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Study of the Specific-Heat Singularity of He3 near Its Critical Point
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We present measurements of the specific heat C„of He3 with an impurity of 250-ppm He4 near
its critical point, characterized by its density p~ and temperature T,, The sample cell had a
vertical height of 0.5 mm to reduce the effect of gravity on the singularity. Data were taken
along five isochores within the density range -0.17&Ap &+0.11, where Ap = (p- p,)/p„and in
the temperature range 3 && 10 '&

I t I& 10 ', where t= (T —T)/T, . The data are compared with
previous P-V-T measurements on this system and good consistency is shown between the two

sets of data. An adequate description of the data along the critical isochore is found to be given
by the extended scaling formulation of Green, Cooper, and Sengers, based on a generalized
parametric equation of state. Within experimental error, the critical exponent describing the
divergence ofC„is the same for t&0 and t&0 anditsvalue iso, =0.105~0.015. Scaled behavior
of the specific heat as a function of temperature and density is exhibited by the data. This scal-
ing is then related to the linear model of Schofield, Litster, and Ho. Good agreement is found
between the calculated and the experimentally measured parameters for the linear model. Small
systematic deviations will be discussed. We also present an account of the calorimeter relaxa-
tion times encountered in the vicinity of T,. In the two-phase region, these relaxation times are
much longer than in the one-phase region and diverge as the transition temperature is approached,
This behavior is empirically described and tentatively attributed to processes at the boundary be-
tween the phases.

I. INTRODUCTION

The specific heat of single-component fluids near
their critical points plays an important role in
assessing the validity of the scaling hypothesis. '
The experimental difficulties encountered in making
measurements of t"„sufficiently precise for a de-
tailed evaluation in terms of scaling ideas are con-
siderable. In recent years improvement in ther-
mometry and temperature control have made such
measurements increasingly accurate, and recent
C„data have been reported by Moldover on He
and Edwards, Lipa, and Buckingham ~ on Xe and
C03.

The research described below consists of pre-
cision measurements of the specific heat at con-
stant volume along five isoehores in the vicinity of
the'critical point of He . This work is comple-
mentary to previous work on Hes in this labora-
tory. '~ Recent research in other institutions on
this system includes that of Kerr and Sherman,
Chase and Zimmerman (CZ), Moldover and
Little, &

'o as well as previous work by them. "
Dahl and Moldover have recently made measure-
ments of C„ in He, but with emphasis on metastable
states ~

The He' sample used in this study contained
250-ppm impurity of He, and the densities in-
volved have I apl & 0. 17, where Ap = (p —p, )/p, .
On each isochore, specific-heat measurements
were made in the reduced temperature range
3.OxlO '&

I tl & 10 ', where t=(T T,)/T, . The-
critieal parameters, T, and p„are, respectively,

= 3. 31 K and = 4. 15X 10- g/cm', as determined
from previous research. » The work to be de-
scribed has been reported in a preliminary way.

The dominant effect of the 250-ppm He impurity
in our sample is to shift the critical temperature
upwards by approximately 0. 5 mK from ihe value
it would have for a pure sample of He'. This es-
timate is made by assuming a linear dependence
of T, on the concentration X4 of He4. This assump-
tion is justified from experiments ' ' giving T,
for several concentrations X4. Subsequent to the
measurements reported in this paper we have mea-
sured the specific heat in a He -He mixture con-
taimng 20 at. % He, to be reported at a later date.
If we suppose, as a rough approximation, that C„
at constant t along the critical isoehores varies
linearly with X4, we may estimate from this data
that the impurity of 250-ppm He introduces a rel-
ative change in C„of -0. 02% at Ifl = 10 ~. Since
this difference is always small compared to the
scatter in our data (-3% at I(I = 10 ~), we believe
we are justified in treating our samples as a one-
component system.

The specific heat along the critical isochore is
discussed separately in Sec. IV and is compared
with the extended scaling expression given by
Green, Cooper, and Sengers (GCS). '6 The data
along all of the various isochor es ar e then used in
Sec. V to make extensive comparisons with P- V-T
measurements on this system by Wallace and
Meyer (WM), ' since these data were readily avail-
able to us. The data are then compared with the
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FIG. 1. Schematic diagram of calorimeter.

thermodynamic scaling given by Missoni, Sengers,
and Green (MSG)~7 and analysed in terms of the
linear model of the parametric equation of state of
Schofield and co-workers. '

~ Our presentation
of this analysis differs from a recent one by Huang
and Ho. 0 In Sec. V some comments on critical
coefficients in several fluids are given.

II. EXPERIMENTAL

A. Description of the Apparatus

The calorimeter was designed to operate over a
temperature range between about 1.2 and 5 K and
made use of a simple heat switch. Special care
was taken to minimize the distortion of the specific-
heat peak in the critical region, caused by gravity.
To this end the sample cavity within the calorimeter
had the shape of a flat disk, the height being 0. 5
mm with a diameter of approximately 3. 5 cm, and
the chamber was suspended horizontally. A sche-
matic view of the calorimeter is given in Fig. 1.

The sample cavity was filled via a horizontal
stainless steel capillary of inner diameter 0.019
cm connecting the cavity and a low-temperature
valve, the latter thermally anchored to the outside
He bath at 4. 2 K. The fill capillary was thermally
anchored to the thermal shield (kept at the tempera-
ture of the He' pot) at the midpoint of its length.
The valve used was a commercial Hoke model
modified in this laboratory in order to reduce the
volume below the valve seat. The space beneath
the low-temperature valve seat and the interior
of the fill capillary constituted together approx-
imately 1/o of the total volume of the cell.

