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We have developed a set of differential equations which describe the hydrodynamics of a con-
ducting liquid crystal subjected to external electromagnetic fields. The mechanical forces re-
sulting from the interaction of the fields with the liquid are expressed as operations on the
Maxwell stress tensor. The use of this description allows a concise statement of the equations
of motion. As an example of the validity of the formalism, we rigorously solve the boundary-
value problem associated with the Williams domain (vortex) mode in nematic liquids. Using
standard constitutive relations, physical boundary conditions, and experimentally measured
material p-azoxylanisole constants, we quantitatively reproduce the significant experimental
observations.

INTRODUCTION

The influence of electric and magnetic fields on
liquid crystals has stimulated considerable interest
in the yast several years. ~ 3 This type of investiga-
tion has proven fruitful because of the electromag-
netic susceptibility exhibited by liquid crystals.
We present a general theory of the coupled electro-
magnetic-hydrodynamic problem in a concise for-
malism involving the Maxwell stress tensor. The
equations of motion, derivable from very general
physical laws, are extensions of Cauchy's and Max-
well's equations. As such they are a mathematical
formalism which requires constitutive relationships
to describe physical problems. To illustrate the
formalism, we treat the problem of the electric-
field-induced vortex pattern (Williams domains)
in a conducting nematic liquid crystal.

GENERAL CONTINUUM HYDRODYNAMICS

The hydrodynamic equations applicable to liquid
crystals have been known for some time. Liquid
crystals are unique liquids, since they are capable
of transmitting stress couples and being subjected
to body torques. Chistyakov gives a good review
of the general physical characteristics of the liquid-
crystal phase. For instance, the nematic phase
can be thought of as consisting of an aggregation of
rod-shaped molecules whose axes tend to be parallel
in macroscopic regions. This uniaxial direction
is often represented by the term "director" n,
where n is a vector in the direction of the average
molecular orientation. Since a nematic liquid re-
sists spatial distortion of this orientation, stress
couples can be present. The director can have a
rotation apart from any fluid velocity, and thus an
internal angular momentum is possible. Features

such as these must be taken into account in the
hydrodynamics of liquid crystals.

The equations of motion for a "polar" fluid can
be derived in a standard way from conservation
laws. ~ The conservation of mass yields the equa-
tion of continuity

+p(v v) =O,

where p is the mass density, v is the fluid velocity,
and D/Dt stands for the convective time derivative
s/et+ v ~ v. The conservation of linear momentum
yields the force equation

Dv~ cog;
p

where F, is the &th comyonent of any applied body
force per unit volume and 0„.is the stress tensor
associated with the fluid. o,~ez dS is the ith com-
ponent of the force on a surface element dS, where
e is a unit vector along the normal to the surface
outwards from the volume under consideration.
Throughout this paper the repetition of an index
implies summation over the three spatial indices
g, y, and z. Care must be taken in comparing
the hydrodynamic theories of liquid crystals. Some
authors, for example, write the gradient of the
stress tensor as Sa„/8~, 7

The conservation of angular momentum for a
liquid crystal does not follow directly from com-
putation of the moment of linear momentum. As
discussed above, a liquid crystal can have an in-
trinsic angular momentum yer unit mass l, and a
stress couple C,&. The conservation of total angu-
lar momentum leads to a torque equation:

DE, 9C„.
P D] ] 6]jy+Ph+ P

Xg
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MAXWELL STRESS TENSOR

We wish to apply the general hydrodynamic equa-
tions to a liquid crystal under the influence of an
electromagnetic field. The problem of calculating
ponderomotive forces on a fluid is not trivial. A
precise derivation of these forces is given by Lan-
dau and Lifshitz. " If one assumes (i) isothermal
conditions, (ii) a linear relation between the elec-
tric field E and the displacement field D, and

(iii) a similar relationship between the magnetic
field H and the induction field 8, they show that
the mechanical forces due to the electromagnetic
field can be separated from the mechanical forces
due to the medium in the absence of the fields. The
electromagnetic forces can be most easily expressed
as operations on the Maxwell stress tensor T,~:

&&yu ga ~

Bxg
(5)

Landau and Lifshitz show how T,&
is defined for an

isotropic linear system. It is straightforward to
extend this to an anisotropic linear system:

(@ ~ p E'p y@l Egg
a ~

HB ——
Il ~HB — '

) (6)
Bp

The linear constitutive relations have been assumed

where e,» is the completely antisymmetric (Levi-
Civita) tensor and w, is an applied body torque.
The term &,»o» in Eq. (3) indicates the coupling
between the stress tensor (e.g. , the stress due to
viscous flow) and the angular momentum change.
In an isotropic fluid, E, , ~, , and C, ~ are identically
zero, thus requiring q,»a, &=0. It is important to
note that conservation of total angular momentum
for a liquid crystal does not require that o.,z be
symmetric, or equivalently &„-~o,.~ = 0. Angular
momentum can be exchanged between the fluid flow
system and the intrinsic system, etc. The ques-
tion of the symmetry of o,~ has received consider-
able attention in the recent literature.

The conservation of energy leads to a power
equation:

DU ~ 0'~~ Bvg C~z 84~
p p& + ' q+ + + &gya+ga+kdt Bxg Bxg

where & is the heat-supply function per unit mass
per unit time, U is the internal energy per unit
mass, q is the heat Qow vector, and ~ is the angu-
lar velocity associated with the intrinsic angular
momentum 1. For a nematic liquid crystal, the
relationship would be I~ = 1, where I is a moment
of inertia per unit mass. An example of the heat-
supply function pz would be the joule loss associated
with drift current in an electric field.

