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A quantum-mechanical treatment is developed for the inelastic scattering of atoms by thermal
fluctuations near a surface using Green's functions and diagrammatic methods. A basic set
of equations is derived for the Green's function and T matrix by treating the thermal fluctua-
tions, which give inelastic scattering, stochastically. This enables us to express scattering
cross sections, adsorption or capture rates of atoms by the surface field, etc. , in terms of a
fluctuation correlation function which characterizes the surface excitations. The approach
presented treats the scattering surface in a continuum approximation making it especially ap-
plicable to liquids and to solids when surface-diffraction effects are neglected. The derivation
leads to a Dyson equation for the Green's function (the propagator in the presence of the fluctu-
ating surface field) which is formally similar to the equation for the dressed-electron Green's
function in the electron-phonon problem. Some essential differences exist, however, and these
are discussed. The similarity between these problems is exploited to some extent to generate
approximate solutions of the scattering problem to all orders in perturbation theory. The
simplest case, corresponding to summing a class of diagrams with no vertex corrections, is
examined. The use of separable matrix elements makes the approximation scheme particu-
larly transparent. Expressions for the scattering and capture (adsorption) cross section are
given and a resonancelike form of the cross section is shown. Results from lowest-order
perturbation theory are presented for comparative purposes and their connection to previous
work is described. An analogy with neutron scattering theory as formulated by Van Hove is
also examined.

I. INTRODUCTION

The problem of atoms scattering from surfaces
is an important one and has been receiving in-
creased attention in the recent literature. The
problem of elastic scattering of atoms by solid
surfaces has been considered in detail by I.ennard-
Jones and co-workers in a series of papers. ' '
They examine both the diffraction and reflection of
molecular rays as well as adsorption and desorp-
tion of atoms at a solid surface. More recently,
Cabrera et al. have studied the elastic scattering
problem assuming the moduli of the scattering ma-
trix elements are small, a restriction employed in
the work of Lennard-Zones et al. ' ' (who use the
distorted-wave Born approximation). Howsman
also examined elastic scattering of atoms by per-
fect crystals and obtained qualitative agreement
with experiments.

In the study of inelastic atom-surface scattering
of interest here, the solutions of the elastic-scat-
tering problem are assumed known so that, in an
inelastic event, the atom makes a transition from
one eigenstate of the elastic-scattering problem to
another. This is the same as the treatment of scat-
tering from two potentials. ' In this way, one in-
cludes transitions from free to bound states and
vice versa (adsorption and desorption) as well as
free-state to free-state transitions (inelastic scat-
tering).

Cabrera, Celli, and Manson' examine the prob-
lem of one-yhonon inelastic scattering from crystal

surfaces and discuss the possible detection of
surface phonons by separating out the elastic and
one-yhonon reflected beams. Two comprehensive
reviews have been given recently by Beder' and
Goodman. ' To this point, all work has been aimed
at. atom-solid-surf ace interactions.

As is the case for crystalline solids, the interac-
tion of gas atoms with the surfaces of liquids or
amorphous solids provides information about the
interaction forces and, as noted by Goodman, '
provides input to many important problems in
rarefied gas dynamics, such as condensation and
accommodation coefficients. ' In addition, from
the differential scattering cross section, one can
deduce a scattering kernel required in the evalua-
tion of the correct hydrodynamic boundary condi-
tions in gas dynamics, ' including problems where
evaporation and condensation on a boundary are
possible.

The approach developed in this paper is based
on the assumption that the scattering surface can
be treated as a continuum, '4 making it especially
applicable to liquids and amorphous solids. To the
extent that surface-diffraction effects can be ne-
glected (or included in an ad hoc manner), the the-
ory can be used for crystalline solids. By pro-
ceeding to treat the thermal fluctuations near the
surface stochastically, quantities such as transi-
tion rates, scattering cross sections, and lifetimes
of specific states, can be expressed in terms of a
fluctuation correlation function. The correlation
function, in turn, contains characteristic informa-
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tion regarding the thermal fluctuations near a sur-
face. Except for some examples, we do not con-
sider the various forms the correlation function
can have and limit ourselves to employing only its
general properties, e. g. , stationarity. However,
it is emphasized that one can, in a separate analy-
sis, determine the fluctuation correlation function

by treating the dynamical aspects of the scattering
medium in a continuum approximation. "' Such an
analysis would be similar to that made by Huber
for thermal diffuse scattering of low-energy elec-
trons, '~ in which the thermal motions of the atoms
in the crystal are approximated by the vibrations
of an isotropic elastic continuum with a stress-free
surface.

It should be noted that atom capture by the surface
field included in our treatment corresponds to phys-
ical adsorption, i. e., adsorption arising from the
presence of van der Waals forces. The forces that
give rise to chemisorption and which are related
to electron sharing or electron transfer between the
solid or liquid phase and the adsorbed gas atom or
molecule are not included. It is assumed that the
only effect of the penetration of electron orbitals
of the gas atom and atoms on the surface is repul-
sion. In essence, therefore, the basic assump-
tion is that the physical and chemical properties
of an adsorbed atom and the surface are only
slightly modified.

In the course of this treatment, some formal
similarities are found between the atom-surface
scattering problem and the electron-phonon prob-
lem, ' and these are discussed in detail. In addi-
tion, the second-order results show a close analogy
to the basic cross-section equation for the scatter-
ing of neutrons from a system of interacting par-
ticles. In particular, we show that the fluctuation-
correlation function plays a role analogous to the
generalized pair distribution function, a result that
can be helpful in the interpretation of experimental
results.

The structure of the remainder of the paper is
the following: In Sec. II, the basic equations are
derived at T =0 for scalar surface displacements
and then generalized to T &0 and vector displace-
ments. A formal analogy to the electron-phonon
problem is discussed. In Sec. III, approximate
solutions of the basic equations are considered and
the use of separable matrix elements is examined.
In Sec. IV, the inelastic scattering cross section
and the adsorption and desorption cross sections
are derived from expressions for a T matrix using
the optical theorem. An analogy with the formulas
applicable to neutron scattering from a system' of
interacting particles is discussed. The reduction
of formulas to those from the second-order dis-
torted-wave Born approximation is also presented.
In Sec. V, simple models of the surface potential

field and the fluctuation-correlation function are
used to consider illustrative examples of the formal-
ism developed in preceding secti'ons. Specifical-
ly, the lifetime of a bound (adsorbed) state is ex-
amined in lowest-order perturbation theory. Final-
ly, in Sec. VI, a brief summary is given.

