resulting from local conserva-
tion laws are the spin diffusion equation in isotropic
magnets and the Navier-Stokes equations in isotrop-
ic fluids. In a cholesteric licluid crystal (as in all
nonrelativistic systems), mass, energy, and mo-
mentum are locally conserved; and mass density,
energy density, and momentum density are hydro-
dynamical variables.

There is another class of hydrodynamical vari-
ables which occurs in systems in which a continu-
ous symmetry has been broken. In such systems
with free energy F, there is a variable (or vari-
ables) g describing rotations in the space of broken
symmetry If 6F/gP. tends to zero with wave num-
ber k, then the restoring force on &f& tends to zero
with k, and spatial and temporal variations in P
will be slow. P will, therefore, be a hydrodynami-
cal variable. An alternate, but equivalent, crite-
rion for P to be a hydrogynamical variable is for its
autocorrelation function to diverge as P approaches
zero. Systems which exhibit such broken symmetry
hydrodynamics include superQuid helium, "ferro-
magnets, ' ' antiferromagnets, and nematic liquid
crystals. '

We can determine which variables are hydrody-

namical by considering a free energy which is an
integral over volume of a local free-energy density.
The free-energy density is expressed as a sum of
a uniform part and a part which depends on gradi-
ents of variables and is zero in uniform systems.
Usually, we can determine which variables have
vanishing restoring forces by considering the in-
variances of the uniform part of the free-energy
density. For example, the uniform free-energy
density of a superfluid is invariant with respect to
uniform translations of the superfluid phase, and
this phase is a hydrodynamical variable. Similarly,
the free-energy density of an antiferromagnet is
invariant with respect to uniform angular displace-
ments of the direction of staggered magnetization,
and the two angles needed to describe these rota-
tions are hydrodynamical variables. This type of
argument does not work, however, unless the re-
storing forces at k =0 of the variables in question
are identical to their zero 4 limit. For highly non-
local modes, involving spatial rotations for exam-
ple, the limits are not necessarily identical, and
small changes in the local free-energy density do
not necessarily imply small changes in the total
free energy. In such cases, we must look at either
the total free energy or at autocorrelation functions
in order to determine which variables are hydrody-
namical. In nematics, the local arguments do de-
termine the variables with vanishing restoring for-
ces even though the modes in question involve spa-
tial rotations. This is the justification for the
Frank local free-energy density for nematics. 0 In
cholesterics, the situation is more complicated.
In Sec. III of this paper, we will study the nature of
the nonlocality which prevents the local-type argu-
ments from working. We will then use the Frank
free energy for cholesterics ~ to calculate auto-
correlation functions. There is one divergent auto-
correlation function which implies that one vari-
able in addition to mass density, energy density,
and momentum density is hydrodynamical.

The divergent autocorrelation function presents
certain problems. It diverges not as k as is usual
but as (k3 + ck, ) ', where c is a constant and k~ and
k, are, respectively, the components of k parallel
and perpendicular to the pitch axis. This form of
divergence implies that an infinite cholesteric is un-
stable with respect to fluctuations. The arguments
used to show this are very similar to those de-
veloped by Landau and Peierls2' to show that a three-
dimensional body in which the density depends on
only one coordinate must have a uniform density.
A refinement of these arguments has been used
by Mermin and Wagner and by Hohenbergas to show
that two-dimensional ferromagnets, superfluids,
and superconductors cannot exist. In view of this
instability, there are two attitudes one can adopt
regarding the cholesteric state. The first is that
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an infinite cholesteric is in fact stable and the
Frank free energy is unsuited for discussing fluc-
tuations about the equilibrium state. The second
is that the above considerations are correct, but
that there are always boundaries which stabilize
any real system. In this paper, we will adopt the
latter attitude. Our methods can be applied to both
cases, however, and we will point out whenever dy-
namical results for a stable system differ signifi-
cantly from those for an unstable system. We will
assume that the sole effect of the boundaries is to
inhibit long-wavelength fluctuations which destroy
the order. We will further assume that long-wave-
length (but smaller than any sample dimension) and
low-frequency fluctuations which occur within the
bulk of the sample can be described by the hydro-
dynamical equations to be derived. This is a rea-
sonable assumption since hydrodynamical equations
describe fluctuations in which local equilibrium is
preserved. In the bulk of a finite sample, the
cholesteric state is the local equilibrium state.

Having determined which variables are hydrody-
namical, we can use any of a number of methods
to determine the actual form of the hydrodynamical
equations. ' '" ' We will employ the method de-
veloped by Halperin and Hohenberg to discuss hydro-
dynamics in magnetic systems. ' A "conservation"
law and a local current are introduced for the bro-
ken symmetry variable. The standard techniques~'
used to derive the Navier-Stokes equations can then
be used to determine the constitutive relations for
the currents of all of the conserved variables. This
analysis is carried out in Secs. IV and V of this
paper.

It should be mentioned that the methods employed
in this paper are not the same as those of continu-
um mechanics. The continuum mechanics of liquid
crystals is not restricted to hydrodynamical modes.
In particule Fan, Kramer, and Stephen have
found finite-frequency modes in cholesterics using
the techniques developed for nematics by Leslie '
and Ericksen. ' We will make no attempt to deter-
mine the nature of these modes though we will as-
sume that for sufficiently long wavelengths, their
frequencies are large compared to the frequencies
of the hydrodynamical modes. Leslie has derived
the continuum equations for cholesterics and used
them to discuss flow of a cholesteric between two
infinite parallel plates. Using these equations,
Brochard has also discussed acoustical impedance
of a quartz-cholesteric interface.

This paper is divided into eight parts. Section II
discusses the symmetry of the cholesteric state.
Section III derives the divergent correlation function
for the Frank free energy and discusses its signifi-
cance. Section IV discusses in some detail the
thermodynamics of the hydrodynamical variables
of cholesterics. This is necessary since the addi-

tional hydrodynamical variable in cholesterics has
thermodynamic derivatives with respect to density
and temperature as well as with respect to its con-
jugate field. Section V introduces the dissipative
coefficients and produces the complete hydrody-
namical equations. These equations are then
analyzed for their mode structure. Particular at-
tention is given to the structure along the symmetry
directions. The orientational hydrodynamical
mode for k along the pitch axis has the same form
as predicted by Fan, Kramer, and Stephen with a
slightly different definition of the elastic constant
of interest. Starting with the microscopic defini-
tion of the partition function, Sec. VI justifies the
entropy relation used in previous sections and pro-
ceeds to discuss the dynamical response functions
of the hydrodynamical variables in cholesterics.
The techniques used are those developed by Kadan-
off and Martin ' to describe isotropic fluids and
subsequently applied to superfluid helium by Hohen-
berg and Martin. Section VII shows how the hy-
drodynamics of the previous sections satisfies all
of the Goldstone theorems ' for the cholesteric
state. Finally, Sec. VIII applies the hydrodynami-
cal equations of Sec. V to the capillary Qow of a
cholesteric in a cylindrical tube first discussed by
Helfrich. 3~

II. CHOLESTERIC ORDER

n (r) =n cosy (r)+(p'xn') si~'(r), (2. 3)

where p~ is a unit vector along the pitch axis of the
spiral structure, n~ is a unit vector in the plane

Order in liquid crystals is determined by the
alignment of long molecules. A convenient micro-
scopic definition of the liquid-crystalline order
parameter is obtained by introducing for each
molecule e a center-of-mass coordinate and a unit
vector v along the long axis of the molecule. The
order parameter is then the symmetric traceless
tensor"

(p/m)q(, (rt) =Z, (vgv, ——,'g„)O(r —r (t))

=Z q„6(r-r ) . (2 I)
p is the mass density and m is the mass of each
molecule. As long as the frequencies of the inter-
nal molecular modes are large, this definition of
the liquid-crystal order is equivalent to one in
terms of the quadripolar term in the mass density. '~

In uniaxial liquid crystals, in equilibrium,
(Q„-(r) ) assumes the form

(Q„(r) )= S[n,'(r)n,'(r) ——,'&„],
where no(r) is the equilibrium director~0 I' 7 and 8
is a measure of the degree of order. 3' In nematics,
n (r) is a constant in space. In cholesterics, n (r)
has spiral symmetry
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perpendicular to P, g (r) = (2v/Xe)p ~ r+P, and Xo

is the pitch of the helix. P is an arbitrary phase
which can be chosen so that n(r = 0) = n~. It is cus-
tomary to set 2v/Xs= qs. Note that

Vq (r) = qsp' . (2.4)

Deviations from cholesteric equilibrium can be
described by letting

n(r) = &t(r) cosg (r) + es(r ) sing(r ),
where

g(r)=p (r)+5&(r), e,(r)=n +au(r)xn,

q2(r) =p~xn~+go(r) x(p~xns),

g(y(r) =p x5p(r) .

(2. 5)

Hence, changes of n(r) from equilibrium are de-
scribed completely by the independent variables
g(r) and p(r) =p~+ gp(r), which are not related by
Eq. (2.4). p(r) is always perpendicular to n(r),
whereas vg(r) can point in any direction. Linear
changes in n(r) can be expressed in terms of hp(r)
and eq(r):

Qn(r) = [p xne(r)] gp(r)+p [p ~ gn(r)] .
But since

we have

gn(r) = [psxno(r)]gp(r) -p [gp(r) ~ g (r)] . (2. 7)

p(r) can be chosen to be either a vector or a pseudo-
vector, but once its signature under parity is cho-
sen, that of p(r) is determined. Let R be the parity
operator, take n(r) and n~ to be vectors, and let

choose n(r) to be a pseudovector rather than a vec-
tor.