The sample chamber was constructed of two
parts, both of oxygen-free electrolytic copper,
soldered together at the midline. This was sus-
pended horizontally by means of a nylon thread
from a stainless-steel rod. The rod could be
mechanically raised and lowered to bring the
chamber into thermal contact with the He pot via

three prongs of copper tipped with indium. With re-
peated cycling of the heat switch at room temperature
it was found that the chamber always returned to
within 0. 5' of tilt from the horizontal position
when the heat switch was opened.

The temperature of the He pot was electronically
regulated, and was stable to within 20 p, K for
periods of several hours. During data taking, with
the heat switch open, the pot was normally regu-
lated to a temperature 50-150 mK below that of the
calorimeter. So long as the resultant heat leak
was reasonably compensated (see below) there was
no perceptible dependence of the measured specific
heat on this temperature difference.

The sample chamber was supplied with two non-
inductively wound heaters, one of which was used
to provide measured heat amounts for the calorim-
etric measurements. The other auxiliary heater
was used to counteract the negative heat leak from
the He pot to the sample chamber. The main
thermometer was a specially doped germanium
resistor provided as a gift by CryoCal, Inc. , and
was inserted into a hole in the bottom of the sample
chamber. The main heater and thermometer both
had superconducting leads. Thermal contact be-
tween the copper and the resistor was insured by
the use of Apiezon-J oil. This resistor along with
a wire-wound standard resistance kept at 4. 2 K
formed two arms of a two-terminal ac bridge de-
tection system. The other two arms of the bridge
were formed by a commercial ratio transformer,
which gave a direct reading of the ratio Ro, /(Ro,
+R„„)to seven digits. Here Re, and R„„are the
resistances, respectively, of the germanium ther-
mometer and the standard resistor. The tempera-
ture detection system was capable of resolving
temperature differences of 0. 5 p, K for a heat input
of 0. 5 erg/sec into the thermometer The te. m-
perature resolution was never an important source
of error in making the specific-heat measure-
ments.

The time it took the filled calorimeter to come
to thermal equilibrium was less than a few seconds
for I tl &10 ', but became as long as 30 min for
(- f) & 10 4 in the two-phase region. This increase
in the time to reach thermal equilibrium is ex-
amined in more detail in Sec. III. The heat leak
to the He~ pot was also strongly temperature de-
pendent very near 7,. This was apparently due to
the anomalous thermal conductivity of the fluid near
the critical point, '~ and increased convection in
the fill capillary at these temperatures. This
caused some changes with time and temperature in
the temperature drift rate of the calorimeter.
The combination of long relaxation times and tem-
perature-dependent heat leak was the principal
source of random error in the determination of C„
for i f*i & 10 '. Here f* = (T —T„)/T„, where
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T„(tr for "transition") is the temperature at
which an isochore intersects the coexistence
curve; thus T„& T,. For T&T„the relaxation
time was too small to be measured even for the
points closest to the transition. The temperature-
dependent heat leak was still not negligible in this
region, and could require longer waiting times for
the establishment of a reliable extrapolation to
the final temperature. For larger values of [t~ I

the principal source of systematic error was un-
certainty in the measurement of the heat pulse,
typically about 0. 1'%%uo of C„. Scatter in this region
was of the order of (0.1-0.3)%.

B. Calibration and Addenda

The germanium resistor was calibrated in the
empty calorimeter by first bringing it into contact
with the He pot by the mechanical heat switch.
Calibration tables of the ratio given by the ratio
transformer against the vapor pressure of He were
obtained. Approximately 45 points were taken in
the interval 3.0-3.6 K. The vapor pressure was
measured over a bulb containing liquid He that was
submerged in the liquid of the He pot. A good
thermal connection between the bulb and the liquid
in the pot was ensuredby means of numerous fine
copper wires soldered into the base of the bulb and
extending throughout the volume of the pot. Cor-
rections for hydrostatic head and corrections to
standard temperature and gravity were applied
to the measured vapor pressure. The T,s scale '
was used to convert pressure to temperature.

The measured ratio values were converted to
resistance values and a least-squares-fit technique
was applied to the resistance-temperature relation

T = Z A~ [log„(H ) —Z']',

where E is determined by iteration. The deviations
between the resulting curve and the measurements
were random and gave a mean-square temperature
deviation of 0. 2 mK. We estimate the accuracy of
our temperature scale to be within 0. 5 mK of T,8.

The heat capacity of the empty calorimeter (ad-
denda) was then measured in the same temperature
interval. A least-squares fit of the addenda heat
capacity versus temperature gave the relation

C„=1.294T+0. 129T' (mJ/K),

where C„ is the addenda heat capacity. The mean
square deviation of the data from this curve was
approximately 1%% of C„. The relative contribution
C„/(C„+Cz), where C~ is the sample heat capacity,
ranged from a minimum of 3% near T, to a maxi-
mum of 12% at 3. 5 K.

C. Procedure

During filling of the sample cavity the chamber
was maintained at a constant temperature
(3. 435 K) in the one-phase region. Fluid was then
pushed into the cavity by means of a Toepler pump
until the desired pressure in the cavity was at-
tained, under equilibrium conditions. This pres-
sure was measured with a mercury manometer at
room temperature. Corrections to standard tem-
perature and gravity and for the density gradient
in the vertical length of fill tube in the cryostat
were applied to the manometer measurement. The
P- V-T data"" of WM was used to determine the
correct pressure for a desired density. Then the
low-temperature valve and another valve in the
sample line at the top of the cryostat were simul-
taneously tightly closed. This procedure trapped
some fluid between the two valves at a pressure
that was unknown, but presumably was near the
sample-chamber pressure. Thus there was never
a large pressure difference across the low-tem-
perature valve.

It was found that this procedure produced small
systematic deviations in the final density from that
expected. These were apparently due to local
frictional heating developed while closing the low-
temperature valve and which could slightly alter the
density of the fluid. The final densities assigned
to the isochores were then determined from the
transition temperatures of the C„data through the
coexistence curve relation given by WM. We es-
timate that our reported values for p/p, have a
precision of +0.25%.