V' ~ D=p g ~ B=O,

BD BBVxH=j+ —,VxE=-
Bt Bt

where p, is the "true" charge density and j is the
current density. The current density is not a
Galilean invariant, and care must be taken to con-
sider convection currents (v ~ D)v, etc. , when the
medium described by Eq. (V) is in motion. '4 We
intend to treat the electromagnetic problem only to

to be D=&pE 'E and B= pp p'H, wherethedielectric
constant tensor is gpss and the permeability tensor
is pjL Free energy considerations show that
these tensors are symmetric. &p and pp are the
permittivity and permeability of free space, re-
spectively. We use the rationalized mks system
of units. The terms involving p refer to electro-
and magnetostriction.

A word of caution should be mentioned at this
point. Numerous textbooks derive the Maxwell
stress tensor in a vacuum or in an isotropic medi-
um. ~ Various properties of the tensor are then
shown, given these assumptions, e.g. , T,z is sym-
metric in an isotropic medium. These proofs do
not necessarily carry over to the more general case
under consideration here. Notice for example that
a dielectric with an anisotropic dielectric tensor
can experience a body torque (px E), = —

&,I~T»,
where P is the dipole moment per unit volume. The
definitions of o,&

and T, &
are somewhat arbitrary.

The important physical point is that the equations
of motion involve only the sum p, ~+ T,.~.

We wish to consider conducting liquid crystals
and thus should discuss the validity of the previous
equations for a medium with ionic conductivity.
The hydrodynamic equations are completely gener-
al, including the case of a multicomponent fluid.
In this case the fluid velocity becomes an average
of the velocities of the different components, in-
cluding ionic motion different from the average
fluid velocity. A simple derivation of this result
is given by Spitzer. One can set up a Boltzmann
equation for each of the individual fluid components,
including collisions between components. When
the average rate of momentum change is computed,
Eq. (2) results. The collision terms resulting from
collisions between components drop out by Newton's
third law. Spitzer's analysis also shows the valid-
ity of the ponderomotive forces given by Eqs. (5)
and (6). This multicomponent theory offers a di-
rect interpretation of the heat-supply function r in
terms of Ohmic loss. Finally a relation between
8 and j collision terms and various stress tensor
gradients can be obtained.

We adopt the Maxwell field equations to complete
the general equations of electromagnetic-hydrody-
namics:
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zeroth order in v/c, where c is the velocity of light.
Thus the linear and angular momenta carried by the
electromagnetic field can be ignored in Eqs. (2)
and (3). The proper energy-balance equation [Eq.
(4)] in the presence of an electromagnetic field is a
difficult problem which we will treat in a subsequent
payer.

CONSTITUTIVE EQUATIONS FOR NEMATIC
MESOPHASE

C

Bx&
= [nx (h +hT, +h(()](+ ~((( &o((. (13)

where the various contributions (S, T, and Bdenote
splay, torsion, and bend, respectively) are

It can be shown that this torque arises from elastic
forces opposing director distortion. This approach
was pioneered by Frank. Expressed in terms of
a molecular field (h(=OF/Bn(),

In order to apply the general equations to specific
problems, it is necessary to assume relationships
between the various forces and responses, i.e. ,
constitutive equations. We will outline the proper
relations for nematic liquid crystals. As was dis-
cussed above, a nematic liquid can be described
by a director n which we assume is of constant
length:

(8)

hs Piigrad dlvn

hr ———goof(n ~ curln) curln + curl[(n ~ curln)n] },
ho = p,o((nx curln) x curln+ curl[nx (nx curln)] },

where the jg's are approyriate elastic constants.
It is also necessary to postulate constitutive rela-

tions for the relative response tensors q and p, .
If the director is assumed to determine the uniaxial
direction,

The stress tensor can be broken into three parts,
1

&&&&+&0&&+«y
E(~ E(6(g+ (6)( E()n(n~

f((~+ (((„—(( )n( n
(14)

where p is a hydrostatic pressure, oo, ~ is a stress
due to elastic deformations of the liquid, and «'~
is a viscous component. It can be shown that~

BE
+0)1

B
nil

+kg
(1O)

where A is the strain rate tensor

1 I'sv( sv;-

and N is

N= — ——,
' (curl v)xn .

Dt

Again there is an index interchange between Eq.
(11) and Leslie's notation, arising from the diver-
gence notation. The angular velocity of the director
relative to the Quid is nx N. The n's are constants
with the dimension of viscosity and are not all in-
dependent. It has been shown that +2+ n3= ne —n&.
Given these constitutive relations for 0„.and ig-
noring o+~, it can be easily shown that the viscous
contribution to the torque equation is given by

e„(o~((=[nx [((('o —((.o) I+ (no —((.,) An]), . (12)

We now consider the director torque S C„-/Sx, .

where F is an elastic free energy and n(&= Bn(/sx&.
Normally a+~ is quadratic in n, &

and can be ignored
in linear treatments.

The viscous stress tensor 0.,'.,- has been derived
by Leslie7:

I
&;

= mink n~ A» n& n&+ n2 n; N& + n3n& N&+ e4 A, ,
+ ((.onion(, &„(+aon(n(, A(,(, (11)

where f ios the specific inductive capacity (dielec-
tric constant) for the component of the electric field
parallel to the director, p„ is the relative perme-
ability parallel to the director, and &, and p, , are
the perpendicular components.

For a conducting medium it is necessary to pos-
tulate a constitutive relationship between the cur-
rent density and the various forces that can produce
the current Qow in the Quid rest frame. Here we
are dealing with a problem involving loss and in-
tend to represent this feature in a steady-state ap-

~

proximation. This is certainly a good approximation
for frequencies below the plasma frequencies asso-
ciated with the ion. ' Several forces can be thought
of as inQuencing current flow 3: electric fields, mag-
netic fields viathe Lorentz force, and pressure and
temperature gradients, although the latter would
require a reformulation of the Maxwell stress ten-
sor. In the interest of simplicity, we will treat
only the current produced by an external electric
field. In the Ohmic approximation j = g, E, where
o, is a conductivity tensor. Unfortunately conven-
tion requires us to use the same basic symbol for
both the stress and conductivity tensors. We as-
sume the conductivity tensor to be uniaxial, the
orientation specified by the director n:

(O'N)(g = 0'j 6(g + ((7,(
—(T()n( ny ~

If one deals in a linear approximation, convection
currents can be ignored.