II. SURFACE SCATTERING

Our aim in this section is to derive the basic
equations for the atom Green's function (the prop-
agator for an atom in the presence of a fluctuating
surface field) and the T matrix which governs the
inelastic scattering of atoms from thermal fluctua-
tions near a surface. From the solutions of these
equations, properties of physical interest, such as
inelastic scattering and capture (adsorption) cross
sections, can be evaluated. We will show that,
under the assumptions made regarding the random
time-dependent fluctuating potential field, the basic
equations have a formal similarity to the coupled
equations for the electron Green's function and
electron self-energy that arise in the electron-
phonon problem. "

We begin by treating the case of a surface at T
=0 to simplify and make clear the derivation of the
necessary equations. The generalization to finite
temperatures is carried out in Sec. II 8 following
the formalism outlined by Abrikosov et al. " We
want to calculate the inelastic scattering of atoms
by thermal fluctuations near a surface, which shall
be treated stochastically. This makes our treat-
ment in some ways formally similar to methods of
evaluating the electrical conductivity in metals~a or
the surface conductivity in a semiconductor, ' where
one treats the problem of a random set of scatter-
ers (e. g. , impurities). However, the unperturbed
Hamiltonian, which includes the mean surface field,
is different, and the Green's function is a true
single-particle Green's function (propagator for the
atom). Further similarities and differences be-
tween this and other problems will be discussed as
we proceed.

l. Basic Hamiltonian and Green s Functions

To derive the basic equations, we write the Ham-
iltonian for an atom in the presence of the surface
field as

H= Ho(g) + Hg+ Hq(r ),
where II, is the Hamiltonian of the adsorbate and
H, (r ) is the perturbing potential. z denotes the co-
ordinate perpendicular to the scattering surface,
and the equilibrium location of the surface is the
plane z = 0. We will treat the surface in a contin-
uum approximation' and consider the atom to be
in the half-space z & 0. Thus, the unperturbed
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particle Hamiltonian Ho includes the average po-
tential field of the surface, Vp(z), and depends
only on z in the continuum approximation.

Under these conditions, the eigenfunctions of IIO

have the form

y; „(r)=ce"'*9„(z), (2)

where r = x+ z and x is a vector in the surface while
z is perpendicular to the surface. The vector k is
a wave vector parallel to the surface, and the index
v labels the z quantum states. The qr„(z) are eigen-
functions satisfying

(Hp), q „(z)= [p,2/2M+ Vp(z)] q „(z)= v(p„(z), (3)

and the total energy is

8"„,„=k /2M+ v .
Here, i' is the mass of the atom.

In terms of the P-„,„(r ), the "free"-atom Green's
function [corresponding to Hp, which includes Vp(z),
the mean surface field] is given by [ln=-(k, v]

cent detailed treatment of elastic scattering from
solid surfaces. In summary, then, the average
surface potential Vp(z) is included in the "unper-
turbed" Hamiltonian IIO, and the eigenfunctions
y„(z) are assumed known.

The quantity of basic interest is the Green's func-
tion for a particle in the presence of the external
perturbing potential, which will be called the
dressed-atom Green's function. Let 5 R(x) denote
the deviation of the surface from its equilibrium
position at z = 0 and for the moment assume 5 R(x )
is in the z direction. The generalization to vector
displacement operators 5 R will be done in Sec. II 8.
In the Heisenberg picture, the fluctuation operator
defined through

EiR(x, t)=e'"o' 5R(x)e ' ~'

depends on the position on the surface x and the time
t. The first step is to expand the fluctuating po-
tential field as a power series in 5R(x):

Gp(-, -.g) ~ 0 (r) 0" (r')
(5

+ j&

Thus, in Fourier space [(k, v) space], the free-
atom propagator is

V(z, M(x)) = V (z)+ V' ' (z) 5R(x)

v"& (z)+ VR (x)+.. . . (10)

d„'(8)= I/(8 —8 +to) .
Note that the eigenvalue spectrum in v is continuous
for v&0 and discrete for v&0, and the discrete
states correspond to states for atoms adsorbed onto
the surface. The normalization of the v states is
taken as

f q *;(z)q, ( )zdz = &„ (t)

and we assume that the surface is impenetrable by
setting p„(0)=0. The actual form of p„(z) depends
on the choice of Vp(z) and will not be considered in
detail here. Suffice it to say that in detailed compu-
tations, one may adopt the form

V, (z) - (1/z ' -1/z '),
which can be derived from the Lennard-Jones
(6-12) potential by integrating over x, '~ or one
can use the Morse potential. ' 3 Lennard-Jones and
Strachan' have evaluated the v eigenvalues and
eigenfunctions for the Morse potential, and these
were, in fact, used by Cabreraet al. in their re-

The bracketed superscript on V'"'(z) represents the
nth-order derivative, and Vp(z) is, as before, the
mean potential field of the surface. It is shown in
the Appendix that by making a renormalized har-
monic approximation, this series can be summed
with the effect that the coefficient of 5R(x) becomes
a temperature-dependent function V,(z, T). In
other words, we consider a renormalized vertex
and are not restricted to small displacements
(see the Appendix). The total system Hamiltonian,
in the Heisenberg picture, for an atom in the
presence Of a time-dependent fluctuating field,
thus becomes

X=Hp+Xl(r, t),
where

X,(r, t) = V, (z, T) 5R(x, t) .
To derive an expression for the dressed-atom

Green's function, consider first the usual perturba-
tion theory expansion for a particle in an external
time-dependent perturbing field. ' It is

G(r, r, t, t) —Gp(r, r, t t)+
I

Gp(r', rl, t' —tl)X1(rl tl) Gp(rl, r, t —t)dr, dt,
t &ti &t'

+ d rl d r2 dtl dt2 Gp( rl t tl) Xl( rl tl) Gp( rl r2 tl t2)X1( r2 t2) G( r2 r t2 t) + ' ' '
g t &ta&ty&t'

(13a)
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or, simply,

(r t) (r', t')
+ 0 ~ ~~ ~ ~

H)(r~, t~) H)(r, t, )

(6R) =(Z)-'tr(e-'" 6R)=O, (i4)

where Z is the trace over the density operator of
the system from which we are scattering,

(13b)
where the double line represents the dressed-atom
Green's function G, the single lines correspond to
free-atom propagators Go (atoms in the presence of
the mean surface field only), and the crosses with
wavy lines denote the action of the perturbing field
X,(r, t). At nth order, there are n products of the
fluctuation operator 5R(x, f), together with (n+1)
intermediate-state Green's functions from the elas-
tic' scattering problem.

