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The unretarded London-van der Waals force between a neutral polarizable particle and a
conducting wall, and between two neutral polarizable particles are derived from classical elec-
tromagnetism under the assumption that the universe contains fluctuating classical electromag-
netic radiation with a Lorentz-invariant spectrum, (classical electromagnetic zero-point radia-
tion). The classical derivations correspond in detail to the familiar charge-fluctuation argu-
ments which have been advanced previously as qualitative semiclassical descriptions of quan-
tum calculations of these forces.

I. INTRODUCTION

In 1926, London' evaluated the interaction energy
between two neutral polarizable atoms using fourth-
order quantum perturbation theory, and he found a
potential function varying as R, where R is the
separation between the particles. The heuristic
description of this interaction follows a semiclassi-
cal analysis. Fluctuations in the charge distribution
within one polarizable particle produce an electric
dipole whose field then induces a dipole in the other
polarizable particle. The electrostatic interaction
energy between these two dipoles corresponds to
the potential in London's quantum calculation. Al-
though this essentially classical description is very
appealing, its applicability is customarily dimin-
ished by the emphasis that the interaction is basi-
cally a quantum phenomenon. It is the purpose of
this paper to show that the heuristic description
here can be used to give a purely classical calcula-
tion of the van der Waals force which is in agree-
ment with London's quantum result.

The new calculation takes on interest beyond the
confines of dispersion forces because it forms
another step in a general program in theoretical
physics. It has been suggested recently' that
much of what is presently regarded as quantum
physics may be accounted for in terms of classical
electrodynamics in which we allow the possibility
of temperature-independent fluctuating classical
electromagnetic radiation. The spectrum of this
classical zero-point radiation, 2 S~ per normal
mode, can be derived' (up to a multiplicative con-
stant) from the requirement of Lorentz invariance.
The theory of classical electromagnetic interactions
including this classical zero-point radiation has
been made the basis for classical derivations of the
blackbody radiation spectrum, ' of photon statis-
tics, of the third law of thermodynamics, ' of rotator
specific heats, and of asymptotic retarded disper-

sion forces. ' Here we perform the necessary cal-
culations to show that the unretarded London forces
are also predicted by the theory. In another publi-
cation, we will calculate the full fourth-order
(Casimir-Polder)' force between two neutral polar-
izable particles, and then show the equivalence to
all orders of perturbation theory between the quan-
tum electrodynamic and classical electrodynamic
calculation of dispersion forces.

II. SINGLE DIPOLE OSCILLATOR IN CLASSICAL
ZERO-POINT RADIATION

A. Physical Description

The following calculations for unretarded van der
Waals forces will be more easily understood if we
first consider a single classical dipole oscillator in
free space. According to traditional classical theo-
ry, suchan oscillator will be at rest at the equilibri-
um position. However, in the view which we are
exploring, there is no such thing as "empty space"
because the universe contains fluctuating classical
electromagnetic radiation with a Lorentz-invariant
spectrum. Thus the oscillator will not remain at
rest, but due to the random impulses from the ran-
dom electromagnetic field, will oscillate about its
equilibrium position. Marshall has considered this
situation in detail and has found that the classical
oscillator closely resemble a quantum oscillator in
its ground state. Here we will consider only those
aspects of use in our later calculations.

We consider a one-dimensional harmonic oscil-
lator of mass m, charge e, and natural frequency
(dp The equation of motion for the oscillator is then

mx= -mvox+eE„+ —,(e /c') x

This is simply Newton's second law including the
elastic restoring force -m~px, a force eE„due to
the random radiation field, and a radiation damping
force 3(e /c') x'. lt is sometimes convenient to
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rewrite this equation in terms of the electric dipole
moment

In terms of the Fourier transform, the mean-square
value of the dipole moment p is,

P =ex,

p —~ p ++pp = 2~C

where the damping coefficient I' is

(2) 2 2

(p2)= Z Z, d k d k (Rep(&u, t)Rep(~, t)).
41 X'=1

(i6)
Introducing the solution (13), we have

1"= -'. e'/mc'. (4)