It should be pointed out that there is a question of
consistency between Eqs. (3) and (8). Equation (8)
is aconstraint on the three components of n. Equa-
tion (3) seems to be three separate equations for the
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three components of the torque and thus might vio-
late the constraint of Eq. (8). Closer investigation
reveals that the vector equation [Eq. (3)] has only
components perpendicular to n, i.e. , it involves
only two separate equations. Note that every term
except q, J,T» involves a cross product with n [see
also Eq. (12)). It can be proven that given the con-
stitutive equations of Eq. (14), &,~~T» has no com-
ponent parallel to n (see Appendix A). Thus Eqs.
(3) and (8) are consistent.

WILLIAMS DOMAIN MODE

In order to illustrate the utility of this theory,
we have chosen to treat the electrohydrodynamic
instability in nematic liquid crystals known as the
Williams domain mode (WDM). ' Extensive experi-
mental and theoretical work has been performed
on this problem, '~ ' due in part to the technological
potential for display in the higher voltage regions. '
We will review the basic experimental features
here.

The experimental geometry is described by a
capacitor filled with a nematic liquid crystal, typi-
cally p-azoxyanisole (PAA). The capacitor spacing
d is usually in the 10-100-p range, and at least one
electrode is transparent to allow viewing of electro-
optic phenomena. The capacitor faces are rubbed
to promote orientation of the director in one direc-
tion in the absence of an electric field. We define

Domain Line

ez

-e
X

~

~Domain Line
1

Fluid Streamlines + Domain Lines

FIG. 1. Schematic drawing of the streamlines and
domain lines is given (Ref. 20). The figure shows a cross
section of the experimental geometry: a capacitor filled
with liquid crystal. The electric field is applied in the g
direction (&g), and the electrodes are rubbed to promote
orientation of the director in the x direction (&J. Above
a critical voltage, vortex motion is observed, the vortices
extending in the y direction and antiparallel in adjacent
cells. The periodicity of the fluid motion is & and is
roughly equal to 2d, where d is the thickness of the sample.
The origin of the coordinate system is taken to be at the
center of the vortex in the middle of the drawing. When
the sample is illuminated from below, an observer above
the sample sees bright domain lines extending in the y
direction. There are two sets of domain lines, one above
the sample and one below the sample. The position of the
bottom lines is under the center of the vortex motion, and
the top lines are over the external part of the vortex flow.

a coordinate system by taking the x direction paral-
lel to the rubbing direction and the z direction nor-
mal to the capacitor plates. Two striking phenom-
ena occur when the sample is viewed in transmitted
light with a sufficient voltage applied: (a) Bright
lines appear running parallel to the y direction,
and (b) the liquid is set into vortex motion. The
observed features are diagramed schematically in
Fig. 1. The domain lines are drawn under the
assumption that the light is incident from below and
the observer is viewing from above. The vorticity
is antiparallel in adjacent domains. Experiments
are generally done in temperature controlled en-
vironments. The power generated in the samples
is typically on the order of a few mW per cm3 at
most (10'-0 cm resistivity). The conduction of the
heat out of the sample would produce only an in-
'significant temperature difference. Thus it is safe
to assume isothermal conditions prevail.

It has been shown that the domain lines can be in-
terpreted as images of the microscope source.
The liquid crystal acts as a series of cylindrical
lenses whose axes are in the y direction. The
spatial distribution of the director consistent with
both the real and virtual images are

n= (cos8, 0, sin8),

8 = 8t cosqx cos(vz/d) .

This distribution is diagramed in Fig. 2 for q
= v/d and assumes that the origin of the coordinate
system is at the center of one Quid vortex.

Two significant experimental observations are
relevant to the theoretical treatment in this paper.
Both concern the variation of thedomainexperiment
with changes in the thickness d. As the sample
thickness is changed (10-1000 p), the voltage at
which the domain pattern is first observed remains
relatively constant (6-8 V for PAA). The spatial
periodicity defined by q is found to vary roughly
as q= K/d, where K is a constant on the order of v
and is not strongly voltage dependent.

Two theoretical models have been proposedto ex-
plain these observations. One of the models in-
volves the basic assumption of space-charge-limited
(SCL) currents. ~ It has been shown that the con-
duction in the normal domain-mode experiment de-
scribed is not SCL, and thus the basic phenomenon
is not a SCL problem. 2~ The other theory involves
a treatment which reduces identically to Eqs. (13)-
(20) of this paper The theory. is due to Helfrich
and the rest of this paper should be regarded as an
extension of Helfrich' s treatment. ' Helfrich' s
theory had one significant defect. He was forced
to assume the relation q-K/d in order to deduce
the threshold voltage effect. We will show that this
wave-vector-thickness relation is a natural result
of the exact treatment of the boundary-value prob-
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FIG. 2. Director orientation as deduced from domain
lines. It can be shown that the domain lines are images
of the incident light source Iefs. 20 and 21). The lines
below the sample are virtual images, and the lines above
the sample are real images. From the nature of the
image pattern, it is possible to deduce the director orien-
tation. The arrows in the figure represent the orientation
of the director at the position of the arrow. Because of
the anisotropy of the index of refraction, the liquid repre-
sents a series of cylindrical lenses which have constant
thickness but a variation of optical path length in the x
direction. The domain lines are shown in proper relation
to the director pattern, i.e. , the center of the director
pattern represents an optical path minimum. As can be
seen by reference to Fig. 1, the center of the director
pattern also is the center of the vortex. Experimentally
it is found that the focal length (position of domain line
relative to sample midplane) of the lens system decreases
as the voltage is increased above threshold. This can be
interpreted as an increase in 8&, the amplitude of the
director distortion (Ref. 21).

E„(g=+ —,'d) = 0 . (17)

The fluid must remain inside the plates, and thus

v,(z=+ —,'d) =0 .