2. Stochastic Perturbing Potentia/; Averaged Green s
Functions and Dyson Equation

The thermal Quctuations which give inelastic
scattering will be treated stochastically. This
means we consider 5R(R, t) as a random time-
dependent Quctuation operator, and we will assume
that it is described by a Gaussian random process
(i. e., only pair correlations are retained). This
means the ensemble average of a fluctuation op-
erator is zero;

D(x& -x&, t& —f,) is the pair-fluctuation-correla-
tion function.

A series expansion can now be derived. for an
average dressed-atom Green's function by perform-
ing an ensemble average over the fluctuations op-
erators term by term to infinite order in the per-
turbation series [Eg. (13)]. The "free"-atom
Green's function Go(r', r, f' —t) is unaffected by an
ensemble average that involves e ~"+. The resulting
series is

G(r', r; f' —f) = Go(r', r, f' —t)

+f d'vl &2 Go( r ra f f g)IG0( r)) rg f)) fg)

xD(x~-x, , t2 —tt) Go(rt —r~ 4 —f)

+ (three fourth-order terms)+ ~ ~ ~, (19)

where 6 denotes an averaged dressed-atom Green's
function.

Diagrammatically, the effect of the averaging
procedure is to connect the wavy lines and vertex
points in Eg. (13b) and to associate with each con-
necting wavy line a fluctuation propagator or, at
T = 0, simply the pair-fluctuation-correlation func-
tion. In (k, v) space, the k states are preserved
(k is the atom wave vector parallel to the scatter-
ing surface), but the v states are not; so the series
becomes

Z= tr(e-'" ), (i6)

and g is (I/O, r).
The ensemble average of a pair defines a pair

correlation function D(x, , x, ; t, , ta) as + C(&,I,()

(9 =K-K)~)

(6R(x) y ff) 5R(x2, t2)) = Z tr[e '5R(x» f,)

x5R(xa, ta)]=-D(x„xq,' &q, &3) ~ (16) %ith each wavy line, one can associate a fluctua-
tion propagator, defined at T=0 by

For the case of T= 0, we take the limit of these
expressions as P-~.

Furthermore, the average ot higher-order prod-
ucts of fluctuation operators are expressed in
terms of pair correlations and the average value.
Because (5R) =0, all odd-order products are zero,
and even-order products become

(5R(xq, ti) ~ ~ ~ 5R( xa„, ta„) )
= (5R(x„ f, ) 5R(xa, t~)) (5R(x~, t~) 6R(x4, f, ) ) ~ ~ ~

x(6R(x,„„f,„,) 6R(x,„,f,„))
pail possible permutations, (IV)

keeping in mind that (AB) = (BA). Finally, using
time -translation invariance (stationarity) and the
assumption of a, spatially homogeneous scattering
surface, the correlation between pairs depends
only on the difference of its variables,

(6R(x„ f,) 6R(x„ f,) ) = D(x, x„t, f, ) . (16—)—

iP(q, (o)=
2 D(g, 5)
d$ 1

~0
(2i)

where q=k -k„and D( j, $) is the space-time
Fourier transform of the Quctuation-correlation
fun. ction

D(q, ~)=f a~axe'&'* "&D(x, r) . -
(22)

~i„,„,(r)= f dzq*„(z) V,(z, r)p„(z), (23)

where the y„,(g) are known eigenfunctions of Ho.
Second, with each wavy line is associated the fluc-

If we make use of the definitions of the free-atom
Green's functions, Eqs. (5) and (6), then the fol-
lowing rules allow one to write out the series for
the dressed-atom Green's function explicitly in
Fourier space. First, one associates with each
vertex (cross) the matrix element M„„,(T) defined
by
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tuation propagator P(q, &u). Third, each single
line denotes a free-atom propagator as given by
Eq. (6). Finally, carry out the sums over inter-
mediate-state variables. A double line represents
the averaged dressed-atom Green's function. Thus,
defining x = (k, 8), the series (20) is

O„.„(lt:)= G'„(~) 6„„.+ O'„.(~) Q ~„„,~„,„f d~
k] ~ V

x O'„(k„S—(u) P(q, (o) G'„(~)+ ~ ~ ~ . (24)

This is the basic series expansion for the dressed-
atom Green's function and is fundamental to our
treatment of inelastic atom-surface scattering.

The result of retaining only the leading two terms
in the expansion (24) is the distorted-wave Born
approximation (DWBA) used by Lennard-Jones and
co-workers. ' ' Cabrera, Celli, and Manson also
used it to illustrate results of their more detailed
treatment of inelastic atom-surface scattering.

Such results will be valid only in the limit of
"weak" coupling between the incident atom and the
fluctuating surface field. In other cases, it is nec-
essary, as in many-body theory, to investigate
the remaining terms in the series (24) and sum at
least certain classes of diagrams to infinite order in
perturbation theory. Diagram summation leads to
the Dyson equation for the dressed-atom Green's
function.

The derivation of the Dyson equation for G„.„(x)
can be carried out in a standard way. ' The result
is

T„~„(K)= Kp~„(K) + Q K„i„(K)G„„(K)K„p(K)
Vyy V2

(28)
or, equivalently,

r„.„(~)=K„.„( )x+Q T„.„(~)G'„,(~)K„,„(x) .
"1

In the usual way, expressions for the inelastic
scattering cross sections and lifetimes can be cal-
culated once T„,„(x) is known.

(29)

B. TAO

By analogy with the finite-temperature general-
ization procedure of results at T = 0 in statistical
physics, '9'~~ the Dyson equation (25) at finite tem-
peratures is derived by replacing 8 by iS„, where
i8„=(2n+1) ni/8, and replacing

examining the diagrammatic equation for the atom
Green's function G„.„(x). The fluctuation propa-
gator P(q, ~) is analogous to the phonon propa-
gator, while the atom Green's function plays the
role of the dressed-electron propagator. The K
function is like the electron self-energy. An es-
sential difference between these problems exists,
however, because the Quctuation-correlation func-
tion D(q, m), from which we determine P(q, ~),
is regarded as given in the atom-surface scatter-
ing problem. Thus, processes corresponding to
phonon self-energies can be neglected, and D(q, ~)
alone contains the characteristic information about
the thermal fluctuations near a surface.

