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Accurate Perturbative Calculations for the Lithium Atom Based on the Hartree H,T
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Perturbative calculations are carried out to obtain eigenvalues of the four lowest-lying eigen-
functions of the Hartree Hamiltonian for the Li atom through third order in electron correlation.
The expansions are all reasonably convergent and the theoretical analysis concerning the possi-
bility of using zeroth-order functions which do not possess the exact permutational symmetry is

confirmed in this particular case,

I. INTRODUCTION

The initial proposal of Hartree® describing the
atomic orbital motion of each electron in the
average field of the remaining electrons was early
modified to the now widely used Hartree-Fock
method? ? in order to include electron spin and the
antisymmetry required by Fermi-Dirac statistics.
It is, however, possible to use the original Hartree
product as the zeroth-order function in a perturba-
tive calculation for a spatial eigenfunction of the
exact Hamiltonian from which the exact wave func-
tion can be obtained by projection. The procedure,
which has been described by Musher and Silbey, *°
relies on the fact that the Hartree product function
&, is a nondegenerate spatial eigenfunction of an
H, which is not symmetric in all the electron in-
dices, i.e.,

[H,, P]#0 all PeS, ,

so that the various permutations of &, need not be
mixed in zeroth order. Its utility rests on the
supposition that perturbation theory can, neverthe-
less, be relatively rapidly convergent, and that the
correct permutation symmetry, whichis necessarily
built in as the expansion converges, takes care of
itself. The present study performs the first cal-
culation using this procedure for a many-electron
(i.e., N>2) system. Studies on the electromag-
netic properties of the hydrogen molecule®~® and
on the lowest excited states of the He atom® have
shown that for two-electron systems such con-
vergence is indeed obtained.

II. PROCEDURE

The Hartree spatial orbital product for the
ground-state Li atom is

®o=15,(1) 15,(2)25,(3)=a(1) a(2) b(3) , (1)

where the orbitals @ and b are the lowest and sec-
ond lowest self-consistent eigenfunctions, respec-

8

tively, of the equations

[7,() - € la,(3)=0, i=1,2 (2a)
and

[7,(3)-€21b,(3)=0. (2b)
The Hamiltonians are defined by

ho(@)=-3VE-3/r;+V,(3), i=1,2 (3a)
and

hy(3)=~5 Vi~ 3/r3+ V,(3), (3b)
with

V@) =[-a|-a],+[-b|-0);, i=1,2 (4a)
and

V,(3)=2[ — a| - al; (4b)
constructed from the self-consistent orbitals

a=ay=1s,
and

b=by=2s, ,

so that electrons 1 and 2 are in the Coulomb field

of one 1s and one 2s electron, and electron 3 is in

the Coulomb field of two 1s electrons; there are

no exchange fields in the definition of the problem.
The Hartree function @, is an eigenfunction of the

zeroth-order Hamiltonian

Hy=h,(1)+ 1, (2)+hy(3) » (5)

which is symmetric under the permutation P,, but
has no symmetry under any of the four remaining
nontrivial permutations of S;. This H, generates

a complete set of orthogonal eigenfunctions

a;(1) a;(2) b,(3) all of which can be used as zeroth-
order eigenfunctions in a perturbative scheme. We
thus consider here not only the perturbative expan-
sion based on the Hartree function (1) but also the
perturbative expansions for three other low-lying
spatial functions. In particular we will deal with
the four perturbation-theoretic expansions
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o153 =23 (1s%)+ 201 (1sH+... , (6a)
33(15%2s) = d21(1s%25) + 03 (152 25)++++ ,  (6b)
32(1s%2s) = 32%(1522s) + 2 0%2(1s225) ++-- ,  (Bc)

and

i(1s%2s)= Bi (1% 2s) + A2 (1s% 28) + o -+, (6d)
where

M 1s%) = a,(1) 2,(2) 5,(3) , (7a)

32} (1s%2s)=a,(1) 4,(2) b,(3)=a(1) a(2) (3) , (Tb)
322152 25)=27V3(1 - Ppy) ay(1) a5(2) 5,(3) , (7c)
and

®31(1s%25) =2V 2(1+ Pyy) a, (1) a5(2) 5,(3) . (7d)

The notation, which we have attempted to make as
simple as possible despite the inherent complexity
of the problem, indicates the representations of

S; characterized by partitions [3], [2,1], and [1%],
denoted by the indices 1, 2, and 3, respectively,
which are given as superscripts on the exact func-
tions and the first superscript on the approximate
functions. The rows of the irreducible orthogonal
representation according to which the exact func-
tions are to transform are indicated by the sub-
script on the exact function and the second super-
script on the approximate functions with numbering
used earlier,’i.e., 1 refers to the unique row of
representations 1 and 3 (not used here) and 1 and

2 refer to the rows of representation 2 which are
symmetric and antisymmetric, respectively, under
Pjs. The 1s® and 1s®2s indicate the “configuration”
to which the solution belongs and are actually un-
necessary for <I>§ and <I>§, there being no solutions
of this symmetry in 1s®. Analogous expansions
can be written for the energy eigenvalues, e.g.,

E3(1s225)= B2 4 AEB 4 X2 ED 4 N ER L4 o 0h, (8)

and our calculations are carried out to the order
indicated, i.e., the eigenfunctions are calculated
through first order and the eigenvalues through
third order.