The fluid Qow parallel to the plates must be zero
at the plates to avoid infinite viscous loss:

v, (z=+ —,'d) =0 .
Since there are boundary conditions in the g direc-
tion, it is not obvious that the periodicity in the x
direction should be simply related to d. We show
below that such a relation does exist.

THEORETICAL ANALYSIS OF DOMAIN PROBLEM

The Quid-field equations are obviously nonlinear
equations. A standard theoretical method for find-
ing approximate solutions to such equations is to

lem.
Consideration of the experimental geometry re-

veals that the problem is essentially two dimen-
sional in the gz plane. There is no variation in y.
There are eight boundary conditions to be met.
Since the sample plates have been rubbed to pro-
mote the director lying parallel to the plate, the
angle 8 must be zero at the plates:

e(z=+-,'d)=0 .

Since the capacitor plates are good conductors rela-
tive to the liquid crystal, the electric field can
have no g component at the sample plates:

E = (0, 0, 1)EO+ (1, 0, q, /q ) e" '
E& . (20)

Since v'& E = 0, Maxwell's fourth equation is satis-
fied [Eq. (7)]. The velocity field is assumed to be

v, = (- q, /q„, 0, 1)e"' v, , (21)

where v& is sufficiently small that the convective
portion of the time derivatives can be assumed to
be zero. The velocity has zero divergence. Since
the total time derivative of the mass density is
zero, this form of the velocity satisfies the mass
continuity equation [Eg. (1)J. We are treating an
incompressible Quid. The angle of the director is
also assumed to have a sinusoidal dependence with
a small amplitude 8~ (8, «w):

8= e'~'~e

The director is thus given by

n=(1, 0, e"'~e, ) .

(22)

(23)

We assume that the magnetic fields produced by
the currents are sufficiently weak with respect to
other forces that all magnetic effects can be ig-
nored. Consequently the magnetic components of
Eqs. (6) and (7) do not place any constraint on the
problem. This amounts to ignoring the Lorentz
force due to the current in one part of the sample

linearize the problem by considering small oscilla-
tions away from equilibrium or steady state. In
this case the zero-order state is described by the
director being always parallel to the z direction and
zero-flow velocity. We look for small oscillations
away from this steady state. The linearization
process leads to a set of differential equations
which are translationally invariant for the infinite
medium problem. It is well known that plane waves
of the form e'~'~ form a complete set of functions
for such a problem under normal conditions. The
wave vector q will be represented by (q„, 0, q, ),
since we will consider the problem to be spatially
independent in the y direction. As usual, the smal1
oscillation treatment leads to a dispersion relation
between q and other physical parameters. If the
dispersion relation is degenerate, the plane-wave
representation must be expanded by multiplication
by a polynomial in r. Once the proper infinite me-
dium solutions are obtained, they are used to satisfy
the boundary conditions described above. The solu-
tion of this problem leads to the normal modes of
the sandwich-capacitor system. The final result
is obtained from the simultaneous solution of two
characteristic equations, one for the infinite medi-
um and one for the boundary-value problem.

The electric field is composed of the uniform
applied field Eo and a small distortion field of
amplitude E~ (E, «Eo):
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et
P'+v )=0. (24)

In the steady-state condition, this means that the
divergence of the current density must vanish.
Thus for this particular problem, the solution of
Mmnvell's first and third equations reduces to the
solution of Eq. (24).

Given the form of n, the various susceptibility
tensors can be written in the laboratory frame. It
is instructive to produce the conductivity tensor
consistent with Eq. (14):

o (~„—~,)s,e" )

acting on the current in another part of the sample.
For currents typically onthe order of microamperes
and sample areas onthe orderof 1 cm, thisis cer-
tainly a good approximation.

Implicit in Eq. (V) is the conservation of charge
equation

zeroth-order term.
The definition of o„is given by Eqs. (9)-(ll).

As was stated above, it is generally assumed that
gp, ~ can be ignored in a first-order treatment. Al-
so we assume that the cy& term in p,',- is sufficiently
small that it can be ignored with respect to the
o.2 ~ ~ ~ nz terms. This assumption is expedient
since n, has not been measured accurately, and in-
cluding that it comylicates the theory considerably.
We assume the pressure to be of the form p= pp
+p&e", with these restrictions

0'„„=—p+ (n2+ no)~„+ n4A„„

+ (n, + no)(n„'A„+ ~n~.„) .
The case of the velocity distribution given in Eq. (21)
permits the calculationof the A, z and N, components
[Eq. (11)]:

A„„=—iq,vie' ', A,„=-,'iq„(1 —S )vie' '',

+e Iab 0 0'j

(n„—o,)e, 8"'~ 0 a, N„= 2 iq„(S +1)elvle' 0

(25)
From Eq. (25) it is clear that the conductivity ten-
sor has off-diagonal elements for nonzero 9&. It is
well known that this situation leads to electric fields
transverse to the current, e.g. , the Hall voltage in
the ease of conductors in a magnetic field. This
transverse field can be thought of as the result of a
space charge. The interaction of the space charge
with Ep produces the domain mode.

The choice of E, v, and n given in Eqs. (20)-
(23) satisfy all the relevant fluid-field equations
except Eqs. (2), (3), and (24). In order to solve
the equations of linear and angular momentum con-
servation, we need the expressions for g, &

and T,&

consistent with these assumptions. This is a
tedious algebraic problem, and we see little utility
in reproducing all the various steps. Instead we
will derive T„„and o„„.