For completeness, the T-matrix equation will be
given for later use. In terms of the atom Green's
function, it is

G„„(x)O'„(~) &„„+G'„(~)QK„.„(a)G„„(K), (25b)

where

2wz p 21ftt

P .=- P

Equation (26) at TNO becomes

(so)

f~„.„(x)= P M„.„,.f d~o„,„(k„b-~)
2'2'2

xP(q, ~) I „„(k,k„8,~) (26b)

I'„„(K,K g, )."2 "2 (27)

The vertex function I'„„(k, kz, 8, ~) accounts
V2Vg

for all diagrams with fluctuation lines that cross.
Equations (25) and (26) constitute the basic equa-

tions for the inelastic scattering of atoms by ther-
mal fluctuations at a surface. In short, they have
been derived by treating the surface in a continuum,
approximation and assuming that the random time-
dependent fluctuating perturbing field can be de-
scribed as a Gaussian random process.

A formal similarity between this problem and the
electron-phonon problem' '~'2' is made clear by

A„.„(k, i8„)= g m„,„&P
-~'

G„,„(k„i„)
2 v2, v2 ~„P

xP(q, i(h„-~„))r„,„,(k, k2, ih„, i(u„), (31)

and Eq. (25) becomes

G„.„(k, i8„)= O'„(k, iS„) 6„„.+ G'„(k, ih „)

xgz„,„,(k, ih„)o„,„(k, iS„) . (82)
1

Similarly, the T-matrix equation is

T,,„(k, i8„)=If„,„(k, iS„)+gT„,„,(k, iS„)
"1

xo'„,(2, ih „)SC„,„(k, i&„) . (88)

In evaluating this T matrix at finite temperature,
one uses the "retarded" E matrix and free Green's
function obtained by the analytic continuation iS„
-8+ io.

As an illustration of these results, consider the
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b(5) = (e" —1) ', (36)

so that the term in (34) involving 1+ b($) corre-
sponds to fluctuation creation interactions, while
that containing b($) accounts for fluctuation an-
nihilations. In the limit that T -0, the factor b($)
-0, and we recover the T = 0 result:

T matrix in the second-order Born approximation.
Following the procedure outlined by Schrieffer, ' one
can derive (letting i8„-h + i5)

T„„(k,8) = Q M„„M„„d)D(q, $)

,f 1 + b(&) , b(&)
'&S S„,~ „,-~.;5'S-h„-,,„,.g. ;5

.

The functions b($) are the Bose factors (p= I/kBT)

Define the tensor correlation function

D" D="(x,-x„t, t,-)= (D-",)

and the vector

(44)

With these definitions, the generalized Dyson equa-
tion becomes

»(.) = (V.(.)) . (45)

In terms of D'~ and 8 V, a tensor propagator and a
vector matrix element can be defined:

oo

f P "(k ~) = —D '~(k, ()
go 271

x . — —,(46)
1

td —(+ iii td+ ( —ill )

T„,„(k,8)=g M„.„,M„,„d)D(q, k)

1x
g g . . (36)

kgy Vg

G„i„(K)= G„(K)5„„~+ G„i(K)Q E„i„(K)G„„(K)

and

Z„.„,(K) = Q M„'„,.j d~ G„,„,(k„8 —~)
"a "a "i

(48)

This includes only fluctuation creation terms, as
it should. In addition, the T matrix in Eq. (34) is
the same as would be derived in the DWBA.

V(r ) = V, (z)+ V.(z) 5R.(x, t)

3;= V.(~) 5R.(x, t) .

(37)

(38)

Repeated indices signify summation. As before,
assume that 5 R characterizes a generalized Gaus-
sian random process expressed by the properties

(39)(5R.) =0,
I

(5R (x(, tq) 5Rg(x~, t~))=D g(x~ —x), t~ —f(),
(4o)

with all higher-order correlations expressible in
terms of pair correlations:

(5R~5R~ ~ ~ ~ 5R„" )=0, n=1, 2, . . .

5Rl 5R3. . . 5R8n) (5R1 5R2) (5R2n-15Rzn)

+ all permutations . (42)

The superscript on 5R' denotes 5R,(x, , f,). The
brackets ( ~ ~ ~ ) again signify tr(e "o5R' 5Rq)/Z and

(5R' 5Rg) = (5Rg 5R' ) . (43)

C. Vector Displacement Operator

The generalization to vector fluctuation opera-
tors 5R(x, , f, ) is performed by defining r=z+5R
and expressing X,(r, f) in terms of an expansion of
V(r), as in Eg. (10). 1st V denote the deriva-
tive with respect to n (n represents, in Cartesian
coordinates, x, g, or K) and V, (K) recalls that the
coefficient of 5R(x, , t, ) is local. Thus V(r) is ex-
pressed by the expansion

x P (Qp QP) I ii „(kgyka~ 8~ (d). (49)

The function I'„„(R&,k2, b, ~) represents a gen-VgVg

eralized vector vertex function and, in the simplest
approximation, is replaced by M„„,.

D. Section Summary

In this section, we have derived the basic series
expansion for the atom Green's function and, from
this, a Dyson equation. We have presented general
results for T40 and for vector displacements, as
well as specific equations at T =0 and for scalar
surface displacements. %e have also demonstrated
a formal simila, rity between these equations and the
equations for the dressed-electron Green's function
and self-energy in the electron-phonon problem and
pointed out essential differences which exist. To
proceed further, we now turn to methods for ap-
proximately solving for the atom Green's function
and the T matrix. These can then be related to in-
elastic scattering cross sections and adsorption and
emission rates of physical interest.

III. APPROXIMATE SOLVTIONS OF THE DYSON
EQUATION

A. Iteration on the E Matrix

The simplest approximate solution for the atom
Green's function is obtained by retaining diagrams
where only one fluctuation exists at a given time.
This means we neglect higher-order vertex cor-
rections and approximate the vertex function by the
equation

I"„,„,(Ri, %2, h, ~, T) = M„,„,(T) .
The E-matrix equation now becomes
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K„.„(«)= Q M„.„.f G„t„(k„8—(o)
kgy Vgy VP

and the Dyson equation is

x P ( q) (g) Mp p d(d

+ 1~+ (52)

Both Eqs. (51) and (52) correspond to an approxi-
mation which includes multifluctuation contribu-
tions but neglects vertex corrections.