The eigenfunctions ®}(1s®) and &1 (1s?2s) being
totally symmetric in the electron indices have no
physical significance while the two eigenfunctions
&% and &2 must be combined with the conjugate spin

functions

X =x3=2"aga-paa), (92)
¥ =x2=6"%(2008- aga - paa) (9b)

to give the actual wave function for the ground state
of the Li atom

¥, o) ‘7231 30 ), (10)

assuming the appropriate phase convention. For

our purposes, however, there is no need to con-
struct the wave function ¥(r, ¢) since the electronic
Hamiltonian is spin independent.!® The two solu-
tions <I>f will therefore be degenerate even though
the calculated eigenvalues will never be exactly
equal at any finite order in the perturbation expan-
sion, and thus the expansion based on the Hartree
product 2! would have been sufficient for the
present problem if we were not interested in the
general behavior of the other solutions which should
be presented at least this once.

The perturbation-theoretic calculation is carried
out by writing the perturbation

AH =H- Hy=g,,(12)+ (1+ Py,) g,,(13) , (11)
with the pair-perturbations

2a(12)=1/r, = 5 [V,(1)+ V,(2)]
and

ga(13)=1/r;3- 5[V, (D) + v, (3)] , (12b)

which were denoted by g’ (i)’s in Ref. 4. The four
first-order functions are

@1'1(183) = U,,l,,l(IZ) b1(3) + (1 +P12) Ua1b1(13) a‘(Z) ,

(12a)

(13a)
q’%'l(lsz 2s)= Ualal(IZ) b2(3) +(1+ Plz) Ua1b2(13) 01(2) ’
(13b)
832(1s%2s) =212 (1 - P;,) Q(123) (13c)
3} (1s*25)=27/23(1+ P1,) Q(123) , (13d)
with
Q(123)= U,,l,,g(lZ) b1(3)+ 01(1) Ua2b1(23)+ Ua1b1(13)a2(2) N
(14)

where the five pair functions are solutions to two-
particle inhomogeneous partial differential equa-
tions, e.g.,

[7,(1) + 1y (2) - €2 ~ €5 1 U,10(12)

=[{ayba] gas | @1 b2) — £5(12)] a4 (1) 5(2) . (15)

The self-consistent eigenvalue equations were
solved numerically and the eigenvalues of interest
are

€}=-2.4924 ,

and

2=-1.2275, e§=-0.3221,

€ =~-0.1761 .

(The energies are given in atomic units, a.u.,
throughout the article.) Notice that the spectra of
h, and h, are very different, as expected, but that
the two 1s functions have very similar spatial be-
havior since {a;1b;)~0.98. The solution to the
two-particle equations were accomplished by par-
tial wave expansions and the numerical integration
of the resultant equations!? on a two-dimensional
grid with mesh 2=0.2 a.u. for 0 <7y, 7, <20 using
a method similar to that of Schulman and Lee. 2
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The second- and third-order energies for the
Hartree state are simple relative to the more com-
1

plicated way of treating total wave functions and
are given by

E5'={a,(1) a1(2) b5(3) | g40(12) + (1 + P1) g2(13) =EP 1| U,141(12) 55(3) + (1 + Pyp) U,155(13) a4(2) ) (16)

and

Eaz'l = (Ualal(l 2) bg(3) + (1 +P12) Ualb2(13)a1(2) |gw(12) + (1 +P12)gab(13)—E1'1| Uam1(12) ba(3)
+(1+ Pyp) Uygpa(13)a4(2)) = 2E5 {a1(1) a1(2) 5 (3) | Uy1a1(12) B5(3) + (1 + Pyy) U, 130(13) a4(2)) . (17)

A number of integral identities serve to test the
accuracy of these numerical pair functions and the
subsequent integrations. These expressions are
given in the Appendix and suggest that the numeri-
cal errors are rather small.

II. RESULTS

The “energy” eigenvalues calculated through
third order for the various solutions are presented
in Table I where, of course, the “energies” of
the symmetric solutions ®}(1s% and &1(1s%2s) are
nonphysical. As can be seen, the convergence
is relatively rapid for all of the expansions with
the E¥(1s22s) and E¥(1s%2s) rapidly approaching
each other and bracketing the exact value of
-17.47807 with errors of —0.017 or 0. 2% and
+0.009 or 0.1%, respectively. If correlation en-
ergy is defined as the difference between Eq .t
and E'? for each of these expansions then these
results give 74 and 95% of the correlation energy,
respectively. Itappears thatthe “energy” E}(15%2s)
is converging to a value higher than that for
the degenerate physical eigenvalues consistent
with the expectation from the generalized Hund’s
rule, ¥ ® although it would be desirable to have still
higher-order calculations to check this further.
The generalized Hund’s rule says, in effect, that
for several solutions belonging to a given config-
uration the “higher” the symmetry of a solution
the higher will be its eigenvalue. Thus, just as
the energy of a singlet is higher than that of a
triplet, the “energy” of a still more symmetrical
spatial function (for which there is no spin counter-
part for the construction of a wave function) will
be higher still,

I

It is anticipated that the expectation values of
the symmetry projection operators® D%; will con-
verge to unity as the perturbation expansion con-
verges, but for the Hartree problem in which we
are most interested

(%! |D% |®21)=0.662
and

(@f' +o} D 85!+ 37 1)
@5t railiag’~or")

=0.682.