The definition of T„„is ,'E„D —2E+, wh—en e—lec-.
trostriction and magnetic field effects are ignored.
Formation of the product q, &E,. reveals that

D = C04nE1 e + 60(6 6))elEoe4Q ~ 8 $g ~ 8

8 CpfgEp+ cp6 j~Ege

where S—= q, /q„. The product E„D„contain terms
proportional to E', and Ejg, . We intend to linearize
the problem in the distortion amplitudes and so
equate Ej)„to zero. E,D, contains zeroth-, first-,
and second-order terms. Again dropping the sec-
ond-order term,

T„„=—
2 cot ~(E0 + 2SE0E1e '

) .
Naturally the driving amplitude E& is considered a

+ [q„k22+ qg kll —40(E)) t J)E0 ]el = 0 . (28)

The charge continuity equation reduces to

(&iqg &qg +&())El+ (&)) &))Eoel 0 ~ (29)

Equations (26)-(29) are a set of linear homoge-
neous equations in the amplitudes p&, v&, Ej, and

8,. It is well known that such a set of equations

The assumption of linearity in distortion amplitudes
means that we can set N„equal to zero. Since the
e„yg, A,„term in the O„„expression goes as H,v»
we ignore this term also. It follows that to first
order o„„=—p —(n4+ no+ no)iq, vie

We are now ready to proceed with the fluid-field
equations that have yet to be considered. The z
component of the linear momentum equation [Eq.
(2)] reduces to

(q, 2

)tg +
)

g (Gs+ a4+ Ng)+g (Qg+ al ~ + 2ag+ Qg))fly =0
2 I,q

(28)
The y component of Eq. (2) is identically zero and
the z component reduces to

iqgpl+ 2[(n2 n4+ no)qg + (n2 n4 no)qg ]Vl
2

+ QEppp p J + $//qg Ej + 'Ltg„E'() —E E'
p 8& = 0qg - 2

q„
(2V)

The only nonzero component of the torque equation
is the y component

2

+i —As +0'.2q„Vq —Ep 6ii Cx EpEg
q,
qx
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can be solved simultaneously if and only if the
determinant of the coefficients is zero. This con-
dition leads to a "dispersion relation" between S
and Eff/q„ for the infinite medium problem:

2

0=(S +1) (D., —S D,,), (D 6 D~~& )2 2 &O&O

Vx

—(pi2+S Rf) (k33+S klf)(oii+S D,)

2

p (~„-e,)D,(1+S')
q„

(30)

where S=q, /q„, fez= —,'(- n 2+@ 4++ 5), and flf= 2(fr/

+D4+ ff.8). Equation (30) is an eighth-order alge-
braic equation in S or a fourth-order equation in S ~

Fortunately, two of the roots are readily apparent,
as S= + f (note that this is due to the assumption that
af =0). The problem is then to solve the remaining
cubic equation in S . This equation can be re-
written as

(E &33+S
Kg (Dp S ~3)/('gp+ S TJf) (D'gC~~ D' 6)/(D'„+ S D,)+(q„—e,)D,(1+S )/(D„+S D,)

(31)

Equation (31) has been presented for comparison
with Helfrich's theory. It can be seen that the
special case of S = 0 is exactly his result. It should
be noted that Helfrich's treatment interchanged the
standard definitions of g2 and

While analytic formulas do exist for the general
solution of a cubic equation, the formulas are not
practical considering the complexity of the coeffi-
cients in Eq. (31). We thus have chosen to solve
the problem numerically using a digital computer.
For typical values of the parameter (Eo/q„), we
calculated the other six values of S~ using experi-

mental values for all the material constants (see
Appendixes B and C for the values used in the cal-
culation). It should be emphasized that there are
no adjustable parameters in this treatment. Note

,
that the eight Sz values come in + pairs.

Eight different wave vectors are possible: q~
= (q„, 0, S~q„). Since we also have eight boundary
conditions [Eq. (16)-(19)]to satisfy, it is in prin-
ciple possible to solve the boundary-value problem.
For example consider the boundary condition on the
z component of the velocity:

VA~ 1 + -Ag 1 +V e~ 2P +V g-ks2
&e~x = 0 t

g& ~3' + V e ~ ~30 + V ~k S4y + - ]$4yC -C D -D

vAt v- A t vB t v- B t etc. , are the arbitrary
coefficients to be determined by the boundary con-
ditions and —,'q„d = y. There are similar expressions
for v, evaluated at & = ——,'d. v&, 8„, and 8 follow
the same pattern. Again it does not appear profit-
able to reproduce all these equations. One must
solve another set of linear homogeneous equations,
and the boundary-value determinant (BVD) asso-
ciated with these equations must be zero for a

solution to be possible. The symmetry between
the boundary conditions at z= + —,'d and the symmetry
of the S values coming in positive/negative pairs
allows one to reduce the set of eight equations to
two independent sets of four equations. Solutions
to the problem will occur when either one or both
of the two 4 0&4 determinants are zero. %e repro-
duce one of the two determinant equations below:

cosS&y

S& sinS&q S2 sinS2p S3 sinS3y

cosS2p cosS3y cosS4+

S4 sinS4cp

where

0=
M& cosS&y M2 cosS2p M3 cosS3cp M4 cosS4y

M&N& cosS&cp M2N2 cosS2y M3N3 cosS3y M4N4 cosS4y

(32)

M~= 2 3 2 p y Ng ((TJ Sf+op)/D J
1 —Sg &3/+2 2

[(S,+k„/k ff)(Sg+ D'~[/0'f) + (foEO/q& kf f)(&,—&„)(I+ S~)]
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FIG. 3. Computer calculation of the normal-mode wave
vectors for PAA. The lowest-voltage curve in the figure
represents theonlyvalues of voltage and phase for which
Eqs. (31) and (32) are first simultaneously satisfied. The
next-higher-voltage curve represents those values for
which Eq. (31) and the dual of Eq. (32) are satisfied.
Additional curves appear at even larger values of V and
gd/X, reflecting the sinusoidal nature of the functions in
Eq. (32). The fact that no solutions exist below 8 V indi-
cates that the domain mode has a critical voltage. The
phase for each solution is double valued for a given voltage.
It is argued in. the text that the first low-phase solution
represents the WDM and the first high-phase solution
describes the VGM. The calculations have been based on
experimentally determined material coefficients (Ap-
pendix B)~ The 8-V threshold prediction compares well
with the experimental values of 6-8 V. The curve be-
ginning at 8 V ~represents one vortex layer andeachhigher-
voltage dispersion relation describes an additional layer
of vortices added to the sample. These curves were cal-
culated using a linearized theory. Nonlinear effects
could alter the detailed shapes at higher voltages.

