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The stability of electromagnetic waves propagating perpendicular to a uniform and static
magnetic field is studied for plasmas with the ring- and loss-cone-type distributions in the
perpendicular velocities. Based on the linearized Vlasov-Maxwell equations and the assump-
tion that the ions are infinitely massive, it is found that instability can occur not only with
zero frequency but also near the multiples of the electron cyclotron frequency. In general,
the higher the average parallel energy, the more the plasma is susceptible to the instability.
If the distribution in the parallel velocities is a stationary Maxwellian, instability occurs only
for large ratios of parallel thermal pressure to magnetic pressure (P,fg). For counterstream-
ing plasmas with streaming velocities of the order of the electron thermal speed, the instabil-
ity can occur for P„t values of ogder unity. A discussion is given on the growth rates of these
instabilities.

I. INTRODUCTION

It is well known that a magnetized plasma can
support two independent modes of wave propagation
in the direction perpendicular to the magnetic field,
i.e. , the "ordinary" and the "extraordinary" modes,
provided that the velocity distribution function is
symmetric in the parallel velocities. In the elec-
trostatic approximation, the extraordinary waves
are known as the Bernstein modes. ~ For bi-Max-
wellian distributions, the Bernstein modes are
stable. Because their dispersion curves exhibit
interesting structures at frequencies near the
multiples of the cyclotron frequencies + =nA„ they
are also called the cyclotron harmonic waves.
For the "ring-" or loss-cone-type distributions,
which have been used as model distributions for
plasmas in a mirror magnetic field, ~ 5 the Bern-
stein modes can be unstable when the density ex-
ceeds a critical value. These instabilities can
occur either with zero frequency (n = 0) or near
the harmonics of the cyclotron frequencies (n = 1, 2,
S, . . . ) and are sometimes referred to as the
electrostatic flute modes. a 4 They belong to the
broad class of Harris instabilities, which have
been extensively studied during the last decade.

During the past several years, the Vlasov theory
of the purely electromagnetic ordinary wave has
received much attention. ' ' Since the ordinary-
wave-dispersion equation also possesses interest-
ing features at frequencies near nQ„' it is ap-
propriate to refer to them as the electromagnetic

cyclotron harmonic waves (EMCHW), a term al-
ready introduced by the present author in Ref. 18.
It is found that the average of the square of the
parallel velocities (of), which does not enter in
the dispersion relation for the Bernstein modes,
plays a crucial role for the ordinary wave. In an
electron plasma, if the ratio P„= 2(v~)&o~~/(c 0 ) is
sufficiently high, where co~ and 0 are the electron
plasma and cyclotron frequencies, respectively,
and c is the velocity of light, a zero frequency
(n = 0 mode) can occur in stationary or counter-
streaming plasmas with bi-Mmovellian distribu-
tions. ~ '~ '~ When P„ is below the instability
threshold, the propagation characteristics are
sensitively dependent on P„and the ratio of "tem-
peratures" parallel and perpendicular to the mag-
netic field. '

In a recent letter, attention was drawn to the
fact that while the n & 0 modes of the EMCH%' are
stable for bi-Maxwellian distributions, they can
become unstable for the ring- and the loss-cone-
type distributions. It is the purpose of this paper
to give a detailed account of these instabilities.
First, the dispersion relation is given in Sec. II.
Section III presents the analysis of instability bound-
aries and some representative results for the case
of an electron plasma. A discussion on the growth
rate is given in Sec. IV. As in the case of bi-Max-
wellian distributions studied previously, we find
here that the parameter (v~) again plays a dominant
role in the present theory. In Sec. V, the paper
concludes with some discussion and suggestions for
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further work.

II. DISPERSION RELATION

the perpendicular velocities (v, )„defined by the
integral

Let us consider small amplitude disturbances in
a homogeneous infinite plasma in a static uniform
magnetic field Bo, described by the linearized
Vlasov-Maxwell equations. We shall assume that
the unperturbed velocity distribution function of
each species I'0, depends only upon the parallel and
perpendicular components of the particle velocity
((/„and v„where subscripts II and i refer to direc-
tions with respect to Bo) and are even functions of
v„. In such a case, the general dispersion equation
for waves propagating perpendicular to Bo factors
into the "ordinary" and the "extraordinary" modes.
The dispersion relation for the ordinary wave,
whose electric field vector is parallel to I3o, is
given by~

(o —e k =Z (o —Z(d A 21(

2'K f vf goq (vJ(/g(f(/g.