The fluctuating classical radiation in our theory'
has an electric field

2

E(X, t) =Re Z J d k e(k, &)g(&u;)

(Rep(~, t) Rep(J, t))= (Re(pE/C) Re(pE /C )),
(17)

where the prime indicates dependence on co .
The averaging in our random-phase description

involves

where

x exp(i[k ~ x —(et+8(k, A,)]], (5)
(exp(i[k x —et+ 8(k, A) ]j

x exp( —[k' x —ur't+ 8(k', ~')]]& = 5».5'(k-k'),

(s)

(7)v g ((d) = g k(d,
A

e(k, A) is a polarization vector, and we are em-
ploying the random-phase description of Planck'
and of Einstein and Hopf. " The spectrum of the
radiation here is Lorentz invariant and normalized
to 2N~ per normal mode.

(exp(i[k I—et+8(k, &)]].

(is)

Thus we have

(Rep(~, t) Rep(&u, t))

&& expMk' x —(u't+8(k', X')]]&=0 . (19)

B. Mathematical Calculation

Introducing a Fourier decomposition for p(t) which
formally follows that for E,

2

p(t) =Re Z jd'kp((u, t), (s)

where P(&u, t) has time dependence e '"', Eq. (3)be-
comes

Cp= pE„,

where

Noting equations (10), (11), and (16) we have

Summing over polarizations

2

Z e„'(k ~) = i -k '/k'

(21)

(22)

and

C=- -~~ ++02 ~ 3 2

P =-,'I'c'= e'/m,

E„=e„(k, A)lj(e) exp(i[k x-&et+8(k, A)] j.
The solution follows as

(io)

(12)

and carrying out the angular integration, this be-
comes

(p'&= d(o 'l 4w-
l

(o'.( 2 & e' ' If(u

4 e=p

(- (u'+ &uo)'+ (I'(u')' '

8 = 2 rnid + 2 m(O X

We are interested in the average energy of the
fluctuating system, so that we write

(14)

8 = (-,' mx'+ -,'m(coax'&

= ((1/2P)(p'+ ~op')& .

p= pE. /C.
The energy of the oscillator is that associated

with the particle kinetic energy and the potential
energy of the elastic restoring force,

The integral in (23) is convergent at both ends,
~- 0 and ~- , and the integrand is sharply
peaked at m = cop. Following a traditional procedure
for approximating integrals of this form, we change
the variable of integration from co to x = co —cop, re-
place all terms in ~ not inv'6lving co —~0 by cop, and
extend the lower limit of integration to x- -.
Changing variables once more to g = 2x/~0~1', the
integral takes the form

pNO

1
dZ 2 = 7T ~

8 +1
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C. Results for Single Oscillator

The result for the mean square dipole moment is

I p p'-3«'p)(& p')
(2R)' (so)

(p') =-,'Re'/(rom . (26)

(p') = 2 K(ooe'/m .
The energy is

(26)

The value for (p2) may be obtained in analogous
fashion and merely involves two more powers of
~~ which become cop~ because of the sharply peaked
integr and

and we have taken the g axis perpendicular to the
wall. The factor of 2 occurs because the work done
in bringing the dipole in from spatial infinity in-
volves forces on the dipole, but not on the image
dipole which also moves in from spatial infinity.
It is the average energy which is of interest to us
in the attraction of the polarizable particle to its
image,

(sl)

The average energy of the classical oscillator
emersed in zero-point radiation is just that of a
quantum oscillator with the same natural frequency.
The values for the mean-square displacement and
momentum also agree

The components of the image dipole are easily
found from the theory of electrostatic images

I I I
Px' Pxt Pp Ipt Pg Pcp

giving

(32)

(x ) = (I/e')(p') = kjam(uo,

((m~ )') = (m '/e')( p2) = —,
'

mk(uo .