III. AUTOCORREI. ATION FUNCTIONS

The total free energy for a cholesteric is invari-
ant with respect to uniform rotational displacements
of the pitch axis p and uniform translational dis-
placements of the helix phase g. It is tempting,
therefore, to say that these three independent vari-
ables have vanishing restoring forces in the zero jp

limit and thereby justify an expansion of the free-
energy density in terms of gradients of these vari-
ables. Distortions of tt are local, and terms in the
free-energy density proportional to I VP I are pos-
sible (Fig. 2). p, however, is a highly nonlocal
variable, and we can easily see how small changes
in the local direction of p(r) can lead to large
changes in the total free energy. Let us divide the
cholesteric up into a series of large cells and re-
quire p to be uniform within each cell but allow the
direction of p to change slightly from cell to cell.
The total free energy is then the sum over all cell
boundaries of the surface energy between neighbor-
ing cells. Consider now the various distortions
that p can undergo, remembering that the surfaces
of constant pitch phase are always perpendicular
to p in any given cell. p(r) can undergo the same
types of distortions as n(r) can in a nematic: splay,
bend, and twist. In a splay distortion, the surfaces
of constant phase can be continuously joined over the
entire cell boundary [Fig. 3(a)]. The surface free
energy is thus proportional to the square of the
angle between the pitch axes in the two cells. The

Rp(r)R = e~ p(- r), Rp(r)R = e~ g(—r), . (2. 8) (a)

where q~ and q~ are the signatures of p and p under
space inversion. Then we have

Rn(- r)R '= —n(r)

= —n cosq, g(r) —e~tp(r)xn ]sine„p(r) .
(2. 9)

In order to obtain equality between the first and
second lines of Eq. (2.9), we must have

(2. lo)

Hence, if p is a vector, g is a pseudoscalar; and
if pis a pseudovector, g is a scalar. Any equa-
tions describing physically observable quantities
must reflect this invariance. These considerations
apply to the equilibrium configuration and imply
that qo must be a pseudoscalar regardless of the
transformation properties of p and g. Since n(r)
appears quadratically in the order parameter
(Q,~(r) ), physical quantities must be insensitive
to whether n(r) is a vector or a pseudovector The.
relation between p and g does not change if we

FIG. 2. Local distortion
of the pitch phase. The
curved lines represent planes

(b) of constant phase.
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FIG. 3. (a) Splay distortion of the pitch director p(r).
The arrows represent the direction of p(r) in each cell and

the straight lines perpendicular to p(r) represent planes of
constant phase. Note that the planes of constant phase of
two adjacent cells can be joined continuously along the en-
tire cell boundary. The energy of this distortion is pro-
portional to the square of the angle between p(r) in adja-
cent cells. (b) Bend distortionof p(r). At one end of the
cell boundary, the planes of constant phase are stretched
apart, and the other end, they are compressed. The en-
ergy of this distortion is, therefore, proportional to the
size of the cell and can be large for very small angles be-
tween p(r) in adjacent cells. (c) Twist distortion of p(r).
It is not possible to match the planes of constant phase over
the entire cell boundary. The amount of mismatch, and

hence (the energy of the twist distortion, is proportional to
the size of the cell. The energies of bend and twist dis-
tortions do not go continuously to zero with wave number
k.

restoring force for this type of distortion, there-
fore, goes to zero with k. In bend and twist distor-
tions, it is impossible to match surfaces of con-
stant phase over an entire cell boundary [Figs.
3(b) and 3(c)]. In fact, the amount of mismatch is
proportional to the length of the cell, There is,
hence, a finite energy associated with these dis-
tortions no matter how small the. angle between the
pitch axes of adjacent cells. '

This explains why a local free energy for choles-
terics in terms of gradients of P and p would be
meaningless. Fortunately, we do have a local free

where

Bt = 2Kt(v ~ n) + —,'Ks[n ~ (v &n) +qs]

+-,' K, [n ~(V &&n)]' . (3.2)

Bars have been placed over the elastic constants to
distinguish them from the constants that appear in
the Frank free energy. q0 and S are determined as
functions of p. and T by requiring

80 . 0 ~0 (3.3)
00 if r s 8S if r q0

The total free energy is then minimized if v ~ n
=0, nx(vxn)=0, and n (v&n)=qs(p, T). If there
is an external field coupling to n, the values of
n (vxn) can change. We will denote n (vxn) by

q0, which is a function of an external field and any
pair of longitudinal variables (p and T or p and T,
for example.

Director fluctuations are represented by the cor-
relation function

=0

I „(rr') = (()g, (r)dg, .(r') ), (3.4)

where the brackets indicate an average over the
equilibrium ensemble. I„„ is, of course, meant8gNg

to be a shorthand for certain components of the
correlation function of the microscopically defined
operator Q, ~(rt). In nematics, there is translation-
al invariance and f„„,(k) = fdsre'"' ' 'I„, (r —r')
can be obtained from the equipartition theorem. 40

By the same technique,

1„„,(k,) = f rd/e px[- ik, p'. (r - r '))]I„,„,(r r')
I

can be obtained for cholesterics. ' Because of the
lack of translational invariance in cholesterics,I„„(rr') for arbitrary r and r' is best determined
by a calculation of

energy for cholesterics expressed in terms of n(r)
rather than p(r) and g(r). This is the free energy
introduced by Frank following work by Oseen3
and Zocher. 3~ We will use a slight modification of
this free energy to calculate the director autocor-
relation functions. The divergent component of this
correlation function will tell us which variable is
hydrodynamical.

We wish to calculate the equilibrium director
autocorrelation function. This is directly propor-
tional to the functional derivative of n(r) with re-
spect to its conjugate field h„(r) at constant chemi-
cal potential p. and temperature T. It is, there-
fore, most direct for us to calculate autocorrelation
functions from a Gibbs free energy which is a func-
tion of p, T, and n(r) rather than from the Frank
free energy which is normally a function of density
p, T, and n(r).. The Gibbs free energy can be ex-
pressed as a sum of two parts,

G= fd'rg, (), T, S, qs)+ f dsrg, (), T, n(r)),
(3.I)
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g„,„,(r r') = 5n, (r)/5h„, (r'),
where h„(r) is the field conjugate to n, (r).

By the fluctuation-dissipation theorem for
classical systems,

I„,„,(r r') = ka Ty, „,(r r')

where k& is the Boltzmann constant. It is convenient
to express I„,„(rr') in terms of the variables of
Eq. (2. 6),

I„„(rr') = pxn~(r)], I»(rr')[p xno(r')]~.

+Po I„(rr')P,'+PoIa, (r r') [P~xn~(r')]',

+ [Pxn (r)1&iia(rr )ps & '(3 5)

where I„o(rr')=Io „(rr') for n, p=1, 2, and 5&,(r)
= 6$(r), and 6(t)a(r) =p ~ 5n(r). The Gibbs free ener-
gy can readily be written in terms of the variables
(t)& and ga'.

5G= a fd r(Kg Ip v(t)a+ [p xn (r)] V(t)gp

+K',([p xn (r)] Vq, —p V(f,]'
+ga( [n (r) ~ Vga] +[n (r) ~ v(t), +qo5(t)a] ]) .

(s.5)
Let h (r) be the field conjugate to g (r). Then

[5/5P (r)] [G —fd r h, (r)i) (r)]=0 . (S. V)

Equation (3.7) gives h (r) = 6G/5g (r). In equilibri-
um 5(t), (r) is zero in the absence of external fields.
G is quadratic in 5g (r); therefore, in equilibrium,
h (r) is zero.

Differentiation of Eq. (S.7) with respect to

h, . (r ) produces an equation for

.(rr') =5( (r)/5h, (r') .

~, , (rr') is a function of (r -r') „z, and z', where
z is the coordinate parallel to p and r, is the co-
ordinate perpendicular to p . Hence X,(rr ) can
be Fourier transformed:

2

(2w)
(s.3)

Following the procedures outlined above, one ob-
tains the following equation for g, (k,aa'):

II.—.(i „E)q-...(k„a, a') = 5...5(z —a'), (S.9)

where summation over repeated indices is under-
stood. For the case of equal elastic constants, we
have

(d'/da') —k,' 2iq(g n'(a)
-&i»a &&(z) rp/ zd' (a-,'+ t')))

'

(s. 10)
where Z= Z& = Z~ = Z~. a —for t e case of nonequal
elastic constants is considerably more complicated.
In this payer, we mill quote the interesting results
for the case of nonequal elastic constants but will
not reproduce the calculation. The solution to Eq.
(3.9) is

& &.(&,-)~.*.(I,.'~)
Xoa& ~ zz E

where $„(k,z(a) and E, are the eigenfunctions and
eigenvalues of 0 „,:

(s.11)

(E.5.—.—H.—.)g-.(R, ao) = 0 . (3. 12)

Now, note the following symmetry property of H".