This evaluates to V, for the ring distribution and
to c(~~(j+1) for finite integral values of j.

The class of distributions defined by Eq. (3) has
been used as model distributions for mirror con-
fined plasmas which possess a loss cone. ~ They
have been studied extensively with regard to the
Harris-type electrostatic instabilities. '~ Recent-
ly, an investigation of their stability against the
whistler mode propagating along the magnetic field
has also been made. 3~ In what follows, we are con-
cerned with the electromagnetic ordinary wave
propagating across the field. Qn substituting Eq .
(2) into Eq. (1), there results the dispersion rela-
tion

where

o g s+QI g + cC (k(/ J/AB)
(dvgv)) N~ ~ 3 p p

GO fl A~

("o)s=f (/iifos((/o) d~n~

(d„= (4((v,e',/m, )"'

N, is the equilibrium density for particles of type
s, and J„ is the Bessel function of the first kind of
order n.

In this paper, we study the above dispersion
relation for equilibrium distribution functions of
the form

(2)

(3)

where fo,((/„) is an arbitrary even function of the
parallel velocities, normalized to 1. The distribu-
tion function in perpendicular velocities go, ((/, ) was
first introduced by Dory, Guest, and Harris. It
represents a class of distributions, which reduces
to the Maxwellian for j -0 and to the "ring" when

j ~oo i ~ e,

.~ OO /
(V)

eve

We note that if the distribution in the parallel ve-
locities is a stationary Maxwellian, the quantity
2((/„),= V„„where V„, is the parallel thermal
velocity. For the case in which the particle species
are counterstreaming along the field lines, we have

f ((/ ) (2((1/2V )-1 (e-(oll-Qg) /FIJI+ e (vi+sg) /vllg)
2 3 2 2

and Eq. (6) evaluates to

2((/o )~= Vfg+ uq ~

where u, is the directional velocity
Consider now the quantities D~, . If the particles

are monoenergetic in the direction perpendicular
to the magnetic field, the distribution is given by
the ring distribution, which corresponds to thej-~ member in the class described by Eq. (3).
Substitution of Eq. (4) into (V) yields

g(( (2+ )1/o
dp,

go, (v,) = (2w(/, ) '5(v, —V,). (4)
where

p, = k'V,'/2A,' .
For 0 &j & ~, they are peaked at the nonzero value
V, =a~,j~ . The simplest way to determine the
half-widths 4v„ is through plots of the functions.
By this procedure, we find that 4v~-0. 58 +„and
is independent of j. The ratio of peak velocity to
half-widths is therefore V,/hv„= 1.V2 j~ . Another
quantity of interest is the average of the square of

D„,=I„(p,)e "~, (12)

p, = k'n'J2A' (13)

The member corresponding to j=0 is the familiar
Maxwellian distribution, for which



INSTABILITY OF ELECTROMAGNETIC CYCLOTRON 357

For other values of j, Guest and Dory have shown
'that the quantities D~, can be derived from D0,
according to the formula

or streaming) to magnetic field energy density:

2( 2) 2 I22 2 2 2 2

2g2 &2@2 &2@2 l"lit +llS t (i9)

D "~=
(„l,+1}~}!D'„,+ ,0D„',), 1=0, 1, 2, . . .

(14)
where I„ is the modified Bessel function of order
n. As an example, for j=1, we have

D'..= (- /. s)/. (V.-)e "0+ u. /„,(/. )e "
Using the identity

(15)

one can show from the defining Eq. (V) that4

ZD~, =O, j=1, 2, 3, . . . (16)

2
k2 Q 2MDD P ~D2

2
Qg „CO—'fl 0 (17)

Dory et al. have analyzed the above equation,
which revealed that instability can occur with zero
frequency or with frequencies near the cyclotron
harmonics. In view of the similarities in mathe-
matical structure of Eqs. (5) and (1V), it is not
surprising that the ordinary wave will also go un-
stable under suitable circumstances, as we shall
show in detail in Sec. III. It is interesting to note
here that (v2), appears in the ordinary-wave dis-
persion Jut plays no role in determining the char-
acteristics of the perpendicularly propagating
electrostatic waves.