, III. UNRETARDED FORCE BETWEEN A NEUTRAL
POLARIZABLE PARTICLE AND A CONDUCTING

WALL

(28)

(ao)

16R3

Now the components p„, p„and p, of the vector
dipole p may be regarded as independent one-di-
mensional oscillators of the type considered in Sec.
II. Hence, in the lowest approximation, all we need
do is substitute for each of (p„), (p„), and (p, ) the
value of (p2) in (20).

A. Physical Situation B. Results for Particle-Wall Potential

We consider a neutral polarizable particle located
a distance R from a perfectly conducting wall. The
particle is pictured as a three-dimensional harmon-
ic oscillator of natural frequency mp and damping
constant j.". When the particle is polarized by the
fluctuating zero-point radiation present, it becomes
a source of electromagnetic fields. These in turn
produce charge separations in the conducting wall,
and hence fields back at the position of the polariz-
able particle which attract the particle toward the
wall.

If we write out the explicit differential equation
for the oscillator near the conducting wall, and
then calculate the kinetic and elastic potential ener-
gy, we find that this mechanical energy is

2EKE+Epm= gAQJ + 4A&dp /CO

where ~ is the new resonant frequency of the oscil-
lator in the presence of the wall. To order e /m,
the change in the kinetic energy cancels the change
in potential energy so that the effective change in
energy is that associated with the electromagnetic
field. The calculations alluded to here will be pre-
sented in detail in a subsequent paper.

The energy associated with the electrostatic
attraction of a dipole p to a conducting wall is half
the energy of attraction to the image dipole p

U(R) = —emtl/8m&@OR = —&uo@o'/8R

where

u = e'/m(u20

(34)

(36)

is the static polarizability corresponding to the
physical oscillator of Sec. II. The result in (34) is
just that obtained by Casimir and Polder' from
second-order quantum perturbation theory when
we make the natural identification of the oscillator
frequency cop as

copN = 8, -Sp, (36)

where 8& is the energy of the first excited P state
and Sp is the energy of the ground state for the
atom treated by Casimir and Polder.

IV. UNRETARDED FORCE BETWEEN TWO NEUTRAL
POLARIZABLE PARTICLES

A. Need for a More Sophisticated Analysis

The force between two identical neutral polariz-
able particles is obtained in a fashion analogous to
that given above for a particle and a conducting
wall. However, while the particle-wall force was
of order e~/@c (second order), the lowest nonvan-

With the substitution (p ) = ~ %2/~0m, the poten-
tial is
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ishing contribution to the particle-particle force is
of order (e /kc) (fourth order).

The change in the order of the interaction neces-
sitates a more sophisticated treatment of the inter-
action. In the previous calculation we ignored any
change in the mechanical energy of the oscillator
caused by the presence of the conducting wall, and we
computed only the change in electrostatic energy
associated with the attraction to the wall. How-
ever, when two yolarizable particles are near each
other, each produces electrostatic fields which
modify the mechanical energy of the other dipole to the
same order (e /lac)2 as the electrostatic energy of
interaction. An accurate calculation of the position-
dependent energy of the system must include both
the mechanical and electrostatic energies.

B. Physical Situation Involving Two Polarizable Particles

When two polarizable particles are separated by
a distance R, the classical electromagnetic gero-
yoint radiation causes a fluctuating polarization of
each particle, and, in turn, the induced dipoles
produce electrostatic fields which influence the
polarization of the other particle. Thus Newton's
second law gives two coupled equations for the di-
yoles,

~ ~ ~

mxz = -m(ugxg+eE2+eÃ(x~, f)+ ', (e /c ) x—~

(37)

C. Mathematical Analysis

The equations (39) and (40) give a system of six
coupled differential equations for p&„, p», p&„
p~„, p», and p~,. However, the coupling isonly
between corresponding components of the two par-
ticles —between pg„and p~„, p~, and p~„, and kg
and p~, . Thus for this paper we will not introduce
a matrix notation, but will consider three pairs of
equations of the form