The dual BVD equation is obtained by interchang-
ing sines and cosines in Eq. (32).

Equation (32) is a relation between y and Vo.
There is the obvious y dependence with Sz, Mz,
and N' depending on Vz/y. This relationship is
the final solution to the WDM problem. Thebound-
ary value problem can be solved for only certain
values of q„given Vo. These values of q„deter-
mine the normal modes of the system. Helfrich
was forced to assume a q„ to derive a critical volt-
age because he did not attempt a boundary-value
solution. ' The boundary-value problem is the key
step in the proof of a critical voltage, as we now

show.

NUMERICAL ANALYSIS

The numerical solution of Eqs. (31) and (32) is
straightforward. We have chosen not to reproduce
the program but will describe briefly the signifi-
cant features. (A copy of the program, written in
FORTRANIv, can be obtained by request. } Note that

the electric field appears explicitly only in Eq.
(30) in the form Eo/q„= Vo/2y. The sample thick-
ness appears only in Eq. (32) in the form cp= 2q„d.
It is convenient mathematically to set Vo and d, and
then vary q„by varying y. The program begins
by choosing Vo and y, and then calculating the vari-
ous ratios Sz. In general the Sz's can be complex,
but the nature of Eq. (30) insures that the complex
roots come in complex conjugate pairs. The cal-
culated S values are substituted into the BVD
[Eq. (32)], and a value for this quantity is obtained.
The complex conjugate nature of the Sz roots in-
sure that the BVD is either pure real or pure
imaginary. For an arbitrary choice of Vo and p,
the BVD is, in general, not zero, i. e. , an arbi-
trary point in the Vo, y plane does not represent
a solution of the boundary-value problem. Another
value of 'y is chosen and the process is repeated
using the same Vo. A solution of the problem results
if the BVD changes sign by going through zero be-
tween two chosen Q's. A new value of Vo is chosen
and the process is repeated. In this manner, those
combinations of (Vo, y) for which Eqs. (31) and

(32) are simultaneously zero can be determined.
The results of these calculations are shown in

Fig. 3 for PAA at 125 C. The phase-voltage plot
shows five distinct curves along which the liquid
crystal can have electrohydrodynamic modes.
The first curve begins at a threshold voltage of
8. 2 V, and ~ q „d is double valued as a function of
Vo. We will refer to this curve as possessing a
low and a high y branch. We would like to again
emphasize that the value of 8. 2 V is a number
which follows directly from the empirical material
constants listed in Appendix B. Another double-
valued solution begins at 15.3 V. This solution
comes from the dual of Eq. (32), i.e. , since in-
terchanged with cosines in Eq. (32). At still
higher voltages, a similar nest of curves is found
with each solution beginning at roughly an integer
value of 8. 2 V. These additional solutions occur
because of the periodicity of the sinusoidal func-
tions in Eq. (32).

COMPARISON OF THEORY AND EXPERIMENT

We do not intend to treat the questions of stabili-
ty or nonlinearity in this paper. Thus we cannot
rigorously predict which portion or portions of
Fig. 3 correspond to physical reality. It is abun-
dantly clear, however, that the low p branch of the
first solution describes the WDM experimental
situation. First there is the existence of a criti-
cal or threshold voltage. The voltage at which the
domain mode appears is unambiguously predicted
to be independent of thickness. Second, there is
the prediction that at any one voltage the phase
factor is independent of thickness, or equivalently
q„"1/d. Third, there is the prediction, revealed
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by the lower branch of the first solution, that q„
will not be a strongly dependent function of Vo. As
we discussed above, these are the three signifi-
cant qualitative features associated with the experi-
mental observations of domains.

In order to evaluate the quantitative predictions
of the theory, it is necessary to discuss the ex-
perimental uncertainty associated with the materi-
al constants in Appendix B. The quantity with the
largest experimental uncertainty is a„ /o, . The
reference paper for this ratio only estimates this
number and so we should certainly expect a +20%
uncertainty. It should also be noted that the vis-
cosities were measured at a slightly different tem-
perature than the other parameters. Given the
complexity of the calculation, it is not trivial to
estimate the uncertainty to be expected in the pre-
dicted threshold voltage as a result of the experi-
mental uncertainties. A reasonable estimate would
be +30%, due mainly to the conductivity ratio es-
timate. A similar estimate would be in order for
the value of the phase factor.

Given these qualifications, there seems to be
quite good agreement between the quantitative fea-
tures of the theory and experiment. The predicted
threshold voltage is 8 +2 V. The observed low-
frequency values for Vo are in the 6-8 V rms
range. We must restrict this analysis to specif-
ically exclude the zero frequency case due to the
difficulties of electrode polarization, etc. " At
dc there are serious questions about the Ohmic
assumption and the electric field boundary con-
dition. At frequencies near the space-charge re-
laxation frequencies, other features play an im-

portant role."-"
A quantitative comparison can be made between

the experimental and theoretical value of the phase
factor 2q„d. Experimentally this number, mea-
sured above threshold, has a value of approximate-
ly 2. In the same voltage range, the theoretical
prediction from the lower branch of the first solu-
tion is between 1.2 and 1.4. Certainly there is
better than an order of magnitude agreement, al-
though the theoretical estimate of +30% uncertainty
does not quite include the experimental value.
Considering the complexity of the assumptions
made and the experimental uncertainties, we are
satisfied with this degree of quantitative agree-
ment.

