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x NY23{1] (3 —cosk,-cosk, —cosk,)} . (B3)
R#0

In the limit N—~ =, the free energy, which is the
logarithm of the partition function, is

Bf= —3Be+ln6[3<+ﬁg

T
Xj In(3 - cosk, - cosk, — cosk,) dk, dk, dk, . (B4)
-

The integral in (B4) is the N- « limit of the sum
that is derived from the partition function by taking
the logarithm of the product in (B3). Upon evaluat-
ing the integral, we can write the free energy per
particle as

Be (f/3€)=—Be 3InBe —0.924 . (B5)

A simple check on this formula is to calculate
the energy (E)=[8/0(pe)] ge(f/3e),

(Ey=-1+1/38¢, (B6)

and compare it to an independent calculation of the
energy. For N molecules with two degress of
freedom, the low-temperature excitation spectrum
is N independent harmonic oscillators, each having
an energy kT=1/8. Thus the total energy, includ-
ing a normalization factor |E,| =3Ne, is

1 2N
<E>=§J:€— (—3N€+—2—E>,

or
(Ey==-1+1/38¢ . ’ (B7)
Thus our partition function satisfies this check

and (B6) and (B7) both agree with our Monte Carlo
results.
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We report some results of a computer simulation of metastable states and critical proper-
ties in a finite Ising system consisting of square » x»n lattices with and without periodic bound-

ary conditions.

The description of metastable states on a funda-
mental level is both an interesting and unsolved
problem in statistical mechanics.'™® Nature pro-
vides many examples of metastable states; they
include supercooled vapors and liquids, super-
saturated solutions, superheated liquid He3, * fer-
romagnets in the part of the hysteresis loop where
the magnetization and the applied magnetic field
are in opposite direction, and diamond. Metastable
states can occur in discontinuous phase transi-
tions. Instead of making the appropriate phase
transition, however, the system may go over con-
tinuously into a one-phase state, called a meta-

stable state, which may have a very long lifetime.
The distinguishing feature of a metastable state
is that, eventually, either through external distur-
bances or spontaneous fluctuations which nucleate
the missing phase, the system begins an irrever-
sible process which leads to the new stable equi-
librium state. The irreversibility of this transi-
tion corresponds to a decrease in free energy or
an increase in entropy.®

In this paper we report some results of a com-
puter simulation of metastable states and critical
properties in a finite Ising model consisting of a
square n Xz lattice with and without periodic bound-
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ary conditions. Our restriction to this model was
dictated by a desire to compare some static crit-
ical properties with the exact results, ® including
the infinite system.® In these calculations we used
the Monte Carlo method. This approach is some-
what analogous to observing physical quantities in
a physical experiment. In the latter case nature
provides the averaging, whereas in the mathemat-
ical experiment this is simulated by a model.

However, in contrast to physical experiments, even

the microscopic state itself may be an output at
any moment during the calculations.

Since the model we discuss is essentially the
same as that treated by several authors, "' we
merely write down some of the basic equations.
We adopt the notations of Suzuki and Kubo, ® except
for trivial modifications. The master equation is

d
E—P(cl,...,oN;t)=—jZ Wi01,. 003055 .0.,0y)

X P01y eueyGpyenesOy;t)

~W, (01,005 =0y, ..., 0p)
XP(og,.ouy =04 ... 008) . (1)
The Hamiltonian is
3¢==251,J,0;0,~ HNm, (2

where

_)J if i and j are nearest neighbor

ij = { th 3
0 otherwise , @)

m=(L/N)23j0;.
The transition probability is given by
Wi(o1,...,0x8) =za¢
=3 {1 ~o;th[(Hp +23,J,,0,) /s T]}.
(4)
Since J/kgT,=3 In(V2+1) in the infinite square lat-
tice, © it is convenient to work with the scaled pa-
rameters T/T, and H/ T, (u = pg).

The quantity ¢ [Eq. (4)] may be evaluated with
the Monte Carlo method, which has been described
by several authors.®!® We note, however, [see
Egs. (1) and (4)] that the time scale is determined
only up to a constant factor. In our calculations
we express the time scale in units of the Monte
Carlo steps per spin. The relevant quantities
such as the mean magnetization (s ) have been
evaluated by a time average taken over a conve-
nient time interval. For the isothermal suscepti-
bility we used the relation

2
- k“w (Do =()?) - (5)
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FIG, 1. Calculated spontaneous magnetization for a
110x 110 square lattice
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It turned out that 10? Monte Carlo steps per spin
for one set of extensive variables (H, T) led to ac-
curate values of (m ) and xr. However, this ob-
servation time appeared to be, even for small and
antiparallel magnetic fields (antiparallel to (m)),
smaller than the umklapp relaxation time. Con-
sequently, in this region, we also observed meta-
stable states. The calculated spontaneous mag-
netizations of a 110X 110 square lattice with and
without periodic boundary conditions (PBC) are
shown in Fig. 1. For comparison we also plotted
(solid line) the rigorous behavior of the infinite
square system.® It is seen that the finite system
with PBC follows quite closely the behavior of the
infinite system, except near to 7,, where the
usual rounding associated with finite systems oc-
curs. Without PBC there is a remarkable shift
(T < T,) towards smaller values of the ordinate.
However for temperatures not too close to 7,, the
slope is again equal to that of the infinite and finite
systems with PBC, respectively. Similar behavior
has been found (Fig. 2) in the temperature depen-
dence of the isothermal and zero-field suscepti-
bility. 1/xr of the system with PBC simulates
closely the behavior of the infinite system, name-
ly, (l€l)”*~1/xy, " except near at T,. This re-
sult also indicates that Yy~ ~ 4. The minimum
occurs at T'> T, as predicted by Ferdinand and
Fisher.® Without PBC there is again a shift for
T < T, towards smaller values of 1/Xy, and for
T>T, there is a shift towards larger ones. Ac-
cording to Ferdinand and Fisher® the minimum is
expected at T<T,. Due to the uncertainties in the
calculated susceptibilities it appeared difficult to
determine the position of the minimum unambig-
uously. 1/Xp.u, >0 expresses the fact that in a
finite system the mean-square fluctuations cannot
grow without limits.

