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The lattice version of the Maier-Saupe model of a nematic liquid crystal, in which all mole-
cules are restricted to be on a simple-cubic lattice with periodic boundary conditions and to in-
teract only with their nearest neighbors through the interaction energy E~& = —e(~ cos 8~& —g),
is investigated using a Monte Carlo technique. The lattice is found to undergo a first-order
phase transition at e/kT=0. 890+ 0. 005withaspontaneousorderof (P2 (cos 0)) =0.33+0.04 at
the transition.

INTRODUCTION

For many years, certain liquid crystals have
been known to undergo nematic isotropic phase
transitions. These substances consist of long mol-
ecules which, at the phase transition, are oriented
so that their long axes point in some preferred di-
rection; i. e., the quantity

M = (P2(cos&))

has a nonzero value.
Maier and Saupe introduced a model of a liquid

crystal consisting of rodlike molecules having
pairwise interactions that depend only upon the
angle between their long axes, 8,.&,

P2(x) is the second Legendre polynomial; 8,&& 0
and depend on the distance between the two mole-
cules. Maier and Saupe' treated this model in the
mean-field approximation and obtained a first-
order phase transition.

Because the significance of the results obtained
from the mean-field approximation is not clear, we
would like to perform a more exact calculation.
Before we can accomplish this, however, our sys-
tem must be defined more precisely. The mole-
cules are restricted to be on a simple-cubic lat-
tice and to interact only with their nearest neigh-
bors; the total energy is

E = —E E Pg(cos&(g),

where (i, j) indicates nearest neighbors only and
& is the maximum interaction energy. Lasher has
given a discussion of the motivation for this choice.
He has also investigated this model under the re-
striction that the long axes of the molecules point
only along one of 12 directions placed symmetrical-
ly over the sphere (i. e. , towards the centers of the
faces of the inscribed dodecahedron)', and has found

a first-order phase transition. We have treated
this system exactly, allowing the long axes of the
molecules to point towards any direction, and have
shown that there is a first-order phase transition;
the temperature and spontaneous ordering at the
transition are significantly different from those
found in previous work.

MONTE CARLO CALCULATION

The Monte Carlo calculation was done in the
standard manner originated by Metropolis et al.
We start with a simple-cubic lattice of molecules
obeying periodic boundary conditions in some ini-
tial state described by the three direction cosines
of the long axis of the molecules at each lattice
site and calculate the energy of this configuration.
The lattice sites are numbered sequentially. A
random orientation is chosen for the molecule on
the first lattice site, and the energy of the result-
ing configuration, E„, is calculated and compared
to the energy of the original configuration, E~. If
E„&Ep, the new configuration is retained; if E„
& E~, the new configuration is retained with a prob-
ability I'=e~& ~' " . This same procedure is then

applied to each molecule of the lattice in turn.
Fosdick' has shown that the repetition of this pro-
cedure for many passes through the lattice will yield

' the equilibrium distribution.
We determine the thermodynamic and statistical

quantities of interest by averaging over the lattice
configurations generated after the system has
reached equilibrium. For temperatures far from
the transition, only one run, consisting of 2000 dif-
ferent lattice configurations on a 10x 10x 10 lat-
tice, was necessary; this run took 5 min on the
IBM 360/91 and gave good values for the energy
and the order. Runs near the transition required
a 20x 20x 20 lattice and more than 8000 lattice
configurations; these runs took 2 h. The results
of these calculations are shown in Fig. I. All cal-
culations were done using a FORTRAN Dl program
written expressly for this calculation.
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RESULTS AND DISCUSSION

The apparent discontinuity of the energy (E) and
order M seen in Fig. 1 suggests that the system
has undergone a first-order phase transition; Fig.
2 supports this conclusion. Figure 2 is a histo-
gram of the relative occurrence of all values of the
order seen in all the equilibrium configurations of
the systems generated at &/kT=0. 890. This histo-
gram shows the bistability of the order, having two
peaks at M= 0. 20 and M = 0. 33 in which the system
spends long periods of time compared to the time
spent in transferring from one peak to the other
peak. The order of the lattice below the transition
is zero. If the identical calculation were done on
larger and larger lattices, the histogram would
tend to a 5 function at M = 0 and a 6 function at M
=0. 33. Similar histograms at e/kT=0. 885 and
c/kT = 0. 895 show single peaks at M = 0. 20 and M
=0. 37, respectively; these points, therefore, lie

FIG. 1. Plot of the average energy (E), normalized to
—1.0 » + ~ 0. 0, and the order M as a function of Ps.
P =1/kT, T= temperature, and s is the maximum inter-
action energy of two molecules. The discontinuity in M
and (E) indicates a first-order phase transition at approx-
imately Pe = 0.90.

outside the transition region. From the bistability
and the other data we conclude that a first-order
phase transition occurs at &/kT = 0. 890+0.005 and
has a discontinuity in the order of M= 0. 33 +0. 04
and a latent heat of 1.09'.