((raTo)" II(oaTo) "=II, (3.13)
where N is an arbitrary integer, mrs is the Pauli
matrix (o o), and To is the translation operator
s( ~'o'"~~'. Hence if & is an eigenfunction of H
with energy E, , then so is (craTo)"g; and a modified
Floquet theorem applies. The eigenfunctions of
H can be expressed in the following form:

gal »& aors

g(k, aka)=s'"a'~ " " ' '
~

. (S.14)

The eigenvalue equation is, from Eq. (S.10),

(Z —I7[k;+(k, +2mq. )']]~„-i&7 (qk I3„,+k,a.) =0,
(3. 15a)

iso(k A„+kg, g)

+(E —& [(k', +q,') + (k, + (2m+ I)qo)a]}a.= 0,—
(S.15b)

where k„=k&~ ik, a. If we use Eq. (3.15b) to de-
termine 8 q and I3 in terms of A q and A„, ,q,
we obtain from Eq. (S.15a) a three-term recursion
formula for the A 's of the type encountered in the
solution of the Mathieu equation 3

0= E-&fk +(ka+2mqo) 1 A ki qo — a
&Op +qo)+ [ka+(2m+1)qo] ], E —Kq(k, +qo)+ [k +(2m —1)q ] j2 + 2 A

+2k2 2K k;qo
E —@(qo+k, )+ [ka+(2m —1)qo] I E-EOqo+ki )+[ha+(2m+I)qo] ]

A similar recursion formula can be obtained for the
B 's. Vfe are only interested in values of k which
are much less than qo. A perturbation solution to

I

Eq. (3.15) in powers of kjqo is straightforward.
The three lowest eigenvalues and corresponding
eigenfunctions are
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The eigenfunctions are normalized so that

J dz(. (k,k,z) g.'. (k,k, 'z)=e(), —k, ') (s. 19)

Eq g——
~
k3 +— ', El = E l = Kqo+0(k ),

(3.1V)

4(k kgz).= 8 s
p )I .)g y ) p) ))

(3.13)
0

)-I. Il g- ol )e

for ks and k~' in the first Brillouin zone Ii. e. , for
kz and k,

' in the interval [- qo, qadi}. Changes in
n(r) along p are equivalent to changes in the pitch
director along n (r). In fact, 6n(r) ~ p~ = 8)1),(r)
= —5p{r) n (r). Hence, the response function

.(r r') can be expressed in terms of the correla-
tion functions for ii)))(r) and gp, (r). The three low-
est eigenstates of y, (r r') [Eq. {3.18)t correspond
to first Brillouin zone (BZ) variations of these
variables. Choosing the three-axis to be along p
and spatial gradients to lie in the 1-3 plane, we
obtain

1/E(k)

~. (k)=
~

-fk, /q, z(k)

0

fk, /q, z(k)

1l/afro k,'/q, z(k)

)/2Zq, ')
(s. 20)

where a, a'= ii)1), 1)p„and 5pz in that order,

~., (k) = 1/Vf d'~d'~' e-l"."-"X...(r, r'),
(s. 24b)

z(k) = IYk,'+ X,(k)k,',
X,(k) = IY[-.'(k, /q, )'+-', (k, /q, )'] .

(S. 21a)

(S. 21b)
(S.24c)

In a stab]e cholesteric, X,(k) would have to be re-
placed by a constant proportional to E. Equation
(3.21) is only valid for k in the first BZ, but this is
all we require for a determination of the hydrody-
namical behavior of cholesterics. In the appropri-
ate coordinate system, there is only one component
of ~,. which diverges in the zerok limit. Thefunc-
tions which diagonalize (3. 20) are

8(r)=q+(v ap/q, ),
8l(r) = V.)I)+~pl,

y (k)=- („-),

y~, ,(k) = x@@(k)= 1/2ICqf)

{S.23)

8(r) is, therefore, the only variable that has a
divergent static correlation function. It is the
variable which will appear in the discussion of hy-
drodynamics of cholesterics of Sec. IV. An analy-
sis of the case of nonequal elastic constants shows
that 8(r) is again the only variable with a divergent
correlation function. It has the same form as Eq.
(S.23), with

z(k) = K,k,'+ K, (k)k,', (S. 24a)

where higher-order terms in v' have been neglected.
We have

where iY= —,'(IYl+IY3+IY3). Since |))t)(r) and gp, (r) are
the quantities which would be measured physically,
it is of some interest to express their divergent
parts in terms of 8(r):

8q(r) = 8(r)+ O(v'),

8p, {r)=(1/qo)V„8(r)+O(V') . (s. as)

Note that the divergent variable contains contribu-
tions from local variations of the pitch yhase and
splay distortions of the pitch director. It does not
contain contributions from the finite-energy pitch-
bend and pitch-twist distortions.

Now, let us consider the divergent correlation
function g»(k) in more detail. It diverges as k,'
+ck„(c is a constant) rather than as k3 +e'k, as
is common for the transverse correlation function
in most systems with broken symmetries. Vfe can
easily see from the form of the free energy of Eq.
(3.6) that this form of divergence occurs because
of the possibility of second Brillouin zone variations
in one variable canceling the first Brillouin zone
variations of another. For example, suppose 5)))&
= a, cosh&x, where k, is in the first BZ; then
(p xll ) ' V5)/)l = clkl sinqpz sink, x. A variation in
5)t)~ of the form hatt)2

= s&kl/q)) cosqoz sinklx is such
that p ~ v5$),, +(p&n ) v5$, is zero, and the term
following IY, in Eq. (S.6) does not contribute to this
distortion. The absence of a k, term in E(k) is a
manifestation of all of the cancellations of this type
that can occur.
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The absence of a k,' term in E(k) imphes that an
infinite cholesteric described by the Frank free
energy is unstable with respect to fluctuations and
cannot exist. The argument is similar to that of
Landau and Peierls~' that there are no stable sys-
tems in which there is a density variation along one

direction and Mermin and wagner and Hohenberg
that infinite tw'o-dimensional ferromagnets and
superQuids do not exist. The order-parameter
correlation function (q, &(r)q~, (r') ) can be expressed
in terms of I„~=k~TS y~„and I» =k~TS y» .'PgPg & PgPJ:

(gq (r)IIq (r'))= [~~(r)po]' ~ (r)g~ (rr')n~o(r')[n~(r')p, ].—[n, (r)p&], n, (r)I~ q(rr')(n~(r') [p xn (r )],},
- (&'(r) [p~x n'(r)], };I» (r r')n,'(r')[n'(r')p'], +fn'(r) [p xn (r)]}.I,„(rr') (n,'(r')[p» (r')] }. (S.26)

&q»(r)q»(r') &=I„(rr ') . (s. 2v)

where (g~o(r)p~o), =m~0(r)p~~+n~~(r)p~o If.we let the 1
direction be along n (r) and the 2 direction be along

p xs (r), we find

This is a measure of the fluctuations in the molecu-
lar direction which occur in the plane of perpendic-
ular to the pitch axis. The first BZ component of
Eq. (3.2V) can easily be obtained, and the result
integrated over k:

I
dk

l(2v)' q" "
I (2v)' I7k'+(Z/q')k'k'+(If /q')k' ' (S. 2Sa)

(sin 8 cos 8 )=ITS dkq I ch
2 „I (2v). g 2v Kmkg +Ã„/qakg @+K,/qgV (3. 23b)

where 8 is the angle particle z makes with the
equilibrium director at the point where it is at any
given instant of time. The integral or right-hand
side of Eq. (3. 2V) is logarithmically divergent
whereas the left-hand side is bounded by one. The
only way that equality can hold is for 8 to be zero.
In other words, cholesterie order cannot exist over
an infinite sample.

On the other hand, the distance required to com-
pletely dephase the cholesteric order is astronomi-
cal. Let us calculate the quantity

B(r)=(I q»(r)- q„(o)I') (3.29)

for r = zpo. This gives us a measure of how closely
the molecules at r align along the preferred direc-
tion n (r) given that at r = 0, they are aligned along
n (0). The corresponding quantity for nematics is
( I q»(r) —q»(0) I ) where the 3 axis is taken along
n . B(r) is a monotonically decreasing function of
the degree of order. If alI of the molecules were
rigidly fixed in the cho1esteric structure, B(r) would

be zero for large r. The maximum value of J3 is
determined by its value in an isotroyic system.
[Remember (q»(r)q»(0) ) tends rapidly to zero in
an isotropic system. ] We have

B (r)=2(cos'e sin'8 )=»L (s. so)

Kith r along p~, we obtain

dk~ I' k,dk, 1 —e' 3'
(„') II (,„)

—
B(k)—

= (I/4v) k, TS'(Z,I7,)-"'Inq, z . (s. 31)

Inqoz, - (1/q, a) Pv - —,'(Xga) . (3.32)

Xo is twice the wavelength of light that is Bragg re-
Qected from a cholesterie which is typically 5600
A. Hence we have

z,.
- (I/q, )s'"- lO"km . (3.33)

This is an astronomical distance.
The cholesteric state does exist and has been

observed in the laboratory. Kith this in mind,
there are two attitudes that one can take toward the
instability just discussed. The first is that the
Frank free energy does not properly describe fluc-
tuations in a cholesterie and that there really should
be a k, term in the denominator of y~(k). The sec-
ond is that the Frank free energy does describe the
cholesteric state but that boundaries stabilize any
finite sample. Regarding the first possibility, ad-
dition of higher order terms in v, pg&(r) (i.e. , cubic
and quartic terms) which preserve the cholesteric
structure for the minimum-energy state ' to the
Frank free energy does not alter the form of the
static correlation functions of Eq. (3.20). There-
fore, in order to obtain a 4, term in the denomina-
tor of g„(k), it is probably necessary to discard

Hut (I72I7,) 'I = keTS /s, where a is a molecular
length (-20 A). Therefore z„ the value of zbeyond
which memory of the orientation of the molecules

' at z =0 is lost, is determined approximately by
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the concept of a local free energy density that can
be expanded in powers of g,g, (r). In view of the
success of the Frank free energy in explaining a
wealth of static phenomena in both nematic and
cholesteric liquid crystals, this is an unappealing
proposition, but one which we will not discard com-
pletely. Consider now the second possibility.
Most laboratory samples of cholesteric liquid crys-
tals are no more than a centimeter in length, so
that even if we misestimated the value of the ex-
ponent in Eq. (8. 32) by as much as a factor of 10,
there is no danger of complete dephasing of the
eholesteric order in a laborabory size sample. The
effect of the boundaries of any finite sample is to
replace the integral over k in Eq. (3.80) by a dis-
crete Fourier sum. g«(k=0) is nondivergent in a
finite sample, but for higher (discrete) values of
k the correlation functions in the finite sample are
essentially the same as t'hose for an infinite sample.
In other words, boundaries can. stabilize a, structure
that would be unstable in an infinite system without
significantly altering the form of correlation func-
tions in the interior of the sample. Inthe discussion
of hydrodynamics of eholesterics in Sec. TV we will
assume that the Frank form of g»(k) is correct but
will always note where and what kind of differences
occur if a, k, term were present.