III. ANALYSIS OF INSTABILITY BOUNDARIES FOR
ELECTRON PLASMAS

In this section, we examine Eq. (5) for the pos-
sible occurrence of unstable roots. We limit our-
selves to electron dynamics in this paper, i.e. , the
ions are assumed to be infinitely massive. It is
then convenient to rewrite Eq. (5) with the electron
terms only in the following nondimensional form:

0} 0 2P 2(v}})g"
Pll

"Z "
)

(i8)a', ~
' ' a2 „,~2/a2-n2

&

'

The subscript e has been dropped and all quan-
tities refer to electrons. The quantity P„ is the
tota/ parallel kinetic-energy density (thermal and/

The above identity can be trivially verified for
the j= 1 and j= ~ distributions.

It is instructive to recall that the corresponding
dispersion relation for the extraordinary wave under
the electrostatic approximation is given by

where subscripts t and s refer to thermal and
streaming, respectively. In arriving at Eq. (18),
we have made use of identity (16). Equation (18)
holds also for the ring distribution with the sub-
stitution of n, by V.

Equation (18) admits two types of solutions for
which correspond to instabilities, namely, &

negative and ~~ complex. The former is a purely
growing mode with zero frequency while the latter
is an instability with a real frequency. The pos-
sible occurrence of one type or another or both is

- dependent on the relative signs of D~, in a manner
to be explained. If j=0, the plasma has a bi-Max-
wellian distribution. It is then known that for all
n& 0, D„& 0 and Eq. (18) admits no complex solu-
tion for 0} . When instability arises, it is of the
purely growing type. This was the. case studied
previously. ~~~~

For j&0, it is evident from Eqs. (10), (14), and

(15) that some of the D~ can be negative for certain
ranges of p, . In the interest of clarity, our discus-
sion will proceed with the lowest member of the
loss-cone family, i.e. , j=1. The procedure for
instability analysis to be developed can then be
applied to other values of j; in particular some
results for plasmas with the ring distribution will
be presented.

A. j = 1 Distribution

The lowest member of the loss-cone family, i.e. ,
j= 1, is stable with respect to the electrostatic
flute modes (k„=0), since Dory et a/. have found
that these modes are unstable only for distributions
with j&3, i.e. , when the ratio of transverse peak
velocityto half-width, V/t}v„exceeds 2. 9V. Inthis
section, we show that the j=1 distribution can sup-
port growing waves of the ordinary mode. Let us
begin with the dispersion relation

f/2 ~K /l
2 ~2 0+ f12 ~2/g2 ~2

(20)
Since the function D„ is fundamental in the analysis
of Eq. (20), knowledge of its numerical values is
useful, in this and possibly in subsequent investiga-
tions. We have therefore tabulated the first seven
members (n = 0 to n = 6) in Table I for values of g
between 0 and 15. It turns out that instabilities with
frequencies up to the third harmonic of 0 occur in
this range of wave-number space. Moreover, for
these p values, the infinite series in Eq. (20) con-
verges rapidly, and reasonably accurate results
are obtained by taking the first six terms.
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TABLE I. Numerical values of Do, D&, . .. , Do for the range 0 —p —15.0.