In order to further investigate the two branches
of the first "dispersion" curve, we have calculated
the z dependence of the four functions associated
with the boundary conditions. Since we have
treated the problem in a linear approximation,
the amplitude of the distortions are still unknown

to within a common multiplicative factor. This is
the standard solution of linear homogeneous equa-
tions. We plot in Fig. 4 the dependence at x=0 of
the functions —v„, —e„, and 8; the function v, is
plotted at x= m/q„. The figure is computed for
a solution on the low branch at V0=9. 6 V and y
= 1.488. Inspection will reveal that the computed
variations of v„—v„, and 8 match exactly with
the qualitative experimental observations given in

Figs. 1 and 2 and with the experimental observa-
tion of roughly solid-body rotation in the centers
of the vortices. Again we emphasize that the
ordinates in Fig. 4 are not absolute. Each is
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FIG. 4. Computer calculations of the
relative distortion amplitudes as a func-
tion of z for the V=9. 6, y=1.488 solu-
tion. The z component of velocity is
calculated as x =z/q„, while the other
three are calculated at x =0. Inspection
of the v~, -v„, and 0 plots shows that
they are exactly the variation indicated
in Figs. 1 and 2. The -E„plot can be
seen to be correct by the following argu-
ment. Since fiuid is moving up at v/q„
and down on —p/q„, there must be posi-
tive space charge at g/q„and negative
space charge at —7t./q„(the electric field
has been set in the positive z direction).
This means that E„due to this space
charge must point in the negative x
direction at x=0. All the plots are rela-
tive to an undetermined distortion am-
plitude v~ as is usual in the solution of
homogeneous equations. To obtain the
absolute values of v~, -v„, -E„, and 8,
multiply the ordinates in the figure by
V~ VA (aii Oi)/0 ) (EO/~ ii'4) +2v~, and
—(oq/ki fq„) Uz, respectively.
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undetermined by a constant amplitude factor v„
which must be determined by nonlinear analysis.
To obtain the absolute value of v„v„, e„, and 8,
multiply the corresponding ordinate by v&, v„,
[(op —ox)/og] (+p/~„q. ) ua'U~, and —&2UQ/~u q
respectively.

The high p solution in Fig. 3 can also be identi-
fied with an experimentally observed mode. Note
that the high-p solution corresponds to a linear
dependence of y on Vo at higher Vo values. Greu-
bel and Wolff28 report that very thin samples with
low conductivity produce a mode with just such a

Vo relationship. Vistin has also reported
similar observations. This mode is of technologi-
cal interest because the domain lines are suffi-
ciently close together to form a diffraction grating
for visible light. Since the line spacing can be
adjusted with the electric field, the liquid crystal
operates in what might be called a variable grating
mode (VGM). Unfortunately the material con-
stants are not available for the nematic liquid
crystals (NLC). used in the experiments. The
slope of the Vo, y linear region for PAA, is in or-
der of magnitude agreement with that of the ex-
perimental material. The steady-state nature of
our theory precludes a prediction about the con-
ditions under which the low- and high-y solutions
will be stable. A stability treatment would be
guided by the fact that thin low-conductivity sam-
ples prefer the VGM. Thick high-conductivity
samples prefer the WDM. While linear combina-
tions of the two modes appear to be possible in
theory, they are not observed in practice. Since
the calculations were performed using a linearized
theory, nonlinear effects may alter the shape of
Fig. 3. Experiments have shown that 8& is limit-
ed to 45', and so the linear theory should be fairly
representative of the experiments.

We now wish to consider the significance of the
additional dispersion relations shown in Fig. 3.
We have calculated the velocity spatial distribu-
tions consistent with each of these modes. The
mode which begins at 15 V has a velocity profile
indicated schematically in Fig. 5. The pattern
is still one of antiparallel vortices, this mode
having two layers of vortex motion. Each succeed-
ing mode of Fig. 3 has an additional layer of vor-
tices. For instance, the mode beginning at 36 V
has five layers.

It is well known in the field of stability analysis
that turbulence may be expected when a stationary
solution of the hydrodynamic equations has super-
posed on it a nonsteady small perturbation. 3 On

such experience we can base a conjecture that
turbulence might arise at 15.3 V (see Fig. 3, sec-
ond solution). In some sense, the two vortex mo-
tions of Figs. 1 and 5 will compete to establish
their own dominance. There is, of course, an

experimentally observed turbulence. ' The name
dynamic scattering mode has been coined to de-
scribe this phenomenon. Certainly this mathe-
matical occurrence of zeros in both Eq. (32) and
its dual should be considered as a possible expla-
nation of the onset of this turbulence. The expla-
nation for the turbulence is most important be-
cause it is the turbulence which makes the system
practical for display applications.

There are a number of other agreements between
experimental observations and predictions made
following this line of reasoning, e. g. , frequency,
temperature, and impurity dependence. For
further discussion of these factors, see Refs. 18
and 20.

While PAA was the prototype NCL for many
years, a room-temperature nematic has recently
become quite popular. This material is P-meth-
oxy-n-P-benzilidene butylaniline (MBBA). In Fig.
6 we present the results of calculations for MBBA
using the material constants listed in Appendix C.
The qualitative nature of the dispersion curves for
PAA and MBBA is the same. The WDM and VGM
regions of the MBBA figure are apparent, and
dispersion relations for one, two, and three layers
of vortex motion are shown. The predicted criti-
cal voltage for the one layer mode is 6. 9 V. The
Orsay Liquid Group has observed an electrohy-
drodynamic instability at 5 V in MBBA. Their
picture of this mode shows a y dependence of the
domain lines, however, and so an exact compari-
son with our theory of uniform lines in the y direc-
tion is not possible. There is also the problem
that a true dc experiment is complicated by elec-
trochemical reactions at the electrodes. It may
be true, however, that a more complicated domain
pattern containing a y variation has a lower criti-
cal voltage than the 6. 9 V we predict for our model.