IV. THERMODYNAMICS AND REACTIVE COEFFICIENTS

An understanding of the equilibrium properties
and thermodynamics of any system is a prerequisite
to an understanding of its hydrodynamics. The ad-
ditional hydrodynamical variable g(rt) in cholesteric
liquid crystals couples to the longitudinal variables
of the system: pressure and temperature, for ex-
ample. There are, therefore, a number of thermo-
dynamic derivatives for eholesteric systems which
are not present in isotropie fluids and which warrant
discussion.

The calculation of the previous section determined
gg(r) in the first Brillouin zone as a function of its
conjugate field gh~(r) at constant p, and T. If p and
T are allowed to vary, there can be long-range
changes in g(r), and it is judicious to use v, pg(r)
as our additional variable rather gg(r). In analogy
with superfluids, we will eall g,d8, dv„, although it
should be noted that v„ inthepresent system is even
under time reversal wherea, s v„ in superfluids is
odd under time reversal. From Eqs. (3.21) and
(2. 3), we see that

dv~ =
P& dg&+dv& (4. 1)

Equation (4. 2) is only valid when dv„does not
vary in space. ~en there are spatial variations,
we will take Eq. (4. 1) to be the definition of dv, ,

Note that dv„ is irrotational (i.e. , the gradient
of a scalar), but dv,', need not be. p is the phase
variable discussed below Eq. (2. 3).

The field 8 conjugate to v, is related to k~ via pg,
= —p ~ h. Hence, by Eq. (S.22), changes in h, at
constant g and T are given by

dhSIw, r ff2dvss~~, r r

d&„~. ,= f7, (k)d...~„„
(4. Sa)

(4. Sb)

where, as always the three axis is along po and
gradients lie in the 1-3 plane. Changes in qo do
not affect v,q, so that Eq. (4. Sb) is valid even if p,

and & change. Changes in Co are however reflected
in changes of v,~. Combining Eqs. (4. 3a) and
(4. 1) and ignoring terms of order g3, we have

(r/V)dS =dq . (4. 5)

In cholesteries, a similar but naturally more
complicated choice of extensive and intensive vari-
ables is the most fruitful for the discussion of hy-
drodynamic s.

Oar starting point in the search for this new set
of variables will be the intensive entropy relation

Tds =dq —p,dp —v ~ dg —h. dv

where s = s/V, g is the momentum density and v an
external velocity We wi.ll justify this equation in
Sec. VI. We can easily see that q(rt) defined by

q(rt) = g(rt) —[(7'8 + pp)/p] p(rt) —h v, (rt)
(4. 7)

is the local density for cholesterics which satis-
fies Eq. (4. 5). q(rt) is only meant to describe lin-
ear deviations from equilibrium. Hence, in the
absence of external fields, the h ~ v,(rt) term can
be ignored. Equation (4. 7) should be regarded as
an equation relating linear changes of q from
equilibrium to linear changes in q, p, and v, from
equilibrium. AD variables not explicitly functions
of r and g are evaluated in equilibrium. %e can
now express dh3 in terms of the internal variables
883 ~ Q'~ and p:

dv„==da, +--~ d p+- q' de'. (4.4)8@) 89'o

&aa ~~ r, a ~& w, a3

Equations (4. 3) and (4. 4) express changes in v„
induced by changes in the independent variables

p, , and T. As in isotropic liquids, this is not
the most convenient set of variables to describe
static experiments or hydrodynamics. In isotropic
liquids, p. is usually eliminated in favor of the
pressure P. In addition, the most convenient
choice of densities of longitudinal extensive varia-
bles is the mass density p(rt), the enthalpy den-
sity q(rt) rather than p(rt) and the energy density
«(rt) Changes in q(rt) are equivalent to 7 times
changes in the entropy 3 divided by the volume V:
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dh3 = Kpdv~s+ dp+ dq,
ebs V ehe

ep„, T8S„, (4. 8) = —p~ gxv.
&t 2

(4. 15)

where K2= eh3/ev, s), ~. The derivatives of h~ with
respect to p and S can be expressed in terms of
derivatives of qo with respect to p and S at con-
stant h3.

dh3=Kg dvs3
&qo V Bqo

s dp—
P he,S,hs, p:

(4. 8)

Before introducing the equilibrium pressure, let
us note

BVA 8 TBSP' T Bs hap

ep, eh& Ts V ebs
VS3 I S

(4. 10)

eqo g T8 V eqo
(4 11)

h 8 ~ T ~~ h

There are various ways of determining the stress
tensor of a system. For us, the most direct way
of determining the equilibrium stress tensor for
a cholesteric is to determine Tes/et in terms of
currents of the conserved quantities via Eq. (4. 6)
and to require that this quantity be zero in the ab-
sence of dissipation. The "conserved" quantities'~
are &, p, g, and v, . Their time derivatives are
gradients of currents:

Therefore

X=qop ~ v —~p Qxv+X, (4. 16)

+qopqhiViv~+ 2p~q~, qV ~ h Viv)+h VX' . (4. 17)

Hence, the reactive part of the stress tensor is

(r&&
= P6&&+qoP&kg k E&iaPa V h, (4. 18)

where the pressure P is

P= pp+ Ts- q . (4. 18)

where X' is the dissipative part of X. There are
additional reactive terms in X proportional to
higher spatial derivatives of V which are of no real
interest to us, though it is worth pointing out that
the first contribution to X from the V ~ p/qo part of
p is (1/2q, )V ~ p&(v&&v). Note that the reactive
couplings to v are consistent with invariance under
the parity transformation discussed in Sec. II.

We are now ready to return to the determination
of the equilibrium stress tensor. Using Eqs.
(4. 6), (4. 12), (4. 13), and (4. 16) and setting g,
= pv, , we obtain by standard proceduresa which are
reproduced in Appendix A

(es
Ti +V' VS = —VJ +[(Ijip+ TS —6)egg —0'gi]ViVg

8E'—-+V ~ j'=0,

—+p ~ g=0~p
Bt

t
+ v;v„=0

ev~ 0
(4. 12)

dP= pdp, +sdT -h ~ dv, , (4. 20)

o;z can be cast in a manifestly symmetric form by
integration by parts if desired. '

The pressure differential satisfies

j,'= (qe, ~+(r~, )vs+A (4. 13)

where j,"is the dissipative part of the energy cur-
rent. We can also determine the coefficient cou-
pling X to v, by Galilean and rotational invariance
arguments. Consider a coordinate system moving
with velocity —v relative to the lab frame. Call
this the prime system. Then r' = r+vt. Fields
evaluated at the same point have the same value
regardless of the coordinate system. Hence

0(r)=qap' r+e=e'(r')=qop' r'+0,'
(4. 14a)

qop ' vf

W (r) e@ 0

&t &t qop 'v ~ (4. 14b)

Similarly, by considering a rigid rotation about the
S-axis, we can derive

where j,' is the energy current, o, z is the stress
tensor, and X= —ee/et is the current of tile con-
served variable v„. There are reactive couplings
of j', and X to v, . By Galilean invariance, we know

Z -=o'ps= P+qohg . (4. 22)

The differential of Z is expressible solely in terms
of changes in external parameters:

dZ = pdp+sdT+qodh3 . (4. aS)

The derivative of Z with respect to v, s at constant
p and satisfies

8Z i eqp=&2 qo —p
VsS pP eP hsS-

(4. 24)

From the definition of q(rt), Eq. (4. 7), and the
expression for g, ~ just derived, we can see that
the current for q is the dissipative part of the en-

from which we obtain with the aid of Eqs (4. 10).
and (4. 11)

8P l8P I 9qp (4. 21)
evs3

i p, 8 ~~ h3, ~

The analysis of the mode structure for k in the
three direction is simplified by the introduction of
a special symbol for the 3-3 component of the stress
tensor:
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ergy current

sq(rt)
8t

+V ~
I5 P (4. 25)

q(rt) = ~(rt)- [(q+ I')/p] p(rt) . (4. 28)

Before closing this section, let us emphasize that
the elastic constant K2 appearing in the Frank free
energy is just the derivative of hs with respect to
v,4 at constant density and temperature, Sk, /Sv, ~ ~, r.
We have introduced symbols for derivatives of hs
with respect to v,s with other variables held con-
stant

Furthermore, ignoring terms of order h, q assumes
the same form as in an isotopic fluid

ep—= —pV ~ v
et (5. 8a)

o

et gpP~ V ' h+ E'~ „V V ' h+&~&~~V~V v

(5.8b)
= K')~V(V~ T, (5.8c)

cholesteric with a temperature gradient along its
pitch axis would appear to rotate. This is a highly
improbable behavior and to the author's knowledge
has not been observed.