Do Dg D2 D3 D4 Dl
5 D',

0. 4

0. 8

1.2

1.6

2. 0

2. 4

2. 8

3, 6

4. 0

4. 4

4, 8

5.2

5. 6

6. 0

6. 8

7. 2

7. 6

8. 0

8. 4

8. 8

9, 2

9.6

10.0

11.0

12.0

13.0

14.0

15.0

-0.224

—0.264

-0.245

-0.214

—0. 186

-0.163

—0. 151

—0. 130

-0, 121

—0. 113

-0.106

-0, 101

-0.095

-0.091

-0.088

—0. 084

—0. 082

-0.079

-0.076

-0.074

—0. 072

-0, 071

-0.069

-0.067

-0.066

-0.062

-0.060

-0.057

-0.055

-0.053

0. 088

0. 069

0. 031

0. 006

—0. 029

—0. 045

—0. 055

0.061

-0.064

-0.066

-0.066

-0.067

-0.066

-0.065

-0.064

-0.064

-0.063

—0. 061

-0.061

—0. 060

—0. 059

—0. 058

-0.057

-0.056

-0.056

-0.054

-0, 052

—0. 050

—O. 050

—0. 048

0. 022

0. 050

0. 063

0. 064

0. 058

0. 048

0. 037

0. 027

0. 018

0. 009

0, 002

-0.003

-0.008

—0. 012

-0.016

-0.018

—0. 021

—0. 023

—0. 024

—0. 026

—0, 027

—0. 028

—0. 029

—0. 030

—0. 030

—0. 032

-0.032

-0.033

—0. 033

—0. 033

0. 003

0. 011

0. 023

0.034

0.042

0.047

0. 049

0. 048

0. 046

0. 043

0. 039

0. 034

0. 031

0. 027

0. 024

0. 019

0. 015

0.014

0. 011

0. 008

0. 006

0. 003

0, 002

0.0

-0, 002

-0.006

-0.009

-0.011

—0. 013

-0.014

1.6x10 4

1.6x10 3

0. 005

0. 010

0. 016

0. 022

0. 028

0. 032

0. 035

0. 037

0. 038

0. 038

0. 039

0. 037

0. 036

0. 035

0. 033

0. 031

0. 03

0. 028

0. 026

0, 024

0, 022

0, 020

0, 019

0. 015

0, 012

0. 008

0.006

0. 004

8.3x10 6

3.73x10 '
8. 16x10 4

2. 21x10 3

4.4x10 3

7.3x10 3

0.011

0. 014

0, 017

0, 020

0, 024

0. 026

0, 028

0. 030

0. 030

0. 031

0. 032

0. 031

0, 031

0, 031

0, 030

0, 030

0, 029

0, 029

0.027

0, 026

0. 023

0. 021

0. 018

0. 016

3.36xl0 ~

1.37x10 ~

1.Ox10 4

3.7x10 4

9.3x10 4

1.84x10 3

3.13x 10-3

4. 75x10 3

6, 66 x10-'

8. 68x10"3

0. 011

0, 013

0. 015

0. 017

0. 019

0, 020

0. 022

0. 023

0, 024

0. 025

0. 026

0, 027

0. 027

0, 026

0. 026

0. 026

0. 025

0. 024

0, 023

0.022

1. Zero-Frequency Instability

Reference to Table I shows that for values of p
between 0 and 1.6, Do is negative while D~ —D~ are
positive. A schematic plot of the functions repre-
senting the left (L)- and right (R)-hand sides of
Eq. (20) against &u' is shown in Fig. 1. The func-
tion R is a many-branched curve, with singularities
at the cyclotron frequencies. The function L is
linear in &s /0, the slope of which is small if
A~/&u~ «1. It is evident from Fig. 1 that if the

two curves intersect at. a point corresponding to
negative, a zero-frequency instability will

develop. This will happen if

L(O) & R(O),

z. e. ,

2p, 2(vf)

Equation (21) is the criterion for the occurrence
of a purely growing mode for a plasma with the
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14.7
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I
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n=l mode

2.0—

Io—

n=o mode

I i I i I i I i I i t

0 I' q 5 6 7 8 9
2&Vn~/ J,~

lo

FIG. 4. Schematic plot of the left-hand side (broken line)
and the right-hand side (continuous curve) of Eq. (20) as
a function of /0 for the case Do&0, D~&0, D&&0. The
situation shown corresponds to instability, as the straight
line L lies above the curve R everywhere in the interval
between 0 and 2O.

streaming plasmas, with streaming velocity of the
order of V„, however, the instability can occur for
P„, values of the order unity. This feature is sim-
ilar to the bi-Maxwellian distribution analyzed pre-
viously. ~6

In Fig. 4, the ranges of unstable p's are shown
as a function of 2(v'~)/n~a for two values of P„. They
increase with increasing 2(vf)/nf and p„, but lie
within the limit 0. 2 and 1.6, since only in this
range is the condition Do & 0 and D& & 0 satisfied.

2. Instability of Cyclotron Harmonic Waves

Let us now consider the range of p. for which
D,'& 0 but D2&0, namely, l. 6& p &4.6. The right-
hand side of Eq. (18) plotted against &u /Q now

takes the form of the many-branched curve shown
in Fig. 5. Suppose originally the parameters are
such that the straight line L does intersect R in the
frequency interval between 0 and 2A. Then there
will be two real roots in this frequency range. If,
however, the parameters are changed to the ex-
tent that L lies above R everywhere in this interval,
the two real roots are lost and a pair of complex
conjugate ones appear, one of which corresponds to
growing waves. A similar argument can be applied
to the higher frequencies, with the result that the
sufficient criteria for an instability to occur with a
frequency near nQ are (a) D~ & 0 but D~„& 0 and
(b) L&B for all values of &u behveennQ and (n+1)Q.