Figure 3 shows some results of the calculated
equations of state for systems without PBC.

First we discuss the stable regions. It is seen
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FIG. 2. Temperature dependence of the calculated zero-

field susceptibility for a 110x110 square lattice.

that the magnetization for fixed 7 and H depends
on the number of spins in such a way that
(m(H, T)) decreases with decreasing N. We note
that the susceptibilities derived from the equations
of state agree quite well with those derived from
the mean-square fluctuations (Fig. 2). The cru-
cial point of these calculated equations of state is
the appearance of metastable states. The life-
times of these metastable states have been inves-
tigated over intervals of 10* Monte Carlo steps
per spin. Within this interval no transition was
observed for the plotted points. Of course the
mean magnetization of the initial configuration was
chosen antiparallel to the applied field. This situa-
tion corresponds to a physical experiment. For
fields larger than the coercive field H, the system
underwent a first-order phase transition within
10* Monte Carlo steps. The temperature and field
dependence of the lifetime of such states is shown
in Fig. 4. We observe that the reciprocal life-
time decreases with decreasing field quite linear-
ly. The lifetime extrapolates to infinity at our
definition of the coercive field. Our results lead
to the following relation between H, and (m (H )):

m/mg
et
go(r;/———"_
N T/Te
05
o 440x440 spins 0.8843
x 30x30 " 0.8843
o 140x440. " 0.9580
L L 0.0 1 H/T,
-200 -400 (o] 100 gauss /°K
-05
—
FIG. 3.

Calculated equations of state without PBC.
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(m(H)Y ~H, . (6)

In analogy to the equations of state (Fig. 3) where
H, decreases with N and increasing 7, we also ob-

P(n)
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FIG. 5.

Comparison of the calculated (without PBC)

and predicted (spherical droplet model) cluster distribu-
tion.
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serve a shift in the reciprocal lifetime.

To open a door towards better understanding of
these metastable states we investigated the dis-
tribution of the spin clusters with spins parallel to
the applied field. For this purpose we calculated
the probability P(z) for the occurrence of clusters
consisting of » spins. These results are shown in
Fig. 5. For comparison, we also included the
predictions as obtained from Frenkel’s!? droplet
model. According to this model one expects that

pln)=poes®/*eT @
where
A® =2 uHn+ V32 [ (n/m)? +é‘] 2J
=2uHn+ o). ®)

The first and second terms describe the “volume
energy” and “surface energy”’, respectively. In
this model possible anisotropy of the clusters is
neglected. For small clusters there is remarkable
agreement between the predictions of Eqs. (7) and
(8) and our results (Fig. 5). However, with in-
creasing » the disagreement becomes serious and
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indicates the importance of the cluster-border
anisotropy which is neglected in Frenkel’s droplet
model. Perfect agreement may be obtained if the
“surface energy”’ ¢ ) [Eq. (8)] is taken over from
the computer simulation performed at H=0.
Clearly, this improvement is due to the inclusion
of the cluster-border anisotropy. It then follows
that the importance of the cluster-border anisot-
ropy increases with increasing n. One expects
that the first-order transition should occur if the
cluster distribution P(z) becomes sufficiently
large for large clusters. To put this conjecture
on a more quantitative basis we introduce the
mean cluster radius () as a characteristic mea-
sure of the cluster distribution., In Fig. 6 we have
plotted ¢ ) as a function of H for different tempera-
tures. Taking over the coercive fields from

Figs. 3 and 4 we find the empirical relation

@ (T) Y2~ 1/HT)~1/ (m(H,))* . (9)

In the last step we used Eq. (6). Equation (9)
states that the first-order transition occurs (with=-
in 10* Monte Carlo steps per spin) if the mean
cluster radius exceeds a critical value (v,). We
note that (».) increases as T approaches T,.

To summarize, we have reported on computer
simulations of critical properties and metastable
states in a square nX#n Ising model. We find that
the metastable states possess a long lifetime up
to the coercive field and that the susceptibility is
well behaved at the onset of long-lived meta-
stability. It turned out that the homogeneous nu-
cleation of the new phase depends on the occur-
rence of clusters with a critical size whose border
anisotropy is of great importance. Our results
also indicate that the use of PBC is of advantage
(Figs. 1 and 2) if one is interested only in the val-
ues of the critical exponents of the corresponding
infinite system.

We acknowledge fruitful discussions with W, V.,
Smith, K. Binder, and J. Imry and are indebted
to C. G. Windsor for putting his Monte Carlo pro-
gram at our disposal.
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