We are now in a position to write down the lin-
earized hydrodynamical equations for all of the
conserved variables:

ebs2-
~&ss c,r

800=Z, 1-qo p
ep s, r

(4. aS)

V. DISSIPATIVE COEFFICIENTS AND MODE STRUCTURE

The reactive parts of the various currents have
been determined in the previous section. The dis-
sipative parts are again determined with the aid
of the linearized entropy production equation

T —+V vs+ —j = —0 .V v -j —XV ~ h.~S 1.„ ~ &6 V4~
et ij f j f z

(5. 1)
The constitutive relations for the dissipative cur-
rents are therefore

X'= —(1/y)v. h,
~ /8j] = —K]yVyT,

t
c]g = —

v)gyes Vgvy ~

where

(5. 2)

(5.'8)

(5. 4)

&)y —«)P] Pg+&i&g; (5. 5)

v) j»vi)vK = 2v2A&~ + 2(vg —v2) [p( p)) A4~ +p~ pk A» ]
0 0 0 0

+2(vq+vz —2v~) p, p&(p4A» p, )+(v4 —va)5, &A»

+ (v5 —v4+ v2) [5,y p, prA»+ p& pyAaa],
(5. 8)

where Q, ~= 5„.—p, p,. and A„=-', (v, v;+v~v, ).
is the thermal conductivity tensor and v, ~» the
viscosity tensor. Positivity of entropy production
implies

Kg'=, IC2 = = . (4. 27)
~&ss p, s ~~ss p, , r &ss I, r

In the next Sec. V it will be useful to have a symbol
for yet another derivative

""=v, (-q,p' ~ v+-,'P (vxi)+ —v h). (6.8d)
y

For some purposes, it is more convenient to
eliminate a gradient from E(l. (5. 8d):

g„= (1/k)(g, k, +g,k,),
g, = (1/k)(-g, k, +g,k, ) .

(5. 11)

g )(k i ) is the longitudinal part of g and satisfies
t'p(kf) =kg„(kf) g,(kg) i.s always perpendicular to
k in the 1-3 plane.

For linear deviations from equilibrium any of
the external variables P, Z, T, and h, can be ex-
pressed in terms of the internal variables p, q,
and v„. Let B(k, f) be one of the external vari-
ables; then

—'= —q()p' v+ —,'p' (vxv) ——k (5.8)y"
where k, = —V h. The p ~ (V&v) and 4;„,p,V,V ~ 6
terms in E(ls. (5.8) will be neglected in this section
because they contribute terms of higher order in P
to the mode frequencies. To obtain the mode struc-
ture for cholesterics, we follow the standard pro-
cedure of taking the Laplace transform in time and
Fourier transform in space of Eq. (5.8). Let
A(rt) be any variable; then

A(Q)= fd'~ f ate "'" "'A(rt-) . (5. 10)
0

P is assumed to have a small imaginary part to
insure convergence. Also, we will set A(R, t=0)
=A(k). The most convenient set of variables for
analyzing E(l. (5.8) is p(k, f), q(kg), g2(k, f),
g,(kf), g„(kg), and v, (kg). As usual, k lies in the
1-3 plane and

0, ~,&O, y&0, v4(2vg+v2)&(vgv4)

va &0 vs& 0 v4&0, 2(vg+vg) v4+va&0 ~

(5. 7)
8B V &B

&(k&) = — p(kt). ——
~p sv T 8&

There is no term in X' proportional to qop ~ V T
because, if there were, 8&/Btwouldbe nonzeroina
constant temperature gradient. In other words, a

eB
+

P'g 8
v., (kt) . (5.12)

h& is not coupled to p and q to zero order in k so



HYDRODYNAMICS OF CHOLESTERIC LIQUID CRYSTALS 463

that it can be expressed simply in terms of v, &{kf):

h, (kC) =K, (k) ~„(R) . (s. 13)

g(kg) = pv(kg),

g(k) = pv(k) .
(S. ISa)

(5. 15b)

p(k) = '-'-» a, T
5P(k) + sr(k)+ p sh, (k),

Bhs P T

(5. 14a)

q(k) = ———T 83
V BP ~T

sP(k) +— 5 r(k)
h, T

+— she(k), (5. 14b)
V Bh3 P T

5P(k)+",,'h, T h, P

e„(k)= —
(~)

sh, (k) .

5 r(k)+= sh, (k),
2

(5. 14c)

(S. 14d)

The momentum density is always linearly related
to the velocity

For variables characterizing initial conditions, it
is convenient to use the external variables P(k),
r(k), and h(k):

The dynamical equations (5. 8) plus Eqs. (5. 12),
(5. 13), and (5. 15) relating internal to external vari
ables completely define the hydrodynamical mode
structure for cholesteric liquid crystals. There
are five independent modes. The mode associated
with g2 decouples from all of the rest,

[-iI + Da(k)k']g, (k, f) = pv2(k& ), (5. 16)
where

D~(k) = (1/pk')((, k, '+ v,k,') . (s. Iv)

The other four modes are all coupled together for
general direction of propagation k, making a deter-
mination of the eigenfrequencies extremely difficult.
We will content ourselves with an examination of
the mode structure in the absence of damping for
general k and in the presence of damping for k
along the 1 and 3 directions. The mode equations
in the absence of damping are

~
2 2k2 ~ 9'o

k 28

hy3

t qp kg/pk —(k,/k) q()/p

—iqp kBE (k)+ikgk Kg p
2 ~ 89'o

Bp a, g,

qo ki/k

—if

g'(k)
e(kt. )

ig sp(k)

pv, (k)

() 8 (k) + (iq, kz/pl')

lip�

(k) f
(5. 18)

(s. 20)

",(k)k ="'"' —" '.
p k

(S. 22b)

Terms of higher order in qoE'/pc k -10 were

where
E (k) = K2'ks +K,(k) kg (s. 18)

8P
co=

8P Iqg3

and where we used

eh~ 1 sP K/ Bqo

'

3 ~ +s3 P s3 i e$ P ~3&$

There are two propagating modes in Eq. (5. 18):
one longitudinal sound mode and one coupled O-g,
mode with velocities

{)=c k = co+
k k4

— 2 Q'o

P a, ,g&
(S. 22a)

I

neglected in these equations. Note that the velocity
of longitudinal sound is anisotropic with the differ-
ence in velocity between the 3 and 1 directions being

89'o

Since K,(k) is proportional to k for small k, the
transverse mode is soundlike with c,k -k only for
k, -k~ (i. e., for directions of propagation at 45' to
the axes). For k, =-0, we have c,k'-k, ', and as
we shall see later, the mode is dominated by damp-
ing. For k, =0, we have c', k'= 0 and the mode is
purely diffusive. If K, were proportional to a con-
stant for small k, then the shear wave would prop-
agate for k along the l-axis.

When k3= 0, the p-q modes decouple from the g,-
v, q modes (v,~ does not enter the mode structure
along the 1-direction). We have

r V BT-sf+ tc — — '

kgT 83'

V BP
T BS p„

2 BT
Kk

"s~3

—c()kg +iD„(kg) kg p(kg t)

&s()'x) I

(if —D„kg ) Sp(kg

(s. 23}
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I', = (K/cl, „)k,', (5. 24a)

where D„(k,) = (v, + v4)/p. This yields a damped
longitudinal sound and thermal diffusion mode just
as in an isotropic fluid with widths I', and 1"

~ of the
two modes given by

I' " —17 1 + l
p cpv,

(5. 24b)

where c» and cp are, respectively, the specific
heats per unit volume at constant (I', v, ) and (p, 3),).

gJ vs) sub-block is

(-i&+(vs/»kl' eo(&&qo)kl' ) ( g.(k, 0) l ( p, (k )

kl 'Io/p i~+ (Kj/yqo) kl f l sk)1 (kl k ~)) l [I/K&(kl)l kl(kl)/I
(5. 25)

If we assume as usual that K,p/y «1, the two
modes are readily found to be

z(v, /p) k,'

gs
——i —,

' (K, /vs) kl

(5. 26a)

(5. 26b)

Both of these modes are purely diffusive. Note

[zf+(v3/p)ksjg, (kst)=pv, (k3)

The p, q, and v,3 modes are all coupled:

(5. 27)

the striking absence of the coefficient y from these
modes.

%hen k&=0, the g, mode decouples from the
others:

V &T
i&+ ~&3 T

BQ

T

1 V &h3

y T

9T
Kk3

Bp

g2 p 2 ig
II p 2

1 ah3 ~2 i&q
'Y ~p p

9T
Vk3

~~s3

BZ
3Bg~

h3—zg+ — -- 3

Bgs3

q(ks g)

p(ks&)

&.3(ks &)

kk(k)
~~

Sg ——k3 5P k3

l

�km,
s(k~) ——kk(ks))

p

(5. 28)

where v„= (2vs —2v, + v4 —vs —v, ), and where all
thermodynamic derivatives appearing in the matrix
age taken with constant internal variables p, g, or
v~. The determinant 4 of this matrix determines
the mode structure and can be expressed in the
following form:

&= (8+D, ks ) (K C3 k3 +ZDlk3 ) ( f lD+g ksks),
(5. 29)

where c3 is the sound velocity

C 8 9P s, vs

z2' q, eq0

z''
= C2 + 2 q

q 2p 0

p ~p q, s
(5. 30)

y S(T, Z, ks) (5. 3la)

A straightforward but tedious exercise in the manip-
ulation of Jacobians shows

V &T&, +D„
s3 T Q$

~g BP q ep

1 h q, ep
+ — 1 —— I, (5. 3lb)

~Us3 C, 3 P ~s3 g, g)

&T 1 ~h3 v„Da+ D„+D + +88 „y 8&~ p
(5. 31c)