—R pg -$ K pg + &2pg + ape = ~2 +c E( Xg f)

—(d p2 —2I (d pe + CU2pe + fjpg =
2 Fc E( Xe, f)

(4l)

(42)

= —
2 I (d 2

(kE)2 (kE)2 I
exp(2k+)

kB kB,
. (43)

when the x or y component is involved,

kit (kft) (kR) i
(44) ~

Choosing one pair of these equations, we have

CPA+ /PB PEA y

tkbz+ CPa ——PE2,

(45)

(46)

where it is understood that P» P» g, E(x» f), and

E(x s, t) all stand for the x component, or all for
the y component, or all for the g component. When

the g component is involved, then

~ ~ ~

mx2= -m&u2x2+eE„+eE(x» f)+ 2(e /c ) x 2,
(38)

where E(x~, f), E(x2, f) are the fields due to the
zero-point radiation (5) at the positions of particles'
A and 8, respectively, and E&, E& are the electric
fields due to the induced dipoj. es acting on the other
particle. Rewriting the equations in terms of the
dipoles p& = ex&, p~ = ex~, and introducing the ex-
plicit form of the electrostatic fields, we have
for the Fourier .decomposition

pg= &2'+ 2 Fc E(xg~ f)+zT(0 pg

where

"+3+ (d~o,

p=-,'rc2=e2/m .
Also, we introduce the symbols

A. =C -t),
g=C+q .

The solutions to Eqs. (45) and (46) are

P„=P(CE„—rlE2)/(C rl ), -
P~ = P(CEe —RE~)/(C' —8 ) .

(4V)

(48)

(49)

(50)

(5l)

(52)

+ I (d + [3X(X'p3) —pe ](JCXpe) XX
AR

i
2- exp i', 39

It is the energy of the system which is of interest
to us

( 2 ~(XA ++B)+ 2 ~ ~0(+A + +B) + +PAPB) y (53)

with

p2 = —(d2p~+ 2 Ic E(xg, f) + ll (0 p2' u = macy/e2, (54)

+ 2i ~
k&

+ I.3'(3 ' P~) P2]
A

(1
l

(-- ), —
( ), exp(ikB), (40)

~ AR AR

where we shall assume that particle I3 lies to the
right of particle A, a distance R along the z axis.

=m 2
u, = —

g Regge
=m 1

u„=u, =~R

The expression can be written in terms: of the

including the kinetic energy of the oscillators, the
elastic potential energy, and the electrostatic en-

ergy of interaction when koR «1 so that g becomes
to lowest order in R
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'(I'(Xg XS)) (56)

p2~2 2

&Re p& (&u, t) Reps((d f) &
=

4 ~ & [ 2[ & [
2 6),) 6 (~ & )

&[—2(cq*+c*q)+(lcl + Inl )

x cos(k' (xg —xe))], (57)

where it is understood that we are involved with
only a single componentwhenwriting p&, p&, and
e . The expression for &Reps((d, t)Reps(&u, f)& is
obtained by interchanging the subscripts A and B in
(56).

Introducing the averages (56) and (5V) into the ex-
pression for the energy, while noting that

dipole moment p= ex,

(d~= —,
'

(&~ &+&$2&)+—„'«P.'&+&Ps&)" &I.Is&.,

(55)
The evaluation of the energy proceeds as in Sec.