A successful shutting-off of the low-temperature
valve was assumed when the same transition tem-
perature and heat capacity was found for the par-
ticular isochore on three different passes through
the transition, taken on different (usually consec-
utive) days. Isochores that did not meet this cri-
terion were discarded.

At the end of the experiment the sample-chamber
fluid was transf err ed to a storage can of known
volume at room temperature and the number of
moles of gas determined. This measurement, com-
bined with the known density of the last sample on
which data was taken, allowed the determination of
the sample-cavity volume to an accuracy of + 1. 5%%uo.

Any error in this volume would affect only the ab-
solute value of the specific heat reported and not
the temperature dependence.

During measurement of the specific heat, the
temperature drift was monitored for periods ex-
tending from a few minutes up to about thirty
minutes before and after the administration of a
heat pulse to the sample. The pulses had a dura-
tion of between one and two and a half minutes, and
the temperature intervals involved varied from
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20 mK far from T„to 50 p.K very near T„. The
observed specific heat was found to be independent
of the size of the temperature interval in this ex-
periment.

A tabulation of our data is too extensive to be
given here, but will be contained in a forthcoming
technical report.

.III. DIFFUSION

—=Dg Vg,Sp
(3)

where v(f) = T(f) —T(C = ~) is the displacement of

The decreasing rate of thermal diffusivity in our
sample as the critical point was approached had
a large bearing on the practical aspects of taking
data near the critical point, particularly in the
two-phase region. In view of this, and also be-
cause of the intrinsic interest of transport proper-
ties near the critical point, we have attempted to
make a semiquantitative analysis of the diffusivity
from our heat-capacity chart recordings. The
manner in which the experimental data is produced
allows a rough determination of the behavior of the
time decay to equilibrium.

The experimental technique used was of course
designed to yield the specific heat with maximal
sensitivity, rather than the diffusion. Thus the
data points near T, were taken with relatively long
heating periods and low values of input power in the
heater, while sensitivity for diffusion would be
maximized with short heating intervals and larger
power.

Theoretically speaking, diffusion data in the
one-phase region is the more interesting, since
this is a simpler situation than is the two-phase
region. The diffusion time constant is however
much smaller in the one-phase region. In fact,
a drastic drop in the thermal relaxation time proved
to be a reliable indication of passage upwards
through the transition on the critical isochore. As
a result of the decreased time constant we were
unable to draw even qualitative information about
the relaxation's temperature dependence in the
one-phase region. Such information was accessible
in the two-phase region which, although less ap-
pealing theoretically at first sight, has a definite
practical utility. Thus what follows may prove
useful to experimentalists attempting to measure
static properties of fluids near their critical points.
We restrict our attention here to data on the crit-
ical isochore in the two-phase region, (- f) & 5
x 10~, but data on other isochores are also avail-
able. We denote the time variable by P, to avoid pos-
sible confusion with the reduced temperature dif-
ference g. The approach to thermal equilibrium
within a homogeneous sample, following a heating
interval, is expected to obey the diffusion relation

the mean temperature of the sample at time g

from its equilibrium value at (=~, and D& is the
thermal diffusivity. A solution to Eq. (3) would
be given by an expression of the type24

v(g) =A e ~ '&, (4)

~(f) =~(0) (i -e '~"), (5)

where 7D is approximately &v'D. Note that the trend
to equilibrium given by Eq. (5) is much slower
than the more common exponential e ~ '&, so that
one must wait for many time constants rD before
equilibrium is established is established rather
than the four to five time constants sufficient in the
case of an exponential decay [Eq. (4)]. This was
a source of possible systematically low recorded
values of C„ in the two-phase region for -/&3
& 10 4. We emphasize that no theoretical meaning
should be attached to Eq. (5). This is a closed ex-
pression with only one parameter and therefore it
is convenient. In reality, the approach to equili-
brium should be described by a sum of terms such
as in Eq. (4) with various relaxation times 7'~, . '

Equation (5) was used to determine r~ as a func-
I

tion of (-f). This temperature dependence of 7'~

is shown in Fig. 2. This figure indicates that
rz ~ (-f) ~, approximately, in an asymptotic

g

i
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FIG. 2. Divergence of the diffusion time constant
given in Eq. (5) in the two-phase region. The solid
straight line indicates &Doc ) t I in an asymptotic region
extending over approximately one and one-half decades
in (-g).

where we indicate explicitly only the time depen-
dence. Here r~ =l /Dr where l is a characteristic
length. Such a behavior was indeed found in our
experiment for g = ~&. The time constant thus ob-
tained, plotted as a function of t, agreed with that
found for CO2 by Lipa et al. 4 within about 30%.
However it was found in our experiment that for
g & 7D the system tended to equilibrium in a much
slower fashion than given by Eq. (4). We have
used the following empirical expression which fitted
our data for f & T&'.
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region extending from 5&:10 6& (-f) & 10 . It is
probable that the heat diffusion process in the two-
phase region is limited by the liquid-gas boundary
and that because of this Eq. (4) with only one re-
laxation time is not really justified. The disap-
pearance of this boundary at T„then leads to a
drastic decrease in 7 D.

IV. CRITICAL ISOCHORE

A. Asymptotic Scaling

In the course of taking data on the critical iso-
chore it was noted that the specific heat always
dropped precipitously by at least a factor of two
within a temperature range of 0. 2 mK. In this
same range, the maximum of the diffusion time
constant v~ was also sharply defined. If we
identify the center of this range with T, we can say
that the transition temperature is sharply de-
termined by the direct C„data and is found at
T, =3.3092+0.0001 K, relative to our temperature
calibration. We find below that this choice of T,
is corroborated by the results of a least-squares
fit to the data. Our value for T, is compared with
previous determinations in Table II, and in the
discussion at the beginning of Sec. V.