Equations (5. 31) can easily be solved for D, , D, ,
and D„,s. The solutions simplify greatly if K/
c~„, »K'3/y, where cc„, is the specific heat per
unit volume at constant ~ and v~ . A typical value
of K is organic liquids is 3 x10 cal/sm sec/K,
and the specific heat per unit volume of PAA is
of order 2x104 erg/cm 'K, yielding K/cc„,s-6x10 4 cm /sec. Ks is of order l. 5x10 3 dyn
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(Ref. 38)andyor order 10 P (Ref. 1V),. yielding
K' Jy 5 &&10 cm /sec. It is therefore, reason-
able to expect the above inequality to hold in
cholesterics, in which case

a
P ~Vs' ' E, X' „

(5. 32a)

itl ( ~g sp
~ ~g ep

CEo P 8~@8 E T P eV~3 E g

eo sp
V3 E I P ~ 3 ~ES)

-1
1 —— —

i . (5. 32b)
sv, s c,r p»gg c,r

VI. MICROSCOPIC VARIABLES AND CORRELATION
FUNCTIONS

where E=(K) = Trois the energy of the system.
ln Eq. (6. 2), we have chosen not to make a nota-

In previous sections, we have discussed choles-
teric liquid crystals from a basically phenomeno-
logical point of view. We started from a phenom-
enological free energy expressed in terms of
gradients of the director n. This determined the
additional variable which would appear in the mac-
roscopic hydrodynamics discussed in Secs. IV and
V. In this section, we will discuss cholesterics
from R more microscopic point of view. We will
derive the entropy relation [Eq. (4. 6)] from a den-
sity matrix, and discuss what the hydrodynamical
equations can tell us about the correlation functions
Qf microscopic VRr1Rbles with pRrtlculRr emphasis
on the liquid-crystal order parameter. We will
not, however, attempt in any way to perform a
first-principles calculation of the properties of
the cholesteric state.

The equilibrium density matrix & for a liquid
crystal in an external field coupling to the order
parameter is equal to

exp[- P[tC —P v —tLmN —f d r Q„(r)H,~]I, (6.1)

where p is the inverse temperature, X the Hamil-
tonian, P the total momentum operator fd r f(r),
N the number operator (1/m) fd r p(r), and Ho the
external field coupling to Q,&(rt). Hq~! s usually
assumed to result from Rn external magnetic field
coupling to the anistropic part of the polarizability
of the liquid-crystal molecules. In this case II,

&

= &('p/m)&, H~H& = 2 X,H&H„where H, is the ex-
ternal magnetic field, &, the anistropic polariz-
ability, and g the susceptibility. Defining II' to
be —ln TrX), we find

dyt =mp mNd(pt ) —f d'~-(Q&, (r)) 6(pH~, (r))

—P ~ d(Pv), (6 2)

G( p, T, (Q;)))= TW +fd x(Q,q(r))H, (Jr)

dG = —s dT —mNd p +fd w HU(r) 6( Q,~ (r))

(6. 5)

6(Q,&(r)) contains in it variations of the five inde-
pendent variables describing a symmetric trace-
less tensor. We have taken three of these variable
to be the magnitude of the order parameter 8 Rnd
the two independent components of the unit di-
rector n(r). The two independent components
associated with a possible biaxial term in (Q,&(r))
are of no interest to us and will be ignored. G
can, therefore, be expressed as a functional of
S and n(r), or alternatively as a functional of S,
g(r), and p(r):

dG = —sdT' —mNd p. +fd'~a, (r) $6(r)+ fd'~h, (r)&g(r)

+ f d'~h~(r) 6p (r) . (6. V)

The variations of g(r) and p&(r) can be expressed
in terms of the variables &(r), e~(r), and eq(r) «
Eq. (3.21). However„8(r) is the only indepen-
dent variable of the three. It is the only variable
which exhibited a divergent Rutocorrelation func-
tion. We therefore argue that its fluctuations can
persist for long times whereas the fluctuations in
the other nonconserved variables die off in micro-
scopic times. This is exactly analogous to the
argument that fluctuations in the phase of a super-
Quids~ or the transverse magnetization~~ in R fer-
romagnet persist for long times, whereas fluc-
tuations in the condensate density no or magnetiza-
tion Mo die off rapidly. In other words, if we
wait for long enough times after shutting off ex-
ternal disturbances, Mo in R magnet, no in a super-
Quid, and S, O„and 63 in a cholesteric wiD reach
equilibrium values determined by the va.lues of the
conserved variables. These variables shouM not,
therefore, be regarded as independent thermo-
dynamic variables whereas those with fluctuations
which persist for long times should. To eliminate
8, e~, Rnd 83 from our equations, we minimize
Eq. (6. 6) with respect to them, i. e. , we set h„
A, , and h~ = 0. As desired, the only variable
from (Q;~(r)) which remains is g(r), which can be
expressed in terms of v, by integration by parts.
The entropy equation then becomes

Td8 =d& —pdp —v ~ dg —h dv (6. 6)

tional distinction between the operators X and P
and their equilibrium expectation values. The
entropy is

, S = p[E —pmN —P ~ v —f ds~Q„(r)HO(r)] —~ (6. 3)

and its differential satisfies

ds = p[dE —pmdN —v ~ dP —f d rH, &(r)&(Q~&(r)) ]
(6.4)

The Gibbs energy used in Sec. III in terms of these
VRr1Rbles 18
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(6.9)

where g(t —f') is the Heaviside unit step function

which is just the equation introduced in Sec. IV.
Linear response functions have proven very

useful in describing the interaction of systems
with small external probes. ' In classical sys-
tem the causal response function of two variables
A and 8 is

X&e(r r, «') =f'0(f - f') XL'a(», «')

and

X„",(r r', «') = —.'z ([&(rf), B(r'f')] &, (6. 10)

where [X, a] is the poisson bracket of X with a.
A and 8 are of course expressed in term of the
dynamical variables of the system. We will be par-
ticularly interested in the frequency- and wave-
number-dependent form on these response functions:

X„",(k&u)=(1/V) fd'r fd'~' f„dfe '"'"-~''"'"-"X„",(rr', «'), (6. 11a)

(6. 11b)

In translationally invariant systems, X&'s(k&u) de-
termines X„"~(rr'«') completely. In periodic sys-
tems such as cholesteric, off-diagonal matrix ele-
ments with different reciprocal lattice vectors are
also needed for a complete specification of
X'„'~(r r'«'). However, the hydrodynamical behavior
of variables in cholesterics is restricted to the first

Brillouin zone. Fluctuations in off-diagonal compo-
nents and higher Brillouin zones die off in micro-
scopic times. Therefore, in the context of hydro-
dynamics, we may use X„"~(k&u) without ambiguity.
X„"~(k&u) is related by the fluctuation-dissipation
theorem to the correlation function

f„,(k~)=(i/V) fd~d~' fdfe" ""'"""-&([~(rf)—&~(~f) &][B(r'f') —&B(r'f')&]}&. (6. 12)

In classical systems, this relation is written sim-
ply

fgs(k~) = (&s&/~) Xgs(») ~ (6. 13)

where k~ is the Boltzmann constant.
The variables A and B which are of interest to

us are the "conserved" quantities p(rt), g(rt),
q(rt), and v, (rt). For linear deviations from equi-
librium, q(rf) is givenby Eq. (4. 32) v, (rt) is
~[/(rt)+ ~ ~ p(rt)/qa] =08(rt), where for linear
deviations from equilibrium

((rf) = (I/~) s~(r) [p' n'(r)]gQ'~(rf) (6. 14a)

p, (rt) = —(I/S) n', (r) n, (r)P', Q»( )

—(I/&) [p & n'(r)]f[P'x n (r)]OP'l4at(rf)

(s. i4b)
where Q»(rt)=g, (px v"), (p~&&T"), S(r —r (f)).
Both P(rf) and p, (rt) are functions of the dynamical
variables of the system as required. Since we will.
only use g($f) and p, (rt) in discussion of linear re
sponse functions, the presence of the equilibrium
directors n ('P) and p are in their definitions should
cause no concern. In fact the equilibrium conden-
sate wave function appears in a similar way in the
definition of v, in a suyerfluid. 30 Note that both
(8(rf) ) and (08(rt)& are zero in equilibrium. This
explains our reluctance to identify v» with qo in
our treatment of hydrodynamics. However, small
deviations of 8(ri) from equilibrium do satisfy

Eq. (4. 1), i.e. ,

d5» = v
~ d (8& = p( dqg+ v) dQ

Hence, even though v„ is zero in equilibrium de-
viations of e,s from equilibrium are equivalent to
deviations of qo from equilibrium.