An approximation scheme can be generated by
iterating in G on the K matrix. If we approximate
the dressed-atom Green's function by the free
Green's function in the K-matrix equation,

K„„(«')—K'„'„,(«) = Q M„„M„„,f d(d
kgy Vg

x G'„,(kg, & - (u) P( q, (d), (53)

a "one-fluctuation" approximation is obtained which
sums the series

is, in general, difficult. As is well known, a
closed-form solution is possible if K„,„(«) is a
Pincherle-Goursatms (PG) or separated kernel:

G„,„.(«)=c'„(«)5, +G~(«)Y (v', «)

(61). . (I —B)-' X(v, «)G'„(«)

where I is the identity matrix and B(«) is a matrix
defined by

B(«)=Ex(v, «) ' Y (v ~ «)G„v («) . (62)
V

The solutions of

det[I —B(«)]= 0

are eigenvalues of 8, while zeros of

N

K~ „(«)=5 X, (v, «) Y, (v', «) = Y (v', «) ~ X(v, «),
(so)

where X-=(X,) and Y=-(Y, ) are column vectors and
the superscript T denotes transpose. The solution
for G„,„(«) is

AJ w + ~~X—+ —XX—~—+ - '

(54) det(Re[I —B(«)])= 0 (64)
and leads to an integral equation in v for G„.„(«)[-=G."!(.)]:

G(vv(v(«) = G(v(«) 5)vtvv + G(vv («) QK(vvtv («) G(v )v(«) ~ (55)
V1

Here K„"„',(«) is the kernel of the integral equation.
The first iteration on G,(V(«) gives the second-order
0%'BA.

A hierarchy of solutions can be producted by
successively iterating on the K matrix, and the ith
iteration will include ith-order fluctuation proces-
ses. For example, two-fluctuation processes are
included by solving

= a'(v, ) ~ a*(v,),
where a—= (a, ) is a column vector. Then,

(65)

will act as resonance points for the inelastic scat-
tering cross section. This will be discussed in
more detail in Secs. IV and V.

A kernel like (54) is generated by assuming a
PG expansion (of finite rank) of the matrix ele-
ments M„~„,:

N

M..., = (v., l Ygl q., &=~ a)(vg)a) (vg)
f ~1

c(3)(«) = G„'(«) + G'„, («) ZK(P„,(«)G„",',(«),
v1

where

K(.i («) = 3 M„.„.M„„ fdu
fgy VP~ V)

(56) N

tC„, „. (v)= Z Z, vz(vv)a&"(vv)av(vv)av" (v'))
V~V~

x f dk, d(u G„,„,(k„h —(u) P(q, (o) . (66)

xC(V„(k~, h —(u)P(q, (u)' ~ (57)

In general, at ith order, the Dyson equation is

Letting

A&&(«) = 2 a&" (vz) f dk2d&u G„.„(kz, h —a&)

VpV2

G~„'(«) = G„'(«)+ c', («) ZK„",„',(«)G„",„'(«)
v1

(ee)

A(«) = (A„(«)),

x P(q, &u)a, (v,'), (67)

(ss)

K„".„',(«) = E M„,„.M„„,f d(d
"8& V' "3

xc„"-"(k„S—(o)P(q, &u) . (59)

B. Separated-Kernel {Pincherle-Goursat) Approximation

Equation (52) is an inhomogeneous integral equa-
tion that can be solved by iteration [as mentioned,
the first iteration on G9)(«) gives the second-order
Born approximation], but a closed-form solution

K„,,(«) = a* (v') A(«) a(v, ) .
Thus, we can define X and Yvia

X(v„«)= a(v, ),
Y (v', «)=a*(v')' A(«),

so that B(«) becomes

B(«)= Co(«) ~ A(«),

where

(eo)

(7o)
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C'(K) =-Z a(v') ~ a*(v')'G,' (K) .
v'

7'he solution for G„,„(») is again given by Eq. (61)
using the definitions (70)-(72).

Now, however, one can determine an integral
equation for the K matrix or, equivalently, for
A(K), namely,

A(«) = J dk, des P(q, (u) [I —A(k„S —co)

~ C'(k„S —a&)]
' C'(k„h —~) ~ (74)

Successive iterations on the A matrix in the inte-
grand, beginning with A' ' = 0, the null matrix, gen-
erates the one-fluctuation approximation, two-
fluctuation approximation, etc.

The simplest example to carry out in any detail
is the scalar case of a factorizable matrix ele-
ment (rank 1):

(75)~ 2, = ai(vi) a& (va) ~

With the definitions (paralleling the previous dis-
cussion in notation)

C'(K) = 2 a, (v) G'„(K)af(v), (78)

C(K) = Z a,*(v,)G~„,(K)a,(,'),
v2v2

A(K) = (Ajf) = 2 aq (v2)a, (vz)
p,l"2"2

(77)

Furthermore, we find

C(K) = C («') + C (K)A(K)C(K),

C'(K)"'= — '(.) (.)

(80)

(81)

x fd»' G.,„(K')P(K —K'), (78)

the Dyson equation is

0( )
G„(K)a~&(v')A(K)a, (v) G„(K) (79)1 —C'(K)A(K)

To demonstrate the procedure for calculating the
inelastic atom-surface scattering, adsorption, and
emission cross sections, and decay rates for given
states, we start with the results of Sec. III ob-
tained with a factorizable matrix element and the
one-Quctuation approximation. The generalization
to n fluctuations with the factorizable matrix ele-
ment is straightforward. The cross sections and
lifetimes are obtained from the T matrix, which is
given by

&„",,'(») = a, (v)a*(v') [A"'(»)/A(K)], (84)

(82) by using the assumption that the important
range in the self-energy integral [in Eq. (82)] is a
small interval, of the order of the Debye energy in
width, about the Fermi energy. This allowed them
to replace the electron density of states by a con-
stant value and, thus, to be able to carry out the
integral in (82). Such a procedure is possible here,
but its validity is questionable because the relevant
atom energies are of the order of the Debye energy
rather than the order of the Fermi energy.

In other cases, one is left with the possibility of
iterating on the A(») equation to obtain a continued
fractionlike approximation for A'(K),

A"'(K) = d»'C'(»')P(» —K'),

A'"'(K)= d»'P( -«')
~

C'(K) '- d»'

(88)
As before, A(K) -A'"'(K) amounts to an n-fluctuation
approximation that sums all diagrams with n or less
fluctuations existing at the same time and with no
lines that cross (no vertex corrections). To derive
expressions for cross sections and lifetimes, we
will use the one-fluctuation approximation, but the
same procedure is applicable for an n-fluctuation
approximation so long as vertex corrections are
neglected.