Scaling laws allow two slightly different forms
for the asymptotic temperature variation of the
specific heat as the critical point is approached. '
By convention these are characterized by the
critical exponent n that takes on values (a) a = 0
or (b) a &0. Case (a) represents a logarithmic
singularity in C„, which is then expressed by

(6)

where 8 is the gas constant. Here and below the
+ symbol refers to quantities defined below (-)
or above (+) the critical temperature T, . The
scaling laws require that this be a symmetric
logarithmic infinity, with in general a superposed
finite discontinuity. This implies then that@ '
= 8, and that a plot of C„(p„t) vs logltl should
be asymptotically linear, with equal slopes for the
branches above and below T,.

Such a plot of our data is shown in Fig. 3, utiliz-
ing the value of T, given above. Here we see that
the scaling prediction of equal slopes in the two
branches is untenable unless rather stringent and
arbitrary restrictions are placed on the size of the
asymptotic regions. Different reasonable choices
of T, do not alter this conclusion. We find below
that case (b) (n & 0) is not subject to such ad hoc
restrictions, and consequently we exclude the pos-
sibility of a logarithmic divergence in the rest of
our analysis.

In case (b) the asymptotic behavior of the specific
heat is given by
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Here the scaling laws predict that a'= u and B'
=B, but in general A'&A . This implies that a
plot of logC„vs logl tl should be asymptotically
linear with equal slopes for the branches above
and below T,. Our data is presented in this form
in Fig. 4, where qualitative agreement with Eq.
(V) is evident. In this figure we have again used
the value of T, given above.

In Fig. 4 we present as well a comparison be-
tween our data and that of Moldover and Little""
on a sample of He with a nominal density p
= 0. 985p, . These data were analyzed in terms of a
logarithmic singularity (see, however, Ref. 2)
but are evidently not inconsistent with the inter-
pretation of a positive e =0.1.

For any sample of finite vertical dimension in
a gravitational field the measured specific heat
will be significantly distorted from its asymptotic
behavior for t less than some cutoff temperature
t&. The effect of the gravitational potential on the

specific heat of Xe has recently been discussed in
terms of the linear model of the parametric equa-
tion of state by Barmatz and Hohenberg. 7 A very
extensive discussion, again on the Xe system, has
been given by Schmidt, 2' who utilizes the proposed
form of the equation of state given by MSGI Both
of these theories give a result that is qualitatively
consistent with the expression of the cutoff tem-
perature given by Lipa, Edwards, and Bucking-
ham':

t„=(mgh/2k' T,)'~ ', (8)

where m is the atomic mass of the fluid sample,
h is the height, and g is the local gravitational

FIG. 3. Semilog plot of C„data on the critical isochore.
Linear behavior asymptotically with equal slopes on the
two branches would indicate a logarithmic singularity (n
=0). This possibility is evidently not the case, and is ex-
cluded in our analysis.
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For a He sample of height 0. 5 mm, Eq. (8)

with various reasonable choices of the exponents
P and 5 would lead us to expect a. cutoff tempera-
ture t„of between 5&10 ' and 10 . Figure 4 in-
dicates that the high-temperature branch of our
measured specific heat starts deviating from the
straight line at this value of t„, but the low-tem-
perature branch starts curving at approximately
t= 3&10 4. This latter value is larger by a factor
of three than the theoretical'upper limit for gravity
effects. This corresponds to a factor of approx-
imately five in the height h. An effective height of
2. 5 mm in our sample mould require a tilt of no
less than three degrees from the horizontal, a
possibility we consider extremely unlikely. An
alternative explanation is that thermal equilibrium
within the sample was not achieved for I ti & 3
& 10-' in the two-phase region in spite of the long
waiting times we used in this region. We have
taken a conservative attitude toward this point,
and have discarded data points in the two-phase
region with It I &3&10 . Homever in the one-
phase region me mere able to inchide all data points
having I tl & 5&&10 . Thus the temperature range
of our analysis is given by t'„» ltj ~ 0. 1, mhere
t g, =3&&10+ and t'„=5x10-'.

A least-squares-fit method was applied to our
data to compare it with Eq. (V), using as free pa-
rameters T,', a', A', and B'. In this procedure
the data points were weighted by an estimate of
their respective errors, and the fit was applied
within a temperature range given by t'„~ I tl
~ t ~. The best-fit values of the parameters were
found to be independent of t for t,„&0.01.
Within this temperature range we find T', = T, and

FIG. 4. Log-log plot of t." data on the critical isochore.
Asymptotic linear behavior here indicates that G. = n'
= 0.1. For comparison we display the data of Moldover
and Little on a Hes sample of nominal density p =0.985p~,
which appears to be consistent with our values for 0' .

TABLE I. Best-fit parameters to asymptotic and ex-
tended scaling, p = p~. Quoted uncertainties reflect only
statistical errors derived from the least-squares-fit pro-
cedure, and should be used only to compare the two dif-
ferent functional forms.

(a) Asymptotic scaling

cy y &g+
'j ax 10 .—( t) —0 oj

It '
i 5 x 10 «t «0.01

Tc =3.3092 + 0.0001 K

tc 0
o. =0.10+ 0.01
A" =2.07 + 0.06

{b) Extended scaling

t&0
o.'=0. 11 + 0.01
A'=0. 92+ 0.03

"- = It I (&'+A'
I t I

'~')
T ' ' ' !5&&lo '«t«o. l

T,=3.3092+ 0.0001 K

t&0

~ =0.10+ 0.01

A~ = 57. 14 + 3.0 J/mole

A2=-1.47+ 6.0 J/mole

t&0

e' =0.11+ 0.01

A~=25. 11+1.0 J/mole

A2=2. 60+ 1.5 J/mole

J3'= J3 = 0. 0+ 0.5. The data are fitted equally well
by Eq. (7) or Eq. (9):

c.yz (9)

i.e. , the fit to Eq. (9) produces a mean-square
deviation less than one standard deviation larger
than the fit to Eq. (7). The difference between
these two equations is insignificant within the con-
fidence level of our fits, and we shall tentatively
state that B =8'=0.