Following the procedure developed by Kadanoff
and Martin, 39 we disturb the system in such a way
that for all times less than zero, the system is in
ocal thermodynamic equilibrium:

6X (f) = —f d'~([»(r)/T][e(rf) —pp(rt)]

+ SP(R P(rf)'+ sv(~) g(rf)
+ SK(r) ~ v, (rf)}e", f ( 0

= 0, t&0. (6. 15)

It is more convenient to express this disturbance
in terms of P, 7 rather than T, p, :

sx(t) = —fd'~([5r(r)/r] q(rt)+ [sP(r)/(p&] p(rt)

+ sv(r) ~ g(rt)+ Sh ~ v, (rt)}e", t&O

(s. is)

The change induced by 5K(t) on any variable A(rt)
for t&0 is

6&~( f)&= -- »(). 6I()~.r, v sf' r, h, ~
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[&~(k&) -X~ (k)]. (6. 19)

The correlation function I„B (k& ) is easily obtained

+, 5v(r)+ - 5h(r), (6. 17)
s(A&

I r,s, h eh r

and its Laplace transform is

A(k, g)=L„, "("),L„,(kg)
"'"'

p

+ I.„;(k,k) ~ 5v(%)+ L„„- (k, r) ~ 5h(k), (6. 18)

where the memory function L~ (kf) is
II

)(~B(k(0)

, ' mi ~(~-g)

from L~ (kg):

I~(k, ~) = skBT[L~(k, a+it)+L~(k, o, —ie)],
(6. 20)

where & is an infinitesimal.
Equations (6. 18) (5. 8), (5. 12), (5. 14), and (5. 15)

completely determine I.„B(kf) and thus I~(k~) in
the hydrodynamic limit for A, B=p, p, g, or v, .
I~, (ko') has the same form as the transverse
memory function in an isotropic fluid. Similarly,
I», I«, and I» for k along the 1-direction and Is~,
for k along the 3-direction have the same form as
in an isotropic fluid. The other variables are
mixed in a nontrivial manner. We will consider
only I„„(k,&) and I„„(k&s), when Ks'ce„/ay
«1. We have

2

(y k+TQO
Vsyv~yl 1 J g y Z

1

(I7J4vs) k&

&'+ IE./4vs) ki']' (6. 21)

~Ss gs( s ) B g Io sz +
&

s &s (I1 k 2)2 &2 (D k s)s
3 v~3 3

&qo Ac & sD, kss

s, ' 8

K P 8+3 g P] P 883 g3 KP 853 g3 P eg~ gg

sks qo op -'
),

&V~3 C, r P 8Z'~3 ~, r

Antiresonant terms and terms of higher order in
k' or Ks'qo'/pco' were neglected in Egs. (6. 22) and

(6. 23).
Having determined I„„and Iv 3 3

we can evalu-
ate

II,o (k")= (1/qo') I;...(k&"), (6. 24a)

I («%(a&) = (1/k ) [I„„(k(a)) 1„+„(ko)], (6. 24b)

(6. 24c)Is s= —(1/k ) (ik, I„„+iksI„,„).

Note that I« includes contributions from the
longitudinal sound and heat diffusion modes. The
variable ps(rt) is not hydrodynamical; its static
correlation function is finite at zero k and its
fluctuations die off in microscopic times. The
order-parameter correlation function can be ex-
pressed in terms of I~.~, I«, and I~ &.i J'

(I/Ss)io o (r, r', e)= [n& (r)P&], n, (r)is,s, (rr'&)n, (r ) [n„(r')P,],

—[n; (r)p&] n, (r)I~ s (rr &)[ns (r') [p xn (r )]~j,-[n, (r) [p xn (r)]jj Ios (rr'cu)n (or') [ng(r)po],

+ [n; (r) [p xn (r)&j,!«(rr'c ) {ns(r') [p xn (r')],}, , (6. 25)

where [n;(r)p, ],=n;(r)p, +p, n&(r). In Eg. (6. 25).
we have left out contributions to I, +, arising from
fluctuations in the magnitude of the order param-
eter S and in biaxial components of Qq& since they
are not hydrodynamical. Note that I o (k&)

V Icalculated from Eg. (6. 25) by

assuming'~~(s's'

o )
for A, I3=p;, g are functions only of (r —r') (i. e. ,

they do not have off-diagonal components with
higher reciprocal lattice vectors) depends only on

I~B(k~) and I~("+2go ~) and not on I„B(k~qo, ")
This is to be expected since the physical periodic-
ity of the cholesteric state is characterized by
s Q rather than Q, because of its invarianee un-
der the transformation n(r, g —n(r, z). The
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electromagnetic field couples to both p(rt) and

Q,&(rt) .Inelastic-light-scattering experiments
should, therefore, measure Ipp and Iq, &Q»
ever, a calculation of exactly what components
and k values of these correlation functions are
measured is greatly complicated by the nontrivial
nature of the eigenmodes for light propagating in
a helical structure, especially in off-axis direc-
tions. %e will leave considerations of this prob-
lem until such time as experiments warrant it.

The reactive and dissipative transport coeffi-
cients which enter the hydrodynamics of choles-
terics can be expressed in the usual way in term
of zero k and limits of correlation functions of
currents of "conserved" variables. ' ' %e will
concern ourselves here only with this type of ex-
pression for the reactive coeffici'ent coupling X
to v because it will enable us to show in Sec. VG
that the hydrodynamics we have developed satisfy
the Goldstone theorems for the cholesteric state.
v, (rt) and g(rt) have opposite time reversal prop-
erties. Changes in the current X are, therefore
reactively related to changes in v& via

~fd r'X, , (r r'w) =0 .

Using Eqs. (V. 3) and (V. 4) and the expression for
changes of Q~&(rt) in terms of changes of g(rt)
and p, ( rt), we can derive the following Goldstone
theorems:

(7 4)

lim X«~, (k&) =inc, »p«5(~),
I -0

Iim X'„', (k, ~)=tvp.'5(~),
0

where
X'„',, (k, cu) = (I/V) f d ed x' e

(7. 5b)

lim X««, (k& ) = —in@op, 5(~) .
k~0

(V. V)

Using Eq. (7. 6) the conservation law for v„
[Eq. (4. 12)] and the fact that the hydrodynamic
part of P~(r) is (1/&0} 5,& v,~(rt), one can easily
derive that for small 0

«i;«~'~ X'~„(r r' ~) (7. 6)
forA= ), P, . By similar arguments regarding
the broken translational symmetry we can show
that

d3 t & ( ))

))~~)
ds X x~«(rr ~)

5dg — 5v„jr j,'jr

(6. M)

X«),~(k, a) = (I/O'0) ~st«5 «[Xxr %~)/«+] . (7. 8)

Xx~ (k&) can be determined from the mode equa-
tions of Sec. V. The frequencies of the hydrody-
namical modes tend to zero with k. Vfe must,
therefore, have

which implies from Eq. (4. 16)
I~

l,
d~ X" „(,~)

(d
(6. 24)

xx, ~&~~
lim '~' ' =-. vA„5(&u) .

0 (d (7 9)

VII. GOLDSTONE THEORKMS

Goldstone modes are zero-frequency modes
which appear in certain correlation functions as
the results of the breaking of a continuous sym-
metry. ' In cholesteric liquid crystals, they
arise from both broken translational and rotational
symmetries. Consider the change induced in

&Q,~(r)) by an infinitesimal rigid rotation through
an angle 58,

5&Vi~(r)&= &[@u(r) I. 1& 5~

= [«~..&~e(r)&+ ~...&~,.(r)) l«. , (7. 1)

where [Q,z, I „]is the Poisson bracket of Q, &
and

I „, and T is the total angular momentum operator

K= fd rrxg(rt) =- f devi(rt) . (7. 2)

Equation (V. 1) can be rewritten in terms of re-
sponse functions

fd r'X" (rr'e)

=t[« .&@.g(r)&+ ey .&Q~,(r)&] (7 3)

But since T is a conserved quantity, it follows that

The integral over & of this quantity has already
been evaluated in terms of transport coefficients
in Sec. VI. Hence by Eq. (6. 2V), A must be

0
qoP„. Plugging this into Eq. (V. 9), we obtain

lim X«, , (ku&)=im, »p«'5(cu} .
0

(V. 10}

VIII. CAPILLARY FLOW

The main purpose of this section is to show that
the hydrodynamical equations we have derived can
be used to describe macroscopic flow as well as
fluctuations. %e will consider flow of a choles-
teric liquid crystal in a cylindrical capillary of
radius R. This is the experimental geometry em-
ployed by Porter, Barrall, and Johnson. ' The
results we obtain are essentially the same as those
obtained by Helfrich using a somewhat different
approach.

This is exactly the form of the correlation function
predicted by the Goldstone argument [Eq. (V. 5a)].
Verification of Eq. (7. 5b) is also straightforward
but requires that we retain the p ~ 9~v term in
the expression for X [Eq. (4. 16)]. Similarly,
using P(rt)= (1/V ) V. v, (rt) and Eq. (6. 27), we
can show that Eq. (V. '7) is satisfied.
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2 Ii (qR)
qR Io (qR)

(8. 4)

FIG. 4. Schematic diagram of a cholesteric liquid crys-
tal in a cylindrical capillary with pitch axis along the cy-
linder. Note how the molecules must be attached to the
walls at varying angles in order to obtain this configuration.

There are two interesting limits to this expression.
When qR «1, i. e. , 'when the radius of the capillary
is much smaller than the pitch, Poiseuille flow is
closely approximated and

Q- (~/gvo L)R4 (8 5)

d ( dv3
v —

l
r + qoho(r) =-&' i A' (8. la)

dv~ 1 1 dhq
vo — r —~v~ +2 d

=0, (8 lb)&' &' t' 2 dt'

1 1

2 t' A' (rvo) —qo vo ——ho= 0,
y

(8. lc)

where ~ is the pressure drop and I. is the length
of the capillary. The boundary conditions are that
vo(R)= 0, v~(R)=0, P'(R) = 0 (P' is hidden in ho),
and that all of these variables be finite at the ori-
gin. The solution to Eq. (8. 1) subject to these
boundary conditions is straightforward. ho(r) can
be eliminated from Eqs. (8. la) and (8. lb) by using
Eq. (8. 1c). The resulting set of linear coupled
equations for v, (r) and v, (r) is easily solved. The
solution for vo(r) is

vo(r) = vo[1 Io(qr)/Io(qR)], — (8. 2)

where Io is the zeroth-order Bessel function of
imaginary arguments

and
vs v2+ 4&

1 y / 2 I&(qR)
voLq 4 vo lk qR Io(qR)

(8. 3)
Thus the total rate of flow out of the capillary is

We will assume that the pitch axis remains
parallel to the capillary axis (Fig. 4) and that the
helical phase remains constant along the walls of
the capillary, i. e. , P'(R)=0. This is a somewhat
delicate boundary condition to achieve since the
molecules want to align either parallel or perpen-
dicular to the surface rather than of varying angles
as is required if there is to be cholesteric order
in cylindrical cavity. For a further discussion
of this problem, see Ref. 33. We will also assume
that the flow takes place at uniform temperature
and with a constant pressure gradient along the
capillary axis. In steady state, all variables de-
pend only on the radial coordinate r Let. vo(r)
be the aximuthal velocity and vo(r) the component
of velocity parallel to the pitch axis. The steady-
state equation for vo(r), vo(r), and P'(r) are, from
Eq. (5. 8), given by

Q- (mM/yLqo) R (8. 6)

In this limit, the total flow is proportional to R
rather than to R . If Poisieulle flow is assumed,
this leads to a large effective viscosity

1 2
Reft= s y(qoR) (8. 7)

If R is of the order of a millimeter, g,« is the or-
der of 10 y, which is the order of magnitude of the
effective viscosity measured by Porter eI; al.