IV. T MATRIX; CROSS SECTIONS AND LIFETIMES

d, C'(K')P(» —K')
I

"' I-C'(, )A( ') ' (82)
where

A(K) =1 —C'(K)A"'(K) . (85)
In this form, Eqs. (80) and (&1) are exactly anal-

ogous to the equations for the electron Green's
function [C(K)] and electron self-energy [A(K)] in
the electron-phonon problem [P(K —K ') plays the
role of the phonon propagator] when vertex correc-
tions are neglected. ' ' Several important differ-
ences exist, however. As previously mentioned,
since D(»)=-D(k, &u) is assumed known, processes
analogous to phonon self -energies in the electron-
phonon problem can be neglected. Second, the
variable» —= (k, h) is a three-variable since R is a
vector parallel to the scattering surface. For pho-
nons in the Einstein and Debye approximations,
Engelsverg and Schrieffer ' solved Eqs. (80) and

The distorted-wave Born approximation result is
obtained by replacing A(K) = 1.

The scattering cross section for a transition
from state m —= (k, v) to state m' —= (k', v') is related
to the imaginary part of T by the optical theo-
rem8:

or(m) = ——(2v)'Im[T„„(S)]
m

=E cr(m-m')= Z O(k, v-k', v') . (86)
m' (Pc', v' )

Here or(m) is the total scattering cross section for
an atom in state m, while o(m- m') is a differential
cross section to scatter from m to m', and v is
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the speed of an atom in state m. The sum over
m' includes both discrete and continuum states.
The imaginary part of T is found by returning
to the definitions of A' '(K) and C (K) and writing
them in terms of their real and imaginary parts:

A'"(K) = ~ &ia,(vi) I'
mph' fg& Vg

0

Here, for T on the energy shell, we have K = (k, E),
with E -=S-„,= k /2M+ v. The functions b($) are the
Bose factors. %Ye can carry out the integrals over
E in the definition of A',"(K) by setting &g = E —SI-, ~.
Then

A,'"(8)=-v + Ia, (v, )I'(D(q, ag)[l+b(ng)]H(ng)
g Vg

+ D(q, —a, ) b(- ag) H(- S,)}. (8S)

The function H(x) is the Heaviside unit step func-
tion. The same type of decomposition can be per-
formed for C (K) and gives

6„'(K)=5
I a, (v, ) I' (90)

P —Pg

d,' = - v & I a, (vi) i
'6 (v - v, ) .

In these equations, the symbol P indicates that a
principal-value integral is required.

The expressions (8V) and (89)-(91)are now used
to express A(K), defined by Eq. (85), in terms of
its real and imaginary parts:

Aa(K) =1- [Cao(K)A„"'(K) — C'(
K)

Ag"'( K)], (92)

Ag(K) = Cg(K)Aa (K)+ Ca(K)Ag (K) . (98)

With these definitions, the cross section in Eq.
(86) has the compact form

(m) 2
(2v) Im(T' & ) 16m

la&(v)l'
om m mm

(91)

Ag (K)Aa(K)+Ay (K)Ag(K)

[&~(K)1'+[&i(K)1'

The differential cross section o(m- m, ) is found

by replacing A,"' and A~ ' in the numerator of Eq.
(94) with their definitions (8V) and (89) without
the sum over final states:

(94)

a'(m-mi) =-o(k, v-ki, vi) =16v~, I'a, (v)a, (v, ) I'
~m

( 1P) k( lP)v

) ( )
B(K q 4 ) (95)

(
&E &~ 5+E &„- „,+f

Ai" (K) = —v + Iai(vi) I' f d5 D(q, 5)([l+b(&)]
md=kg»

&& 6(E —&-v., —&)+ &(E —&; .,+ 5)b(t')} . (88)

where

+D(q, —ag) b(- n )H(- n )}. (97)

%e recover the exact second-order result by re-
placing I ai(v)aq(v, ) I, the square of the matrix
element, by l~»„l' .

Equation (97) is in close analogy with the basic
cross-section equation for the scattering of neu-
trons from a system of interacting particles as
derived by Van Hove. Van Hove expresses the
scattering cross section in terms of the Fourier
transform of the space-time pair distribution func-
tion. The analogy is most easily seen by relating,
term by term, the quantities in Eq. (9V) to those
in the equation for the neutron scattering cross
section. Using the symbol —to denote "analogous
to, " the notation of Van Hove, and the variable
q=k2/2M, we find, first,

p(7i)p(v)/v„—k/ko . (98)

The numerators are from density-of-states fac-
tors, while the denominators are the result of
dividing by the incident flux. Second, the analogy
of matrix elements is

iM, I
or Ia&(v)af(v&)i w(K) = vz„

=[J &«' ~ y(r) dr]a (99)

Finally,

D(q, ag) —S(q, (o), (100)

so that the Fourier transform of the fluctuation-
correlation function plays a role analogous to the
Fourier transform of the generalized pair distri-
bution function.

Equations (S4) and (95), for o(m) and o(m-m|),
differ from the Born approximation expressions
in that they contain the characteristic denominator
Aag(K)+Ai(K) which results from summing all one-
fluctuation diagrams to infinite order in the per-
turbation series expansion. A characteristic reso-
nance line shape for the inelastic atom-scattering
cross section will result if Az (K) is smoothly vary-

B(K, q, &g) = &AR(K)(D(q +g) [1+b(&g)]H(&g)

+D(q, —~g)b(- ng)H(- ng)}

—A, (K) d(D(q, t) + . (96)
1+b(g) b(g)
bg — b,g +

The factors p(k, ) and p(v, ) represent the density
of k& states and v& states, respectively, i.e. , a
density of final states. The DWBA result is ob-
tained by letting b,~- 1 and A, - 0, namely,

o(m- m, ) =-o(k, v-k„v, ) =16m3 I a, (v)a, (v,)l'
~m

x p(k, )p (v, ) (D(q, b g ) [1+b(ag )]H(r g )
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ing in the vicinity of a zero of A„(~). Furthermore,
this characteristic form of the denominator will
result at every order of approximation to A(z).
In particular, at nth order, where nth-order Quc-
tuation processes are included, but vertex correc-
tions are neglected, we simply replace, in Eqs.
(92) and (93), A„'"(~) by A„'"'(~) and A,"'(z) by A,'"'(a).
Whether or not a resonance point is shifted in
higher-order approximations depends on the con-
vergence properties of the iteration scheme. A
specific example will be discussed in Sec. V.