While the basic mathematical solution has been
presented, the physical origin of the domain mode
may not be too clear. The basic ideas were first

27r

e,

FIG. 5. Schematic of fluid-flow pattern resulting from
the second set of solutions in Fig. 3. Computer calcula-
tion of the amplitudes for the solution V0=16 V +=3 099
have been performed. This solution corresponds to two
layers of antiparallel vortices. It is proposed in the text
that the competition of this solution with the V0=16V, y
= 1.1785 solution results in turbulence. Turbulence has
been observed and is known as the dynamic scattering
mode (Ref. 31).
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CONCLUSION
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FIG. 6. Computer calculation of the normal-mode
wave vectors for MBBA at 25'C. The dispersion rela-
tions for MBBA are qualitatively similar to those for
PAA {see Fig. 3}. MBBA shows a slightly lower critical
voltage of 6.9 V as compared to 8 V for PAA. The vis-
cosities for MBBA are an order of magnitude larger than
for PAA. Since the viscosities always enter the steady-
state calculation in ratios [see Eq. {31}],the critical
voltage is not strongly affected by the larger viscosity.
As with Fig. 3, these curves may be altered somewhat by
nonlinear effects.

presented by Helfrich. ' One assumes a sinusoi-
dal director-orientation dependence as given in
Eq. (22). As was shown in Eq. (25), this leads to
off-diagonal conductivity-tensor elements. It
follows that E„and D„ field components are non-
zero and that V. 5 is not zero. There is a net
space-charge density which can interact with the
applied field. This interaction, in a stress-tensor
representation is given by terms such as D„E„
i. e. , the Maxwell stress tensor. This shear is
opposed by elastic and viscous forces. At a criti-
cal voltage, the electric forces are sufficient to
overcome the restoring-forces and fluid-motion
results. Unfortunately we cannot offer a clear
physical explanation for the critical voltage, and
we must refer to the mathematical solution.

Since a large number of assumptions have been
made in our treatment of the domain problem, it
will be useful to make a unified statement of these
assumptions: (i) negligible temperature gradients;
(ii) o.', = 0; (iii) negligible electro- or magnetostric-
tion; (iv) zero gravitational potential; (v) steady-
state conditions; (vi) linearity in distortion ampli-
tudes and distortion gradients; (vii) fluid-field
equations (1)-(7); (viii) constitutiveequations (8)-
(15); and (ix) boundary conditions (16)—(19). As
was mentioned above, assumptions 5 and 6 seem
to be the best place to begin in future improvements
of the theory. It is possible to measure 8& as a
function of Vp, so a nonlinear theory could be
quickly compared with experiment. ~'

We wish to thank Dr. W. Weber for valuable
assistance in the numerical computations associat-
ed with this paper. We also gratefully acknowl-
edge the MBBA material constants k» and k33 pro-
vided by Dr. I. Hailer.

APPENDIX A

This Appendix contains the demonstration that
if the director n specifies the orientation of the
uniaxial tensor &, then the Marvell stress tensor
is of such a form that the vector M& = &;» T» has
no finite component parallel to n, i. e. , n ~ M=O.
For convenience we look at the problem in a co-
ordinate system where n defines the x axis. Thus
we have

&„0 0

0 ~, 0

00~
(A1)

The Maxwell stress tensor can be directly written
down as

T

T — EpE g IICp

EIE8))&o E,E„&i~o

EEeeo

We have developed a set of consistent differen-
tial equations [Eqs. (1)-(7)]for the description of
electromagnetic effects in anisotropic liquids.
The forces and torques exerted on the fluid by an
electromagnetic field in a susceptible medium
have been expressed in terms of operations on the
IVIMcwell stress tensor. Solution of these general
equations requires constitutive relationships. We
have presented the standard set applicable to a
NLC [Eqs. (8)-(15)].

The boundary-value problem associated with the
Williams domain mode has been solved by using
standard constitutive relations and experimentally
determined material constants. We have demon-
strated excellent agreement between the qualitative
features of theory and experiment and satisfactory
agreement on the quantitative features. We be-
lieve that this agreement proves the experimental
validity of Carr's proposal and Helfrich's origi-
nal treatment' of conduction-induced alignment.

Note added in proof. S. A. Pikin (Zh. Eksperim.
i Teor. Fiz. 60, 1185 (1971) [Sov. Phys. JETP ~33

641 (1971)]]has developed a theoretical treatment
which is similar to the approach described here.
He chose to derive approximate formulae for the
critical voltage region. Thus his result is the
demonstration of a critical voltage.
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where the elements T„„, T», and T„have not
been written down explicitly, because they do not
influence this proof. The vector M has the x com-
ponent

M„e„i„Tiq= (E~E&e~ E&Eye~) eo 0 (A3)

The dot product (n ~ M) is exactly n„M„which by
(A3) is zero Th. us Af can be written uniquely as
a cross product of n and another vector.

APPENDIX B

The following experimental values of the materi-
al constants (PAA) were used in the domain calcu-
lation: h»= Vx10' Nat 120 C (Ref. 33), h»
= 17x 10 's N at 120 'C (Ref. 33), e„= 5. 62 at 120 'C
(Ref. 34), e, =5.83 at 120 C (Ref. 34), rt, = l. 5
x 10 s kg m ' sec ' at 125 'C (Ref. 35), ps= 8. 6

xlp kg m ' sec at 125'C (Ref. 35),
x 10 kg m ' sec ' at 125 'C (Ref. 35),
x 10 s kg m ' sec ' at 125 C (Ref. 35),
(estimate, Ref. 36).

APPENDIX C

The following MBBA material constants were
used in the domain calculation for Fig. 6. The
neumatic isotropic transition temperature was
assumed to be 45'C. The sample temperature
was assumed to be 25'C. We have the following:
h» -—6. lpxlp N (Ref. 3V), h» —7. 25xlp ~s N
(Ref. 37), e„=4. 72 (Ref. . 38), c,= 5. 25 (Ref. 38),
rt, =23. 8xlp 'kg m ' sec ' (Ref. 39), rt, = lp3. 5

kg m ' sec ' (Ref. 39), as- —V7. 5xlp-' kg
m ' sec ' (Ref. 39), o.', = —1. 2 x 10 ' kg m ' sec '
(Ref. 39), v„/o, =l. 5 (Ref. 38).
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