Criterion (a) limits the unstable wave numbers
to a certain range. Whether criterion (b) is satis-
fied or not depends on the various parameters and

can best be determined numerically. It is found
that for a given 2(vf)/nf and Q~/&a~a, there is a
minimum value of P„required for instability. When

P ~
exceeds this threshold, there is a range of un-

stable wave numbers. Table II shows the values
of (P„) „for n=1andn=2for the case Q/&u'=0. 1.
These values are rather insensitive to Q/&u', as
long as (Q/&u')~«1, as is evident from the left-
hand side of Eq. (18). It is seen that the order of
magnitude of g„required to excite the n= 1 mode
is about the same as that for the zero-frequency
mode, while to excite the n= 2 mode it is much
higher. The n& 2 modes require still larger 8„,
and since such values are somewhat unrealistic,
we have not listed them in Table II.

Figure 4 shows the range of unstable wave num-
bers as a function of 2(v„)/n~ for Q/&u'= 0.1 and
8„=16. When 8~, decreases to 10, the n=1 mode
becomes stable for plasmas with 2(v„)/n'between
0 and 10.

B. Ring Distribution

The above procedure for the analysis of stability
boundaries can be applied in a straightforward man-
ner to other members of the loss-cone family,
i.e. , j = 2, 3, . .. . The higher members cor-
respond to a larger ratio of the peak velocity V

to half-widths 4v„since this ratio is approximately
1.72j~~~. In this section, we consider the limiting
case when this ratio is infinite, which corresponds
to monoenergetic particles in the perpendicular
direction. This is described by the ring distribu-
tion given by Eq. (4). This distribution has been
studied extensively in the literature with regard to
elec tros tatic instabilities.

The ordinary-wave-dispersion relation for the

I

I

I

I

19

FIG. 5. Rangeofunstable p's as afunctionof2 (v~) j&,
for the j= I distribution with two values of P„. For P~,

= l6,
both the ~=0 and the g =1 modes are unstable. The
range of unstable p's increases with increasing 2(v~~)/&~.
When P„decreases to 10, the g =1 mode becomes stable
for the range of 2(v]~)/&z shown.
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ring distribution reads

to' Q' 2y. 2(va)
gK ~X p Va

(22)

The quantities D„" are given by Eq. (1p). We note
in particular that

Do &0, D&&0 for 0& &&1.69&

D,"&0, D~&0 for 1.69& @&4.65 y

Da &0, D3 &0 for 4. 65& p&8. 85.

The boundaries of instabilities can again be
analyzed as in Sec. IIIA. For fixed ratios of
2(vf)/V and 0/or~, there is again a minimum
value of p„required for instability, which is dif-
ferent for each harmonic. When P„exceeds the
threshold value of a particular harmonic, the un-
stable wave-number spectrum has an upper and
a lower limit. Some representative values of
(P„) „for the zero-frequency instability and the
first three harmonics are given in Table III. It
is seen that the zero-frequency mode is the most
difficult one to excite, while for the first three
harmonics, (P„) « is about the same order This.
is in marked contrast with the j= 1 distribution,
for which excitation of the second or higher har-
monics requires an unusually large value of p„.
To make another comparison of the two distribu-
tions, let us recall that V and n, can be interpreted
as the peak transverse velocities, the former for
the ring distribution and the latter for the j=1dis-
tribution. Reference to Tables II and III then shows
that for the same ratio of 2(v„) to the square of the
peak transverse velocity, instability sets in at a
lower value of Pg for the ring distribution. Thus
a broadening of a sharply peaked distribution has

TABLE III. Minimum value of P „required to excite
a=0, i, 2, and 2 modes as a function of 2(v„l/V for an
electron plasma with a ring distribution. The values for
the s =0 mode are independent of Q/a&&, For the s &0
modes, the values shown are computed for the case
(Q/u&&) =0.1 but they are also good approximations to
other values of (Q/to&), as long as (Q/a&&)t « l.