A quantity of special interest is the adsorption
or capture cross section for the capture of an atom
by the fluctuating surface field. In such a reaction,
the particle makes a transition between a state
(k, v), for v inthe continuum (denoted vc C„), to
a state (k„—vs), where vs is the energy of a dis-
crete bound state. Let S„denote the complete set
of v states, discrete plus continuum, and D„ the
set of discrete states only. Then the capture cross
section for an incident atom in state m=(k, v) is

16w'Ia, (v)a, (v, ) I p(, )
(v„-,„)([A„(k,v)]'+ [A, (k,v)]'] j

x B(m, j, 's) (101}

In the special case of a single bound state of energy
(-vs), vs&0, we delete the sum over D„and replace
pg by —pg.

For a beam of atoms incident on a surface, we
can define an average adsorption or capture cross
section by summing o(m) =a(k, v) over all k and
vc C„using a weighting function P(m), the prob-
ability that an atom in the incident beam is in
state m. Thus

being an intrinsic characteristic of the surface
field.

In a completely analogous fashion, an expression
can be derived for an emission or desorption cross
section. We note here that, even at T=O, decay
of the bound state into the continuum (desorption) is
possible for a large enough energy component
parallel to the surface. Figure 1 illustrates this
possibility for the case of a single bound state.
The threshold wave vector is given by I'kt„l = 2&iv~,
where M is the mass of the incident atom. For
Ik I' &

l k&hI, decay is possible by emission of a sur-
face fluctuation. A simple example is given in the
next section for the lifetime of the 'bound state
based upon models of the Quctuation-correlation
function.

V. SIMPLE MODELS AND ILLUSTRATIVE EXAMPLES

Vo(z)= —s, 0&z&z,

0, zo& z. (lo6)

To simply illustrate the formalism, we present
here a simple mean potential field that leads to
a separable matrix element which is used in con-
junction with models of the fluctuation-correlation
function to perform a demonstrative calculation of
the lifetime of a bound state and to investigate the
existence of scattering resonances. The latter
entails a brief examination of the properties of the
functions A„(a) and Az(v) in Eqs. (92) and (93), re-
spectively.

Consider first approximating the mean potential
field Vo(z) by a square well:

z&0

(o-)= Z P(m)o".(m).
v 6Cv

(lo2)

An average total cross section is defined in a simi-
lar manner. The total cross section is

i&16m' la~(v)az(v~) I p(kz) p(vl)
( (v „.,)[A„(k,v)z+A~(kgv)]

so that

v1& ~v

x B(m, q, As), (103)

II

U
o

%4p

(or)= Z P(m)ar(m). (104)
m

VCCQ

The ratio c,"(m)/ar(m) isthecondensationcoeff-
cient for an atom in state m and the ratio of the
average values,

a = (a.-)/(a') &1 (106)

is an expression for the standard definition3 of a
condensation coefficient o, is of importance for
problems in gas dynamics, ' boiling and cavitation
phenomena, e film condensation, s etc. , aside from

2

—Vg

FIG. 1. Illustration of the variation of the total energy
as a function of the square of the wave vector of the atom
parallel to the surface. v is a parameter on this graph
and, for simplicity, only a single bound state of energy
v~ is shown. All v F [0, ~] are also possible. Note that
at T=O, decay of a particle from the bound state to a con-
tinuum state in v is possible only for k &kth.
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The eigenfunctions q)„(z) of Ho are nonzero in the
half-space z &0 and satisfy the boundary condition

q)„(0)=0 .
Thus, the matrix element M„.„, defined by

M„,„=f dz)pP(z) q)„(z),

becomes

M„.„=s I'pp(zo) q)„*.(zo),

(107)

(los)

(109)

which is separable in v and v' and depends in a
straightforward way on the strength 8 and range
z0 of the mean potential field. In the previous no-
tation, therefore, we define

a, (v) =s'"q„(z,) . (llo)

To proceed further, we also require a form for
the Pourier transform of the Quctuation-correla-
tion function D(q, ~) (recall that q is a two-dimen-
sional vector in the plane of the surface). Two
simple models that can be used are

D(q, o)) =M5(o) —(u(q)) .
which corresponds to phonons on the surface, and

D(q, co) = (Dq + I')/[(Dq +r)o+ &so], (112)

7'"
ko Vg

xD(q, 8;„,-8;.,..) (114)

For phonons in the Einstein approximation, the
angular dependence becomes trivial and the life-
time is

'4 0,
'

which results from making a Gaussian approxima-
tion for the correlation function D(x, r). The fac-
tor 1" represents a finite lifetime for the correla-
tion between fluctuations. The latter approxima-
tion can be appropriate for a liquid surface.

As a simplest example of the use of Eqs. (109),
(111), and (112), consider the calculation of the
lifetime of a bound state (lifetime of a particle
adsorbed on the surface) at T=0 using second-
order perturbation theory. The lifetime exhibits
a threshold in k, as illustrated in Fig. 1, and we
consider the case of a single bound state. The
formula for the lifetime is

= —2Im [T„„,(k)] = —2 Fi s'~ q „,(zo)q „(zo) ~

'
ko Vg ]ffo V$

u(g CV

)o 00

x ImI d$ ' . . (113)

Converting sums to integrals and denoting density-
of-state functions by p, we find

= ~«'
I w.,&*o) I

'
I )

p(») ~iamb, )&~a I w.,(*o) I

'

BD
+ Qg + ~ ~ ~

8~8 hg= 0

Retaining only the zeroth-order term leads to

(117)

1 (2zs ) Ip~o(zo)lo
"

(Dk,'„+r) 4 4

xP(k, ) P(v, ) i q)„,(zo) i
o, (118)

since the range of the v, integral is small,

1 (2zs ) IP, (zo)lolp„.o(zo)l &r(vz+k/2M)
~o Vp D(k,„) +r

(119)
The function

Nr(vo + k /2M) = ffp(kg) dkg p(vg) dvg

is the total number of states in (k~, v~) space
satisfying the conditions

v, ~ [0, (k, )' /2M], (k, )'c [0, (k,)'„],
with (k, )o~ defined by

(12o)

(kq) ~=k —2Mvs .
(121)

Thus, Ã& is the total number of states available
to an atom decaying from the bound state (k, vo).
Again, Eq. (119) is valid for k in the vicinity of the
threshold (k,h)'= 2M vs.