A further check on the order of the phase transi-
tion is shown in Fig. 3-a plot of the free energy
as a function of p&. To obtain this plot we evaluate
the free energy analytically at very high and very
low temperature (see Appendices A and 8) and use
the formulas

pf(P)=Bf(B) —f (E(x)) dx, B» PT„„ss

Pf(P)=~/(b)+ f„(B(x))dx, b«P,„„„
(4a)

0.45

0.40—

to compute Pf (P) for intermediate values of P. Fig-
ure 3 shows the curves integrated from low and
high values of P meeting with a discontinuous slope
at Pe =0. 890; this discontinuity is indicative of a
first-order phase transition, and its value is the
latent heat of ordering.

It is useful to compare our results to the mean-
field approximation of Maier and Saupe and the
dodecahedral model of Lasher, ~ both of which pre-
dict a first-order phase transition. Table I gives
the transition temperature, the spontaneous order
at the transition temperature, and the latent heat
of ordering for all three calculations. It is clear
from these figures that, while both models correct-
ly predict the qualitative behavior of the system,
neither of them accurately predicts the transition
temperature or the spontaneous order.
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FIG. 2. Histogram of the number of occurrences of a
lattice with order M among all equilibrium lattices at Pe
=0.890. The two peaks indicate that, at this temperature,
there are two stable'&states-one ordered and one disor-
dered —and, therefore, a first-order phase transition oc-
curs near Pe = 0.890.
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FIG. 3. Plot of the free energy as a function of PE.
The curves are integrated independently from Pe = 0. 20
and Pe = 20. 00, using (3a) and (3b), and meet with un-
tequal slope at pe =0.88. This discontinuity in the slope is
indicative of a first-order phase transition.
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TABLE I. Spontaneous ordering at the transition, the
transition temperature, and the latent heat of ordering
for the mean-field approximation (MFA), the dodecahedral
model (DODEC), and the exact calculation (EXACT). The
latent heat is given in terms of the energy parameter of
Eq. (2),

second factor that may contribute to this disagree-
ment is the expectation that the specific choice of
lattice will not affect the qualitative behavior of the
system, but may affect the precise values of the
transition temperature and the spontaneous order.

MFA DODEC EXACT
APPENDIX A: LOW-Pe EXPANSION

Transition temp —Pe 0.77
Ordering 0.429
Latent heat 0.522m

0.75
0.82
l. 50m

0.890
0.33
1.09(e'

The N-particle partition function is

dn,.Z„= g 4
' exp[Pe Z Po(cos8, /)],4n. «, g)

(A1)

The measured order at the transition of nematic
liquid crystals is larger than our result. This
disagreement may be explained by the increase in
density at the transition, which will increase the
intermolecular forces in the ordered phase. A

where 0, are the angular coordinates of the ith
molecule, the energy of (3) is used, and the inte-
gration is over the directions of all N molecules.
Z„can be expanded in a power series for pe suffi-
ciently small:

dA
Z((( —— Q ' [1+pc Z Po(cos8I/)+ o (p&) 2 Z Po(«s8I/)Po(cos8»)+ o (pe)

7T &i.y )

/po (cos8(/) Po(cos8), I) Po(cos8„q) + ~ ~ ~ ] )
&i, j& &O, l& &n, s)

(A2)

where each sum runs over all nearest neighbors.
The first term of (A2) is 1, since f dQ, /4I/= 1. The
second term is zero, since it reduces to a sum of
integrals of the form f (dQ, /4I/) Po(cos8, ) = 0 by judi- .

cious choice of coordinate system. The only terms
contributing to the third and fourth terms of (A2)
are of the form [Po (cos 8;/)]o and [Po (cos8 I /) ], owing
to the orthogonality of the P„( sc8o,&) andthelackof
a closed triangle of bonds on the simple-cubic lat-
tice.