+ H ~min

TABLE IV. Range of unstable p's of the first four
modes for an electron plasma with a ring distribution
and P „=8, ~/&=0. 1.

Range of unstable p's

2(~'&/V'

stable

stable

stable

stable

0. 43-0. 90

n=1

stable

2. 24-3. 88

1.97-4. 16

l. 88-4. 27

1.84-4. 34

stable

5.30-7.77

5. 02-8. 08

4. 94-8. 16

4, 90-8.25

n=3

stable

stable

9.80-12.45

9.70—12.60

9.60-12.80

a stabilizing effect, a result similar to the Harris-
type electrostatic flute modes. a However, there is
an essential difference in that the flute-like elec-
trostatic instability is stable when j & 3, while the
ordinary wave considered here can be unstable for
all values of j.

In Table IV, the ranges of unstable wave numbers
of the first four modes are given for the case P„=8
and 0/&u~= 0.1. For 2(va)/Vs=1, the ordinary
wave is stable. The first two harmonics become
unstable when 2(va)/Va = 2 and when this ratio in-
creases to 5, instability occurs for all four modes.

IV. DISCUSSION ON GROWTH RATE

A. Zero-Frequency Instability

%hen conditions are such that the plasma supports
a zero-frequency instability, reference to Fig. 1
shows that the growth rate is determined by the
point in the negative co plane at which the curves
representing the left- and right-hand sides of the
dispersion relation intersect. This point can be
determined numerically. Since the unstable p's
are of the order unity, the infinite series converges
rapidly and little computational difficulty is en-
countered. Some results on the maximum growth
rate are shown in Table V for the j=1 loss-cone
distribution and the ring distribution. The column
p corresponds to the value of p for which maximum
growth occurs for the given set of parameters. It
is seen that the growth rates are of the order of
the electron cyclotron frequency, which is about
the same order of magnitude as those of the aniso-
tropic bi-Maxwellian distribution studied previous-
ly ig

B. Cyclotron Harmonic Instabilities

2. 33

7. 1

9.6

20. 0

n=1

4. 8

5. 2

5. 6

6. 0

n=2

5. 6

5. 8

6. 0

6. 5

7. 0

7. 1

7. 7

8, 0

Since the frequencies of the unstable cyclotron
harmonic waves involve both real and imaginary
parts, the growth rates are no longer determined
by the point of intersection of two simple curves.
If we denote the real and imaginary parts of ~~ by
R and I, respectively, dispersion relation (5) may
be written, setting the real and imaginary parts
separately to zero and taking into account only
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TABLE V. Maximum growth rates of the zero-fre-
quency instability (0/w&) =0. 1 throughout. =4- a

Aa (vf)
(dp Qg

2 (~()) &&' P8

10
10
10
10

5
7
9

16
]2

8
4

12
12
12

&mW~~

0. 72 0. 12
0. 72 0. 11
0. 50 0.0777

0. 00
0. 72 0. 055
0. 72 0. 084
0. 72 0. 10

Ring distribution

2 |lf (i)/&i Pn P V I f,

10
10
10
10

8
10
12

16 0. 6
12 0, 4

8 0.4
6

12 0, 4
12 0.4
12 0.6

0. 084
0. 063
0. 040
0. 00
0. 045
0. 064
0. 077

j = 1 d istr ibution Based on Eq. (25), a pair of complex conjugate
roots for ~ appears, one of which corresponds to
an instability, when F+G&0. The imaginary part
of the frequency is given by

~a (F +G)1/a
ma („Paula)Fi/aP/a . (28)

It follows from Eq. (28) that the maximum growth
rate for the mth harmonic, denoted by y, occurs
approximately when F = 0 and is

electron dynamics, as two coupled equations

1+4(v~~ P &n A (R -n 0 ) (23a
(~ —naca) a+la

D'„n'na
n' (R —m'n')'+t') ' (23b)