To illustrate the formulas required to investigate
the existence of resonance points in the inelastic
scattering cross section, consider the functions
As(K) and Az(K) as defined in Eqs. (94) and (95),
respectively, and consider the phonon model of
D(q, &u) in the Einstein approximation. At T=0,
the pertinent formulas are (for vc: C„)

x p(v g) I q .,(zo) I
~ (115)

The Heaviside step function H(k —(k„)o) recalls
the fact that decay is not possible unless k is
greater than a threshold value (k,„)o as illustrated
in Fig. 1. The upper limit v ~ is

v ~= (k /2M-vo)-u&o, (116)

where M is the mass of the adsorbed particle and
w0 is the Einstein frequency. Note that the life-
time is independent of k except for the threshold
condition k & (k,„)'.

When the Gaussian approximation is used, the
integrals become somewhat more involved because
of the nontrivial angular integral. However, for
I'kl near Ik,„l', we can expand D(q, As), As -=hf. „
—SIf», for lqi =kt» As —-0. Since D(q, As) de-
pends only on q~, define D(q, &u) —= D(q, &o) and write

D(q, &o)= D(k, o, o)+ (q-k, „)
eD

+~ ~th
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A)) (k v) = sl P„s(so) I d)tap()7)) „„„+si d)7) dv&p()7&)p(v)) lP (so)l „„(122)
4

AI (k v) = —»
l cP„(zo) l ~fd)7) P()h) 6(v +)7+vs —)7) —o)o)

» ~J d&) dv) p(~))p(v)) I ~„(so)I'&(v v-)+n n-& ~o), (123)

I 9)vs(so) I ] dvgp(v))19 vi(so) ~

+
V+Vs v —vg

Q

(124)

Co()7, v) = —» P(v) l P„(so) l
', v c C„.

We have restricted ourselves to the case of a single
bound state va and are interested in examining
whether or not the function As(k, v), defined as

A„(k, v) = 1 + C,'()7, v)A,"'()7, v) —C'„()7, v)A„'"()7, v),
(126)

can have zeros. Since Ci()7, v)A~o()7, v) &0 for all g
and v, the product C~A~ ' must become positive and

equal to 1+ C,AI ' at some ()7, v). In the limit that
v- ~, A„") and Co both tend to zero, while at ()7, v)
= (0, 0), the sign of A„"'C„ is determined by the pa-
rameters v~, +0 and the matrix elements. In addi-
tion, both CIA,' ' and C~OA„'~' are proportional to s,
the square of the well depth. Thus, a surface whose
attractive field strength is too weak will not exhibit
resonance points. It is clear, therefore, that the
zeros of As(z) are intimately related to the gross
properties of the surface (namely, vs, s, and zo).
In detailed calculations, one would use a more
realistic surface field, such as that used by
Cabrera, Celli, and Manson, ' and a model of the
fluctuation-correlation function most ayyropriate
to the surface under study. Alternatively, a real-
istic potential field and experimental results can
be used together to derive information regarding
the correlations of the surface excitations.

VI. DISCUSSION

The approach to inelastic atom-surface scatter-
ing develoyed in the preceding sections provides
an adequate means for investigating surfaces that
can be treated in the continuum approximation.
These include liquids, amorphous solids, and crys-
talline solids when surface-diffraction effects are
neglected. Atom scattering is particularly useful
for studying surface effects, since the atoms in-
teract primarily with the surface field rather than,
as with penetrating radiation such as neutrons,
with the bulk medium.

To compare some of the approximate results dis-
cussed herein with experimental data, one must
perform calculations with a more realistic form of
the mean potential field (and its associated eigen-
functions) than the simple square well discussed

The author would like to thank Dr. Alan Luther
for a number of interesting and informative dis-
cussions which were important for the overall de-
velopment of this work. Also, Dr. Hiroshi Taka-
hashi provided valuable and critical comments con-
cerning a number of points in this payer.

APPENDIX

In this Appendix, a derivation is given for the
temperature-dependent coefficient V, (s, T) of 5R(x)
as used in Eq. (10) of the text. In essence, a, re-
normalized harmonic approximation or renormalized
vertex is used to relieve the restriction of small
amplitude I(x).

Begin by writing down the power-series expan-
sion:

V(s, aft) = V,(s) + V"(2)aft(x, t)'

V(2) (&)+, 5R (x, t)+ ~ ~ ~ (A1)

As before, V'")(2) denotes the ))th derivate and Vo(s)
is the mean potential field of the surface. Thus,
the perturbing Hamiltonian is defined by

v(2) 2~,(r, f) = V'"(s)~ft(x, t)+, ~f~'(x, ~)+ ~ ~ ~

(A2)

in Sec. V. Such a comparison can test the ade-
quacy of a one or more fluctuation approximation
and, perhaps, the effects of neglecting higher-or-
der vertex corrections. Alternatively, experi-
mental results can be used in conjunction with an
adequate mean surface field to deduce results con-
cerning the Quctuation-correlation function.

A further investigation of the characteristic
resonancelike form of the inelastic-scattering cross
section as given in Eq. (95) can prove fruitful in
providing information about the parameters which
characterize the mean surface field (such as
strength and range. ) The characteristic denomina-
tors are absent in lowest-order perturbation theory.

The theory as developed can also apply to scatter-
ing of atoms from a surface covered with impurities
if one treats the diffusive motion of the impurities
as a stochastic process. Assuming the impurity
particles' motion, averaged over a statistical en-
semble, can be characterized as a Gaussian random
process (also called a multivariate normal process),
the theory as developed will apply.
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To approximately sum this series, we make a
renormalized harmonic approximation. To do
this, write

t g '=(gÃ(x, f))eZ(x, f) (A8)

VP'(x, t)=n(VÃ), n=l, 2, . . . .
Furthermore, assuming

(A4)

(A8)

(~R'"') = 0 (A8)

and approximate (5R") by n times its equal space-
time average, i.e. ,

&q(r, f) = —cosh' 58 —V(z) f)R(x, t) .s f 8

ss ~ sz
(A8)

Writing the average in terms of the trace over
e ~"~, where P is the adsorbate Hamiltonian, the
coefficient of &R(x, t) is

-ge 8
V (z, V)= S'IrIz '"' —cosh IIII—V(z)I

(AQ)
Z=tr(e '"~) . (Alo)

Note that the renormalized harmonic approximation.
amounts to using a renormalized vertex. That is,
one replaces multiQuctuation processes, such as

&& 8ft(x, t) .
Summing the series inside ( ~ ~ ~ ) yields

Se, (r, f) becomes

e ( (VR)' 8' (8Z)' 8'
Ioz(r, r)= —11+

&

- z+ S~
z+' ' ')l V(z))

(AV)

by a renormalized vertex, e. g. ,

(All�)

(AI2)
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