Scaling implies that 8'=B, which is consistent
with our results. This is in contradiction with
the analysis of Lipa, Edwards, and Buckingham
on their CO2 data. We have listed the best-fit
values of the parameters of Eq. (9) in Table l(a).
The data are consistent with the scaling theory
prediction that ~ = n'. The a priori imposition of
this last constraint leads to the result n =0.105
with no change in T, or A' from the values of
Table l(a). The mean-square deviation of the fit
increases by only one standard deviation under this
additional constraint.

The assignment of meaningful error limits to
critical exponents is a very uncertain procedure,
in the sense that the statistical errors found from
multiparameter least™squares fits are often mis-
leadingly small. We note in our case however that
the "one-standard-deviation" error on our value
for T, agrees very well with the precision for this
quantity that me have estimated above from the
"drop width" and the maximum in v'~ in the experi-
mental data. We have indicated that our data are
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consistent with the constraints T', = T„B'=B
=0.0, and o."= o.' appliedtoEq. (7). Underthesecon-
ditions we find &= 0. 105+0. 015, where the error
limits indicate a variation of one standard deviation
from the best-fit value. One may check on the reason-
ableness of this error by graphical estimates for &
from log-log plots of C„vs l tl plotted for the ex-
treme values of T, given above. The variation in

T, tends to make n' and a move in opposite direc-
tions, but the various graphical estimates for the
o.' always lie within the error quoted above, giving
us some added confidence in these error limits.
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B. Extended Scaling
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GCS" have developed an extended scaling theory
based on a generalization of the parametric equa-
tion of state given by Schofield. ' In this theory the
specific heat along the critical isochore is given
by

(7,/T) c„(p„f) =
I
tI (A', +A2

I
f

I

'~'

+A', It)"'+ "), (10)

where & is a new critical exponent found by GCS
to be I/e= p5 —1=1-p —n Thus . I/@=0. 54.
The distinction between the subscripted coefficients
(with dimensions J/mole) of Eq. (10) and the un-
subscripted coefficients (dimensionless) of Eq.
(7) should be noted. For Itl & 10 ~ and within the
accuracy of our determinations the coefficients
A', are equivalent to the A' of Eq. (7), differing
only by the dimensional factor RT, = 27. 52 J/mole.

A straightforward least-squares fit was applied
to all our data (p = p„ t'„& It! & 0. 1) using the
form of Eq. (10). We took as free parameters
T„ct'*, and A'„(v=1, 2, . . . ), with the definition

I/e' = 1 —p —u . If we retain only the first higher-
order term, A~ I tjI ', the best-fit'~, result for the
parameters is that given in Table I(b). The values
found here for T„a', and A; are in comylete
agreement with those found in the asymptotic fit
to Eq. (7), indicating good consistency of this form
with the conventional "simple" scaling. The in-
clusion of the next higher-order term, A. 3 I II
produced only marginal improvement in the fit to
the data, and is not considered further.

The relative deviation of the data from the
nominal best fit to Eq. (10) is shown in Fig. 5.
Systematic deviations are present, but their mag-
nitude is only 0. 5%. We conclude that Eq. (10)
is an adequate and consistent representation of our
data over a range of I t I approximately a factor of
ten larger than the asymptotic range appropriate
to Eq. (7). Because of the limited precision in
the C„data, the coefficients of the nondivergent
terms are not determined very precisely. Hence
it is not excluded that another extended scaling ex-
pression could be made to represent the data equally

FIG. 5. Percent deviation of the critical isochore C„
data from the extended scaling form of Eq. (10), using
the nominal values of the coefficients given in Table I(b).
In this presentation T =—T~ is a constraint, so that the
center of gravity of each branch (t g0) is not necessarily
zero, but only their weighted sum.

well.

V. GENERAL RESULTS AND DISCUSSION

The critical temperature T, = 3.3092 K used in
this analysis is identified with the transition tem-
perature found for the isochore considered in Sec.
IV. This value is somewhat lower than that found
by WM, who used the same sample of He3 as in the
present work. The difference between our value
for T, and that of WM is slightly outside the com-
bined error limits for each of the absolute de-
terminations of this temperature (see Table II).
We have no explanation of this discrepancy except
to note (as has been pointed out before4) that
specific heat determinations of T, are very often
found to be lower than P-V-T determinations.
Within the published error limits our T, value is
the same as that found by CZ for a sample with an
average impurity of 350-pym He .

We have used the parameters given by WM and
CZ in the scaling-law relation for the coexistence
curve~

(»)
and normalized the extremum of this curve to co-
incide with our determination of T,. This proce-
dure can be self-consistent only if the isochore we
have labeled as the "critical" one is actually with-
in 0. 5% of the critical density p, . Figure 6 below
indicates that this condition is satisfied.

A. Comparison with P-V-T Data

As a check on the internal thermodynamic con-
sistency and in order to compare the C„data with
I'-V-T data on He we consider first the identity
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~ ~

, an are listed

P

8

This work
Ref. 6
Ref. 8

This work
Ref. 6
Ref. 8

0.361 + 0.005
0.365 + 0.005

B

l.31
l.33

4.21+ 0.10
4.12+ 0.15

I (Torr"~)

2.48x 10"4
-2.38x 10-4

1.18
1.17+ 0.05
1.08+ 0.07

-6.7x 10-'
6.9x 10-'
8, 4x 10

1.17+ 0.05
1.19+0.03

I' (Tor.r )

0. 105+0.015

A't (J/mole)

25.1+ 1.0

O. 1O5+ O. O15
&0. 05

0.13 + 0.08

A f (J/mol e)

57.1+ 3.0

This work
Ref. 6
Ref. 8

T,(K)

3.3092 + 0.0006
3.3105+ 0.0007
3.3093 + 0.0005

P,(Torr)

860.5
859.5 + 0.3

0.04145 + 0.0002
0.04119+ 0.0001

dP
dT '

I K dT mole K

5.5+0.5
882
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Experimentala

~Using values frorom this work and Ref. 6.
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ments of (BP/eT)p in He' which, with the C„mea-
surements of Moldover, indicate that d p/dT is
nondivergent at T, in the He system as well.