II. Introducing the Fourier decomposition (8) with
the solutions (51) and (52), we carry out the aver-
ages as in (16) and (19), finding expressions anal-
ogous to (20).
Thus here

&Rep„(~, f)ReP„(d, f)&

Pe 5
2 2 2

x(lgl'+ I2lI2

3k(dl' ~i' &u +&u.
(8()' '((-~'+~')'+(rd-rmn)')

r 1F «2t

x sin& d8 @( (-~q')

&& [1—cos (k (x~ -x2))), (63)

where k& corresponds to the component under con-
sideration with

k„/k = sin8 cosp, k, /k = sin8 sin(()), k, /k = cos'8,

(64)

cos(k' (xg —xs)) = cos(kR cos8) (65)

Carrying out the angular integrations and then
evaluating the integral in co as described in Sec. II,
we find for the g component

8, = ~@co, ,

and for the x and y components

(66)

(6V)

The results we have obtained are identical with
those of nonrelativistic quantum mechanics. The
energy of the two polarizable particles is simply

with $„„8„„and8„found by replacing the minus
signs in (66) and (67) with plus signs. The frequen-
cies &u„, (d„, and (d, correspond to E(I. (60) where
the value of g is chosen appropriately for the

x, y, or g component.

Potential Between Two Polarizable Particles

2(lcl'+ l~l') = ll I'+

2(Cn'+ —C*g

and defining

~-= &do -Reg,2

+ = p+ Ref,

we find

(56)

(59)

(6o)

(61)

8 = p @co„+g Sco„.+ g k(d, + g 8'cd„,+ p Slog + —,
'

@cog~,

(66)
where the frequencies are just the natural frequen-
cies of the classical system in which we omit the
zero-point radiation and the radiation damping. '

The potential energy associated with the attraction
of the polarizable particles is the difference be-
tween the system energy at the distance 8 and at
infinite separation

S=b +8, ,
U(R) = 8(R) —(g(~) . (69)

where Now as 8- , Reg -0 and each one of the frequen-
cies co and co, becomes cop,

2 2 2 2 2PE $ (0 +(d
4 8 (~) = 6(-', K (u()) . (Vo)

x [1 —cos (k (xz —xs))] (62)

and h, is analogous to (62) with &u and X replaced
by co, and A. , and with a plus sign appearing in the
last bracket. The sum over polarizations can be
carried out as in (22), polar coordinates introduced,
and some symbols eliminated from (46) and (49),
giving

To order (e /kc), the function U(R) may be found

by expanding

~ = (~(') —Req)' ' = &u, —2 Req/&u, —2 (Reg) '/~', + ~ ~ ~

(Vl)

Specifically, from (43) and (44) when &u2R/c « I,
we have
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e 1
2mR 8~ iimR&p I m

e2 1 82 'Ir2

2mR' 8&v mR' ii '
p m

~2 1 2~2 2

mB Sco mAp m

(V2)

interacting with quadratic interactions. It can be
shown that quantum mechanics and classical me-
chanics including classical electromagnetic zero-
point radiation give the same values for the expecta-
tion values of every observable in the ground state
of the system.

V. CLOSING SUMMARY

82 1 ( 2e2 2

mR' 8&v'~ mR~p I,m

Combining (88)-(VO) and (V2), we have

( )=--48 me 4 8p

where, as in (35), n is the static polarizability of
the atom. Again making the identification

S(dp = gy gp (V4)

as the energy difference between the ground state
and the lowest P state of the atom, we see that our
classical calculation gives the same result as the
quantum calculations of London' and of Casimir and
Polder. It is of interest to remark more generally
that there is an equivalence between the quantum
and classical calculation for harmonic oscillators

The unretarded London-van der Waals forces be-
tween a polarizable particle and a conducting wall,
and between two polarizable particles are calculated
here from classical electrodynamics including classi-
cal electromagnetic zero-point radiation with a scale
—,
'

hen per normal mode imposed upon the Lorentz-
invariant power spectrum. In each case, the fluc-
tuations in the zero-point electric field cause a
fluctuating polarization of the particles. In the first
case, the fluctuating dipole is attracted to its image
in the conducting wall. In the second, two polariz-
able particles are attracted together owing to the
further moments induced by the fluctuating dipoles
produced by the zero-point radiation. The classical
analysis parallels the usual qualitative semiclassical
description phrased in terms of spontaneous quan-
tum separations of charge. The classical results
obtained agree with the quantum calculations of
London and of Casimir and Polder.
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