Evaluation of these integrals gives

Z))(=1+~Io N(pc) +oo N(pe) +. . . (A2)

The free energy per particle (f/Sq) and the aver-
age energy ( E)/3e are

f 1 Z I o I o
P&

—= —»m = —
TO (P&) —

IOO (P&) + ~ ~ ~

3e g. „3N
(A4)'

—'Pe —' (Pe) + (A5)

E(luation (A5) gives a good fit to the computed en-
ergies for P& ~ 0. 40.. We used (A4) to start the
free-energy calculation described in the text at
the low-(Pc) end:

PE (f/SE)
i o ~ oo

= 0, 00408

APPENDIX B: HIGH-Pe EXPANSION

We start from the same N-particle partition
function (A1). For Pe sufficiently large we assume
long-range order, i. e., that all molecules point

along nearly the same direction. We are thus able
to expand the partition function to second order in

the variables fx,.= sin8,.cos(c), , y,. = sin8, sin(j),.},
i= 1, 2, . . . , N, where 8, is the angle between the
ordering direction and the long axis of the ith mol-
ecule. If we also take advantage of the invariance
of (Al) under simultaneous rotation of all mole-
cules of the lattice through the same angle to orient
molecule I along the Z axis, we can write the par-
tition function as

&, = 4 (2") II ' '
I

&( )&()»)
4 II

x exp (3N 8~ ——,
'

P~ Z [(x, —x,)'+ (y, -y/)'] j,
&iy j)

(Bl)
where 5 is the Dirac 5 function and N is the number
of molecules in the system. The factor 2" comes
from the degeneracy of the ground state —each mol-
ecule can have either 8,. =0' or 8,. = 180' with re-
spect to the ordering direction of the ground state.
We now introduce the running-wave representation

x-=N-I/'Z- a e"'I
(B2),

N-I/o+. b
ik. n

where n is a triplet of integers locating the lattice
site of the molecule. These running waves are
analogous to the spin waves of the Heisenberg fer-
romagnet. Substituting these expressions into (Bl)
and performing the integrations,
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g 3N86(6p )
N p

& N fg (3 — sk„—osk„—c sk,)) . (B3)

ln(3 —cosk„—cosk„—cosk, ) dk„dk, dk, . (B4)

The integral in (B4) is the N- ~ limit of the sum
that is derived from the partition function by taking
the logarithm of the product in (BS). Upon evaluat-
ing the integral, we can write the free energy per
particle as

P& (f/3&) = —P~ —,
'

lnPe -0. 924 . (B5)

In the limit N- , the free energy, which is the
logarithm of the partition function, is

1
Pf = —SP&+ In6Pe+

(2 )'

A simple check on this formula is to calculate
the energy (E) =

t s/e(pc)] pe(f/Se),

(E)= —1+ I/SPe, (B6)

1 2N(E)= -SN&+-
3N& 2p

ol

(E)= —1+ 1/Spa . (BV)

Thus our partition function satisfies this check
and (B6) and (BV) both agree with our Monte Carlo
results.

and compare it to an independent calculation of the
energy. For N molecules with two degress of
freedom, the low-temperature excitation spectrum
is N independent harmonic oscillators, each having
an energy kT = 1/P. Thus the total energy, includ-
ing a normalization factor IE I =3N&, is
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We report some results of a computer simulation of metastable states and critical proper-
ties in a finite Ising system consisting of square p xn lattices with and without periodic bound-
ary conditions.

The description of metastable states on a funda-
mental level is both an interesting and unsolved
problem in statistical mechanics. ' ' Nature pro-
vides many examples of metastable states; they
include supercooled vapors and liquids, super-
saturated solutions, superheated liquid He, fer-
romagnets in the part of the hysteresis loop where
the magnetization and the applied magnetic field
are in opposite direction, and diamond. Metastable
states can occur in discontinuous phase transi-
tions. Instead of making the appropriate phase
transition, however, the system may go over con-
tinuously into a one-phase state, called a meta-

stable state, which may have a very long lifetime.
The distinguishing feature of a metastable state
is that, eventually, either through external distur-
bances or spontaneous fluctuations which nucleate
the missing phase, the system begins an irrever-
sible process which leads to the new stable equi-
librium state. The irreversibility of this transi-
tion corresponds to a decrease in free energy or
an increase in entropy. '

In this paper we report some results of a com-
puter simulation of metastable states and critical
properties in a finite Ising model consisting of a
square n && pg lattice with and without periodic bound-