2

((o —m A ) + (m 0 —c ~ ) —&p
= &p a

Qg

naD' naf//

m'O'- 'O' ' '- '0'in=i

The above equation is a biquadratic in (&u —m 0 )
and can therefore be solved for co2. The result is

where

~a 1/a ~a (p ~G)1/a+-~
na + 2na trna (~a/aa)ZP/a

(25)

m2 Q2
F = ——,———0. 5

2
CO@ Pg

2
2D'„+D', + 2m' a ", , (28)

n=f m —n

The above system of equations must be solved nu-
merically in order to determine the growth rates
accurately. This, however, is a complicated com-
putational problem and will not be undertaken in
this paper. The situation is somewhat reminiscent
of the Harris instability, for which it is interesting
to note that the first few papers on the subject con-
tained no calculation on the growth rates, presumably
also because of its complexity. We shall, however,
present and discuss an approximate formula which
can be derived if we follow a method due to Bald-
win, Bernstein, and%eenink. ~4 For this purpose,
let us go back to Eq. (18). The method of Baldwin
et al.~ consists of approximating ~ by m2A for
frequencies in the vicinity of the mth harmonic,
which results in the following approximate dis-
persion relation:

Gl/a H ) (D/ )1/a
a (vaq

2mn a,' (29)

Equation (29) shows explicitly that the growth
rate increases with &u~ and the ratio (va)/n~a, if
the parameters are such that F = 0. However, the
range of validity of Eqs. (28) and (29) is not at all
clear, For some parameters, the growth rates
based on them can be so large compared to the
cyclotron frequency that their validity is suspect.
For example, consider the first harmonic (m =1)
in a plasma with a ring distribution in the perpen-
dicular velocities. For P, = 5, (0/&u~)a= 0. 002,
2(vg~)/V = 3. 17, the quantity E vanishes at p = 2. 88
and according to Eq. (29), y~= 0. 55m&~. Such a
large growth rate seems to be questionable on two
accounts. First, it is much larger than those of
the zero-frequency instability, which are typically
of the order of the cyclotron frequency. Second,
a large imaginary part of ~ may not be consistent
with the approximation upon which Eq. (24) is
based, which assumes co= mA. Consequently, the
correctness of Eq. (29) is most likely limited to
parameters which result iny «mA, i.e. , near
marginal instability. In order to establish the
range of validity of Eq. (29), and to determine the
maximum growth rate accurately, especially for
parameters for which (29) yields y ~ mA (such as
the example given), the system of Eqs. (23a) and
(23b) must be solved numerically. This procedure
involves extensive calculations, the results of
which we hope to be able to report subsequently.

V. DISCUSSION

In this paper, we have shown that in stationary
or counterstreaming plasmas whose distributions
in the prependicular velocities are of the ring-
or the loss-cone-type, the electromagnetic ordinan
mode propagating perpendicular to the magnetic
field can become unstabl'e with either zero frequency
or near the cyclotron harmonics. Detailed analysis
of the instability boundaries have been carried out
for electron plasmas with the lowest (j = 1) and the
highest (j=~) members of the loss-cone distribu-
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tions. The results show that the higher the average
parallel energy, the more is the plasma susceptible
to the instability. If the distribution in the parallel
velocities is a stationary Maxwellian, instability
occurs only for large ratios of parallel thermal
pressure to magnetic pressure (p„,). For counter-
streaming plasmas with streaming velocities of the
order of the parallel electron thermal speed, the
instability can occur for P„, values of order unity.
Representative values of the growth rates of the
zero-frequency mode have been determined numer-
ically. For the cyclotron harmonics, an approxi-
mate formula for the growth rate, valid near mar-
ginal instability, has been derived. The general
problem of obtaining the growth rates of the cyclo-
tron instabilities has been formulated in terms of
two coupled equations, each of which contains an
infinite series. The solution of these equations,
however, awaits further investigation.

The results on the stability analysis of the j= 1
and the j= distributions indicate that a broadening

of a sharply peaked distribution in the transverse
velocities tends to stabilize the electromagnetic
cyclotron harmonic instability. Since the param-
eter j is directly related to the ratio of peak trans-
verse velocity to half-width, a detailed analysis of
distributions with intermediate values of jmay be
desirable. However, it is expected that the results
would fall in between the j=1 and j=~ cases pre-
sented in this paper.

Finally, -it is evident from, the dispersion rela-
tion (5) that if ion dynamics is included, there is
the additional possibility that waves around the
harmonics of the ion cyclotron frequency may be-
come unstable. In the study of the bi-Maxwellian
distribution, it was found that the presence of ion
streaming enables the zero-frequency instability
to occur in plasmas with very low values of P„,.~

It is reasonable to expect that a similar situation
would occur for the instability at the cyclotron
harmonics. A detailed analysis incorporating ion
dynamics is currently in progress.
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