The jump in the specific heat at the coexistence
curve is related to the isothermal compressibility
k~ via

pC„„—pC„, =P(pC„)=—
(
—

) (&&)

where M (sp/8 p)r = p kr and M is the molecular
weight. Extrapolation of our data to the coexistence
curve then allows an estimation of y ~, the critical
exponent associated with p k~. From the four avail-
able isochores we estimate y~ =1.18. A compari-
son of our derived values of k~ and those of WM is
shown in Fig. 7. It is also easily shown" that
h(pC„) ()c (—t), which might be expected to give
another determination of n . Unfortunately, the
scatter in the data near the coexistence curve and
the uncertainties involved in extrapolating to the
coexistence curve preclude this method as a prac-
tical means to determine z . The four available
points aQow any choice within the range 0. 0~ n
& 0. 13.

An extensive comparison of various critical pa-
rameters determined from C„and P-V-T measure-
ments on He is given in Table II.

8. Comparison with MSG Scaling

We have chosen to test our C„(hp, t) data against
the scaling formulation suggested by Griffiths"" and
presented explicitly by MSQ. Here the Helmholtz
free energy ger unit volume is given by

—X a' (X) + (2 —o.) a (X) = Pa(X) . {18)

Primed quantities refer to derivatives with respect
to X. Ao(t) and )u(p„ t) are assumed regular
everywhere in the neighborhood of T„ including
the point at T,.

We use a system of units in which p(p, f), Aa(f),
and a, (X) are energy densities with dimensions
J/m. The scaled function a (X) is then related to
the specific heat by

T2 d A/I) 7 p
(

d AQ(f)
T p~ dt

p'p(p. )) p p'p(p ))).,
dt3 ' P dt2

in the one-phase region, and

—~.(-Xo) (Xo)
' (2 —o') (1 —o')

))'p(p&)),+g~ ~t (19b)

~(p f) =«t)+»(p. t)+ I &pl "~-{x) {18)

a (X) is a scaled function depending only on the re-
duced variable X= t ) &p ~

'~~, defined in the range
-Xo&X&~, where X, =(B) '; viz. , EIl. (11). The
factor a, (X) is related to the scaled function h(X)
defined in the equation of state

p (P, t) p(—p. , t) = n P l
&p

l

' 'I (x) (17)

104
I I I

)
I I II

in the two-phase region. Along the critical iso-
chore E(l. (19) reduces to

( t) AC
l l

C) d Ao(f) d p(PC& f) {20)

+E 10
O

where the coefficients A& may be taken to be identi-
cal with those of E(l (10). H.ence in the two-phase
region

A, = - a (-X(I) {X())
' (2 —c() (1 —n) . (21)

I-

~10

10 "
I »i)l

&)|0110O

Tc —T &~g)

FIG. 7. Isothermal compressibility along the vapor-
pressure curve: 0, this work; 4, P-V-2" data of Hef.
6.

The terms in brackets in E(l. (20) are thus identical
with the nondivergent terms of EIl. (10), to the
same extent that E(l. (10) is a valid representation
of the specific heat along the critical isochore. We
have found that these terms are quite small, in the
sense that their effect on the calculated curve for
—a"(X) is smaller than the effect of the uncertainty
of +0. 25% in the densities, even when t & 0. 01.
Thus in this presentation we have arbitrarily set

) )))C'P, (&) P p( p&)),dt

equal to zero throughout the temperature range of
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our data.
All of the other parameters having been previ-

ously determined, we need only substitute our ex-
perimental data into the right-hand side of Eq. (19)
to calculate a", (X) and a (-Xo). To this purpose
we have used the values P= 0. 361 as given by WM
and CZ. All of the data points are treated in the
same way, with no attempt to define a priori an
asymptotic region. "

The result in the two-phase region is presented
in Fig. 8. We have plotted our calculated function
(R=logl[-a(X0)XO (2 —n)(1 —o.)j vs (-t) in'order
that any systematic deviations as a function of tem-
perature or density might be apparent. The scaling
prediction is well borne out, with all of the data
falling essentially on a constant value, thus defining
the constant left-hand side of Eg. (19b). By Eg.
(21) this constant value should be identical with the
coefficient A, , which is known to within a 5'%%uo from
Sec. IV, and is represented in Fig. 8 by a horizontal
bar. The identity given by Eq. (21) is apparent in
the figure.

Note that in Fig. 8 no significant deviation from
the scaling prediction is apparent for (- t) & 0. 1,
even though we have ignored the nondivergent terms
in the specific heat on the critical isochore. This
insensitivity of the density scaling to the nondiver-
gent terms is apparently due to a near cancellation
of the terms d~AO(t)/dt and d p, (p„ t)/dt . This
effect may be peculiar to the He3 system.

The points in Fig. 8 that drop sharply away from
the scaled constant value appear to lie on the tran-
sition itself, which in our measurements is seen
to broaden~5 with increasing I 4p I .

In the one-phase region we expect that the data
from the various isochores should fall on a common
curve as a function of X if the scaling theory is cor-

rect . In Fig. 9(a) and 9(b) this is seen to be the
case, to within a few percent in a", (X). For X» 1,
—a'„'(X) should approach the asymptotic form A;X
with the same values of A~ and e' found on the cri-
tical isochore. This asymptotic form is repre-
sented in Fig. 9(b) by the solid line.