It thus appears that first order is not accurate
enough to obtain any sense of this convergence,
and this is similar to the behavior noted in the
nonsymmetric calculations on the excited states

of the He atom® where it was found that smooth con-
vergence of the symmetry projectors was only ob-
tained in the high orders of the expansion. The
analogous expectation values of D%, in zeroth and
first order are 0.995 and 1. 085, respectively.
These latter values are strikingly better than the
Hartree ones, since a significant amount of the
correct symmetry is already built into the problem
in zeroth order due to the 2°'/%1 - P,,) in the
1s22s solution.

The present calculation provides an energy for
the Li atom of ~ 17,4610 based on introducing elec-
tron correlation perturbatively into the Hartree
simple-product spatial function. The calculations
on the other sclutions show that the arguments on
the convergence of the set of expansions based on
nonsymmetrical zeroth-order spatials are, at
least, not contradicted in this one simple exam-
ple. The perturbed Hartree calculation is not in-
tended to compete with the various more accurate

n
TABLE 1. Perturbation “energies” of lithium for several spatial eignefunctions. E™ =}, (E;, energies in atomic
units (a.u.).

®1(1s%) ®%(1s%25) % (1s%25) 3l(1s%25)
n E, EW E, Em? E, gm?2 E, Em
0 —-6.2124 -6,2124 -~5,1610 ~5.1610 —4,0420 —4, 0420 —4,0420 -4, 0420
1 —4,5767 —10,7891 -2,2513 -~ 7.4123 -3.2585 -7.3005 —-3.1778 -7.2198
2 -0.1619 —10.9510 —-0.05647 -7.4670 -0,2118 -7.5123 —-0.,2017 -17.4215
3 +0.1486 —10, 8024 +0, 0060 —-7.4610 +0.0256 -~ 7.4867 -0.0072 —17.4287

°E (expt) =—7.47807. C. W, Scherr, N, J, Silverman, and F, A. Matsen, Phys. Rev. 127, 5343 (1967).
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calculations that have been carried out for the sim-
ple case of the Li atoms, 13 but the application of this
procedure is expected to find utility in calculations
on many-electron systems and particularly on
molecules for which the simplicity afforded by the
elimination of the many cross and exchangelike
terms will be most valuable. Thus the rapid con-
vergence of the expansion is gratifying, even though
the relative error of 0.2% is larger than that of
many other Li atom calculations, and this augurs
well for future calculations on many-electron sys-
tems using simple product &,’s. Further investi-
gative work will, of course, be necessary, but it
does seem reasonable to conclude that the inclusion
of electron correlation into a Hartree product func-
tion can provide accurate energy eigenvalues and
that the explicit introduction of the exact permuta-
tional symmetry or “electron exchange” is not re-
quired in accord with the theoretical arguments. % °

APPENDIX

As in Ref. 9 there are a number of ways of ex-
pressing overlap integrals between pair functions
and orbitals in terms of two electron integrals in-~
volving solely orbitals, those latter integrals being
amenable to accurate evaluation. Some of these
identities are given here with the numerical value
of the integral given below the symbolic expres-
sion:

@185| Usia1) =@ bs| Upspa) == (a1ay | Upsa2)
0.04577 0.04514 0.04448

- %{ [al balay bz] ‘[al ala, 41]}
€5 —¢€} ’

0. 04499

(A1)

8
3 la
<a2a2' Ualal>= ﬁ%ggi_e_éﬁl]_ ’ (AZ)
-0.009124 - 0.009288
(agby| Upipa) = = ( Doy | Upyoa)
-0.02770 -0.02764
_ = [a01a,0,]
€grel-ef-e} ’ (A3)
- 0.02639
H{a 1V, 1a,) - [aza, ]
(“zaelquaa>= 2{ 1 a(‘:zg_elﬂ?a 3100y }’ (A4)
-0.04215 -0.04192

<alb1' Ualbl> == [blbll Unaz}

0.02618 0. 02574
_2{{a,| v, 1a) —[a;b, Ia;b,]} (45)
€ —€f ’
0.02778
_ —labylagb,]
Cante| U= Gaslapnl (ac)
-0.00850  —0.00916
36,1V, 16) =[0,a, 15,0
(bzaz|Uma = al eg—-E” ] . A7
1
-0.1415 -0.1470

Notice that the function of relation (A3) is less
than 1 as was shown in Ref. 4 [Eq. (44)] to be a
necessary condition for perturbation theory to con-
verge.
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