Note that p is the only "viscosity" that appears
in the total flow formula for qR»1. In this limit,
the amount of flow is controlled by the forces
attempting to maintain the cholesteric order. In
the opposite limit qR «1, v3 is the only viscosity
that appears in the flow formula. Here, it is the
forces that seek to minimize shear stresses that
control the flow.
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APPENDIX A

In this appendix, we will derive the entropy pro-
duction equations (4. 17) and (5. 1) of the text. In
this derivation, we will not consider contributions
from terms quadratic in v. From Eq. (4. 6), we
can write

p g& ~vs&T —= ——p, ——v ~ h; ', (Al)—9t 8g 8t ' Bt ' 9g

TV& s = V& E —p V& p —v& V&g& -h& V, v» . (A2)

To obtain equations (4. 17) and (5. 1), we express
the time derivatives in Eq. (Al) in terms of cur-
rents via the conservation laws Eq. (4. 12). Be-
fore doing this, however, note thatsince inequilib-
rium v„.= qoP, , Eq. (4. 16) for the current of v,
can be written

~0 /X= v, ~ v ——,p . Vxv++ (A3)

In this limit, the restoring forces of the cholesteric
state play a small role and the flow is like that of
an isotropic fluid. The opposite limit, qR» 1, pro-
duces significant differences from Poiseieulle flow
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Using Eqs. (4. 12), (4. 13), and (A3), we can write
Eq. (Al) as

ST —= [(p p —s) 5,&
—o&,]V~ v~ —v. Vs+ pv ~ Vp

Bg'

0 1 0+ h& qpPy Vg vg+ kg vg V) v,) —g k] Egg)Pg Vg V~ v g

-K. VX' —V. )" . (A4)

Nptjng tbsp, t k&v& V, v,&=h&v& V&v, &
since v, &

is a
longitudinal vector, and using Eq. (A2) to deter-
mine Tv ~ Vs, we can express Eq. (A4) as

T = +V ~ vs+ p ~ Vgv
)

V ' T + [() p+ Ts —s) 5(g — Jg] V( og

+ Copyh& V& op+ ap& &&qz V h V& o&+ 5 VX' . (A5)

Since both 5 and V, v& are zero in equilibrium, the
linearized from of Eq. (A5) is just Eq. (4. 1V) of
the text. With o, &

- o,&+ o,'&, Eq. (A5) becomes

t'Bs .„V)T
T~ +V Q = -j", ' -oI~V, v =X'V ~ h (A6)

where

Q = v+ (1/ T) j"+h p
e

~ V x v —h X ' . (AV)

The linearized form of Eq. (A6) is Eq. (5.1)of the text.

Work supported by National Science Foundation under.
Grant No. GP-27267.

~Present address: Department of Physics, University
of Pennsylvania, Philadelphia, Pa. 19104.

I. B. Chistyakov, Usp. Fiz. Nauk 89, 563 (1966) [Sov.
Phys. Usp. 9, 551 (1967)t'.

George W. Gray, Molecular Structure and the Proper-
ties of Liquid Crystals (Academic, New York, 1962).

Liquid Crystals and Ordered I'luids, edited by J. F.
Johnson and R. S. Porter'((Plenum, New York, 1970).

4Glen H. Brown, J. W. Doane, and Vernon D. Neff,
A Review of t'he Structure and Properties of Liquid Crys-
tals (Chemical Rubber Company, Cleveland, 1971).

5Mol. Cryst. Liquid Cryst. ~12 (1971); 13 (1971).
6Mol. Cryst. Liquid Cryst. 7 (1969); 8 (1971).
J. de Phys. 30, Colloque C4 (1969).

~G. Friedel, Ann. Phys. (Paris) 19, 273 (1922).
~L. Tisza, Nature 141, 913 (1938).
' L. Landau, J. Phys. USSR 5, 71 (1941); 11, 91 (1947).
~~I. M. Khalantnikov, Introduction to the Theory of Su-

perfluidity (Benjamin, New York, 1965).
B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188,

898 (1969).
' T. C. Lubensky, Ann. Phys. (N. Y. ) 64, 424 (1971).
J. L. Ericksen, Arch. Ratl. Mech. Anal. 4, 231

(1960); 9, 371 (1962).
'~F. M. Leslie, Arch. Ratl. Mech. Anal. 28, 265 (1,968).
' Dieter Forster, Tom C. Lubensky, Paul C. Martin,

Jack Swift, and P. S. Pershan, Phys. Rev. Letters ~26

1016 (1971). The choice of the stress tensor is not unique.
In particular, any tensor To which satisfies V&T&&=0 can
be added to o;& without changing the physical quantity
~g;f~t. If 0'~& contains an antisymmetric part proportional to
a spatial derivative, then it is possible to find a To such
that o&&+T&& is symmetric. Using h; =p~&(po '5)+hf, where

hg =;th) = 6),VP~(V) S, V;V)s, =Vga)+V+() —V(g;„,T= T =T
and

V)V~v ) = ~gal (V/;) —V)A]@),
where

A;g = 2(V;vg+ Vgv;),

it is possible after integrations by parts to cast the reac-
tive part of K ' VX in the form

gapped(p~
' h) V)vy+ qo(hype +pghg —6)~qopo ' VI('~e) Vge

0——,'P, (~„~VP, +~,„,VP~) V,v
This leads to a symmetric stress tensor. V&0'&& is, how-
ever, the same as that computed using Eq. (4. 18).

~ Group d'Etudes des Cristaux Liquides (Orsay), J.
Chem. Phys. ~51 816 (1968). .

O. Parodi, J. Phys. Paris 31, 581 (1970).

' F. Jahnig and H. Schmidt, Ann. Phys. {N.Y. ) (to be
published).

20F. C. Frank, Discussions Faraday Soc. 25, 19 (1958).
L. Q Landau and E. M. Lxfshitz, Statsstecal Physics, 2nd

ed. (Addison-Wesley, Reading, Mass. , 1969), pp. 401-404.
N. D. Mermin and H. Wagner, Phys. Rev. Letters

17, 1133 (1966).
3P. Hohenberg, Phys. Rev. 158, 383 (1967).

24H. Mori, Progr. Theoret. Phys. (Kyoto) ~33 423 (1965).
L. D. Landau and E. M. Lifshitz, I'luid Mechanics

(Addison-Wesley, Reading, Mass. , 1959).
Changpeng Fan, Lorenz Kramer, and Michael J. Ste-

phen, Phys. Rev. A2, 2482 (1971).
2'F. M. Leslie, Mol. Cryst. Liquid Cryst. ~7 401 (1969).
28F Brochard, J. 'phys. Paris 32, 685 (1971).
29Leo P. Kadanoff and Paul C. Martin, Ann. Phys.

(N. Y.) 24, 419 (1963).
3 P. C. Hohenberg and P. C. Martin, Ann. Phys. (N. Y.)

34, 291 (1965).
J. Goldstone, Nuovo Cimento 19, 154 (1961).

32A. Katz and Y. Frishman, Nuovo Cimento 42A, 1009
{1966).

33W. Helfrich, Phys. Rev. Letters ~23 372 (1969); in
Ref. 3, pp. 405-418.

T. C. Lubensky, Phys. Rev. A 2, 2497 (1970).
P. G. de Gennes, Phys. Letters 30A, 454 (1969).

36H. Zocher, Trans. Faraday Soc. 29, 915 (1933).
3'C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).

A. Saupe, Z. Naturforsch. 15a, 815 (1960).
39This analysis was suggested by Leo Kadanoff.

P. G. deGennes, Mol. Cryst. Liquid Cryst. 7, 325 (1969).
4~P. Pincus, Compt. Rend. 267B, 1290 (1969).
2See, for example, R. C. Martin, in Many-Body Phys-

ics, edited by C. de Witt and R. Balian (Gordon and Breach,
New York, 1968), pp. 37—136.

43P. M. Morse and H. Fresbach, Methods of Theoreti-
cal Physics (McGraw-Hill, New York, 1953), p. 555ff.

This was pointed out by P. G. de Gennes.
45J. Jenkins, doctoral thesis (Johns Hopkins University,

1969).
handbook of Chemistry and Physics, 50th ed. (Chem-

ical Rubber Company, Cleveland, 1969), p. E-4.
Richard Alban, Mol. Cryst. Liquid Cryst. 10, 24 (1970);

H. Arnold, Z. Phys. Chem. Leipzig 226, 146 (1964).
This point was emphasized by Peter Pershan.
R. Kubo, J. Phys. Soc. Japan 12, 570 {1957). Seealso

R. Kubo, in Lectures in Theor etica/ Physics (Interscience,
New York, 1959), Vol. I, Chap. 4.

R. S. Porter, E. M. Barrall, II, and J. F. Johnson,
J. Chem. Phy. 45, 1452 (1966).