There are two possible sources of systematic
error in the calculation of a"(X): (a) the uncertainty
of + 10% in the value of d')J./dt, which should be
included independently for each isochore, since we
have not strictly shown that this term is tempera-
ture independent, and (b) the uncertainty of +0. 25/o
in the assignment of p/p, for the various isochores.
The total possible systematic error introduced into
a"(X) by these two terms ranges from - a 1.3% to- +2. 0/o for the various isochores in the range —XD
& X& 4. 0. The uncertainty in the density is the
dominant source of error here and comprises
(60-90)% of the total possible systematic error.
We emphasize that because we determined the re-
duced densities p/p, as described in Section IIC,
we have not optimized the assignment of our nominal
densities so as to achieve perfect scaling. Such a
manipulation brings the points from the various
densities to lie practically on the same curve, with-
in this restricted range of X. The systematic devia-
tions from perfect scaling behavior seen in Fig.
9(a) are thus marginal in terms of our density reso
lution, and indicate that the unambiguous exhibition
of scaling to better than one percent requires den-
sity resolution better than 0. I%%up.

The systematic deviations from perfect scaling
for larger values of X, seen in Fig. 9(b), are more
difficult to asses. These deviations increase with
increasing ~p, and are only slightly affected by the
choice of a new set of 4p's which yields perfect
scaling in the range —Xo & X& 4.0. The inclusion

1.90 I
f

I
[

I I I I I I
l

g I I

1.80—

'1.70—

i~„~(A„)
4

&= log„[-a(-x~)x~ (2-a)(1-a)]

4 0

a a ~~+ 8 4

'
o '

~pro ~ '~~~~iittugggL~Cga4jg
0 Qo0 a

Wp
& -0.169
o -0.083

0.054
~ 0.1os

FIG. 8. Density and temperature
scaling of the specific heat in the two-
phase region. The value of the leadirjg
coefficient of C„(p„ t&0), as given in
Table I(b), is indicated by the horizontal
bar. The points dropping sharply away
from the constant value lie on the transi-
tion itself, and indicate a broadening of
the observed transition with Idy I (see
Ref. 25).
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FIG. 9. Density and temperature
scaling of the specific heat in the one-
phase region. The dashed curve is cal-
culated from the linear model of Refs.
19 and 20. The apparent systematic de-
viations are discussed in the text. {a)
-Xo&X~3.5 {semilog plot); {b)»0
{log-log plot). The solid line represents
the asymptotic behavior of the critical
isochore.
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from our extended scaling fit to the critical iso-
chore also has a negligible effect. In our opinion
these deviations are most easily explained by a
weak temperature dependence of d p, (p„ f)/dt
[which multiplies 4p in Eq. (19a)] in the one-phase
region. We have not attempted to determine ex-
plicitly the form of this factor that would yield per-
fect scaling throughout our temperature range, since
this would involve the introduction of new free pa-
rameters with no firm theoretical basis.

C. Comparison with Linear Model

It is interesting to compare our data with the
particularly simple approximation of scaling be-
havior given by the linear model (LM)'8 + of the pa-

rametric formulation. In this theory a definite
form is found for the scaling function a"(X), ' given
by

-a".(X)=~;(k~e~) ", (22)

where X=(1 —b 8 )(kl &I) ' ~; —1& 8&1 and b
= (y —2p)/[y(1 —2p)]. The static scaling equalities
listed in Table II are automatically incorporated in
the LM. As seen below the scaling function is com-
pletely determined by a knowledge of the critical
exponents y and P together with two dimensionless
free parameters a and k.

The linear model has the distinction of predicting
critical coefficients in terms of the critical expo-
nents. The leading coefficients for the specific
heatt Aia dAit are givenbyii m

p, ~. aky'(y —1) (1 —2P) 2 )~(P~M 2 (y —2p) (2 —y —2p)
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I /y '
/ 2P

A;=41(P I, I 2P y &

(24)

For Hes we use the values a.=4. 20 and 0=0. 915.
These results are taken from an analysis by Ho and
Litster of the P-V-T data of WM, '" and are
quoted in Ref. 20. For various choices of y and P
consistent both with experimental determinations
(WM and CZ) and with the scaling equality y+ 2P+ n
= 2 (using n as determined from this work), Eqs.
(23) and (24) yield A;=23+3 J/m and A;/A, =0.42
+0.07. These are in substantial agreement with
our experimental values of, respectively, 25+1
J/m and 0. 44 +0.04.

In calculating the scaling function a" (X) we have
used in Eq. (22) the values for A,

' and n from our
own analysis of the critical isochore. This proce-
dure reduces the uncertainty in the calculated func-
tion and avoids the systematic deviation seen in the
presentation of Ref. 20. The calculated right-hand
side of Eq. (22) is shown in Fig. 9(a) and 9(b) as a
dashed curve, where the agreement with the data
in the range X& 0. 0 appears to be quite good.

We note that for X~ —0.2 our extreme isochores
at &p= -0.169 and 4p=0. 108 are systematical-

ly higher than the LM prediction by amounts that
cannot be explained by our limited density resolu-
tion. These data may then be evidence of a break-
down in the LM as the transition is very closely
approached in the one-phase region. (No such con-
clusion is implied in the case of the thermodynamic
scaling of Sec. VB.)

D, Remarks on the Critical Coefficients

For the convenience of the reader and to facili-
tate this discussion we have listed in Table III
selected critical exponents and critical coefficients
for various fluid systems. It is generally accepted
by now that quantum effects have a very small bear-
ing on the critical exponents, except perhaps n,
which is borne out in the table. This may not be
true for the coefficients. For example a strictly
classical law of corresponding states would imply
that the coeffcient in the coexistence curve relation
Xo is independent of material, while we see that
this coefficient is apparently different for He3 and
He, and both of these are clearly different from
the heavier fluids.

Having noted the case of Xo, we might expect that
other critical coefficients have magnitudes that are

TABLE IG. Selected critical exponents and critical coefficients for several fluid systems. For the purpose here oi
comparison between different systems we have used reduced units, such that I' is written in units of (1/P, ) and A~& is
written in units of (MPJp~T, ) ~ where M is the molecular weight Ai.s the DeBoer parameter. 9Vote added is proof.
We forgot to quote the value n =0. 128 for COt from Ref. 4. Also we mention the new value of a=0. 78 reported by A.
B. Cornfeld and H. Y. Carr, Bull Am. Phys. Soc. 17, 277 (1972)j.

P
'y

1p2x I"
102 x I'
r'/r (obs)
r'/r- (LM)'
A& (obs)
A', (LM)'
A-, (obs)
A&/A& (obs)
A', /A; (LX)'
Xo

r, (K)

P~ (atm)

p, (g/cm3)
MP~/p~T~ (J/mole K)

H20

O. 336

0, 102

647. 5"
218.5d

0 325
l. 91

1..60

CO2

o. o4'
0 35
1.26b

5.26'
1.19b
4 4b

4.4
1O6'

145
0 73
0. 77
O. 135b

304 12b

72. 85'
0.468
2. 28

0.825"

o. o4b

0 35b

1.26b
gb

1.43
4. 1
4. 4

92. 5

120
o. vv'
0, 77
0.186
o. o64'

289. 75
57. 64b

1.1O5'
2. 40

1.3O'

0.362
0

8 6

0.183
0.187~

150.7
48. 1

0 53P
2.43

0.65

H2

0.224
l. 73~

32 g8h

12.V6"

O. 0313"
2.45

O. 3V'

He4

o. o5b

0 35g
1.24

13.0
3.59b

3.6b

4. 1
21.2b

22. 4
28.4
o. v5'
0. 75
0.36b
2. 64~

5. 19b
2. 25b

0. 0696
2. 52

I 0. 185

Io 08'

Hee

O. 1V
0.3619
1.1V'

2O. 4'
5 45
3 7
3.8
3.OO'

2. 8
6. 83
o. 44'
0.42
0 474
3.O5'

3.31'
1.13'
0.0415
2. 52

J-o.08'
[-0.01'

Ref. 39.
Ref. 17.

'This work.
dRef. 34.
'Ref. 6.
fCalculated from Eqs. (34) and (25) using values of p

and P of this table and the constants of Ref. 20.

~Ref. 33.
hRef. 35.
'Ref. 36.
~Ref. 8.
"Ref. 38.
Ref. 37.
C. Pings (private communication).
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r yq-2p y
I' pl 2p y —I

The agreement between Eqs. (24), (25), and ex-
perimental determinations of these coefficients is
remarkable, particularly in its qualitative reflec-
tion of changes in the coefficients in the quantum
fluids.

The critical coefficient that is most strikingly
substance-dependent is the parameter & defined in
the equation for the rectilinear diameter p„

pq 2( pz+ p„——) = p [I+ s (- t)], (26)

where p~ and p„are the densities at equal temper-
ature of the liquid and gas phases, respectively,
along the coexistence curve. The value for a

varies by an order of magnitude between the H, O
and He systems, and appears moreover to change
sign as on@ goes from the He to the He system.

VI. CONCLUSIONS

We find in general that a scaling-law formulation
in which the chemical potential is assumed analytic

substance-dependent, or at least show some quan-
turn effects. We show specifically in Table III the
ratio of critical coefficients for the isothermal
compressibility (I"/I' ) and the specific heat (A,'/
A, ) along the critical isochore. These critical co-
efficient ratios are quite sensitive to small varia-
tions in the critical exponents. This is particularly
bothersome in the case of Ai/Ai, where most ex-
perimental determinations of n have uncertainties
of + 25% or more, leading to a similar uncertaintyss
(+ 30%) in A;/A, . Still there is evidence of a pos-
sible trend in these coefficients for the quantum
fluids, particularly in I"/I', which in general is
more precisely known than A', /A, . We believe that
our determination of A;/A, in He' is evidence of a
similar trend in this ratio. Our value differs sig-
nificantly from the value for all the other fluids in
Table III, including that of He .

For comparison we have also listed in Table III
the values predicted for I"/I' and A,'/A, from the
LM, using the listed values of the critical expo-
nents in the LM equations. The equation for A;/A,
is Eq. (24), and the corresponding relation for
I /I 1s

at the critical point adequately describes our spe-
cific-heat data for He . There is no discernible
evidence of any anomalous behavior of d p(p„ t)/
dt2. A sensitive experimental test of this assump-
tion would now be given by precision measure-
ments of (&P/&T)„along the critical isochore in
He. , Such measurements would not be subject to
any possible ambiguity in the temperature scale,
such as was encountered by Kiersteads with He .

The Green, Cooper, and Sengers extended scal-
ing form for the nondivergent correction terms to
the specific heat is consistent with our data and
extends the range in t over which theory describes
the data by a factor of about 10. However, the
data are not precise enough to exclude some other
form of extended scaling.

General consistency is also seen between these
measurements and the Wallace and Meyers P-V-T
measurements on this system. The two sets of
data are thus found to be both independently and
mutually consistent with the scaling hypothesis.
One possible exception to the general consistency
between the two data sets is the measurement of
the critical temperature T,.

There appears to be sufficient experimental
evidence that the critical coefficients show signifi-
cant substance dependence, particularly in the
quantum fluids. A theoretical treatment of this
variation would be welcome, and may be particular-
ly fruitful in the case of the rectilinear diameter
which has been the object of much recent interest. 'o
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